| //! Lints in the Rust compiler. |
| //! |
| //! This contains lints which can feasibly be implemented as their own |
| //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the |
| //! definitions of lints that are emitted directly inside the main compiler. |
| //! |
| //! To add a new lint to rustc, declare it here using `declare_lint!()`. |
| //! Then add code to emit the new lint in the appropriate circumstances. |
| //! You can do that in an existing `LintPass` if it makes sense, or in a |
| //! new `LintPass`, or using `Session::add_lint` elsewhere in the |
| //! compiler. Only do the latter if the check can't be written cleanly as a |
| //! `LintPass` (also, note that such lints will need to be defined in |
| //! `rustc_session::lint::builtin`, not here). |
| //! |
| //! If you define a new `EarlyLintPass`, you will also need to add it to the |
| //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in |
| //! `lib.rs`. Use the former for unit-like structs and the latter for structs |
| //! with a `pub fn new()`. |
| //! |
| //! If you define a new `LateLintPass`, you will also need to add it to the |
| //! `late_lint_methods!` invocation in `lib.rs`. |
| |
| use crate::{ |
| types::{transparent_newtype_field, CItemKind}, |
| EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext, |
| }; |
| use rustc_ast::attr; |
| use rustc_ast::tokenstream::{TokenStream, TokenTree}; |
| use rustc_ast::visit::{FnCtxt, FnKind}; |
| use rustc_ast::{self as ast, *}; |
| use rustc_ast_pretty::pprust::{self, expr_to_string}; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::stack::ensure_sufficient_stack; |
| use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString}; |
| use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType}; |
| use rustc_feature::{GateIssue, Stability}; |
| use rustc_hir as hir; |
| use rustc_hir::def::{DefKind, Res}; |
| use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID}; |
| use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind}; |
| use rustc_hir::{HirId, Node}; |
| use rustc_index::vec::Idx; |
| use rustc_middle::lint::LintDiagnosticBuilder; |
| use rustc_middle::ty::print::with_no_trimmed_paths; |
| use rustc_middle::ty::subst::{GenericArgKind, Subst}; |
| use rustc_middle::ty::Instance; |
| use rustc_middle::ty::{self, layout::LayoutError, Ty, TyCtxt}; |
| use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason}; |
| use rustc_span::edition::Edition; |
| use rustc_span::source_map::Spanned; |
| use rustc_span::symbol::{kw, sym, Ident, Symbol}; |
| use rustc_span::{BytePos, InnerSpan, MultiSpan, Span}; |
| use rustc_target::abi::{LayoutOf, VariantIdx}; |
| use rustc_trait_selection::traits::misc::can_type_implement_copy; |
| |
| use crate::nonstandard_style::{method_context, MethodLateContext}; |
| |
| use std::fmt::Write; |
| use tracing::{debug, trace}; |
| |
| // hardwired lints from librustc_middle |
| pub use rustc_session::lint::builtin::*; |
| |
| declare_lint! { |
| /// The `while_true` lint detects `while true { }`. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// while true { |
| /// |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// `while true` should be replaced with `loop`. A `loop` expression is |
| /// the preferred way to write an infinite loop because it more directly |
| /// expresses the intent of the loop. |
| WHILE_TRUE, |
| Warn, |
| "suggest using `loop { }` instead of `while true { }`" |
| } |
| |
| declare_lint_pass!(WhileTrue => [WHILE_TRUE]); |
| |
| /// Traverse through any amount of parenthesis and return the first non-parens expression. |
| fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr { |
| while let ast::ExprKind::Paren(sub) = &expr.kind { |
| expr = sub; |
| } |
| expr |
| } |
| |
| impl EarlyLintPass for WhileTrue { |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { |
| if let ast::ExprKind::While(cond, _, label) = &e.kind { |
| if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind { |
| if let ast::LitKind::Bool(true) = lit.kind { |
| if !lit.span.from_expansion() { |
| let msg = "denote infinite loops with `loop { ... }`"; |
| let condition_span = e.span.with_hi(cond.span.hi()); |
| cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| { |
| lint.build(msg) |
| .span_suggestion_short( |
| condition_span, |
| "use `loop`", |
| format!( |
| "{}loop", |
| label.map_or_else(String::new, |label| format!( |
| "{}: ", |
| label.ident, |
| )) |
| ), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| }) |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `box_pointers` lints use of the Box type. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(box_pointers)] |
| /// struct Foo { |
| /// x: Box<isize>, |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is mostly historical, and not particularly useful. `Box<T>` |
| /// used to be built into the language, and the only way to do heap |
| /// allocation. Today's Rust can call into other allocators, etc. |
| BOX_POINTERS, |
| Allow, |
| "use of owned (Box type) heap memory" |
| } |
| |
| declare_lint_pass!(BoxPointers => [BOX_POINTERS]); |
| |
| impl BoxPointers { |
| fn check_heap_type<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) { |
| for leaf in ty.walk(cx.tcx) { |
| if let GenericArgKind::Type(leaf_ty) = leaf.unpack() { |
| if leaf_ty.is_box() { |
| cx.struct_span_lint(BOX_POINTERS, span, |lint| { |
| lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit() |
| }); |
| } |
| } |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for BoxPointers { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| match it.kind { |
| hir::ItemKind::Fn(..) |
| | hir::ItemKind::TyAlias(..) |
| | hir::ItemKind::Enum(..) |
| | hir::ItemKind::Struct(..) |
| | hir::ItemKind::Union(..) => { |
| self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id)) |
| } |
| _ => (), |
| } |
| |
| // If it's a struct, we also have to check the fields' types |
| match it.kind { |
| hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { |
| for struct_field in struct_def.fields() { |
| let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id); |
| self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id)); |
| } |
| } |
| _ => (), |
| } |
| } |
| |
| fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) { |
| let ty = cx.typeck_results().node_type(e.hir_id); |
| self.check_heap_type(cx, e.span, ty); |
| } |
| } |
| |
| declare_lint! { |
| /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }` |
| /// instead of `Struct { x }` in a pattern. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// struct Point { |
| /// x: i32, |
| /// y: i32, |
| /// } |
| /// |
| /// |
| /// fn main() { |
| /// let p = Point { |
| /// x: 5, |
| /// y: 5, |
| /// }; |
| /// |
| /// match p { |
| /// Point { x: x, y: y } => (), |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The preferred style is to avoid the repetition of specifying both the |
| /// field name and the binding name if both identifiers are the same. |
| NON_SHORTHAND_FIELD_PATTERNS, |
| Warn, |
| "using `Struct { x: x }` instead of `Struct { x }` in a pattern" |
| } |
| |
| declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns { |
| fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) { |
| if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind { |
| let variant = cx |
| .typeck_results() |
| .pat_ty(pat) |
| .ty_adt_def() |
| .expect("struct pattern type is not an ADT") |
| .variant_of_res(cx.qpath_res(qpath, pat.hir_id)); |
| for fieldpat in field_pats { |
| if fieldpat.is_shorthand { |
| continue; |
| } |
| if fieldpat.span.from_expansion() { |
| // Don't lint if this is a macro expansion: macro authors |
| // shouldn't have to worry about this kind of style issue |
| // (Issue #49588) |
| continue; |
| } |
| if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind { |
| if cx.tcx.find_field_index(ident, &variant) |
| == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results())) |
| { |
| cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| { |
| let mut err = lint |
| .build(&format!("the `{}:` in this pattern is redundant", ident)); |
| let binding = match binding_annot { |
| hir::BindingAnnotation::Unannotated => None, |
| hir::BindingAnnotation::Mutable => Some("mut"), |
| hir::BindingAnnotation::Ref => Some("ref"), |
| hir::BindingAnnotation::RefMut => Some("ref mut"), |
| }; |
| let ident = if let Some(binding) = binding { |
| format!("{} {}", binding, ident) |
| } else { |
| ident.to_string() |
| }; |
| err.span_suggestion( |
| fieldpat.span, |
| "use shorthand field pattern", |
| ident, |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| }); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unsafe_code` lint catches usage of `unsafe` code. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(unsafe_code)] |
| /// fn main() { |
| /// unsafe { |
| /// |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is intended to restrict the usage of `unsafe`, which can be |
| /// difficult to use correctly. |
| UNSAFE_CODE, |
| Allow, |
| "usage of `unsafe` code" |
| } |
| |
| declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]); |
| |
| impl UnsafeCode { |
| fn report_unsafe( |
| &self, |
| cx: &EarlyContext<'_>, |
| span: Span, |
| decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>), |
| ) { |
| // This comes from a macro that has `#[allow_internal_unsafe]`. |
| if span.allows_unsafe() { |
| return; |
| } |
| |
| cx.struct_span_lint(UNSAFE_CODE, span, decorate); |
| } |
| |
| fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) { |
| self.report_unsafe(cx, span, |lint| { |
| lint.build(msg) |
| .note( |
| "the linker's behavior with multiple libraries exporting duplicate symbol \ |
| names is undefined and Rust cannot provide guarantees when you manually \ |
| override them", |
| ) |
| .emit(); |
| }) |
| } |
| } |
| |
| impl EarlyLintPass for UnsafeCode { |
| fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { |
| if attr.has_name(sym::allow_internal_unsafe) { |
| self.report_unsafe(cx, attr.span, |lint| { |
| lint.build( |
| "`allow_internal_unsafe` allows defining \ |
| macros using unsafe without triggering \ |
| the `unsafe_code` lint at their call site", |
| ) |
| .emit() |
| }); |
| } |
| } |
| |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { |
| if let ast::ExprKind::Block(ref blk, _) = e.kind { |
| // Don't warn about generated blocks; that'll just pollute the output. |
| if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) { |
| self.report_unsafe(cx, blk.span, |lint| { |
| lint.build("usage of an `unsafe` block").emit() |
| }); |
| } |
| } |
| } |
| |
| fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { |
| match it.kind { |
| ast::ItemKind::Trait(box ast::TraitKind(_, ast::Unsafe::Yes(_), ..)) => self |
| .report_unsafe(cx, it.span, |lint| { |
| lint.build("declaration of an `unsafe` trait").emit() |
| }), |
| |
| ast::ItemKind::Impl(box ast::ImplKind { unsafety: ast::Unsafe::Yes(_), .. }) => self |
| .report_unsafe(cx, it.span, |lint| { |
| lint.build("implementation of an `unsafe` trait").emit() |
| }), |
| |
| ast::ItemKind::Fn(..) => { |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a `no_mangle` function", |
| ); |
| } |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a function with `export_name`", |
| ); |
| } |
| } |
| |
| ast::ItemKind::Static(..) => { |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a `no_mangle` static", |
| ); |
| } |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a static with `export_name`", |
| ); |
| } |
| } |
| |
| _ => {} |
| } |
| } |
| |
| fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { |
| if let ast::AssocItemKind::Fn(..) = it.kind { |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a `no_mangle` method", |
| ); |
| } |
| if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { |
| self.report_overriden_symbol_name( |
| cx, |
| attr.span, |
| "declaration of a method with `export_name`", |
| ); |
| } |
| } |
| } |
| |
| fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) { |
| if let FnKind::Fn( |
| ctxt, |
| _, |
| ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. }, |
| _, |
| body, |
| ) = fk |
| { |
| let msg = match ctxt { |
| FnCtxt::Foreign => return, |
| FnCtxt::Free => "declaration of an `unsafe` function", |
| FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method", |
| FnCtxt::Assoc(_) => "implementation of an `unsafe` method", |
| }; |
| self.report_unsafe(cx, span, |lint| lint.build(msg).emit()); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_docs` lint detects missing documentation for public items. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_docs)] |
| /// pub fn foo() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is intended to ensure that a library is well-documented. |
| /// Items without documentation can be difficult for users to understand |
| /// how to use properly. |
| /// |
| /// This lint is "allow" by default because it can be noisy, and not all |
| /// projects may want to enforce everything to be documented. |
| pub MISSING_DOCS, |
| Allow, |
| "detects missing documentation for public members", |
| report_in_external_macro |
| } |
| |
| pub struct MissingDoc { |
| /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes. |
| doc_hidden_stack: Vec<bool>, |
| |
| /// Private traits or trait items that leaked through. Don't check their methods. |
| private_traits: FxHashSet<hir::HirId>, |
| } |
| |
| impl_lint_pass!(MissingDoc => [MISSING_DOCS]); |
| |
| fn has_doc(attr: &ast::Attribute) -> bool { |
| if attr.is_doc_comment() { |
| return true; |
| } |
| |
| if !attr.has_name(sym::doc) { |
| return false; |
| } |
| |
| if attr.value_str().is_some() { |
| return true; |
| } |
| |
| if let Some(list) = attr.meta_item_list() { |
| for meta in list { |
| if meta.has_name(sym::hidden) { |
| return true; |
| } |
| } |
| } |
| |
| false |
| } |
| |
| impl MissingDoc { |
| pub fn new() -> MissingDoc { |
| MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() } |
| } |
| |
| fn doc_hidden(&self) -> bool { |
| *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") |
| } |
| |
| fn check_missing_docs_attrs( |
| &self, |
| cx: &LateContext<'_>, |
| def_id: LocalDefId, |
| sp: Span, |
| article: &'static str, |
| desc: &'static str, |
| ) { |
| // If we're building a test harness, then warning about |
| // documentation is probably not really relevant right now. |
| if cx.sess().opts.test { |
| return; |
| } |
| |
| // `#[doc(hidden)]` disables missing_docs check. |
| if self.doc_hidden() { |
| return; |
| } |
| |
| // Only check publicly-visible items, using the result from the privacy pass. |
| // It's an option so the crate root can also use this function (it doesn't |
| // have a `NodeId`). |
| if def_id != CRATE_DEF_ID { |
| if !cx.access_levels.is_exported(def_id) { |
| return; |
| } |
| } |
| |
| let attrs = cx.tcx.get_attrs(def_id.to_def_id()); |
| let has_doc = attrs.iter().any(has_doc); |
| if !has_doc { |
| cx.struct_span_lint( |
| MISSING_DOCS, |
| cx.tcx.sess.source_map().guess_head_span(sp), |
| |lint| { |
| lint.build(&format!("missing documentation for {} {}", article, desc)).emit() |
| }, |
| ); |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingDoc { |
| fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) { |
| let doc_hidden = self.doc_hidden() |
| || attrs.iter().any(|attr| { |
| attr.has_name(sym::doc) |
| && match attr.meta_item_list() { |
| None => false, |
| Some(l) => attr::list_contains_name(&l, sym::hidden), |
| } |
| }); |
| self.doc_hidden_stack.push(doc_hidden); |
| } |
| |
| fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) { |
| self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); |
| } |
| |
| fn check_crate(&mut self, cx: &LateContext<'_>, krate: &hir::Crate<'_>) { |
| self.check_missing_docs_attrs(cx, CRATE_DEF_ID, krate.module().inner, "the", "crate"); |
| } |
| |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| match it.kind { |
| hir::ItemKind::Trait(.., trait_item_refs) => { |
| // Issue #11592: traits are always considered exported, even when private. |
| if let hir::VisibilityKind::Inherited = it.vis.node { |
| self.private_traits.insert(it.hir_id()); |
| for trait_item_ref in trait_item_refs { |
| self.private_traits.insert(trait_item_ref.id.hir_id()); |
| } |
| return; |
| } |
| } |
| hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => { |
| // If the trait is private, add the impl items to `private_traits` so they don't get |
| // reported for missing docs. |
| let real_trait = trait_ref.path.res.def_id(); |
| if let Some(def_id) = real_trait.as_local() { |
| let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id); |
| if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) { |
| if let hir::VisibilityKind::Inherited = item.vis.node { |
| for impl_item_ref in items { |
| self.private_traits.insert(impl_item_ref.id.hir_id()); |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| hir::ItemKind::TyAlias(..) |
| | hir::ItemKind::Fn(..) |
| | hir::ItemKind::Macro(..) |
| | hir::ItemKind::Mod(..) |
| | hir::ItemKind::Enum(..) |
| | hir::ItemKind::Struct(..) |
| | hir::ItemKind::Union(..) |
| | hir::ItemKind::Const(..) |
| | hir::ItemKind::Static(..) => {} |
| |
| _ => return, |
| }; |
| |
| let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id()); |
| |
| self.check_missing_docs_attrs(cx, it.def_id, it.span, article, desc); |
| } |
| |
| fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) { |
| if self.private_traits.contains(&trait_item.hir_id()) { |
| return; |
| } |
| |
| let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id()); |
| |
| self.check_missing_docs_attrs(cx, trait_item.def_id, trait_item.span, article, desc); |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { |
| // If the method is an impl for a trait, don't doc. |
| if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl { |
| return; |
| } |
| |
| let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id()); |
| self.check_missing_docs_attrs(cx, impl_item.def_id, impl_item.span, article, desc); |
| } |
| |
| fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) { |
| let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id()); |
| self.check_missing_docs_attrs(cx, foreign_item.def_id, foreign_item.span, article, desc); |
| } |
| |
| fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) { |
| if !sf.is_positional() { |
| let def_id = cx.tcx.hir().local_def_id(sf.hir_id); |
| self.check_missing_docs_attrs(cx, def_id, sf.span, "a", "struct field") |
| } |
| } |
| |
| fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) { |
| self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), v.span, "a", "variant"); |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_copy_implementations` lint detects potentially-forgotten |
| /// implementations of [`Copy`]. |
| /// |
| /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_copy_implementations)] |
| /// pub struct Foo { |
| /// pub field: i32 |
| /// } |
| /// # fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Historically (before 1.0), types were automatically marked as `Copy` |
| /// if possible. This was changed so that it required an explicit opt-in |
| /// by implementing the `Copy` trait. As part of this change, a lint was |
| /// added to alert if a copyable type was not marked `Copy`. |
| /// |
| /// This lint is "allow" by default because this code isn't bad; it is |
| /// common to write newtypes like this specifically so that a `Copy` type |
| /// is no longer `Copy`. `Copy` types can result in unintended copies of |
| /// large data which can impact performance. |
| pub MISSING_COPY_IMPLEMENTATIONS, |
| Allow, |
| "detects potentially-forgotten implementations of `Copy`" |
| } |
| |
| declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| if !cx.access_levels.is_reachable(item.def_id) { |
| return; |
| } |
| let (def, ty) = match item.kind { |
| hir::ItemKind::Struct(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.def_id); |
| (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) |
| } |
| hir::ItemKind::Union(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.def_id); |
| (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) |
| } |
| hir::ItemKind::Enum(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.def_id); |
| (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) |
| } |
| _ => return, |
| }; |
| if def.has_dtor(cx.tcx) { |
| return; |
| } |
| let param_env = ty::ParamEnv::empty(); |
| if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) { |
| return; |
| } |
| if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() { |
| cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| { |
| lint.build( |
| "type could implement `Copy`; consider adding `impl \ |
| Copy`", |
| ) |
| .emit() |
| }) |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_debug_implementations` lint detects missing |
| /// implementations of [`fmt::Debug`]. |
| /// |
| /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_debug_implementations)] |
| /// pub struct Foo; |
| /// # fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Having a `Debug` implementation on all types can assist with |
| /// debugging, as it provides a convenient way to format and display a |
| /// value. Using the `#[derive(Debug)]` attribute will automatically |
| /// generate a typical implementation, or a custom implementation can be |
| /// added by manually implementing the `Debug` trait. |
| /// |
| /// This lint is "allow" by default because adding `Debug` to all types can |
| /// have a negative impact on compile time and code size. It also requires |
| /// boilerplate to be added to every type, which can be an impediment. |
| MISSING_DEBUG_IMPLEMENTATIONS, |
| Allow, |
| "detects missing implementations of Debug" |
| } |
| |
| #[derive(Default)] |
| pub struct MissingDebugImplementations { |
| impling_types: Option<LocalDefIdSet>, |
| } |
| |
| impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| if !cx.access_levels.is_reachable(item.def_id) { |
| return; |
| } |
| |
| match item.kind { |
| hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {} |
| _ => return, |
| } |
| |
| let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) { |
| Some(debug) => debug, |
| None => return, |
| }; |
| |
| if self.impling_types.is_none() { |
| let mut impls = LocalDefIdSet::default(); |
| cx.tcx.for_each_impl(debug, |d| { |
| if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() { |
| if let Some(def_id) = ty_def.did.as_local() { |
| impls.insert(def_id); |
| } |
| } |
| }); |
| |
| self.impling_types = Some(impls); |
| debug!("{:?}", self.impling_types); |
| } |
| |
| if !self.impling_types.as_ref().unwrap().contains(&item.def_id) { |
| cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| { |
| lint.build(&format!( |
| "type does not implement `{}`; consider adding `#[derive(Debug)]` \ |
| or a manual implementation", |
| cx.tcx.def_path_str(debug) |
| )) |
| .emit() |
| }); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `anonymous_parameters` lint detects anonymous parameters in trait |
| /// definitions. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,edition2015,compile_fail |
| /// #![deny(anonymous_parameters)] |
| /// // edition 2015 |
| /// pub trait Foo { |
| /// fn foo(usize); |
| /// } |
| /// fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This syntax is mostly a historical accident, and can be worked around |
| /// quite easily by adding an `_` pattern or a descriptive identifier: |
| /// |
| /// ```rust |
| /// trait Foo { |
| /// fn foo(_: usize); |
| /// } |
| /// ``` |
| /// |
| /// This syntax is now a hard error in the 2018 edition. In the 2015 |
| /// edition, this lint is "warn" by default. This lint |
| /// enables the [`cargo fix`] tool with the `--edition` flag to |
| /// automatically transition old code from the 2015 edition to 2018. The |
| /// tool will run this lint and automatically apply the |
| /// suggested fix from the compiler (which is to add `_` to each |
| /// parameter). This provides a completely automated way to update old |
| /// code for a new edition. See [issue #41686] for more details. |
| /// |
| /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686 |
| /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html |
| pub ANONYMOUS_PARAMETERS, |
| Warn, |
| "detects anonymous parameters", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), |
| }; |
| } |
| |
| declare_lint_pass!( |
| /// Checks for use of anonymous parameters (RFC 1685). |
| AnonymousParameters => [ANONYMOUS_PARAMETERS] |
| ); |
| |
| impl EarlyLintPass for AnonymousParameters { |
| fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { |
| if cx.sess.edition() != Edition::Edition2015 { |
| // This is a hard error in future editions; avoid linting and erroring |
| return; |
| } |
| if let ast::AssocItemKind::Fn(box FnKind(_, ref sig, _, _)) = it.kind { |
| for arg in sig.decl.inputs.iter() { |
| if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind { |
| if ident.name == kw::Empty { |
| cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| { |
| let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span); |
| |
| let (ty_snip, appl) = if let Ok(ref snip) = ty_snip { |
| (snip.as_str(), Applicability::MachineApplicable) |
| } else { |
| ("<type>", Applicability::HasPlaceholders) |
| }; |
| |
| lint.build( |
| "anonymous parameters are deprecated and will be \ |
| removed in the next edition.", |
| ) |
| .span_suggestion( |
| arg.pat.span, |
| "try naming the parameter or explicitly \ |
| ignoring it", |
| format!("_: {}", ty_snip), |
| appl, |
| ) |
| .emit(); |
| }) |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Check for use of attributes which have been deprecated. |
| #[derive(Clone)] |
| pub struct DeprecatedAttr { |
| // This is not free to compute, so we want to keep it around, rather than |
| // compute it for every attribute. |
| depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>, |
| } |
| |
| impl_lint_pass!(DeprecatedAttr => []); |
| |
| impl DeprecatedAttr { |
| pub fn new() -> DeprecatedAttr { |
| DeprecatedAttr { depr_attrs: deprecated_attributes() } |
| } |
| } |
| |
| fn lint_deprecated_attr( |
| cx: &EarlyContext<'_>, |
| attr: &ast::Attribute, |
| msg: &str, |
| suggestion: Option<&str>, |
| ) { |
| cx.struct_span_lint(DEPRECATED, attr.span, |lint| { |
| lint.build(msg) |
| .span_suggestion_short( |
| attr.span, |
| suggestion.unwrap_or("remove this attribute"), |
| String::new(), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| }) |
| } |
| |
| impl EarlyLintPass for DeprecatedAttr { |
| fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { |
| for &&(n, _, _, ref g) in &self.depr_attrs { |
| if attr.ident().map(|ident| ident.name) == Some(n) { |
| if let &AttributeGate::Gated( |
| Stability::Deprecated(link, suggestion), |
| name, |
| reason, |
| _, |
| ) = g |
| { |
| let msg = |
| format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link); |
| lint_deprecated_attr(cx, attr, &msg, suggestion); |
| } |
| return; |
| } |
| } |
| if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) { |
| let path_str = pprust::path_to_string(&attr.get_normal_item().path); |
| let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str); |
| lint_deprecated_attr(cx, attr, &msg, None); |
| } |
| } |
| } |
| |
| fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) { |
| use rustc_ast::token::CommentKind; |
| |
| let mut attrs = attrs.iter().peekable(); |
| |
| // Accumulate a single span for sugared doc comments. |
| let mut sugared_span: Option<Span> = None; |
| |
| while let Some(attr) = attrs.next() { |
| let is_doc_comment = attr.is_doc_comment(); |
| if is_doc_comment { |
| sugared_span = |
| Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi()))); |
| } |
| |
| if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) { |
| continue; |
| } |
| |
| let span = sugared_span.take().unwrap_or(attr.span); |
| |
| if is_doc_comment || attr.has_name(sym::doc) { |
| cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| { |
| let mut err = lint.build("unused doc comment"); |
| err.span_label( |
| node_span, |
| format!("rustdoc does not generate documentation for {}", node_kind), |
| ); |
| match attr.kind { |
| AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => { |
| err.help("use `//` for a plain comment"); |
| } |
| AttrKind::DocComment(CommentKind::Block, _) => { |
| err.help("use `/* */` for a plain comment"); |
| } |
| } |
| err.emit(); |
| }); |
| } |
| } |
| } |
| |
| impl EarlyLintPass for UnusedDocComment { |
| fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { |
| let kind = match stmt.kind { |
| ast::StmtKind::Local(..) => "statements", |
| // Disabled pending discussion in #78306 |
| ast::StmtKind::Item(..) => return, |
| // expressions will be reported by `check_expr`. |
| ast::StmtKind::Empty |
| | ast::StmtKind::Semi(_) |
| | ast::StmtKind::Expr(_) |
| | ast::StmtKind::MacCall(_) => return, |
| }; |
| |
| warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs()); |
| } |
| |
| fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) { |
| let arm_span = arm.pat.span.with_hi(arm.body.span.hi()); |
| warn_if_doc(cx, arm_span, "match arms", &arm.attrs); |
| } |
| |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { |
| warn_if_doc(cx, expr.span, "expressions", &expr.attrs); |
| } |
| } |
| |
| declare_lint! { |
| /// The `no_mangle_const_items` lint detects any `const` items with the |
| /// [`no_mangle` attribute]. |
| /// |
| /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #[no_mangle] |
| /// const FOO: i32 = 5; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Constants do not have their symbols exported, and therefore, this |
| /// probably means you meant to use a [`static`], not a [`const`]. |
| /// |
| /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html |
| /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html |
| NO_MANGLE_CONST_ITEMS, |
| Deny, |
| "const items will not have their symbols exported" |
| } |
| |
| declare_lint! { |
| /// The `no_mangle_generic_items` lint detects generic items that must be |
| /// mangled. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #[no_mangle] |
| /// fn foo<T>(t: T) { |
| /// |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// A function with generics must have its symbol mangled to accommodate |
| /// the generic parameter. The [`no_mangle` attribute] has no effect in |
| /// this situation, and should be removed. |
| /// |
| /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute |
| NO_MANGLE_GENERIC_ITEMS, |
| Warn, |
| "generic items must be mangled" |
| } |
| |
| declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| let attrs = cx.tcx.hir().attrs(it.hir_id()); |
| let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute, |
| impl_generics: Option<&hir::Generics<'_>>, |
| generics: &hir::Generics<'_>, |
| span| { |
| for param in |
| generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten()) |
| { |
| match param.kind { |
| GenericParamKind::Lifetime { .. } => {} |
| GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { |
| cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| { |
| lint.build("functions generic over types or consts must be mangled") |
| .span_suggestion_short( |
| no_mangle_attr.span, |
| "remove this attribute", |
| String::new(), |
| // Use of `#[no_mangle]` suggests FFI intent; correct |
| // fix may be to monomorphize source by hand |
| Applicability::MaybeIncorrect, |
| ) |
| .emit(); |
| }); |
| break; |
| } |
| } |
| } |
| }; |
| match it.kind { |
| hir::ItemKind::Fn(.., ref generics, _) => { |
| if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) { |
| check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span); |
| } |
| } |
| hir::ItemKind::Const(..) => { |
| if cx.sess().contains_name(attrs, sym::no_mangle) { |
| // Const items do not refer to a particular location in memory, and therefore |
| // don't have anything to attach a symbol to |
| cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| { |
| let msg = "const items should never be `#[no_mangle]`"; |
| let mut err = lint.build(msg); |
| |
| // account for "pub const" (#45562) |
| let start = cx |
| .tcx |
| .sess |
| .source_map() |
| .span_to_snippet(it.span) |
| .map(|snippet| snippet.find("const").unwrap_or(0)) |
| .unwrap_or(0) as u32; |
| // `const` is 5 chars |
| let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5)); |
| err.span_suggestion( |
| const_span, |
| "try a static value", |
| "pub static".to_owned(), |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| }); |
| } |
| } |
| hir::ItemKind::Impl(hir::Impl { ref generics, items, .. }) => { |
| for it in items { |
| if let hir::AssocItemKind::Fn { .. } = it.kind { |
| if let Some(no_mangle_attr) = cx |
| .sess() |
| .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle) |
| { |
| check_no_mangle_on_generic_fn( |
| no_mangle_attr, |
| Some(generics), |
| cx.tcx.hir().get_generics(it.id.def_id.to_def_id()).unwrap(), |
| it.span, |
| ); |
| } |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut |
| /// T` because it is [undefined behavior]. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// unsafe { |
| /// let y = std::mem::transmute::<&i32, &mut i32>(&5); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Certain assumptions are made about aliasing of data, and this transmute |
| /// violates those assumptions. Consider using [`UnsafeCell`] instead. |
| /// |
| /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html |
| MUTABLE_TRANSMUTES, |
| Deny, |
| "mutating transmuted &mut T from &T may cause undefined behavior" |
| } |
| |
| declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MutableTransmutes { |
| fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { |
| use rustc_target::spec::abi::Abi::RustIntrinsic; |
| if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) = |
| get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind())) |
| { |
| if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not { |
| let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \ |
| consider instead using an UnsafeCell"; |
| cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit()); |
| } |
| } |
| |
| fn get_transmute_from_to<'tcx>( |
| cx: &LateContext<'tcx>, |
| expr: &hir::Expr<'_>, |
| ) -> Option<(Ty<'tcx>, Ty<'tcx>)> { |
| let def = if let hir::ExprKind::Path(ref qpath) = expr.kind { |
| cx.qpath_res(qpath, expr.hir_id) |
| } else { |
| return None; |
| }; |
| if let Res::Def(DefKind::Fn, did) = def { |
| if !def_id_is_transmute(cx, did) { |
| return None; |
| } |
| let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx); |
| let from = sig.inputs().skip_binder()[0]; |
| let to = sig.output().skip_binder(); |
| return Some((from, to)); |
| } |
| None |
| } |
| |
| fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool { |
| cx.tcx.fn_sig(def_id).abi() == RustIntrinsic |
| && cx.tcx.item_name(def_id) == sym::transmute |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unstable_features` is deprecated and should no longer be used. |
| UNSTABLE_FEATURES, |
| Allow, |
| "enabling unstable features (deprecated. do not use)" |
| } |
| |
| declare_lint_pass!( |
| /// Forbids using the `#[feature(...)]` attribute |
| UnstableFeatures => [UNSTABLE_FEATURES] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for UnstableFeatures { |
| fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) { |
| if attr.has_name(sym::feature) { |
| if let Some(items) = attr.meta_item_list() { |
| for item in items { |
| cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| { |
| lint.build("unstable feature").emit() |
| }); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unreachable_pub` lint triggers for `pub` items not reachable from |
| /// the crate root. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(unreachable_pub)] |
| /// mod foo { |
| /// pub mod bar { |
| /// |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// A bare `pub` visibility may be misleading if the item is not actually |
| /// publicly exported from the crate. The `pub(crate)` visibility is |
| /// recommended to be used instead, which more clearly expresses the intent |
| /// that the item is only visible within its own crate. |
| /// |
| /// This lint is "allow" by default because it will trigger for a large |
| /// amount existing Rust code, and has some false-positives. Eventually it |
| /// is desired for this to become warn-by-default. |
| pub UNREACHABLE_PUB, |
| Allow, |
| "`pub` items not reachable from crate root" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for items marked `pub` that aren't reachable from other crates. |
| UnreachablePub => [UNREACHABLE_PUB] |
| ); |
| |
| impl UnreachablePub { |
| fn perform_lint( |
| &self, |
| cx: &LateContext<'_>, |
| what: &str, |
| def_id: LocalDefId, |
| vis: &hir::Visibility<'_>, |
| span: Span, |
| exportable: bool, |
| ) { |
| let mut applicability = Applicability::MachineApplicable; |
| match vis.node { |
| hir::VisibilityKind::Public if !cx.access_levels.is_reachable(def_id) => { |
| if span.from_expansion() { |
| applicability = Applicability::MaybeIncorrect; |
| } |
| let def_span = cx.tcx.sess.source_map().guess_head_span(span); |
| cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| { |
| let mut err = lint.build(&format!("unreachable `pub` {}", what)); |
| let replacement = if cx.tcx.features().crate_visibility_modifier { |
| "crate" |
| } else { |
| "pub(crate)" |
| } |
| .to_owned(); |
| |
| err.span_suggestion( |
| vis.span, |
| "consider restricting its visibility", |
| replacement, |
| applicability, |
| ); |
| if exportable { |
| err.help("or consider exporting it for use by other crates"); |
| } |
| err.emit(); |
| }); |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for UnreachablePub { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| self.perform_lint(cx, "item", item.def_id, &item.vis, item.span, true); |
| } |
| |
| fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) { |
| self.perform_lint( |
| cx, |
| "item", |
| foreign_item.def_id, |
| &foreign_item.vis, |
| foreign_item.span, |
| true, |
| ); |
| } |
| |
| fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) { |
| let def_id = cx.tcx.hir().local_def_id(field.hir_id); |
| self.perform_lint(cx, "field", def_id, &field.vis, field.span, false); |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { |
| self.perform_lint(cx, "item", impl_item.def_id, &impl_item.vis, impl_item.span, false); |
| } |
| } |
| |
| declare_lint! { |
| /// The `type_alias_bounds` lint detects bounds in type aliases. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// type SendVec<T: Send> = Vec<T>; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The trait bounds in a type alias are currently ignored, and should not |
| /// be included to avoid confusion. This was previously allowed |
| /// unintentionally; this may become a hard error in the future. |
| TYPE_ALIAS_BOUNDS, |
| Warn, |
| "bounds in type aliases are not enforced" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for trait and lifetime bounds in type aliases being mostly ignored. |
| /// They are relevant when using associated types, but otherwise neither checked |
| /// at definition site nor enforced at use site. |
| TypeAliasBounds => [TYPE_ALIAS_BOUNDS] |
| ); |
| |
| impl TypeAliasBounds { |
| fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool { |
| match *qpath { |
| hir::QPath::TypeRelative(ref ty, _) => { |
| // If this is a type variable, we found a `T::Assoc`. |
| match ty.kind { |
| hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { |
| matches!(path.res, Res::Def(DefKind::TyParam, _)) |
| } |
| _ => false, |
| } |
| } |
| hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false, |
| } |
| } |
| |
| fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) { |
| // Access to associates types should use `<T as Bound>::Assoc`, which does not need a |
| // bound. Let's see if this type does that. |
| |
| // We use a HIR visitor to walk the type. |
| use rustc_hir::intravisit::{self, Visitor}; |
| struct WalkAssocTypes<'a, 'db> { |
| err: &'a mut DiagnosticBuilder<'db>, |
| } |
| impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> { |
| type Map = intravisit::ErasedMap<'v>; |
| |
| fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> { |
| intravisit::NestedVisitorMap::None |
| } |
| |
| fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) { |
| if TypeAliasBounds::is_type_variable_assoc(qpath) { |
| self.err.span_help( |
| span, |
| "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \ |
| associated types in type aliases", |
| ); |
| } |
| intravisit::walk_qpath(self, qpath, id, span) |
| } |
| } |
| |
| // Let's go for a walk! |
| let mut visitor = WalkAssocTypes { err }; |
| visitor.visit_ty(ty); |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| let (ty, type_alias_generics) = match item.kind { |
| hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics), |
| _ => return, |
| }; |
| if let hir::TyKind::OpaqueDef(..) = ty.kind { |
| // Bounds are respected for `type X = impl Trait` |
| return; |
| } |
| let mut suggested_changing_assoc_types = false; |
| // There must not be a where clause |
| if !type_alias_generics.where_clause.predicates.is_empty() { |
| cx.lint( |
| TYPE_ALIAS_BOUNDS, |
| |lint| { |
| let mut err = lint.build("where clauses are not enforced in type aliases"); |
| let spans: Vec<_> = type_alias_generics |
| .where_clause |
| .predicates |
| .iter() |
| .map(|pred| pred.span()) |
| .collect(); |
| err.set_span(spans); |
| err.span_suggestion( |
| type_alias_generics.where_clause.span_for_predicates_or_empty_place(), |
| "the clause will not be checked when the type alias is used, and should be removed", |
| String::new(), |
| Applicability::MachineApplicable, |
| ); |
| if !suggested_changing_assoc_types { |
| TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err); |
| suggested_changing_assoc_types = true; |
| } |
| err.emit(); |
| }, |
| ); |
| } |
| // The parameters must not have bounds |
| for param in type_alias_generics.params.iter() { |
| let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect(); |
| let suggestion = spans |
| .iter() |
| .map(|sp| { |
| let start = param.span.between(*sp); // Include the `:` in `T: Bound`. |
| (start.to(*sp), String::new()) |
| }) |
| .collect(); |
| if !spans.is_empty() { |
| cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| { |
| let mut err = |
| lint.build("bounds on generic parameters are not enforced in type aliases"); |
| let msg = "the bound will not be checked when the type alias is used, \ |
| and should be removed"; |
| err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable); |
| if !suggested_changing_assoc_types { |
| TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err); |
| suggested_changing_assoc_types = true; |
| } |
| err.emit(); |
| }); |
| } |
| } |
| } |
| } |
| |
| declare_lint_pass!( |
| /// Lint constants that are erroneous. |
| /// Without this lint, we might not get any diagnostic if the constant is |
| /// unused within this crate, even though downstream crates can't use it |
| /// without producing an error. |
| UnusedBrokenConst => [] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| match it.kind { |
| hir::ItemKind::Const(_, body_id) => { |
| let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); |
| // trigger the query once for all constants since that will already report the errors |
| // FIXME: Use ensure here |
| let _ = cx.tcx.const_eval_poly(def_id); |
| } |
| hir::ItemKind::Static(_, _, body_id) => { |
| let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); |
| // FIXME: Use ensure here |
| let _ = cx.tcx.eval_static_initializer(def_id); |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `trivial_bounds` lint detects trait bounds that don't depend on |
| /// any type parameters. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #![feature(trivial_bounds)] |
| /// pub struct A where i32: Copy; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Usually you would not write a trait bound that you know is always |
| /// true, or never true. However, when using macros, the macro may not |
| /// know whether or not the constraint would hold or not at the time when |
| /// generating the code. Currently, the compiler does not alert you if the |
| /// constraint is always true, and generates an error if it is never true. |
| /// The `trivial_bounds` feature changes this to be a warning in both |
| /// cases, giving macros more freedom and flexibility to generate code, |
| /// while still providing a signal when writing non-macro code that |
| /// something is amiss. |
| /// |
| /// See [RFC 2056] for more details. This feature is currently only |
| /// available on the nightly channel, see [tracking issue #48214]. |
| /// |
| /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md |
| /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214 |
| TRIVIAL_BOUNDS, |
| Warn, |
| "these bounds don't depend on an type parameters" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for trait and lifetime bounds that don't depend on type parameters |
| /// which either do nothing, or stop the item from being used. |
| TrivialConstraints => [TRIVIAL_BOUNDS] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for TrivialConstraints { |
| fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { |
| use rustc_middle::ty::fold::TypeFoldable; |
| use rustc_middle::ty::PredicateKind::*; |
| |
| if cx.tcx.features().trivial_bounds { |
| let predicates = cx.tcx.predicates_of(item.def_id); |
| for &(predicate, span) in predicates.predicates { |
| let predicate_kind_name = match predicate.kind().skip_binder() { |
| Trait(..) => "Trait", |
| TypeOutlives(..) | |
| RegionOutlives(..) => "Lifetime", |
| |
| // Ignore projections, as they can only be global |
| // if the trait bound is global |
| Projection(..) | |
| // Ignore bounds that a user can't type |
| WellFormed(..) | |
| ObjectSafe(..) | |
| ClosureKind(..) | |
| Subtype(..) | |
| Coerce(..) | |
| ConstEvaluatable(..) | |
| ConstEquate(..) | |
| TypeWellFormedFromEnv(..) => continue, |
| }; |
| if predicate.is_global(cx.tcx) { |
| cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| { |
| lint.build(&format!( |
| "{} bound {} does not depend on any type \ |
| or lifetime parameters", |
| predicate_kind_name, predicate |
| )) |
| .emit() |
| }); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint_pass!( |
| /// Does nothing as a lint pass, but registers some `Lint`s |
| /// which are used by other parts of the compiler. |
| SoftLints => [ |
| WHILE_TRUE, |
| BOX_POINTERS, |
| NON_SHORTHAND_FIELD_PATTERNS, |
| UNSAFE_CODE, |
| MISSING_DOCS, |
| MISSING_COPY_IMPLEMENTATIONS, |
| MISSING_DEBUG_IMPLEMENTATIONS, |
| ANONYMOUS_PARAMETERS, |
| UNUSED_DOC_COMMENTS, |
| NO_MANGLE_CONST_ITEMS, |
| NO_MANGLE_GENERIC_ITEMS, |
| MUTABLE_TRANSMUTES, |
| UNSTABLE_FEATURES, |
| UNREACHABLE_PUB, |
| TYPE_ALIAS_BOUNDS, |
| TRIVIAL_BOUNDS |
| ] |
| ); |
| |
| declare_lint! { |
| /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range |
| /// pattern], which is deprecated. |
| /// |
| /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// let x = 123; |
| /// match x { |
| /// 0...100 => {} |
| /// _ => {} |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The `...` range pattern syntax was changed to `..=` to avoid potential |
| /// confusion with the [`..` range expression]. Use the new form instead. |
| /// |
| /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html |
| pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, |
| Warn, |
| "`...` range patterns are deprecated", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021), |
| }; |
| } |
| |
| #[derive(Default)] |
| pub struct EllipsisInclusiveRangePatterns { |
| /// If `Some(_)`, suppress all subsequent pattern |
| /// warnings for better diagnostics. |
| node_id: Option<ast::NodeId>, |
| } |
| |
| impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]); |
| |
| impl EarlyLintPass for EllipsisInclusiveRangePatterns { |
| fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { |
| if self.node_id.is_some() { |
| // Don't recursively warn about patterns inside range endpoints. |
| return; |
| } |
| |
| use self::ast::{PatKind, RangeSyntax::DotDotDot}; |
| |
| /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span |
| /// corresponding to the ellipsis. |
| fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> { |
| match &pat.kind { |
| PatKind::Range( |
| a, |
| Some(b), |
| Spanned { span, node: RangeEnd::Included(DotDotDot) }, |
| ) => Some((a.as_deref(), b, *span)), |
| _ => None, |
| } |
| } |
| |
| let (parenthesise, endpoints) = match &pat.kind { |
| PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)), |
| _ => (false, matches_ellipsis_pat(pat)), |
| }; |
| |
| if let Some((start, end, join)) = endpoints { |
| let msg = "`...` range patterns are deprecated"; |
| let suggestion = "use `..=` for an inclusive range"; |
| if parenthesise { |
| self.node_id = Some(pat.id); |
| let end = expr_to_string(&end); |
| let replace = match start { |
| Some(start) => format!("&({}..={})", expr_to_string(&start), end), |
| None => format!("&(..={})", end), |
| }; |
| if join.edition() >= Edition::Edition2021 { |
| let mut err = |
| rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,); |
| err.span_suggestion( |
| pat.span, |
| suggestion, |
| replace, |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| } else { |
| cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| { |
| lint.build(msg) |
| .span_suggestion( |
| pat.span, |
| suggestion, |
| replace, |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| }); |
| } |
| } else { |
| let replace = "..=".to_owned(); |
| if join.edition() >= Edition::Edition2021 { |
| let mut err = |
| rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,); |
| err.span_suggestion_short( |
| join, |
| suggestion, |
| replace, |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| } else { |
| cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| { |
| lint.build(msg) |
| .span_suggestion_short( |
| join, |
| suggestion, |
| replace, |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| }); |
| } |
| }; |
| } |
| } |
| |
| fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) { |
| if let Some(node_id) = self.node_id { |
| if pat.id == node_id { |
| self.node_id = None |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unnameable_test_items` lint detects [`#[test]`][test] functions |
| /// that are not able to be run by the test harness because they are in a |
| /// position where they are not nameable. |
| /// |
| /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute |
| /// |
| /// ### Example |
| /// |
| /// ```rust,test |
| /// fn main() { |
| /// #[test] |
| /// fn foo() { |
| /// // This test will not fail because it does not run. |
| /// assert_eq!(1, 2); |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// In order for the test harness to run a test, the test function must be |
| /// located in a position where it can be accessed from the crate root. |
| /// This generally means it must be defined in a module, and not anywhere |
| /// else such as inside another function. The compiler previously allowed |
| /// this without an error, so a lint was added as an alert that a test is |
| /// not being used. Whether or not this should be allowed has not yet been |
| /// decided, see [RFC 2471] and [issue #36629]. |
| /// |
| /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443 |
| /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629 |
| UNNAMEABLE_TEST_ITEMS, |
| Warn, |
| "detects an item that cannot be named being marked as `#[test_case]`", |
| report_in_external_macro |
| } |
| |
| pub struct UnnameableTestItems { |
| boundary: Option<LocalDefId>, // Id of the item under which things are not nameable |
| items_nameable: bool, |
| } |
| |
| impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]); |
| |
| impl UnnameableTestItems { |
| pub fn new() -> Self { |
| Self { boundary: None, items_nameable: true } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| if self.items_nameable { |
| if let hir::ItemKind::Mod(..) = it.kind { |
| } else { |
| self.items_nameable = false; |
| self.boundary = Some(it.def_id); |
| } |
| return; |
| } |
| |
| let attrs = cx.tcx.hir().attrs(it.hir_id()); |
| if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) { |
| cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| { |
| lint.build("cannot test inner items").emit() |
| }); |
| } |
| } |
| |
| fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| if !self.items_nameable && self.boundary == Some(it.def_id) { |
| self.items_nameable = true; |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `keyword_idents` lint detects edition keywords being used as an |
| /// identifier. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,edition2015,compile_fail |
| /// #![deny(keyword_idents)] |
| /// // edition 2015 |
| /// fn dyn() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Rust [editions] allow the language to evolve without breaking |
| /// backwards compatibility. This lint catches code that uses new keywords |
| /// that are added to the language that are used as identifiers (such as a |
| /// variable name, function name, etc.). If you switch the compiler to a |
| /// new edition without updating the code, then it will fail to compile if |
| /// you are using a new keyword as an identifier. |
| /// |
| /// You can manually change the identifiers to a non-keyword, or use a |
| /// [raw identifier], for example `r#dyn`, to transition to a new edition. |
| /// |
| /// This lint solves the problem automatically. It is "allow" by default |
| /// because the code is perfectly valid in older editions. The [`cargo |
| /// fix`] tool with the `--edition` flag will switch this lint to "warn" |
| /// and automatically apply the suggested fix from the compiler (which is |
| /// to use a raw identifier). This provides a completely automated way to |
| /// update old code for a new edition. |
| /// |
| /// [editions]: https://doc.rust-lang.org/edition-guide/ |
| /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html |
| /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html |
| pub KEYWORD_IDENTS, |
| Allow, |
| "detects edition keywords being used as an identifier", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), |
| }; |
| } |
| |
| declare_lint_pass!( |
| /// Check for uses of edition keywords used as an identifier. |
| KeywordIdents => [KEYWORD_IDENTS] |
| ); |
| |
| struct UnderMacro(bool); |
| |
| impl KeywordIdents { |
| fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) { |
| for tt in tokens.into_trees() { |
| match tt { |
| // Only report non-raw idents. |
| TokenTree::Token(token) => { |
| if let Some((ident, false)) = token.ident() { |
| self.check_ident_token(cx, UnderMacro(true), ident); |
| } |
| } |
| TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts), |
| } |
| } |
| } |
| |
| fn check_ident_token( |
| &mut self, |
| cx: &EarlyContext<'_>, |
| UnderMacro(under_macro): UnderMacro, |
| ident: Ident, |
| ) { |
| let next_edition = match cx.sess.edition() { |
| Edition::Edition2015 => { |
| match ident.name { |
| kw::Async | kw::Await | kw::Try => Edition::Edition2018, |
| |
| // rust-lang/rust#56327: Conservatively do not |
| // attempt to report occurrences of `dyn` within |
| // macro definitions or invocations, because `dyn` |
| // can legitimately occur as a contextual keyword |
| // in 2015 code denoting its 2018 meaning, and we |
| // do not want rustfix to inject bugs into working |
| // code by rewriting such occurrences. |
| // |
| // But if we see `dyn` outside of a macro, we know |
| // its precise role in the parsed AST and thus are |
| // assured this is truly an attempt to use it as |
| // an identifier. |
| kw::Dyn if !under_macro => Edition::Edition2018, |
| |
| _ => return, |
| } |
| } |
| |
| // There are no new keywords yet for the 2018 edition and beyond. |
| _ => return, |
| }; |
| |
| // Don't lint `r#foo`. |
| if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) { |
| return; |
| } |
| |
| cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| { |
| lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition)) |
| .span_suggestion( |
| ident.span, |
| "you can use a raw identifier to stay compatible", |
| format!("r#{}", ident), |
| Applicability::MachineApplicable, |
| ) |
| .emit() |
| }); |
| } |
| } |
| |
| impl EarlyLintPass for KeywordIdents { |
| fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) { |
| self.check_tokens(cx, mac_def.body.inner_tokens()); |
| } |
| fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) { |
| self.check_tokens(cx, mac.args.inner_tokens()); |
| } |
| fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) { |
| self.check_ident_token(cx, UnderMacro(false), ident); |
| } |
| } |
| |
| declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]); |
| |
| impl ExplicitOutlivesRequirements { |
| fn lifetimes_outliving_lifetime<'tcx>( |
| inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], |
| index: u32, |
| ) -> Vec<ty::Region<'tcx>> { |
| inferred_outlives |
| .iter() |
| .filter_map(|(pred, _)| match pred.kind().skip_binder() { |
| ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a { |
| ty::ReEarlyBound(ebr) if ebr.index == index => Some(b), |
| _ => None, |
| }, |
| _ => None, |
| }) |
| .collect() |
| } |
| |
| fn lifetimes_outliving_type<'tcx>( |
| inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], |
| index: u32, |
| ) -> Vec<ty::Region<'tcx>> { |
| inferred_outlives |
| .iter() |
| .filter_map(|(pred, _)| match pred.kind().skip_binder() { |
| ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => { |
| a.is_param(index).then_some(b) |
| } |
| _ => None, |
| }) |
| .collect() |
| } |
| |
| fn collect_outlived_lifetimes<'tcx>( |
| &self, |
| param: &'tcx hir::GenericParam<'tcx>, |
| tcx: TyCtxt<'tcx>, |
| inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)], |
| ty_generics: &'tcx ty::Generics, |
| ) -> Vec<ty::Region<'tcx>> { |
| let index = |
| ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()]; |
| |
| match param.kind { |
| hir::GenericParamKind::Lifetime { .. } => { |
| Self::lifetimes_outliving_lifetime(inferred_outlives, index) |
| } |
| hir::GenericParamKind::Type { .. } => { |
| Self::lifetimes_outliving_type(inferred_outlives, index) |
| } |
| hir::GenericParamKind::Const { .. } => Vec::new(), |
| } |
| } |
| |
| fn collect_outlives_bound_spans<'tcx>( |
| &self, |
| tcx: TyCtxt<'tcx>, |
| bounds: &hir::GenericBounds<'_>, |
| inferred_outlives: &[ty::Region<'tcx>], |
| infer_static: bool, |
| ) -> Vec<(usize, Span)> { |
| use rustc_middle::middle::resolve_lifetime::Region; |
| |
| bounds |
| .iter() |
| .enumerate() |
| .filter_map(|(i, bound)| { |
| if let hir::GenericBound::Outlives(lifetime) = bound { |
| let is_inferred = match tcx.named_region(lifetime.hir_id) { |
| Some(Region::Static) if infer_static => { |
| inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic)) |
| } |
| Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| { |
| if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false } |
| }), |
| _ => false, |
| }; |
| is_inferred.then_some((i, bound.span())) |
| } else { |
| None |
| } |
| }) |
| .collect() |
| } |
| |
| fn consolidate_outlives_bound_spans( |
| &self, |
| lo: Span, |
| bounds: &hir::GenericBounds<'_>, |
| bound_spans: Vec<(usize, Span)>, |
| ) -> Vec<Span> { |
| if bounds.is_empty() { |
| return Vec::new(); |
| } |
| if bound_spans.len() == bounds.len() { |
| let (_, last_bound_span) = bound_spans[bound_spans.len() - 1]; |
| // If all bounds are inferable, we want to delete the colon, so |
| // start from just after the parameter (span passed as argument) |
| vec![lo.to(last_bound_span)] |
| } else { |
| let mut merged = Vec::new(); |
| let mut last_merged_i = None; |
| |
| let mut from_start = true; |
| for (i, bound_span) in bound_spans { |
| match last_merged_i { |
| // If the first bound is inferable, our span should also eat the leading `+`. |
| None if i == 0 => { |
| merged.push(bound_span.to(bounds[1].span().shrink_to_lo())); |
| last_merged_i = Some(0); |
| } |
| // If consecutive bounds are inferable, merge their spans |
| Some(h) if i == h + 1 => { |
| if let Some(tail) = merged.last_mut() { |
| // Also eat the trailing `+` if the first |
| // more-than-one bound is inferable |
| let to_span = if from_start && i < bounds.len() { |
| bounds[i + 1].span().shrink_to_lo() |
| } else { |
| bound_span |
| }; |
| *tail = tail.to(to_span); |
| last_merged_i = Some(i); |
| } else { |
| bug!("another bound-span visited earlier"); |
| } |
| } |
| _ => { |
| // When we find a non-inferable bound, subsequent inferable bounds |
| // won't be consecutive from the start (and we'll eat the leading |
| // `+` rather than the trailing one) |
| from_start = false; |
| merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span)); |
| last_merged_i = Some(i); |
| } |
| } |
| } |
| merged |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements { |
| fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) { |
| use rustc_middle::middle::resolve_lifetime::Region; |
| |
| let infer_static = cx.tcx.features().infer_static_outlives_requirements; |
| let def_id = item.def_id; |
| if let hir::ItemKind::Struct(_, ref hir_generics) |
| | hir::ItemKind::Enum(_, ref hir_generics) |
| | hir::ItemKind::Union(_, ref hir_generics) = item.kind |
| { |
| let inferred_outlives = cx.tcx.inferred_outlives_of(def_id); |
| if inferred_outlives.is_empty() { |
| return; |
| } |
| |
| let ty_generics = cx.tcx.generics_of(def_id); |
| |
| let mut bound_count = 0; |
| let mut lint_spans = Vec::new(); |
| |
| for param in hir_generics.params { |
| let has_lifetime_bounds = param |
| .bounds |
| .iter() |
| .any(|bound| matches!(bound, hir::GenericBound::Outlives(_))); |
| if !has_lifetime_bounds { |
| continue; |
| } |
| |
| let relevant_lifetimes = |
| self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics); |
| if relevant_lifetimes.is_empty() { |
| continue; |
| } |
| |
| let bound_spans = self.collect_outlives_bound_spans( |
| cx.tcx, |
| ¶m.bounds, |
| &relevant_lifetimes, |
| infer_static, |
| ); |
| bound_count += bound_spans.len(); |
| lint_spans.extend(self.consolidate_outlives_bound_spans( |
| param.span.shrink_to_hi(), |
| ¶m.bounds, |
| bound_spans, |
| )); |
| } |
| |
| let mut where_lint_spans = Vec::new(); |
| let mut dropped_predicate_count = 0; |
| let num_predicates = hir_generics.where_clause.predicates.len(); |
| for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() { |
| let (relevant_lifetimes, bounds, span) = match where_predicate { |
| hir::WherePredicate::RegionPredicate(predicate) => { |
| if let Some(Region::EarlyBound(index, ..)) = |
| cx.tcx.named_region(predicate.lifetime.hir_id) |
| { |
| ( |
| Self::lifetimes_outliving_lifetime(inferred_outlives, index), |
| &predicate.bounds, |
| predicate.span, |
| ) |
| } else { |
| continue; |
| } |
| } |
| hir::WherePredicate::BoundPredicate(predicate) => { |
| // FIXME we can also infer bounds on associated types, |
| // and should check for them here. |
| match predicate.bounded_ty.kind { |
| hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { |
| if let Res::Def(DefKind::TyParam, def_id) = path.res { |
| let index = ty_generics.param_def_id_to_index[&def_id]; |
| ( |
| Self::lifetimes_outliving_type(inferred_outlives, index), |
| &predicate.bounds, |
| predicate.span, |
| ) |
| } else { |
| continue; |
| } |
| } |
| _ => { |
| continue; |
| } |
| } |
| } |
| _ => continue, |
| }; |
| if relevant_lifetimes.is_empty() { |
| continue; |
| } |
| |
| let bound_spans = self.collect_outlives_bound_spans( |
| cx.tcx, |
| bounds, |
| &relevant_lifetimes, |
| infer_static, |
| ); |
| bound_count += bound_spans.len(); |
| |
| let drop_predicate = bound_spans.len() == bounds.len(); |
| if drop_predicate { |
| dropped_predicate_count += 1; |
| } |
| |
| // If all the bounds on a predicate were inferable and there are |
| // further predicates, we want to eat the trailing comma. |
| if drop_predicate && i + 1 < num_predicates { |
| let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span(); |
| where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo())); |
| } else { |
| where_lint_spans.extend(self.consolidate_outlives_bound_spans( |
| span.shrink_to_lo(), |
| bounds, |
| bound_spans, |
| )); |
| } |
| } |
| |
| // If all predicates are inferable, drop the entire clause |
| // (including the `where`) |
| if num_predicates > 0 && dropped_predicate_count == num_predicates { |
| let where_span = hir_generics |
| .where_clause |
| .span() |
| .expect("span of (nonempty) where clause should exist"); |
| // Extend the where clause back to the closing `>` of the |
| // generics, except for tuple struct, which have the `where` |
| // after the fields of the struct. |
| let full_where_span = |
| if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind { |
| where_span |
| } else { |
| hir_generics.span.shrink_to_hi().to(where_span) |
| }; |
| lint_spans.push(full_where_span); |
| } else { |
| lint_spans.extend(where_lint_spans); |
| } |
| |
| if !lint_spans.is_empty() { |
| cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| { |
| lint.build("outlives requirements can be inferred") |
| .multipart_suggestion( |
| if bound_count == 1 { |
| "remove this bound" |
| } else { |
| "remove these bounds" |
| }, |
| lint_spans |
| .into_iter() |
| .map(|span| (span, "".to_owned())) |
| .collect::<Vec<_>>(), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| }); |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `incomplete_features` lint detects unstable features enabled with |
| /// the [`feature` attribute] that may function improperly in some or all |
| /// cases. |
| /// |
| /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #![feature(generic_const_exprs)] |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Although it is encouraged for people to experiment with unstable |
| /// features, some of them are known to be incomplete or faulty. This lint |
| /// is a signal that the feature has not yet been finished, and you may |
| /// experience problems with it. |
| pub INCOMPLETE_FEATURES, |
| Warn, |
| "incomplete features that may function improperly in some or all cases" |
| } |
| |
| declare_lint_pass!( |
| /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`. |
| IncompleteFeatures => [INCOMPLETE_FEATURES] |
| ); |
| |
| impl EarlyLintPass for IncompleteFeatures { |
| fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { |
| let features = cx.sess.features_untracked(); |
| features |
| .declared_lang_features |
| .iter() |
| .map(|(name, span, _)| (name, span)) |
| .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span))) |
| .filter(|(&name, _)| features.incomplete(name)) |
| .for_each(|(&name, &span)| { |
| cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| { |
| let mut builder = lint.build(&format!( |
| "the feature `{}` is incomplete and may not be safe to use \ |
| and/or cause compiler crashes", |
| name, |
| )); |
| if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) { |
| builder.note(&format!( |
| "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \ |
| for more information", |
| n, n, |
| )); |
| } |
| if HAS_MIN_FEATURES.contains(&name) { |
| builder.help(&format!( |
| "consider using `min_{}` instead, which is more stable and complete", |
| name, |
| )); |
| } |
| builder.emit(); |
| }) |
| }); |
| } |
| } |
| |
| const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization]; |
| |
| declare_lint! { |
| /// The `invalid_value` lint detects creating a value that is not valid, |
| /// such as a null reference. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// # #![allow(unused)] |
| /// unsafe { |
| /// let x: &'static i32 = std::mem::zeroed(); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// In some situations the compiler can detect that the code is creating |
| /// an invalid value, which should be avoided. |
| /// |
| /// In particular, this lint will check for improper use of |
| /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and |
| /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The |
| /// lint should provide extra information to indicate what the problem is |
| /// and a possible solution. |
| /// |
| /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html |
| /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html |
| /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html |
| /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| pub INVALID_VALUE, |
| Warn, |
| "an invalid value is being created (such as a null reference)" |
| } |
| |
| declare_lint_pass!(InvalidValue => [INVALID_VALUE]); |
| |
| impl<'tcx> LateLintPass<'tcx> for InvalidValue { |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { |
| #[derive(Debug, Copy, Clone, PartialEq)] |
| enum InitKind { |
| Zeroed, |
| Uninit, |
| } |
| |
| /// Information about why a type cannot be initialized this way. |
| /// Contains an error message and optionally a span to point at. |
| type InitError = (String, Option<Span>); |
| |
| /// Test if this constant is all-0. |
| fn is_zero(expr: &hir::Expr<'_>) -> bool { |
| use hir::ExprKind::*; |
| use rustc_ast::LitKind::*; |
| match &expr.kind { |
| Lit(lit) => { |
| if let Int(i, _) = lit.node { |
| i == 0 |
| } else { |
| false |
| } |
| } |
| Tup(tup) => tup.iter().all(is_zero), |
| _ => false, |
| } |
| } |
| |
| /// Determine if this expression is a "dangerous initialization". |
| fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> { |
| if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind { |
| // Find calls to `mem::{uninitialized,zeroed}` methods. |
| if let hir::ExprKind::Path(ref qpath) = path_expr.kind { |
| let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; |
| |
| if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) { |
| return Some(InitKind::Zeroed); |
| } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) { |
| return Some(InitKind::Uninit); |
| } else if cx.tcx.is_diagnostic_item(sym::transmute, def_id) && is_zero(&args[0]) |
| { |
| return Some(InitKind::Zeroed); |
| } |
| } |
| } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind { |
| // Find problematic calls to `MaybeUninit::assume_init`. |
| let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?; |
| if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) { |
| // This is a call to *some* method named `assume_init`. |
| // See if the `self` parameter is one of the dangerous constructors. |
| if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind { |
| if let hir::ExprKind::Path(ref qpath) = path_expr.kind { |
| let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; |
| |
| if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) { |
| return Some(InitKind::Zeroed); |
| } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) { |
| return Some(InitKind::Uninit); |
| } |
| } |
| } |
| } |
| } |
| |
| None |
| } |
| |
| /// Test if this enum has several actually "existing" variants. |
| /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist". |
| fn is_multi_variant(adt: &ty::AdtDef) -> bool { |
| // As an approximation, we only count dataless variants. Those are definitely inhabited. |
| let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count(); |
| existing_variants > 1 |
| } |
| |
| /// Return `Some` only if we are sure this type does *not* |
| /// allow zero initialization. |
| fn ty_find_init_error<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| init: InitKind, |
| ) -> Option<InitError> { |
| use rustc_middle::ty::TyKind::*; |
| match ty.kind() { |
| // Primitive types that don't like 0 as a value. |
| Ref(..) => Some(("references must be non-null".to_string(), None)), |
| Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)), |
| FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)), |
| Never => Some(("the `!` type has no valid value".to_string(), None)), |
| RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) => |
| // raw ptr to dyn Trait |
| { |
| Some(("the vtable of a wide raw pointer must be non-null".to_string(), None)) |
| } |
| // Primitive types with other constraints. |
| Bool if init == InitKind::Uninit => { |
| Some(("booleans must be either `true` or `false`".to_string(), None)) |
| } |
| Char if init == InitKind::Uninit => { |
| Some(("characters must be a valid Unicode codepoint".to_string(), None)) |
| } |
| // Recurse and checks for some compound types. |
| Adt(adt_def, substs) if !adt_def.is_union() => { |
| // First check if this ADT has a layout attribute (like `NonNull` and friends). |
| use std::ops::Bound; |
| match tcx.layout_scalar_valid_range(adt_def.did) { |
| // We exploit here that `layout_scalar_valid_range` will never |
| // return `Bound::Excluded`. (And we have tests checking that we |
| // handle the attribute correctly.) |
| (Bound::Included(lo), _) if lo > 0 => { |
| return Some((format!("`{}` must be non-null", ty), None)); |
| } |
| (Bound::Included(_), _) | (_, Bound::Included(_)) |
| if init == InitKind::Uninit => |
| { |
| return Some(( |
| format!( |
| "`{}` must be initialized inside its custom valid range", |
| ty, |
| ), |
| None, |
| )); |
| } |
| _ => {} |
| } |
| // Now, recurse. |
| match adt_def.variants.len() { |
| 0 => Some(("enums with no variants have no valid value".to_string(), None)), |
| 1 => { |
| // Struct, or enum with exactly one variant. |
| // Proceed recursively, check all fields. |
| let variant = &adt_def.variants[VariantIdx::from_u32(0)]; |
| variant.fields.iter().find_map(|field| { |
| ty_find_init_error(tcx, field.ty(tcx, substs), init).map( |
| |(mut msg, span)| { |
| if span.is_none() { |
| // Point to this field, should be helpful for figuring |
| // out where the source of the error is. |
| let span = tcx.def_span(field.did); |
| write!( |
| &mut msg, |
| " (in this {} field)", |
| adt_def.descr() |
| ) |
| .unwrap(); |
| (msg, Some(span)) |
| } else { |
| // Just forward. |
| (msg, span) |
| } |
| }, |
| ) |
| }) |
| } |
| // Multi-variant enum. |
| _ => { |
| if init == InitKind::Uninit && is_multi_variant(adt_def) { |
| let span = tcx.def_span(adt_def.did); |
| Some(( |
| "enums have to be initialized to a variant".to_string(), |
| Some(span), |
| )) |
| } else { |
| // In principle, for zero-initialization we could figure out which variant corresponds |
| // to tag 0, and check that... but for now we just accept all zero-initializations. |
| None |
| } |
| } |
| } |
| } |
| Tuple(..) => { |
| // Proceed recursively, check all fields. |
| ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init)) |
| } |
| // Conservative fallback. |
| _ => None, |
| } |
| } |
| |
| if let Some(init) = is_dangerous_init(cx, expr) { |
| // This conjures an instance of a type out of nothing, |
| // using zeroed or uninitialized memory. |
| // We are extremely conservative with what we warn about. |
| let conjured_ty = cx.typeck_results().expr_ty(expr); |
| if let Some((msg, span)) = |
| with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init)) |
| { |
| cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| { |
| let mut err = lint.build(&format!( |
| "the type `{}` does not permit {}", |
| conjured_ty, |
| match init { |
| InitKind::Zeroed => "zero-initialization", |
| InitKind::Uninit => "being left uninitialized", |
| }, |
| )); |
| err.span_label(expr.span, "this code causes undefined behavior when executed"); |
| err.span_label( |
| expr.span, |
| "help: use `MaybeUninit<T>` instead, \ |
| and only call `assume_init` after initialization is done", |
| ); |
| if let Some(span) = span { |
| err.span_note(span, &msg); |
| } else { |
| err.note(&msg); |
| } |
| err.emit(); |
| }); |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `clashing_extern_declarations` lint detects when an `extern fn` |
| /// has been declared with the same name but different types. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// mod m { |
| /// extern "C" { |
| /// fn foo(); |
| /// } |
| /// } |
| /// |
| /// extern "C" { |
| /// fn foo(_: u32); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Because two symbols of the same name cannot be resolved to two |
| /// different functions at link time, and one function cannot possibly |
| /// have two types, a clashing extern declaration is almost certainly a |
| /// mistake. Check to make sure that the `extern` definitions are correct |
| /// and equivalent, and possibly consider unifying them in one location. |
| /// |
| /// This lint does not run between crates because a project may have |
| /// dependencies which both rely on the same extern function, but declare |
| /// it in a different (but valid) way. For example, they may both declare |
| /// an opaque type for one or more of the arguments (which would end up |
| /// distinct types), or use types that are valid conversions in the |
| /// language the `extern fn` is defined in. In these cases, the compiler |
| /// can't say that the clashing declaration is incorrect. |
| pub CLASHING_EXTERN_DECLARATIONS, |
| Warn, |
| "detects when an extern fn has been declared with the same name but different types" |
| } |
| |
| pub struct ClashingExternDeclarations { |
| /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls |
| /// contains an entry for key K, it means a symbol with name K has been seen by this lint and |
| /// the symbol should be reported as a clashing declaration. |
| // FIXME: Technically, we could just store a &'tcx str here without issue; however, the |
| // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime. |
| seen_decls: FxHashMap<Symbol, HirId>, |
| } |
| |
| /// Differentiate between whether the name for an extern decl came from the link_name attribute or |
| /// just from declaration itself. This is important because we don't want to report clashes on |
| /// symbol name if they don't actually clash because one or the other links against a symbol with a |
| /// different name. |
| enum SymbolName { |
| /// The name of the symbol + the span of the annotation which introduced the link name. |
| Link(Symbol, Span), |
| /// No link name, so just the name of the symbol. |
| Normal(Symbol), |
| } |
| |
| impl SymbolName { |
| fn get_name(&self) -> Symbol { |
| match self { |
| SymbolName::Link(s, _) | SymbolName::Normal(s) => *s, |
| } |
| } |
| } |
| |
| impl ClashingExternDeclarations { |
| crate fn new() -> Self { |
| ClashingExternDeclarations { seen_decls: FxHashMap::default() } |
| } |
| /// Insert a new foreign item into the seen set. If a symbol with the same name already exists |
| /// for the item, return its HirId without updating the set. |
| fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> { |
| let did = fi.def_id.to_def_id(); |
| let instance = Instance::new(did, ty::List::identity_for_item(tcx, did)); |
| let name = Symbol::intern(tcx.symbol_name(instance).name); |
| if let Some(&hir_id) = self.seen_decls.get(&name) { |
| // Avoid updating the map with the new entry when we do find a collision. We want to |
| // make sure we're always pointing to the first definition as the previous declaration. |
| // This lets us avoid emitting "knock-on" diagnostics. |
| Some(hir_id) |
| } else { |
| self.seen_decls.insert(name, fi.hir_id()) |
| } |
| } |
| |
| /// Get the name of the symbol that's linked against for a given extern declaration. That is, |
| /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the |
| /// symbol's name. |
| fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName { |
| if let Some((overridden_link_name, overridden_link_name_span)) = |
| tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| { |
| // FIXME: Instead of searching through the attributes again to get span |
| // information, we could have codegen_fn_attrs also give span information back for |
| // where the attribute was defined. However, until this is found to be a |
| // bottleneck, this does just fine. |
| ( |
| overridden_link_name, |
| tcx.get_attrs(fi.def_id.to_def_id()) |
| .iter() |
| .find(|at| at.has_name(sym::link_name)) |
| .unwrap() |
| .span, |
| ) |
| }) |
| { |
| SymbolName::Link(overridden_link_name, overridden_link_name_span) |
| } else { |
| SymbolName::Normal(fi.ident.name) |
| } |
| } |
| |
| /// Checks whether two types are structurally the same enough that the declarations shouldn't |
| /// clash. We need this so we don't emit a lint when two modules both declare an extern struct, |
| /// with the same members (as the declarations shouldn't clash). |
| fn structurally_same_type<'tcx>( |
| cx: &LateContext<'tcx>, |
| a: Ty<'tcx>, |
| b: Ty<'tcx>, |
| ckind: CItemKind, |
| ) -> bool { |
| fn structurally_same_type_impl<'tcx>( |
| seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>, |
| cx: &LateContext<'tcx>, |
| a: Ty<'tcx>, |
| b: Ty<'tcx>, |
| ckind: CItemKind, |
| ) -> bool { |
| debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b); |
| let tcx = cx.tcx; |
| |
| // Given a transparent newtype, reach through and grab the inner |
| // type unless the newtype makes the type non-null. |
| let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> { |
| let mut ty = ty; |
| loop { |
| if let ty::Adt(def, substs) = *ty.kind() { |
| let is_transparent = def.subst(tcx, substs).repr.transparent(); |
| let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def); |
| debug!( |
| "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}", |
| ty, is_transparent, is_non_null |
| ); |
| if is_transparent && !is_non_null { |
| debug_assert!(def.variants.len() == 1); |
| let v = &def.variants[VariantIdx::new(0)]; |
| ty = transparent_newtype_field(tcx, v) |
| .expect( |
| "single-variant transparent structure with zero-sized field", |
| ) |
| .ty(tcx, substs); |
| continue; |
| } |
| } |
| debug!("non_transparent_ty -> {:?}", ty); |
| return ty; |
| } |
| }; |
| |
| let a = non_transparent_ty(a); |
| let b = non_transparent_ty(b); |
| |
| if !seen_types.insert((a, b)) { |
| // We've encountered a cycle. There's no point going any further -- the types are |
| // structurally the same. |
| return true; |
| } |
| let tcx = cx.tcx; |
| if a == b || rustc_middle::ty::TyS::same_type(a, b) { |
| // All nominally-same types are structurally same, too. |
| true |
| } else { |
| // Do a full, depth-first comparison between the two. |
| use rustc_middle::ty::TyKind::*; |
| let a_kind = a.kind(); |
| let b_kind = b.kind(); |
| |
| let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> { |
| debug!("compare_layouts({:?}, {:?})", a, b); |
| let a_layout = &cx.layout_of(a)?.layout.abi; |
| let b_layout = &cx.layout_of(b)?.layout.abi; |
| debug!( |
| "comparing layouts: {:?} == {:?} = {}", |
| a_layout, |
| b_layout, |
| a_layout == b_layout |
| ); |
| Ok(a_layout == b_layout) |
| }; |
| |
| #[allow(rustc::usage_of_ty_tykind)] |
| let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| { |
| kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..)) |
| }; |
| |
| ensure_sufficient_stack(|| { |
| match (a_kind, b_kind) { |
| (Adt(a_def, a_substs), Adt(b_def, b_substs)) => { |
| let a = a.subst(cx.tcx, a_substs); |
| let b = b.subst(cx.tcx, b_substs); |
| debug!("Comparing {:?} and {:?}", a, b); |
| |
| // We can immediately rule out these types as structurally same if |
| // their layouts differ. |
| match compare_layouts(a, b) { |
| Ok(false) => return false, |
| _ => (), // otherwise, continue onto the full, fields comparison |
| } |
| |
| // Grab a flattened representation of all fields. |
| let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter()); |
| let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter()); |
| |
| // Perform a structural comparison for each field. |
| a_fields.eq_by( |
| b_fields, |
| |&ty::FieldDef { did: a_did, .. }, |
| &ty::FieldDef { did: b_did, .. }| { |
| structurally_same_type_impl( |
| seen_types, |
| cx, |
| tcx.type_of(a_did), |
| tcx.type_of(b_did), |
| ckind, |
| ) |
| }, |
| ) |
| } |
| (Array(a_ty, a_const), Array(b_ty, b_const)) => { |
| // For arrays, we also check the constness of the type. |
| a_const.val == b_const.val |
| && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) |
| } |
| (Slice(a_ty), Slice(b_ty)) => { |
| structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) |
| } |
| (RawPtr(a_tymut), RawPtr(b_tymut)) => { |
| a_tymut.mutbl == b_tymut.mutbl |
| && structurally_same_type_impl( |
| seen_types, |
| cx, |
| &a_tymut.ty, |
| &b_tymut.ty, |
| ckind, |
| ) |
| } |
| (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => { |
| // For structural sameness, we don't need the region to be same. |
| a_mut == b_mut |
| && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) |
| } |
| (FnDef(..), FnDef(..)) => { |
| let a_poly_sig = a.fn_sig(tcx); |
| let b_poly_sig = b.fn_sig(tcx); |
| |
| // As we don't compare regions, skip_binder is fine. |
| let a_sig = a_poly_sig.skip_binder(); |
| let b_sig = b_poly_sig.skip_binder(); |
| |
| (a_sig.abi, a_sig.unsafety, a_sig.c_variadic) |
| == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic) |
| && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| { |
| structurally_same_type_impl(seen_types, cx, a, b, ckind) |
| }) |
| && structurally_same_type_impl( |
| seen_types, |
| cx, |
| a_sig.output(), |
| b_sig.output(), |
| ckind, |
| ) |
| } |
| (Tuple(a_substs), Tuple(b_substs)) => { |
| a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| { |
| structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) |
| }) |
| } |
| // For these, it's not quite as easy to define structural-sameness quite so easily. |
| // For the purposes of this lint, take the conservative approach and mark them as |
| // not structurally same. |
| (Dynamic(..), Dynamic(..)) |
| | (Error(..), Error(..)) |
| | (Closure(..), Closure(..)) |
| | (Generator(..), Generator(..)) |
| | (GeneratorWitness(..), GeneratorWitness(..)) |
| | (Projection(..), Projection(..)) |
| | (Opaque(..), Opaque(..)) => false, |
| |
| // These definitely should have been caught above. |
| (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(), |
| |
| // An Adt and a primitive or pointer type. This can be FFI-safe if non-null |
| // enum layout optimisation is being applied. |
| (Adt(..), other_kind) | (other_kind, Adt(..)) |
| if is_primitive_or_pointer(other_kind) => |
| { |
| let (primitive, adt) = |
| if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) }; |
| if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) { |
| ty == primitive |
| } else { |
| compare_layouts(a, b).unwrap_or(false) |
| } |
| } |
| // Otherwise, just compare the layouts. This may fail to lint for some |
| // incompatible types, but at the very least, will stop reads into |
| // uninitialised memory. |
| _ => compare_layouts(a, b).unwrap_or(false), |
| } |
| }) |
| } |
| } |
| let mut seen_types = FxHashSet::default(); |
| structurally_same_type_impl(&mut seen_types, cx, a, b, ckind) |
| } |
| } |
| |
| impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations { |
| fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) { |
| trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi); |
| if let ForeignItemKind::Fn(..) = this_fi.kind { |
| let tcx = cx.tcx; |
| if let Some(existing_hid) = self.insert(tcx, this_fi) { |
| let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid)); |
| let this_decl_ty = tcx.type_of(this_fi.def_id); |
| debug!( |
| "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}", |
| existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty |
| ); |
| // Check that the declarations match. |
| if !Self::structurally_same_type( |
| cx, |
| existing_decl_ty, |
| this_decl_ty, |
| CItemKind::Declaration, |
| ) { |
| let orig_fi = tcx.hir().expect_foreign_item(existing_hid); |
| let orig = Self::name_of_extern_decl(tcx, orig_fi); |
| |
| // We want to ensure that we use spans for both decls that include where the |
| // name was defined, whether that was from the link_name attribute or not. |
| let get_relevant_span = |
| |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) { |
| SymbolName::Normal(_) => fi.span, |
| SymbolName::Link(_, annot_span) => fi.span.to(annot_span), |
| }; |
| // Finally, emit the diagnostic. |
| tcx.struct_span_lint_hir( |
| CLASHING_EXTERN_DECLARATIONS, |
| this_fi.hir_id(), |
| get_relevant_span(this_fi), |
| |lint| { |
| let mut expected_str = DiagnosticStyledString::new(); |
| expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false); |
| let mut found_str = DiagnosticStyledString::new(); |
| found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true); |
| |
| lint.build(&format!( |
| "`{}` redeclare{} with a different signature", |
| this_fi.ident.name, |
| if orig.get_name() == this_fi.ident.name { |
| "d".to_string() |
| } else { |
| format!("s `{}`", orig.get_name()) |
| } |
| )) |
| .span_label( |
| get_relevant_span(orig_fi), |
| &format!("`{}` previously declared here", orig.get_name()), |
| ) |
| .span_label( |
| get_relevant_span(this_fi), |
| "this signature doesn't match the previous declaration", |
| ) |
| .note_expected_found(&"", expected_str, &"", found_str) |
| .emit() |
| }, |
| ); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `deref_nullptr` lint detects when an null pointer is dereferenced, |
| /// which causes [undefined behavior]. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// # #![allow(unused)] |
| /// use std::ptr; |
| /// unsafe { |
| /// let x = &*ptr::null::<i32>(); |
| /// let x = ptr::addr_of!(*ptr::null::<i32>()); |
| /// let x = *(0 as *const i32); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Dereferencing a null pointer causes [undefined behavior] even as a place expression, |
| /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| pub DEREF_NULLPTR, |
| Warn, |
| "detects when an null pointer is dereferenced" |
| } |
| |
| declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]); |
| |
| impl<'tcx> LateLintPass<'tcx> for DerefNullPtr { |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { |
| /// test if expression is a null ptr |
| fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool { |
| match &expr.kind { |
| rustc_hir::ExprKind::Cast(ref expr, ref ty) => { |
| if let rustc_hir::TyKind::Ptr(_) = ty.kind { |
| return is_zero(expr) || is_null_ptr(cx, expr); |
| } |
| } |
| // check for call to `core::ptr::null` or `core::ptr::null_mut` |
| rustc_hir::ExprKind::Call(ref path, _) => { |
| if let rustc_hir::ExprKind::Path(ref qpath) = path.kind { |
| if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() { |
| return cx.tcx.is_diagnostic_item(sym::ptr_null, def_id) |
| || cx.tcx.is_diagnostic_item(sym::ptr_null_mut, def_id); |
| } |
| } |
| } |
| _ => {} |
| } |
| false |
| } |
| |
| /// test if expression is the literal `0` |
| fn is_zero(expr: &hir::Expr<'_>) -> bool { |
| match &expr.kind { |
| rustc_hir::ExprKind::Lit(ref lit) => { |
| if let LitKind::Int(a, _) = lit.node { |
| return a == 0; |
| } |
| } |
| _ => {} |
| } |
| false |
| } |
| |
| if let rustc_hir::ExprKind::Unary(ref un_op, ref expr_deref) = expr.kind { |
| if let rustc_hir::UnOp::Deref = un_op { |
| if is_null_ptr(cx, expr_deref) { |
| cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| { |
| let mut err = lint.build("dereferencing a null pointer"); |
| err.span_label( |
| expr.span, |
| "this code causes undefined behavior when executed", |
| ); |
| err.emit(); |
| }); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `named_asm_labels` lint detects the use of named labels in the |
| /// inline `asm!` macro. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![feature(asm)] |
| /// fn main() { |
| /// unsafe { |
| /// asm!("foo: bar"); |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// LLVM is allowed to duplicate inline assembly blocks for any |
| /// reason, for example when it is in a function that gets inlined. Because |
| /// of this, GNU assembler [local labels] *must* be used instead of labels |
| /// with a name. Using named labels might cause assembler or linker errors. |
| /// |
| /// See the [unstable book] for more details. |
| /// |
| /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels |
| /// [unstable book]: https://doc.rust-lang.org/nightly/unstable-book/library-features/asm.html#labels |
| pub NAMED_ASM_LABELS, |
| Deny, |
| "named labels in inline assembly", |
| } |
| |
| declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels { |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { |
| if let hir::Expr { |
| kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }), |
| .. |
| } = expr |
| { |
| for (template_sym, template_snippet, template_span) in template_strs.iter() { |
| let template_str = &template_sym.as_str(); |
| let find_label_span = |needle: &str| -> Option<Span> { |
| if let Some(template_snippet) = template_snippet { |
| let snippet = template_snippet.as_str(); |
| if let Some(pos) = snippet.find(needle) { |
| let end = pos |
| + &snippet[pos..] |
| .find(|c| c == ':') |
| .unwrap_or(snippet[pos..].len() - 1); |
| let inner = InnerSpan::new(pos, end); |
| return Some(template_span.from_inner(inner)); |
| } |
| } |
| |
| None |
| }; |
| |
| let mut found_labels = Vec::new(); |
| |
| // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always |
| let statements = template_str.split(|c| matches!(c, '\n' | ';')); |
| for statement in statements { |
| // If there's a comment, trim it from the statement |
| let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]); |
| let mut start_idx = 0; |
| for (idx, _) in statement.match_indices(':') { |
| let possible_label = statement[start_idx..idx].trim(); |
| let mut chars = possible_label.chars(); |
| if let Some(c) = chars.next() { |
| // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $ |
| if (c.is_alphabetic() || matches!(c, '.' | '_')) |
| && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$')) |
| { |
| found_labels.push(possible_label); |
| } else { |
| // If we encounter a non-label, there cannot be any further labels, so stop checking |
| break; |
| } |
| } else { |
| // Empty string means a leading ':' in this section, which is not a label |
| break; |
| } |
| |
| start_idx = idx + 1; |
| } |
| } |
| |
| debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels); |
| |
| if found_labels.len() > 0 { |
| let spans = found_labels |
| .into_iter() |
| .filter_map(|label| find_label_span(label)) |
| .collect::<Vec<Span>>(); |
| // If there were labels but we couldn't find a span, combine the warnings and use the template span |
| let target_spans: MultiSpan = |
| if spans.len() > 0 { spans.into() } else { (*template_span).into() }; |
| |
| cx.lookup_with_diagnostics( |
| NAMED_ASM_LABELS, |
| Some(target_spans), |
| |diag| { |
| let mut err = |
| diag.build("avoid using named labels in inline assembly"); |
| err.emit(); |
| }, |
| BuiltinLintDiagnostics::NamedAsmLabel( |
| "only local labels of the form `<number>:` should be used in inline asm" |
| .to_string(), |
| ), |
| ); |
| } |
| } |
| } |
| } |
| } |