blob: cc31d8c2c18799301370ab4a8f39170e13b0f5e1 [file] [log] [blame]
use std::convert::{TryFrom, TryInto};
use std::fmt;
use rustc_apfloat::{
ieee::{Double, Single},
Float,
};
use rustc_macros::HashStable;
use rustc_target::abi::{HasDataLayout, Size};
use crate::ty::{Lift, ParamEnv, ScalarInt, Ty, TyCtxt};
use super::{
AllocId, AllocRange, Allocation, InterpResult, Pointer, PointerArithmetic, Provenance,
};
/// Represents the result of const evaluation via the `eval_to_allocation` query.
#[derive(Copy, Clone, HashStable, TyEncodable, TyDecodable, Debug, Hash, Eq, PartialEq)]
pub struct ConstAlloc<'tcx> {
// the value lives here, at offset 0, and that allocation definitely is an `AllocKind::Memory`
// (so you can use `AllocMap::unwrap_memory`).
pub alloc_id: AllocId,
pub ty: Ty<'tcx>,
}
/// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for
/// array length computations, enum discriminants and the pattern matching logic.
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable, Hash)]
#[derive(HashStable)]
pub enum ConstValue<'tcx> {
/// Used only for types with `layout::abi::Scalar` ABI and ZSTs.
///
/// Not using the enum `Value` to encode that this must not be `Uninit`.
Scalar(Scalar),
/// Used only for `&[u8]` and `&str`
Slice { data: &'tcx Allocation, start: usize, end: usize },
/// A value not represented/representable by `Scalar` or `Slice`
ByRef {
/// The backing memory of the value, may contain more memory than needed for just the value
/// in order to share `Allocation`s between values
alloc: &'tcx Allocation,
/// Offset into `alloc`
offset: Size,
},
}
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(ConstValue<'_>, 32);
impl<'a, 'tcx> Lift<'tcx> for ConstValue<'a> {
type Lifted = ConstValue<'tcx>;
fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<ConstValue<'tcx>> {
Some(match self {
ConstValue::Scalar(s) => ConstValue::Scalar(s),
ConstValue::Slice { data, start, end } => {
ConstValue::Slice { data: tcx.lift(data)?, start, end }
}
ConstValue::ByRef { alloc, offset } => {
ConstValue::ByRef { alloc: tcx.lift(alloc)?, offset }
}
})
}
}
impl<'tcx> ConstValue<'tcx> {
#[inline]
pub fn try_to_scalar(&self) -> Option<Scalar<AllocId>> {
match *self {
ConstValue::ByRef { .. } | ConstValue::Slice { .. } => None,
ConstValue::Scalar(val) => Some(val),
}
}
pub fn try_to_scalar_int(&self) -> Option<ScalarInt> {
Some(self.try_to_scalar()?.assert_int())
}
pub fn try_to_bits(&self, size: Size) -> Option<u128> {
self.try_to_scalar_int()?.to_bits(size).ok()
}
pub fn try_to_bool(&self) -> Option<bool> {
self.try_to_scalar_int()?.try_into().ok()
}
pub fn try_to_machine_usize(&self, tcx: TyCtxt<'tcx>) -> Option<u64> {
self.try_to_scalar_int()?.try_to_machine_usize(tcx).ok()
}
pub fn try_to_bits_for_ty(
&self,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
ty: Ty<'tcx>,
) -> Option<u128> {
let size = tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
self.try_to_bits(size)
}
pub fn from_bool(b: bool) -> Self {
ConstValue::Scalar(Scalar::from_bool(b))
}
pub fn from_u64(i: u64) -> Self {
ConstValue::Scalar(Scalar::from_u64(i))
}
pub fn from_machine_usize(i: u64, cx: &impl HasDataLayout) -> Self {
ConstValue::Scalar(Scalar::from_machine_usize(i, cx))
}
}
/// A `Scalar` represents an immediate, primitive value existing outside of a
/// `memory::Allocation`. It is in many ways like a small chunk of an `Allocation`, up to 16 bytes in
/// size. Like a range of bytes in an `Allocation`, a `Scalar` can either represent the raw bytes
/// of a simple value or a pointer into another `Allocation`
///
/// These variants would be private if there was a convenient way to achieve that in Rust.
/// Do *not* match on a `Scalar`! Use the various `to_*` methods instead.
#[derive(Clone, Copy, Eq, PartialEq, Ord, PartialOrd, TyEncodable, TyDecodable, Hash)]
#[derive(HashStable)]
pub enum Scalar<Tag = AllocId> {
/// The raw bytes of a simple value.
Int(ScalarInt),
/// A pointer into an `Allocation`. An `Allocation` in the `memory` module has a list of
/// relocations, but a `Scalar` is only large enough to contain one, so we just represent the
/// relocation and its associated offset together as a `Pointer` here.
///
/// We also store the size of the pointer, such that a `Scalar` always knows how big it is.
/// The size is always the pointer size of the current target, but this is not information
/// that we always have readily available.
Ptr(Pointer<Tag>, u8),
}
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(Scalar, 24);
// We want the `Debug` output to be readable as it is used by `derive(Debug)` for
// all the Miri types.
impl<Tag: Provenance> fmt::Debug for Scalar<Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Scalar::Ptr(ptr, _size) => write!(f, "{:?}", ptr),
Scalar::Int(int) => write!(f, "{:?}", int),
}
}
}
impl<Tag: Provenance> fmt::Display for Scalar<Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Scalar::Ptr(ptr, _size) => write!(f, "pointer to {:?}", ptr),
Scalar::Int(int) => write!(f, "{:?}", int),
}
}
}
impl<Tag> From<Single> for Scalar<Tag> {
#[inline(always)]
fn from(f: Single) -> Self {
Scalar::from_f32(f)
}
}
impl<Tag> From<Double> for Scalar<Tag> {
#[inline(always)]
fn from(f: Double) -> Self {
Scalar::from_f64(f)
}
}
impl<Tag> From<ScalarInt> for Scalar<Tag> {
#[inline(always)]
fn from(ptr: ScalarInt) -> Self {
Scalar::Int(ptr)
}
}
impl<Tag> Scalar<Tag> {
pub const ZST: Self = Scalar::Int(ScalarInt::ZST);
#[inline(always)]
pub fn from_pointer(ptr: Pointer<Tag>, cx: &impl HasDataLayout) -> Self {
Scalar::Ptr(ptr, u8::try_from(cx.pointer_size().bytes()).unwrap())
}
/// Create a Scalar from a pointer with an `Option<_>` tag (where `None` represents a plain integer).
pub fn from_maybe_pointer(ptr: Pointer<Option<Tag>>, cx: &impl HasDataLayout) -> Self {
match ptr.into_parts() {
(Some(tag), offset) => Scalar::from_pointer(Pointer::new(tag, offset), cx),
(None, offset) => {
Scalar::Int(ScalarInt::try_from_uint(offset.bytes(), cx.pointer_size()).unwrap())
}
}
}
#[inline]
pub fn null_ptr(cx: &impl HasDataLayout) -> Self {
Scalar::Int(ScalarInt::null(cx.pointer_size()))
}
#[inline]
pub fn from_bool(b: bool) -> Self {
Scalar::Int(b.into())
}
#[inline]
pub fn from_char(c: char) -> Self {
Scalar::Int(c.into())
}
#[inline]
pub fn try_from_uint(i: impl Into<u128>, size: Size) -> Option<Self> {
ScalarInt::try_from_uint(i, size).map(Scalar::Int)
}
#[inline]
pub fn from_uint(i: impl Into<u128>, size: Size) -> Self {
let i = i.into();
Self::try_from_uint(i, size)
.unwrap_or_else(|| bug!("Unsigned value {:#x} does not fit in {} bits", i, size.bits()))
}
#[inline]
pub fn from_u8(i: u8) -> Self {
Scalar::Int(i.into())
}
#[inline]
pub fn from_u16(i: u16) -> Self {
Scalar::Int(i.into())
}
#[inline]
pub fn from_u32(i: u32) -> Self {
Scalar::Int(i.into())
}
#[inline]
pub fn from_u64(i: u64) -> Self {
Scalar::Int(i.into())
}
#[inline]
pub fn from_machine_usize(i: u64, cx: &impl HasDataLayout) -> Self {
Self::from_uint(i, cx.data_layout().pointer_size)
}
#[inline]
pub fn try_from_int(i: impl Into<i128>, size: Size) -> Option<Self> {
ScalarInt::try_from_int(i, size).map(Scalar::Int)
}
#[inline]
pub fn from_int(i: impl Into<i128>, size: Size) -> Self {
let i = i.into();
Self::try_from_int(i, size)
.unwrap_or_else(|| bug!("Signed value {:#x} does not fit in {} bits", i, size.bits()))
}
#[inline]
pub fn from_i32(i: i32) -> Self {
Self::from_int(i, Size::from_bits(32))
}
#[inline]
pub fn from_i64(i: i64) -> Self {
Self::from_int(i, Size::from_bits(64))
}
#[inline]
pub fn from_machine_isize(i: i64, cx: &impl HasDataLayout) -> Self {
Self::from_int(i, cx.data_layout().pointer_size)
}
#[inline]
pub fn from_f32(f: Single) -> Self {
Scalar::Int(f.into())
}
#[inline]
pub fn from_f64(f: Double) -> Self {
Scalar::Int(f.into())
}
/// This is almost certainly not the method you want! You should dispatch on the type
/// and use `to_{u8,u16,...}`/`scalar_to_ptr` to perform ptr-to-int / int-to-ptr casts as needed.
///
/// This method only exists for the benefit of low-level operations that truly need to treat the
/// scalar in whatever form it is.
#[inline]
pub fn to_bits_or_ptr_internal(self, target_size: Size) -> Result<u128, Pointer<Tag>> {
assert_ne!(target_size.bytes(), 0, "you should never look at the bits of a ZST");
match self {
Scalar::Int(int) => Ok(int.assert_bits(target_size)),
Scalar::Ptr(ptr, sz) => {
assert_eq!(target_size.bytes(), u64::from(sz));
Err(ptr)
}
}
}
}
impl<'tcx, Tag: Provenance> Scalar<Tag> {
/// Fundamental scalar-to-int (cast) operation. Many convenience wrappers exist below, that you
/// likely want to use instead.
///
/// Will perform ptr-to-int casts if needed and possible.
/// If that fails, we know the offset is relative, so we return an "erased" Scalar
/// (which is useful for error messages but not much else).
#[inline]
pub fn try_to_int(self) -> Result<ScalarInt, Scalar<AllocId>> {
match self {
Scalar::Int(int) => Ok(int),
Scalar::Ptr(ptr, sz) => {
if Tag::OFFSET_IS_ADDR {
Ok(ScalarInt::try_from_uint(ptr.offset.bytes(), Size::from_bytes(sz)).unwrap())
} else {
// We know `offset` is relative, since `OFFSET_IS_ADDR == false`.
let (tag, offset) = ptr.into_parts();
Err(Scalar::Ptr(Pointer::new(tag.get_alloc_id(), offset), sz))
}
}
}
}
#[inline(always)]
pub fn assert_int(self) -> ScalarInt {
self.try_to_int().unwrap()
}
/// This throws UB (instead of ICEing) on a size mismatch since size mismatches can arise in
/// Miri when someone declares a function that we shim (such as `malloc`) with a wrong type.
#[inline]
pub fn to_bits(self, target_size: Size) -> InterpResult<'tcx, u128> {
assert_ne!(target_size.bytes(), 0, "you should never look at the bits of a ZST");
self.try_to_int().map_err(|_| err_unsup!(ReadPointerAsBytes))?.to_bits(target_size).map_err(
|size| {
err_ub!(ScalarSizeMismatch {
target_size: target_size.bytes(),
data_size: size.bytes(),
})
.into()
},
)
}
#[inline(always)]
pub fn assert_bits(self, target_size: Size) -> u128 {
self.to_bits(target_size).unwrap()
}
pub fn to_bool(self) -> InterpResult<'tcx, bool> {
let val = self.to_u8()?;
match val {
0 => Ok(false),
1 => Ok(true),
_ => throw_ub!(InvalidBool(val)),
}
}
pub fn to_char(self) -> InterpResult<'tcx, char> {
let val = self.to_u32()?;
match std::char::from_u32(val) {
Some(c) => Ok(c),
None => throw_ub!(InvalidChar(val)),
}
}
#[inline]
fn to_unsigned_with_bit_width(self, bits: u64) -> InterpResult<'static, u128> {
let sz = Size::from_bits(bits);
self.to_bits(sz)
}
/// Converts the scalar to produce a `u8`. Fails if the scalar is a pointer.
pub fn to_u8(self) -> InterpResult<'static, u8> {
self.to_unsigned_with_bit_width(8).map(|v| u8::try_from(v).unwrap())
}
/// Converts the scalar to produce a `u16`. Fails if the scalar is a pointer.
pub fn to_u16(self) -> InterpResult<'static, u16> {
self.to_unsigned_with_bit_width(16).map(|v| u16::try_from(v).unwrap())
}
/// Converts the scalar to produce a `u32`. Fails if the scalar is a pointer.
pub fn to_u32(self) -> InterpResult<'static, u32> {
self.to_unsigned_with_bit_width(32).map(|v| u32::try_from(v).unwrap())
}
/// Converts the scalar to produce a `u64`. Fails if the scalar is a pointer.
pub fn to_u64(self) -> InterpResult<'static, u64> {
self.to_unsigned_with_bit_width(64).map(|v| u64::try_from(v).unwrap())
}
/// Converts the scalar to produce a `u128`. Fails if the scalar is a pointer.
pub fn to_u128(self) -> InterpResult<'static, u128> {
self.to_unsigned_with_bit_width(128)
}
pub fn to_machine_usize(self, cx: &impl HasDataLayout) -> InterpResult<'static, u64> {
let b = self.to_bits(cx.data_layout().pointer_size)?;
Ok(u64::try_from(b).unwrap())
}
#[inline]
fn to_signed_with_bit_width(self, bits: u64) -> InterpResult<'static, i128> {
let sz = Size::from_bits(bits);
let b = self.to_bits(sz)?;
Ok(sz.sign_extend(b) as i128)
}
/// Converts the scalar to produce an `i8`. Fails if the scalar is a pointer.
pub fn to_i8(self) -> InterpResult<'static, i8> {
self.to_signed_with_bit_width(8).map(|v| i8::try_from(v).unwrap())
}
/// Converts the scalar to produce an `i16`. Fails if the scalar is a pointer.
pub fn to_i16(self) -> InterpResult<'static, i16> {
self.to_signed_with_bit_width(16).map(|v| i16::try_from(v).unwrap())
}
/// Converts the scalar to produce an `i32`. Fails if the scalar is a pointer.
pub fn to_i32(self) -> InterpResult<'static, i32> {
self.to_signed_with_bit_width(32).map(|v| i32::try_from(v).unwrap())
}
/// Converts the scalar to produce an `i64`. Fails if the scalar is a pointer.
pub fn to_i64(self) -> InterpResult<'static, i64> {
self.to_signed_with_bit_width(64).map(|v| i64::try_from(v).unwrap())
}
/// Converts the scalar to produce an `i128`. Fails if the scalar is a pointer.
pub fn to_i128(self) -> InterpResult<'static, i128> {
self.to_signed_with_bit_width(128)
}
pub fn to_machine_isize(self, cx: &impl HasDataLayout) -> InterpResult<'static, i64> {
let sz = cx.data_layout().pointer_size;
let b = self.to_bits(sz)?;
let b = sz.sign_extend(b) as i128;
Ok(i64::try_from(b).unwrap())
}
#[inline]
pub fn to_f32(self) -> InterpResult<'static, Single> {
// Going through `u32` to check size and truncation.
Ok(Single::from_bits(self.to_u32()?.into()))
}
#[inline]
pub fn to_f64(self) -> InterpResult<'static, Double> {
// Going through `u64` to check size and truncation.
Ok(Double::from_bits(self.to_u64()?.into()))
}
}
#[derive(Clone, Copy, Eq, PartialEq, TyEncodable, TyDecodable, HashStable, Hash)]
pub enum ScalarMaybeUninit<Tag = AllocId> {
Scalar(Scalar<Tag>),
Uninit,
}
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(ScalarMaybeUninit, 24);
impl<Tag> From<Scalar<Tag>> for ScalarMaybeUninit<Tag> {
#[inline(always)]
fn from(s: Scalar<Tag>) -> Self {
ScalarMaybeUninit::Scalar(s)
}
}
// We want the `Debug` output to be readable as it is used by `derive(Debug)` for
// all the Miri types.
impl<Tag: Provenance> fmt::Debug for ScalarMaybeUninit<Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ScalarMaybeUninit::Uninit => write!(f, "<uninitialized>"),
ScalarMaybeUninit::Scalar(s) => write!(f, "{:?}", s),
}
}
}
impl<Tag: Provenance> fmt::Display for ScalarMaybeUninit<Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ScalarMaybeUninit::Uninit => write!(f, "uninitialized bytes"),
ScalarMaybeUninit::Scalar(s) => write!(f, "{}", s),
}
}
}
impl<Tag> ScalarMaybeUninit<Tag> {
#[inline]
pub fn from_pointer(ptr: Pointer<Tag>, cx: &impl HasDataLayout) -> Self {
ScalarMaybeUninit::Scalar(Scalar::from_pointer(ptr, cx))
}
#[inline]
pub fn from_maybe_pointer(ptr: Pointer<Option<Tag>>, cx: &impl HasDataLayout) -> Self {
ScalarMaybeUninit::Scalar(Scalar::from_maybe_pointer(ptr, cx))
}
#[inline]
pub fn check_init(self) -> InterpResult<'static, Scalar<Tag>> {
match self {
ScalarMaybeUninit::Scalar(scalar) => Ok(scalar),
ScalarMaybeUninit::Uninit => throw_ub!(InvalidUninitBytes(None)),
}
}
}
impl<'tcx, Tag: Provenance> ScalarMaybeUninit<Tag> {
#[inline(always)]
pub fn to_bool(self) -> InterpResult<'tcx, bool> {
self.check_init()?.to_bool()
}
#[inline(always)]
pub fn to_char(self) -> InterpResult<'tcx, char> {
self.check_init()?.to_char()
}
#[inline(always)]
pub fn to_f32(self) -> InterpResult<'tcx, Single> {
self.check_init()?.to_f32()
}
#[inline(always)]
pub fn to_f64(self) -> InterpResult<'tcx, Double> {
self.check_init()?.to_f64()
}
#[inline(always)]
pub fn to_u8(self) -> InterpResult<'tcx, u8> {
self.check_init()?.to_u8()
}
#[inline(always)]
pub fn to_u16(self) -> InterpResult<'tcx, u16> {
self.check_init()?.to_u16()
}
#[inline(always)]
pub fn to_u32(self) -> InterpResult<'tcx, u32> {
self.check_init()?.to_u32()
}
#[inline(always)]
pub fn to_u64(self) -> InterpResult<'tcx, u64> {
self.check_init()?.to_u64()
}
#[inline(always)]
pub fn to_machine_usize(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
self.check_init()?.to_machine_usize(cx)
}
#[inline(always)]
pub fn to_i8(self) -> InterpResult<'tcx, i8> {
self.check_init()?.to_i8()
}
#[inline(always)]
pub fn to_i16(self) -> InterpResult<'tcx, i16> {
self.check_init()?.to_i16()
}
#[inline(always)]
pub fn to_i32(self) -> InterpResult<'tcx, i32> {
self.check_init()?.to_i32()
}
#[inline(always)]
pub fn to_i64(self) -> InterpResult<'tcx, i64> {
self.check_init()?.to_i64()
}
#[inline(always)]
pub fn to_machine_isize(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, i64> {
self.check_init()?.to_machine_isize(cx)
}
}
/// Gets the bytes of a constant slice value.
pub fn get_slice_bytes<'tcx>(cx: &impl HasDataLayout, val: ConstValue<'tcx>) -> &'tcx [u8] {
if let ConstValue::Slice { data, start, end } = val {
let len = end - start;
data.get_bytes(
cx,
AllocRange { start: Size::from_bytes(start), size: Size::from_bytes(len) },
)
.unwrap_or_else(|err| bug!("const slice is invalid: {:?}", err))
} else {
bug!("expected const slice, but found another const value");
}
}