| //===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// Provides analysis for querying information about KnownBits during GISel |
| /// passes. |
| // |
| //===------------------ |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/Module.h" |
| |
| #define DEBUG_TYPE "gisel-known-bits" |
| |
| using namespace llvm; |
| |
| char llvm::GISelKnownBitsAnalysis::ID = 0; |
| |
| INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE, |
| "Analysis for ComputingKnownBits", false, true) |
| |
| GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth) |
| : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()), |
| DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {} |
| |
| Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) { |
| const MachineInstr *MI = MRI.getVRegDef(R); |
| switch (MI->getOpcode()) { |
| case TargetOpcode::COPY: |
| return computeKnownAlignment(MI->getOperand(1).getReg(), Depth); |
| case TargetOpcode::G_FRAME_INDEX: { |
| int FrameIdx = MI->getOperand(1).getIndex(); |
| return MF.getFrameInfo().getObjectAlign(FrameIdx); |
| } |
| case TargetOpcode::G_INTRINSIC: |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| default: |
| return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1); |
| } |
| } |
| |
| KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) { |
| assert(MI.getNumExplicitDefs() == 1 && |
| "expected single return generic instruction"); |
| return getKnownBits(MI.getOperand(0).getReg()); |
| } |
| |
| KnownBits GISelKnownBits::getKnownBits(Register R) { |
| const LLT Ty = MRI.getType(R); |
| APInt DemandedElts = |
| Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1); |
| return getKnownBits(R, DemandedElts); |
| } |
| |
| KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts, |
| unsigned Depth) { |
| // For now, we only maintain the cache during one request. |
| assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared"); |
| |
| KnownBits Known; |
| computeKnownBitsImpl(R, Known, DemandedElts); |
| ComputeKnownBitsCache.clear(); |
| return Known; |
| } |
| |
| bool GISelKnownBits::signBitIsZero(Register R) { |
| LLT Ty = MRI.getType(R); |
| unsigned BitWidth = Ty.getScalarSizeInBits(); |
| return maskedValueIsZero(R, APInt::getSignMask(BitWidth)); |
| } |
| |
| APInt GISelKnownBits::getKnownZeroes(Register R) { |
| return getKnownBits(R).Zero; |
| } |
| |
| APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; } |
| |
| LLVM_ATTRIBUTE_UNUSED static void |
| dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) { |
| dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth |
| << "] Computed for: " << MI << "[" << Depth << "] Known: 0x" |
| << toString(Known.Zero | Known.One, 16, false) << "\n" |
| << "[" << Depth << "] Zero: 0x" << toString(Known.Zero, 16, false) |
| << "\n" |
| << "[" << Depth << "] One: 0x" << toString(Known.One, 16, false) |
| << "\n"; |
| } |
| |
| /// Compute known bits for the intersection of \p Src0 and \p Src1 |
| void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| // Test src1 first, since we canonicalize simpler expressions to the RHS. |
| computeKnownBitsImpl(Src1, Known, DemandedElts, Depth); |
| |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| return; |
| |
| KnownBits Known2; |
| computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth); |
| |
| // Only known if known in both the LHS and RHS. |
| Known = KnownBits::commonBits(Known, Known2); |
| } |
| |
| // Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is |
| // created using Width. Use this function when the inputs are KnownBits |
| // objects. TODO: Move this KnownBits.h if this is usable in more cases. |
| static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, |
| const KnownBits &OffsetKnown, |
| const KnownBits &WidthKnown) { |
| KnownBits Mask(BitWidth); |
| Mask.Zero = APInt::getBitsSetFrom( |
| BitWidth, WidthKnown.getMaxValue().getLimitedValue(BitWidth)); |
| Mask.One = APInt::getLowBitsSet( |
| BitWidth, WidthKnown.getMinValue().getLimitedValue(BitWidth)); |
| return KnownBits::lshr(SrcOpKnown, OffsetKnown) & Mask; |
| } |
| |
| void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| MachineInstr &MI = *MRI.getVRegDef(R); |
| unsigned Opcode = MI.getOpcode(); |
| LLT DstTy = MRI.getType(R); |
| |
| // Handle the case where this is called on a register that does not have a |
| // type constraint (i.e. it has a register class constraint instead). This is |
| // unlikely to occur except by looking through copies but it is possible for |
| // the initial register being queried to be in this state. |
| if (!DstTy.isValid()) { |
| Known = KnownBits(); |
| return; |
| } |
| |
| unsigned BitWidth = DstTy.getScalarSizeInBits(); |
| auto CacheEntry = ComputeKnownBitsCache.find(R); |
| if (CacheEntry != ComputeKnownBitsCache.end()) { |
| Known = CacheEntry->second; |
| LLVM_DEBUG(dbgs() << "Cache hit at "); |
| LLVM_DEBUG(dumpResult(MI, Known, Depth)); |
| assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match"); |
| return; |
| } |
| Known = KnownBits(BitWidth); // Don't know anything |
| |
| // Depth may get bigger than max depth if it gets passed to a different |
| // GISelKnownBits object. |
| // This may happen when say a generic part uses a GISelKnownBits object |
| // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr |
| // which creates a new GISelKnownBits object with a different and smaller |
| // depth. If we just check for equality, we would never exit if the depth |
| // that is passed down to the target specific GISelKnownBits object is |
| // already bigger than its max depth. |
| if (Depth >= getMaxDepth()) |
| return; |
| |
| if (!DemandedElts) |
| return; // No demanded elts, better to assume we don't know anything. |
| |
| KnownBits Known2; |
| |
| switch (Opcode) { |
| default: |
| TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI, |
| Depth); |
| break; |
| case TargetOpcode::G_BUILD_VECTOR: { |
| // Collect the known bits that are shared by every demanded vector element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (unsigned i = 0, e = MI.getNumOperands() - 1; i < e; ++i) { |
| if (!DemandedElts[i]) |
| continue; |
| |
| computeKnownBitsImpl(MI.getOperand(i + 1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| // Known bits are the values that are shared by every demanded element. |
| Known = KnownBits::commonBits(Known, Known2); |
| |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::COPY: |
| case TargetOpcode::G_PHI: |
| case TargetOpcode::PHI: { |
| Known.One = APInt::getAllOnesValue(BitWidth); |
| Known.Zero = APInt::getAllOnesValue(BitWidth); |
| // Destination registers should not have subregisters at this |
| // point of the pipeline, otherwise the main live-range will be |
| // defined more than once, which is against SSA. |
| assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?"); |
| // Record in the cache that we know nothing for MI. |
| // This will get updated later and in the meantime, if we reach that |
| // phi again, because of a loop, we will cut the search thanks to this |
| // cache entry. |
| // We could actually build up more information on the phi by not cutting |
| // the search, but that additional information is more a side effect |
| // than an intended choice. |
| // Therefore, for now, save on compile time until we derive a proper way |
| // to derive known bits for PHIs within loops. |
| ComputeKnownBitsCache[R] = KnownBits(BitWidth); |
| // PHI's operand are a mix of registers and basic blocks interleaved. |
| // We only care about the register ones. |
| for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { |
| const MachineOperand &Src = MI.getOperand(Idx); |
| Register SrcReg = Src.getReg(); |
| // Look through trivial copies and phis but don't look through trivial |
| // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits |
| // analysis is currently unable to determine the bit width of a |
| // register class. |
| // |
| // We can't use NoSubRegister by name as it's defined by each target but |
| // it's always defined to be 0 by tablegen. |
| if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ && |
| MRI.getType(SrcReg).isValid()) { |
| // For COPYs we don't do anything, don't increase the depth. |
| computeKnownBitsImpl(SrcReg, Known2, DemandedElts, |
| Depth + (Opcode != TargetOpcode::COPY)); |
| Known = KnownBits::commonBits(Known, Known2); |
| // If we reach a point where we don't know anything |
| // just stop looking through the operands. |
| if (Known.One == 0 && Known.Zero == 0) |
| break; |
| } else { |
| // We know nothing. |
| Known = KnownBits(BitWidth); |
| break; |
| } |
| } |
| break; |
| } |
| case TargetOpcode::G_CONSTANT: { |
| auto CstVal = getConstantVRegVal(R, MRI); |
| if (!CstVal) |
| break; |
| Known = KnownBits::makeConstant(*CstVal); |
| break; |
| } |
| case TargetOpcode::G_FRAME_INDEX: { |
| int FrameIdx = MI.getOperand(1).getIndex(); |
| TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF); |
| break; |
| } |
| case TargetOpcode::G_SUB: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known, |
| Known2); |
| break; |
| } |
| case TargetOpcode::G_XOR: { |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| Known ^= Known2; |
| break; |
| } |
| case TargetOpcode::G_PTR_ADD: { |
| if (DstTy.isVector()) |
| break; |
| // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets? |
| LLT Ty = MRI.getType(MI.getOperand(1).getReg()); |
| if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) |
| break; |
| LLVM_FALLTHROUGH; |
| } |
| case TargetOpcode::G_ADD: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| Known = |
| KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2); |
| break; |
| } |
| case TargetOpcode::G_AND: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| Known &= Known2; |
| break; |
| } |
| case TargetOpcode::G_OR: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| |
| Known |= Known2; |
| break; |
| } |
| case TargetOpcode::G_MUL: { |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::mul(Known, Known2); |
| break; |
| } |
| case TargetOpcode::G_SELECT: { |
| computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(), |
| Known, DemandedElts, Depth + 1); |
| break; |
| } |
| case TargetOpcode::G_SMIN: { |
| // TODO: Handle clamp pattern with number of sign bits |
| KnownBits KnownRHS; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::smin(Known, KnownRHS); |
| break; |
| } |
| case TargetOpcode::G_SMAX: { |
| // TODO: Handle clamp pattern with number of sign bits |
| KnownBits KnownRHS; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::smax(Known, KnownRHS); |
| break; |
| } |
| case TargetOpcode::G_UMIN: { |
| KnownBits KnownRHS; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, |
| DemandedElts, Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, |
| DemandedElts, Depth + 1); |
| Known = KnownBits::umin(Known, KnownRHS); |
| break; |
| } |
| case TargetOpcode::G_UMAX: { |
| KnownBits KnownRHS; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, |
| DemandedElts, Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, |
| DemandedElts, Depth + 1); |
| Known = KnownBits::umax(Known, KnownRHS); |
| break; |
| } |
| case TargetOpcode::G_FCMP: |
| case TargetOpcode::G_ICMP: { |
| if (DstTy.isVector()) |
| break; |
| if (TL.getBooleanContents(DstTy.isVector(), |
| Opcode == TargetOpcode::G_FCMP) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| case TargetOpcode::G_SEXT: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| // If the sign bit is known to be zero or one, then sext will extend |
| // it to the top bits, else it will just zext. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case TargetOpcode::G_ASSERT_SEXT: |
| case TargetOpcode::G_SEXT_INREG: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| Known = Known.sextInReg(MI.getOperand(2).getImm()); |
| break; |
| } |
| case TargetOpcode::G_ANYEXT: { |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, |
| Depth + 1); |
| Known = Known.anyext(BitWidth); |
| break; |
| } |
| case TargetOpcode::G_LOAD: { |
| const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| if (const MDNode *Ranges = MMO->getRanges()) { |
| computeKnownBitsFromRangeMetadata(*Ranges, Known); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_ZEXTLOAD: { |
| if (DstTy.isVector()) |
| break; |
| // Everything above the retrieved bits is zero |
| Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits()); |
| break; |
| } |
| case TargetOpcode::G_ASHR: { |
| KnownBits LHSKnown, RHSKnown; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::ashr(LHSKnown, RHSKnown); |
| break; |
| } |
| case TargetOpcode::G_LSHR: { |
| KnownBits LHSKnown, RHSKnown; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::lshr(LHSKnown, RHSKnown); |
| break; |
| } |
| case TargetOpcode::G_SHL: { |
| KnownBits LHSKnown, RHSKnown; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::shl(LHSKnown, RHSKnown); |
| break; |
| } |
| case TargetOpcode::G_INTTOPTR: |
| case TargetOpcode::G_PTRTOINT: |
| if (DstTy.isVector()) |
| break; |
| // Fall through and handle them the same as zext/trunc. |
| LLVM_FALLTHROUGH; |
| case TargetOpcode::G_ASSERT_ZEXT: |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_TRUNC: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| unsigned SrcBitWidth; |
| |
| // G_ASSERT_ZEXT stores the original bitwidth in the immediate operand. |
| if (Opcode == TargetOpcode::G_ASSERT_ZEXT) |
| SrcBitWidth = MI.getOperand(2).getImm(); |
| else { |
| SrcBitWidth = SrcTy.isPointer() |
| ? DL.getIndexSizeInBits(SrcTy.getAddressSpace()) |
| : SrcTy.getSizeInBits(); |
| } |
| assert(SrcBitWidth && "SrcBitWidth can't be zero"); |
| Known = Known.zextOrTrunc(SrcBitWidth); |
| computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); |
| Known = Known.zextOrTrunc(BitWidth); |
| if (BitWidth > SrcBitWidth) |
| Known.Zero.setBitsFrom(SrcBitWidth); |
| break; |
| } |
| case TargetOpcode::G_MERGE_VALUES: { |
| unsigned NumOps = MI.getNumOperands(); |
| unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| |
| for (unsigned I = 0; I != NumOps - 1; ++I) { |
| KnownBits SrcOpKnown; |
| computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown, |
| DemandedElts, Depth + 1); |
| Known.insertBits(SrcOpKnown, I * OpSize); |
| } |
| break; |
| } |
| case TargetOpcode::G_UNMERGE_VALUES: { |
| if (DstTy.isVector()) |
| break; |
| unsigned NumOps = MI.getNumOperands(); |
| Register SrcReg = MI.getOperand(NumOps - 1).getReg(); |
| if (MRI.getType(SrcReg).isVector()) |
| return; // TODO: Handle vectors. |
| |
| KnownBits SrcOpKnown; |
| computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1); |
| |
| // Figure out the result operand index |
| unsigned DstIdx = 0; |
| for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R; |
| ++DstIdx) |
| ; |
| |
| Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx); |
| break; |
| } |
| case TargetOpcode::G_BSWAP: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); |
| Known = Known.byteSwap(); |
| break; |
| } |
| case TargetOpcode::G_BITREVERSE: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); |
| Known = Known.reverseBits(); |
| break; |
| } |
| case TargetOpcode::G_UBFX: { |
| KnownBits SrcOpKnown, OffsetKnown, WidthKnown; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts, |
| Depth + 1); |
| Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown); |
| break; |
| } |
| case TargetOpcode::G_SBFX: { |
| KnownBits SrcOpKnown, OffsetKnown, WidthKnown; |
| computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts, |
| Depth + 1); |
| computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts, |
| Depth + 1); |
| Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown); |
| // Sign extend the extracted value using shift left and arithmetic shift |
| // right. |
| KnownBits ExtKnown = KnownBits::makeConstant(APInt(BitWidth, BitWidth)); |
| KnownBits ShiftKnown = KnownBits::computeForAddSub( |
| /*Add*/ false, /*NSW*/ false, ExtKnown, WidthKnown); |
| Known = KnownBits::ashr(KnownBits::shl(Known, ShiftKnown), ShiftKnown); |
| break; |
| } |
| } |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| LLVM_DEBUG(dumpResult(MI, Known, Depth)); |
| |
| // Update the cache. |
| ComputeKnownBitsCache[R] = Known; |
| } |
| |
| /// Compute number of sign bits for the intersection of \p Src0 and \p Src1 |
| unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| // Test src1 first, since we canonicalize simpler expressions to the RHS. |
| unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth); |
| if (Src1SignBits == 1) |
| return 1; |
| return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits); |
| } |
| |
| unsigned GISelKnownBits::computeNumSignBits(Register R, |
| const APInt &DemandedElts, |
| unsigned Depth) { |
| MachineInstr &MI = *MRI.getVRegDef(R); |
| unsigned Opcode = MI.getOpcode(); |
| |
| if (Opcode == TargetOpcode::G_CONSTANT) |
| return MI.getOperand(1).getCImm()->getValue().getNumSignBits(); |
| |
| if (Depth == getMaxDepth()) |
| return 1; |
| |
| if (!DemandedElts) |
| return 1; // No demanded elts, better to assume we don't know anything. |
| |
| LLT DstTy = MRI.getType(R); |
| const unsigned TyBits = DstTy.getScalarSizeInBits(); |
| |
| // Handle the case where this is called on a register that does not have a |
| // type constraint. This is unlikely to occur except by looking through copies |
| // but it is possible for the initial register being queried to be in this |
| // state. |
| if (!DstTy.isValid()) |
| return 1; |
| |
| unsigned FirstAnswer = 1; |
| switch (Opcode) { |
| case TargetOpcode::COPY: { |
| MachineOperand &Src = MI.getOperand(1); |
| if (Src.getReg().isVirtual() && Src.getSubReg() == 0 && |
| MRI.getType(Src.getReg()).isValid()) { |
| // Don't increment Depth for this one since we didn't do any work. |
| return computeNumSignBits(Src.getReg(), DemandedElts, Depth); |
| } |
| |
| return 1; |
| } |
| case TargetOpcode::G_SEXT: { |
| Register Src = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(Src); |
| unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits(); |
| return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp; |
| } |
| case TargetOpcode::G_ASSERT_SEXT: |
| case TargetOpcode::G_SEXT_INREG: { |
| // Max of the input and what this extends. |
| Register Src = MI.getOperand(1).getReg(); |
| unsigned SrcBits = MI.getOperand(2).getImm(); |
| unsigned InRegBits = TyBits - SrcBits + 1; |
| return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits); |
| } |
| case TargetOpcode::G_SEXTLOAD: { |
| // FIXME: We need an in-memory type representation. |
| if (DstTy.isVector()) |
| return 1; |
| |
| // e.g. i16->i32 = '17' bits known. |
| const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| return TyBits - MMO->getSizeInBits() + 1; |
| } |
| case TargetOpcode::G_ZEXTLOAD: { |
| // FIXME: We need an in-memory type representation. |
| if (DstTy.isVector()) |
| return 1; |
| |
| // e.g. i16->i32 = '16' bits known. |
| const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| return TyBits - MMO->getSizeInBits(); |
| } |
| case TargetOpcode::G_TRUNC: { |
| Register Src = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(Src); |
| |
| // Check if the sign bits of source go down as far as the truncated value. |
| unsigned DstTyBits = DstTy.getScalarSizeInBits(); |
| unsigned NumSrcBits = SrcTy.getScalarSizeInBits(); |
| unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1); |
| if (NumSrcSignBits > (NumSrcBits - DstTyBits)) |
| return NumSrcSignBits - (NumSrcBits - DstTyBits); |
| break; |
| } |
| case TargetOpcode::G_SELECT: { |
| return computeNumSignBitsMin(MI.getOperand(2).getReg(), |
| MI.getOperand(3).getReg(), DemandedElts, |
| Depth + 1); |
| } |
| case TargetOpcode::G_INTRINSIC: |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| default: { |
| unsigned NumBits = |
| TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth); |
| if (NumBits > 1) |
| FirstAnswer = std::max(FirstAnswer, NumBits); |
| break; |
| } |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| KnownBits Known = getKnownBits(R, DemandedElts, Depth); |
| APInt Mask; |
| if (Known.isNonNegative()) { // sign bit is 0 |
| Mask = Known.Zero; |
| } else if (Known.isNegative()) { // sign bit is 1; |
| Mask = Known.One; |
| } else { |
| // Nothing known. |
| return FirstAnswer; |
| } |
| |
| // Okay, we know that the sign bit in Mask is set. Use CLO to determine |
| // the number of identical bits in the top of the input value. |
| Mask <<= Mask.getBitWidth() - TyBits; |
| return std::max(FirstAnswer, Mask.countLeadingOnes()); |
| } |
| |
| unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) { |
| LLT Ty = MRI.getType(R); |
| APInt DemandedElts = Ty.isVector() |
| ? APInt::getAllOnesValue(Ty.getNumElements()) |
| : APInt(1, 1); |
| return computeNumSignBits(R, DemandedElts, Depth); |
| } |
| |
| void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) { |
| return false; |
| } |