| //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the InstructionSelector class for |
| /// AArch64. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64GlobalISelUtils.h" |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64RegisterBankInfo.h" |
| #include "AArch64RegisterInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "AArch64TargetMachine.h" |
| #include "AArch64GlobalISelUtils.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define DEBUG_TYPE "aarch64-isel" |
| |
| using namespace llvm; |
| using namespace MIPatternMatch; |
| using namespace AArch64GISelUtils; |
| |
| namespace llvm { |
| class BlockFrequencyInfo; |
| class ProfileSummaryInfo; |
| } |
| |
| namespace { |
| |
| #define GET_GLOBALISEL_PREDICATE_BITSET |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATE_BITSET |
| |
| class AArch64InstructionSelector : public InstructionSelector { |
| public: |
| AArch64InstructionSelector(const AArch64TargetMachine &TM, |
| const AArch64Subtarget &STI, |
| const AArch64RegisterBankInfo &RBI); |
| |
| bool select(MachineInstr &I) override; |
| static const char *getName() { return DEBUG_TYPE; } |
| |
| void setupMF(MachineFunction &MF, GISelKnownBits *KB, |
| CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI) override { |
| InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI); |
| MIB.setMF(MF); |
| |
| // hasFnAttribute() is expensive to call on every BRCOND selection, so |
| // cache it here for each run of the selector. |
| ProduceNonFlagSettingCondBr = |
| !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); |
| MFReturnAddr = Register(); |
| |
| processPHIs(MF); |
| } |
| |
| private: |
| /// tblgen-erated 'select' implementation, used as the initial selector for |
| /// the patterns that don't require complex C++. |
| bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; |
| |
| // A lowering phase that runs before any selection attempts. |
| // Returns true if the instruction was modified. |
| bool preISelLower(MachineInstr &I); |
| |
| // An early selection function that runs before the selectImpl() call. |
| bool earlySelect(MachineInstr &I); |
| |
| // Do some preprocessing of G_PHIs before we begin selection. |
| void processPHIs(MachineFunction &MF); |
| |
| bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| /// Eliminate same-sized cross-bank copies into stores before selectImpl(). |
| bool contractCrossBankCopyIntoStore(MachineInstr &I, |
| MachineRegisterInfo &MRI); |
| |
| bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI) const; |
| bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI) const; |
| |
| ///@{ |
| /// Helper functions for selectCompareBranch. |
| bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp, |
| MachineIRBuilder &MIB) const; |
| bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| MachineIRBuilder &MIB) const; |
| bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| MachineIRBuilder &MIB) const; |
| bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert, |
| MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const; |
| ///@} |
| |
| bool selectCompareBranch(MachineInstr &I, MachineFunction &MF, |
| MachineRegisterInfo &MRI); |
| |
| bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| // Helper to generate an equivalent of scalar_to_vector into a new register, |
| // returned via 'Dst'. |
| MachineInstr *emitScalarToVector(unsigned EltSize, |
| const TargetRegisterClass *DstRC, |
| Register Scalar, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a lane insert into \p DstReg, or a new vector register if None is |
| /// provided. |
| /// |
| /// The lane inserted into is defined by \p LaneIdx. The vector source |
| /// register is given by \p SrcReg. The register containing the element is |
| /// given by \p EltReg. |
| MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg, |
| Register EltReg, unsigned LaneIdx, |
| const RegisterBank &RB, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a sequence of instructions representing a constant \p CV for a |
| /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.) |
| /// |
| /// \returns the last instruction in the sequence on success, and nullptr |
| /// otherwise. |
| MachineInstr *emitConstantVector(Register Dst, Constant *CV, |
| MachineIRBuilder &MIRBuilder, |
| MachineRegisterInfo &MRI); |
| |
| bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy, |
| MachineRegisterInfo &MRI); |
| bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectIntrinsicWithSideEffects(MachineInstr &I, |
| MachineRegisterInfo &MRI); |
| bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI); |
| bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI); |
| |
| unsigned emitConstantPoolEntry(const Constant *CPVal, |
| MachineFunction &MF) const; |
| MachineInstr *emitLoadFromConstantPool(const Constant *CPVal, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| // Emit a vector concat operation. |
| MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1, |
| Register Op2, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| // Emit an integer compare between LHS and RHS, which checks for Predicate. |
| MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a floating point comparison between \p LHS and \p RHS. |
| /// \p Pred if given is the intended predicate to use. |
| MachineInstr *emitFPCompare(Register LHS, Register RHS, |
| MachineIRBuilder &MIRBuilder, |
| Optional<CmpInst::Predicate> = None) const; |
| |
| MachineInstr *emitInstr(unsigned Opcode, |
| std::initializer_list<llvm::DstOp> DstOps, |
| std::initializer_list<llvm::SrcOp> SrcOps, |
| MachineIRBuilder &MIRBuilder, |
| const ComplexRendererFns &RenderFns = None) const; |
| /// Helper function to emit an add or sub instruction. |
| /// |
| /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above |
| /// in a specific order. |
| /// |
| /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode. |
| /// |
| /// \code |
| /// const std::array<std::array<unsigned, 2>, 4> Table { |
| /// {{AArch64::ADDXri, AArch64::ADDWri}, |
| /// {AArch64::ADDXrs, AArch64::ADDWrs}, |
| /// {AArch64::ADDXrr, AArch64::ADDWrr}, |
| /// {AArch64::SUBXri, AArch64::SUBWri}, |
| /// {AArch64::ADDXrx, AArch64::ADDWrx}}}; |
| /// \endcode |
| /// |
| /// Each row in the table corresponds to a different addressing mode. Each |
| /// column corresponds to a different register size. |
| /// |
| /// \attention Rows must be structured as follows: |
| /// - Row 0: The ri opcode variants |
| /// - Row 1: The rs opcode variants |
| /// - Row 2: The rr opcode variants |
| /// - Row 3: The ri opcode variants for negative immediates |
| /// - Row 4: The rx opcode variants |
| /// |
| /// \attention Columns must be structured as follows: |
| /// - Column 0: The 64-bit opcode variants |
| /// - Column 1: The 32-bit opcode variants |
| /// |
| /// \p Dst is the destination register of the binop to emit. |
| /// \p LHS is the left-hand operand of the binop to emit. |
| /// \p RHS is the right-hand operand of the binop to emit. |
| MachineInstr *emitAddSub( |
| const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, |
| Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS, |
| AArch64CC::CondCode CC, |
| MachineIRBuilder &MIRBuilder) const; |
| MachineInstr *emitExtractVectorElt(Optional<Register> DstReg, |
| const RegisterBank &DstRB, LLT ScalarTy, |
| Register VecReg, unsigned LaneIdx, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a CSet for an integer compare. |
| /// |
| /// \p DefReg and \p SrcReg are expected to be 32-bit scalar registers. |
| MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred, |
| MachineIRBuilder &MIRBuilder, |
| Register SrcReg = AArch64::WZR) const; |
| /// Emit a CSet for a FP compare. |
| /// |
| /// \p Dst is expected to be a 32-bit scalar register. |
| MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit the overflow op for \p Opcode. |
| /// |
| /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO, |
| /// G_USUBO, etc. |
| std::pair<MachineInstr *, AArch64CC::CondCode> |
| emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS, |
| MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const; |
| |
| /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg. |
| /// \p IsNegative is true if the test should be "not zero". |
| /// This will also optimize the test bit instruction when possible. |
| MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative, |
| MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const; |
| |
| /// Emit a CB(N)Z instruction which branches to \p DestMBB. |
| MachineInstr *emitCBZ(Register CompareReg, bool IsNegative, |
| MachineBasicBlock *DestMBB, |
| MachineIRBuilder &MIB) const; |
| |
| // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td. |
| // We use these manually instead of using the importer since it doesn't |
| // support SDNodeXForm. |
| ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const; |
| ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const; |
| |
| ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const; |
| ComplexRendererFns selectArithImmed(MachineOperand &Root) const; |
| ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const; |
| |
| ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root, |
| unsigned Size) const; |
| |
| ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 1); |
| } |
| ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 2); |
| } |
| ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 4); |
| } |
| ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 8); |
| } |
| ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const { |
| return selectAddrModeUnscaled(Root, 16); |
| } |
| |
| /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used |
| /// from complex pattern matchers like selectAddrModeIndexed(). |
| ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size, |
| MachineRegisterInfo &MRI) const; |
| |
| ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root, |
| unsigned Size) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const { |
| return selectAddrModeIndexed(Root, Width / 8); |
| } |
| |
| bool isWorthFoldingIntoExtendedReg(MachineInstr &MI, |
| const MachineRegisterInfo &MRI) const; |
| ComplexRendererFns |
| selectAddrModeShiftedExtendXReg(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| |
| /// Returns a \p ComplexRendererFns which contains a base, offset, and whether |
| /// or not a shift + extend should be folded into an addressing mode. Returns |
| /// None when this is not profitable or possible. |
| ComplexRendererFns |
| selectExtendedSHL(MachineOperand &Root, MachineOperand &Base, |
| MachineOperand &Offset, unsigned SizeInBytes, |
| bool WantsExt) const; |
| ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const; |
| ComplexRendererFns selectAddrModeXRO(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const { |
| return selectAddrModeXRO(Root, Width / 8); |
| } |
| |
| ComplexRendererFns selectAddrModeWRO(MachineOperand &Root, |
| unsigned SizeInBytes) const; |
| template <int Width> |
| ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const { |
| return selectAddrModeWRO(Root, Width / 8); |
| } |
| |
| ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const; |
| |
| ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const { |
| return selectShiftedRegister(Root); |
| } |
| |
| ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const { |
| // TODO: selectShiftedRegister should allow for rotates on logical shifts. |
| // For now, make them the same. The only difference between the two is that |
| // logical shifts are allowed to fold in rotates. Otherwise, these are |
| // functionally the same. |
| return selectShiftedRegister(Root); |
| } |
| |
| /// Given an extend instruction, determine the correct shift-extend type for |
| /// that instruction. |
| /// |
| /// If the instruction is going to be used in a load or store, pass |
| /// \p IsLoadStore = true. |
| AArch64_AM::ShiftExtendType |
| getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI, |
| bool IsLoadStore = false) const; |
| |
| /// Move \p Reg to \p RC if \p Reg is not already on \p RC. |
| /// |
| /// \returns Either \p Reg if no change was necessary, or the new register |
| /// created by moving \p Reg. |
| /// |
| /// Note: This uses emitCopy right now. |
| Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC, |
| MachineIRBuilder &MIB) const; |
| |
| ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const; |
| |
| void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I, |
| int OpIdx = -1) const; |
| void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I, |
| int OpIdx = -1) const; |
| void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| int OpIdx = -1) const; |
| |
| // Materialize a GlobalValue or BlockAddress using a movz+movk sequence. |
| void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags); |
| |
| // Optimization methods. |
| bool tryOptSelect(MachineInstr &MI); |
| MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const; |
| |
| /// Return true if \p MI is a load or store of \p NumBytes bytes. |
| bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const; |
| |
| /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit |
| /// register zeroed out. In other words, the result of MI has been explicitly |
| /// zero extended. |
| bool isDef32(const MachineInstr &MI) const; |
| |
| const AArch64TargetMachine &TM; |
| const AArch64Subtarget &STI; |
| const AArch64InstrInfo &TII; |
| const AArch64RegisterInfo &TRI; |
| const AArch64RegisterBankInfo &RBI; |
| |
| bool ProduceNonFlagSettingCondBr = false; |
| |
| // Some cached values used during selection. |
| // We use LR as a live-in register, and we keep track of it here as it can be |
| // clobbered by calls. |
| Register MFReturnAddr; |
| |
| MachineIRBuilder MIB; |
| |
| #define GET_GLOBALISEL_PREDICATES_DECL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_DECL |
| |
| // We declare the temporaries used by selectImpl() in the class to minimize the |
| // cost of constructing placeholder values. |
| #define GET_GLOBALISEL_TEMPORARIES_DECL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_DECL |
| }; |
| |
| } // end anonymous namespace |
| |
| #define GET_GLOBALISEL_IMPL |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_IMPL |
| |
| AArch64InstructionSelector::AArch64InstructionSelector( |
| const AArch64TargetMachine &TM, const AArch64Subtarget &STI, |
| const AArch64RegisterBankInfo &RBI) |
| : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()), |
| TRI(*STI.getRegisterInfo()), RBI(RBI), |
| #define GET_GLOBALISEL_PREDICATES_INIT |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_INIT |
| #define GET_GLOBALISEL_TEMPORARIES_INIT |
| #include "AArch64GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_INIT |
| { |
| } |
| |
| // FIXME: This should be target-independent, inferred from the types declared |
| // for each class in the bank. |
| static const TargetRegisterClass * |
| getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB, |
| const RegisterBankInfo &RBI, |
| bool GetAllRegSet = false) { |
| if (RB.getID() == AArch64::GPRRegBankID) { |
| if (Ty.getSizeInBits() <= 32) |
| return GetAllRegSet ? &AArch64::GPR32allRegClass |
| : &AArch64::GPR32RegClass; |
| if (Ty.getSizeInBits() == 64) |
| return GetAllRegSet ? &AArch64::GPR64allRegClass |
| : &AArch64::GPR64RegClass; |
| if (Ty.getSizeInBits() == 128) |
| return &AArch64::XSeqPairsClassRegClass; |
| return nullptr; |
| } |
| |
| if (RB.getID() == AArch64::FPRRegBankID) { |
| if (Ty.getSizeInBits() <= 16) |
| return &AArch64::FPR16RegClass; |
| if (Ty.getSizeInBits() == 32) |
| return &AArch64::FPR32RegClass; |
| if (Ty.getSizeInBits() == 64) |
| return &AArch64::FPR64RegClass; |
| if (Ty.getSizeInBits() == 128) |
| return &AArch64::FPR128RegClass; |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Given a register bank, and size in bits, return the smallest register class |
| /// that can represent that combination. |
| static const TargetRegisterClass * |
| getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits, |
| bool GetAllRegSet = false) { |
| unsigned RegBankID = RB.getID(); |
| |
| if (RegBankID == AArch64::GPRRegBankID) { |
| if (SizeInBits <= 32) |
| return GetAllRegSet ? &AArch64::GPR32allRegClass |
| : &AArch64::GPR32RegClass; |
| if (SizeInBits == 64) |
| return GetAllRegSet ? &AArch64::GPR64allRegClass |
| : &AArch64::GPR64RegClass; |
| if (SizeInBits == 128) |
| return &AArch64::XSeqPairsClassRegClass; |
| } |
| |
| if (RegBankID == AArch64::FPRRegBankID) { |
| switch (SizeInBits) { |
| default: |
| return nullptr; |
| case 8: |
| return &AArch64::FPR8RegClass; |
| case 16: |
| return &AArch64::FPR16RegClass; |
| case 32: |
| return &AArch64::FPR32RegClass; |
| case 64: |
| return &AArch64::FPR64RegClass; |
| case 128: |
| return &AArch64::FPR128RegClass; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Returns the correct subregister to use for a given register class. |
| static bool getSubRegForClass(const TargetRegisterClass *RC, |
| const TargetRegisterInfo &TRI, unsigned &SubReg) { |
| switch (TRI.getRegSizeInBits(*RC)) { |
| case 8: |
| SubReg = AArch64::bsub; |
| break; |
| case 16: |
| SubReg = AArch64::hsub; |
| break; |
| case 32: |
| if (RC != &AArch64::FPR32RegClass) |
| SubReg = AArch64::sub_32; |
| else |
| SubReg = AArch64::ssub; |
| break; |
| case 64: |
| SubReg = AArch64::dsub; |
| break; |
| default: |
| LLVM_DEBUG( |
| dbgs() << "Couldn't find appropriate subregister for register class."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Returns the minimum size the given register bank can hold. |
| static unsigned getMinSizeForRegBank(const RegisterBank &RB) { |
| switch (RB.getID()) { |
| case AArch64::GPRRegBankID: |
| return 32; |
| case AArch64::FPRRegBankID: |
| return 8; |
| default: |
| llvm_unreachable("Tried to get minimum size for unknown register bank."); |
| } |
| } |
| |
| /// Create a REG_SEQUENCE instruction using the registers in \p Regs. |
| /// Helper function for functions like createDTuple and createQTuple. |
| /// |
| /// \p RegClassIDs - The list of register class IDs available for some tuple of |
| /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is |
| /// expected to contain between 2 and 4 tuple classes. |
| /// |
| /// \p SubRegs - The list of subregister classes associated with each register |
| /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0 |
| /// subregister class. The index of each subregister class is expected to |
| /// correspond with the index of each register class. |
| /// |
| /// \returns Either the destination register of REG_SEQUENCE instruction that |
| /// was created, or the 0th element of \p Regs if \p Regs contains a single |
| /// element. |
| static Register createTuple(ArrayRef<Register> Regs, |
| const unsigned RegClassIDs[], |
| const unsigned SubRegs[], MachineIRBuilder &MIB) { |
| unsigned NumRegs = Regs.size(); |
| if (NumRegs == 1) |
| return Regs[0]; |
| assert(NumRegs >= 2 && NumRegs <= 4 && |
| "Only support between two and 4 registers in a tuple!"); |
| const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo(); |
| auto *DesiredClass = TRI->getRegClass(RegClassIDs[NumRegs - 2]); |
| auto RegSequence = |
| MIB.buildInstr(TargetOpcode::REG_SEQUENCE, {DesiredClass}, {}); |
| for (unsigned I = 0, E = Regs.size(); I < E; ++I) { |
| RegSequence.addUse(Regs[I]); |
| RegSequence.addImm(SubRegs[I]); |
| } |
| return RegSequence.getReg(0); |
| } |
| |
| /// Create a tuple of D-registers using the registers in \p Regs. |
| static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| static const unsigned RegClassIDs[] = { |
| AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; |
| static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, |
| AArch64::dsub2, AArch64::dsub3}; |
| return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| } |
| |
| /// Create a tuple of Q-registers using the registers in \p Regs. |
| static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| static const unsigned RegClassIDs[] = { |
| AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; |
| static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, |
| AArch64::qsub2, AArch64::qsub3}; |
| return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| } |
| |
| static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) { |
| auto &MI = *Root.getParent(); |
| auto &MBB = *MI.getParent(); |
| auto &MF = *MBB.getParent(); |
| auto &MRI = MF.getRegInfo(); |
| uint64_t Immed; |
| if (Root.isImm()) |
| Immed = Root.getImm(); |
| else if (Root.isCImm()) |
| Immed = Root.getCImm()->getZExtValue(); |
| else if (Root.isReg()) { |
| auto ValAndVReg = |
| getConstantVRegValWithLookThrough(Root.getReg(), MRI, true); |
| if (!ValAndVReg) |
| return None; |
| Immed = ValAndVReg->Value.getSExtValue(); |
| } else |
| return None; |
| return Immed; |
| } |
| |
| /// Check whether \p I is a currently unsupported binary operation: |
| /// - it has an unsized type |
| /// - an operand is not a vreg |
| /// - all operands are not in the same bank |
| /// These are checks that should someday live in the verifier, but right now, |
| /// these are mostly limitations of the aarch64 selector. |
| static bool unsupportedBinOp(const MachineInstr &I, |
| const AArch64RegisterBankInfo &RBI, |
| const MachineRegisterInfo &MRI, |
| const AArch64RegisterInfo &TRI) { |
| LLT Ty = MRI.getType(I.getOperand(0).getReg()); |
| if (!Ty.isValid()) { |
| LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n"); |
| return true; |
| } |
| |
| const RegisterBank *PrevOpBank = nullptr; |
| for (auto &MO : I.operands()) { |
| // FIXME: Support non-register operands. |
| if (!MO.isReg()) { |
| LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n"); |
| return true; |
| } |
| |
| // FIXME: Can generic operations have physical registers operands? If |
| // so, this will need to be taught about that, and we'll need to get the |
| // bank out of the minimal class for the register. |
| // Either way, this needs to be documented (and possibly verified). |
| if (!Register::isVirtualRegister(MO.getReg())) { |
| LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n"); |
| return true; |
| } |
| |
| const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI); |
| if (!OpBank) { |
| LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n"); |
| return true; |
| } |
| |
| if (PrevOpBank && OpBank != PrevOpBank) { |
| LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n"); |
| return true; |
| } |
| PrevOpBank = OpBank; |
| } |
| return false; |
| } |
| |
| /// Select the AArch64 opcode for the basic binary operation \p GenericOpc |
| /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID |
| /// and of size \p OpSize. |
| /// \returns \p GenericOpc if the combination is unsupported. |
| static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID, |
| unsigned OpSize) { |
| switch (RegBankID) { |
| case AArch64::GPRRegBankID: |
| if (OpSize == 32) { |
| switch (GenericOpc) { |
| case TargetOpcode::G_SHL: |
| return AArch64::LSLVWr; |
| case TargetOpcode::G_LSHR: |
| return AArch64::LSRVWr; |
| case TargetOpcode::G_ASHR: |
| return AArch64::ASRVWr; |
| default: |
| return GenericOpc; |
| } |
| } else if (OpSize == 64) { |
| switch (GenericOpc) { |
| case TargetOpcode::G_PTR_ADD: |
| return AArch64::ADDXrr; |
| case TargetOpcode::G_SHL: |
| return AArch64::LSLVXr; |
| case TargetOpcode::G_LSHR: |
| return AArch64::LSRVXr; |
| case TargetOpcode::G_ASHR: |
| return AArch64::ASRVXr; |
| default: |
| return GenericOpc; |
| } |
| } |
| break; |
| case AArch64::FPRRegBankID: |
| switch (OpSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_FADD: |
| return AArch64::FADDSrr; |
| case TargetOpcode::G_FSUB: |
| return AArch64::FSUBSrr; |
| case TargetOpcode::G_FMUL: |
| return AArch64::FMULSrr; |
| case TargetOpcode::G_FDIV: |
| return AArch64::FDIVSrr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_FADD: |
| return AArch64::FADDDrr; |
| case TargetOpcode::G_FSUB: |
| return AArch64::FSUBDrr; |
| case TargetOpcode::G_FMUL: |
| return AArch64::FMULDrr; |
| case TargetOpcode::G_FDIV: |
| return AArch64::FDIVDrr; |
| case TargetOpcode::G_OR: |
| return AArch64::ORRv8i8; |
| default: |
| return GenericOpc; |
| } |
| } |
| break; |
| } |
| return GenericOpc; |
| } |
| |
| /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc, |
| /// appropriate for the (value) register bank \p RegBankID and of memory access |
| /// size \p OpSize. This returns the variant with the base+unsigned-immediate |
| /// addressing mode (e.g., LDRXui). |
| /// \returns \p GenericOpc if the combination is unsupported. |
| static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID, |
| unsigned OpSize) { |
| const bool isStore = GenericOpc == TargetOpcode::G_STORE; |
| switch (RegBankID) { |
| case AArch64::GPRRegBankID: |
| switch (OpSize) { |
| case 8: |
| return isStore ? AArch64::STRBBui : AArch64::LDRBBui; |
| case 16: |
| return isStore ? AArch64::STRHHui : AArch64::LDRHHui; |
| case 32: |
| return isStore ? AArch64::STRWui : AArch64::LDRWui; |
| case 64: |
| return isStore ? AArch64::STRXui : AArch64::LDRXui; |
| } |
| break; |
| case AArch64::FPRRegBankID: |
| switch (OpSize) { |
| case 8: |
| return isStore ? AArch64::STRBui : AArch64::LDRBui; |
| case 16: |
| return isStore ? AArch64::STRHui : AArch64::LDRHui; |
| case 32: |
| return isStore ? AArch64::STRSui : AArch64::LDRSui; |
| case 64: |
| return isStore ? AArch64::STRDui : AArch64::LDRDui; |
| } |
| break; |
| } |
| return GenericOpc; |
| } |
| |
| #ifndef NDEBUG |
| /// Helper function that verifies that we have a valid copy at the end of |
| /// selectCopy. Verifies that the source and dest have the expected sizes and |
| /// then returns true. |
| static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); |
| const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); |
| |
| // Make sure the size of the source and dest line up. |
| assert( |
| (DstSize == SrcSize || |
| // Copies are a mean to setup initial types, the number of |
| // bits may not exactly match. |
| (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) || |
| // Copies are a mean to copy bits around, as long as we are |
| // on the same register class, that's fine. Otherwise, that |
| // means we need some SUBREG_TO_REG or AND & co. |
| (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) && |
| "Copy with different width?!"); |
| |
| // Check the size of the destination. |
| assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) && |
| "GPRs cannot get more than 64-bit width values"); |
| |
| return true; |
| } |
| #endif |
| |
| /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg |
| /// to \p *To. |
| /// |
| /// E.g "To = COPY SrcReg:SubReg" |
| static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI, |
| const RegisterBankInfo &RBI, Register SrcReg, |
| const TargetRegisterClass *To, unsigned SubReg) { |
| assert(SrcReg.isValid() && "Expected a valid source register?"); |
| assert(To && "Destination register class cannot be null"); |
| assert(SubReg && "Expected a valid subregister"); |
| |
| MachineIRBuilder MIB(I); |
| auto SubRegCopy = |
| MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg); |
| MachineOperand &RegOp = I.getOperand(1); |
| RegOp.setReg(SubRegCopy.getReg(0)); |
| |
| // It's possible that the destination register won't be constrained. Make |
| // sure that happens. |
| if (!Register::isPhysicalRegister(I.getOperand(0).getReg())) |
| RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI); |
| |
| return true; |
| } |
| |
| /// Helper function to get the source and destination register classes for a |
| /// copy. Returns a std::pair containing the source register class for the |
| /// copy, and the destination register class for the copy. If a register class |
| /// cannot be determined, then it will be nullptr. |
| static std::pair<const TargetRegisterClass *, const TargetRegisterClass *> |
| getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); |
| unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); |
| unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); |
| |
| // Special casing for cross-bank copies of s1s. We can technically represent |
| // a 1-bit value with any size of register. The minimum size for a GPR is 32 |
| // bits. So, we need to put the FPR on 32 bits as well. |
| // |
| // FIXME: I'm not sure if this case holds true outside of copies. If it does, |
| // then we can pull it into the helpers that get the appropriate class for a |
| // register bank. Or make a new helper that carries along some constraint |
| // information. |
| if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1)) |
| SrcSize = DstSize = 32; |
| |
| return {getMinClassForRegBank(SrcRegBank, SrcSize, true), |
| getMinClassForRegBank(DstRegBank, DstSize, true)}; |
| } |
| |
| static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| const RegisterBankInfo &RBI) { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| // Find the correct register classes for the source and destination registers. |
| const TargetRegisterClass *SrcRC; |
| const TargetRegisterClass *DstRC; |
| std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI); |
| |
| if (!DstRC) { |
| LLVM_DEBUG(dbgs() << "Unexpected dest size " |
| << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n'); |
| return false; |
| } |
| |
| // A couple helpers below, for making sure that the copy we produce is valid. |
| |
| // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want |
| // to verify that the src and dst are the same size, since that's handled by |
| // the SUBREG_TO_REG. |
| bool KnownValid = false; |
| |
| // Returns true, or asserts if something we don't expect happens. Instead of |
| // returning true, we return isValidCopy() to ensure that we verify the |
| // result. |
| auto CheckCopy = [&]() { |
| // If we have a bitcast or something, we can't have physical registers. |
| assert((I.isCopy() || |
| (!Register::isPhysicalRegister(I.getOperand(0).getReg()) && |
| !Register::isPhysicalRegister(I.getOperand(1).getReg()))) && |
| "No phys reg on generic operator!"); |
| bool ValidCopy = true; |
| #ifndef NDEBUG |
| ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI); |
| assert(ValidCopy && "Invalid copy."); |
| #endif |
| (void)KnownValid; |
| return ValidCopy; |
| }; |
| |
| // Is this a copy? If so, then we may need to insert a subregister copy. |
| if (I.isCopy()) { |
| // Yes. Check if there's anything to fix up. |
| if (!SrcRC) { |
| LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n"); |
| return false; |
| } |
| |
| unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC); |
| unsigned DstSize = TRI.getRegSizeInBits(*DstRC); |
| unsigned SubReg; |
| |
| // If the source bank doesn't support a subregister copy small enough, |
| // then we first need to copy to the destination bank. |
| if (getMinSizeForRegBank(SrcRegBank) > DstSize) { |
| const TargetRegisterClass *DstTempRC = |
| getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true); |
| getSubRegForClass(DstRC, TRI, SubReg); |
| |
| MachineIRBuilder MIB(I); |
| auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg}); |
| copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg); |
| } else if (SrcSize > DstSize) { |
| // If the source register is bigger than the destination we need to |
| // perform a subregister copy. |
| const TargetRegisterClass *SubRegRC = |
| getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true); |
| getSubRegForClass(SubRegRC, TRI, SubReg); |
| copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg); |
| } else if (DstSize > SrcSize) { |
| // If the destination register is bigger than the source we need to do |
| // a promotion using SUBREG_TO_REG. |
| const TargetRegisterClass *PromotionRC = |
| getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true); |
| getSubRegForClass(SrcRC, TRI, SubReg); |
| |
| Register PromoteReg = MRI.createVirtualRegister(PromotionRC); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(AArch64::SUBREG_TO_REG), PromoteReg) |
| .addImm(0) |
| .addUse(SrcReg) |
| .addImm(SubReg); |
| MachineOperand &RegOp = I.getOperand(1); |
| RegOp.setReg(PromoteReg); |
| |
| // Promise that the copy is implicitly validated by the SUBREG_TO_REG. |
| KnownValid = true; |
| } |
| |
| // If the destination is a physical register, then there's nothing to |
| // change, so we're done. |
| if (Register::isPhysicalRegister(DstReg)) |
| return CheckCopy(); |
| } |
| |
| // No need to constrain SrcReg. It will get constrained when we hit another |
| // of its use or its defs. Copies do not have constraints. |
| if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| |
| // If this a GPR ZEXT that we want to just reduce down into a copy. |
| // The sizes will be mismatched with the source < 32b but that's ok. |
| if (I.getOpcode() == TargetOpcode::G_ZEXT) { |
| I.setDesc(TII.get(AArch64::COPY)); |
| assert(SrcRegBank.getID() == AArch64::GPRRegBankID); |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| } |
| |
| I.setDesc(TII.get(AArch64::COPY)); |
| return CheckCopy(); |
| } |
| |
| static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) { |
| if (!DstTy.isScalar() || !SrcTy.isScalar()) |
| return GenericOpc; |
| |
| const unsigned DstSize = DstTy.getSizeInBits(); |
| const unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| switch (DstSize) { |
| case 32: |
| switch (SrcSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUWSri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUWSri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUWSr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUWSr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUXSri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUXSri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUWDr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUWDr; |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (SrcSize) { |
| case 32: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUWDri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUWDri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUXSr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUXSr; |
| default: |
| return GenericOpc; |
| } |
| case 64: |
| switch (GenericOpc) { |
| case TargetOpcode::G_SITOFP: |
| return AArch64::SCVTFUXDri; |
| case TargetOpcode::G_UITOFP: |
| return AArch64::UCVTFUXDri; |
| case TargetOpcode::G_FPTOSI: |
| return AArch64::FCVTZSUXDr; |
| case TargetOpcode::G_FPTOUI: |
| return AArch64::FCVTZUUXDr; |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| } |
| default: |
| return GenericOpc; |
| }; |
| return GenericOpc; |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitSelect(Register Dst, Register True, |
| Register False, AArch64CC::CondCode CC, |
| MachineIRBuilder &MIB) const { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| assert(RBI.getRegBank(False, MRI, TRI)->getID() == |
| RBI.getRegBank(True, MRI, TRI)->getID() && |
| "Expected both select operands to have the same regbank?"); |
| LLT Ty = MRI.getType(True); |
| if (Ty.isVector()) |
| return nullptr; |
| const unsigned Size = Ty.getSizeInBits(); |
| assert((Size == 32 || Size == 64) && |
| "Expected 32 bit or 64 bit select only?"); |
| const bool Is32Bit = Size == 32; |
| if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) { |
| unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr; |
| auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); |
| constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI); |
| return &*FCSel; |
| } |
| |
| // By default, we'll try and emit a CSEL. |
| unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr; |
| bool Optimized = false; |
| auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI, |
| &Optimized](Register &Reg, Register &OtherReg, |
| bool Invert) { |
| if (Optimized) |
| return false; |
| |
| // Attempt to fold: |
| // |
| // %sub = G_SUB 0, %x |
| // %select = G_SELECT cc, %reg, %sub |
| // |
| // Into: |
| // %select = CSNEG %reg, %x, cc |
| Register MatchReg; |
| if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) { |
| Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| // Attempt to fold: |
| // |
| // %xor = G_XOR %x, -1 |
| // %select = G_SELECT cc, %reg, %xor |
| // |
| // Into: |
| // %select = CSINV %reg, %x, cc |
| if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) { |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| // Attempt to fold: |
| // |
| // %add = G_ADD %x, 1 |
| // %select = G_SELECT cc, %reg, %add |
| // |
| // Into: |
| // %select = CSINC %reg, %x, cc |
| if (mi_match(Reg, MRI, |
| m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)), |
| m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) { |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| Reg = MatchReg; |
| if (Invert) { |
| CC = AArch64CC::getInvertedCondCode(CC); |
| std::swap(Reg, OtherReg); |
| } |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| // Helper lambda which tries to use CSINC/CSINV for the instruction when its |
| // true/false values are constants. |
| // FIXME: All of these patterns already exist in tablegen. We should be |
| // able to import these. |
| auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI, |
| &Optimized]() { |
| if (Optimized) |
| return false; |
| auto TrueCst = getConstantVRegValWithLookThrough(True, MRI); |
| auto FalseCst = getConstantVRegValWithLookThrough(False, MRI); |
| if (!TrueCst && !FalseCst) |
| return false; |
| |
| Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR; |
| if (TrueCst && FalseCst) { |
| int64_t T = TrueCst->Value.getSExtValue(); |
| int64_t F = FalseCst->Value.getSExtValue(); |
| |
| if (T == 0 && F == 1) { |
| // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| True = ZReg; |
| False = ZReg; |
| return true; |
| } |
| |
| if (T == 0 && F == -1) { |
| // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| True = ZReg; |
| False = ZReg; |
| return true; |
| } |
| } |
| |
| if (TrueCst) { |
| int64_t T = TrueCst->Value.getSExtValue(); |
| if (T == 1) { |
| // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| True = False; |
| False = ZReg; |
| CC = AArch64CC::getInvertedCondCode(CC); |
| return true; |
| } |
| |
| if (T == -1) { |
| // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| True = False; |
| False = ZReg; |
| CC = AArch64CC::getInvertedCondCode(CC); |
| return true; |
| } |
| } |
| |
| if (FalseCst) { |
| int64_t F = FalseCst->Value.getSExtValue(); |
| if (F == 1) { |
| // G_SELECT cc, t, 1 -> CSINC t, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| False = ZReg; |
| return true; |
| } |
| |
| if (F == -1) { |
| // G_SELECT cc, t, -1 -> CSINC t, zreg, cc |
| Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| False = ZReg; |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false); |
| Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true); |
| Optimized |= TryOptSelectCst(); |
| auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC); |
| constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI); |
| return &*SelectInst; |
| } |
| |
| static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) { |
| switch (P) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case CmpInst::ICMP_NE: |
| return AArch64CC::NE; |
| case CmpInst::ICMP_EQ: |
| return AArch64CC::EQ; |
| case CmpInst::ICMP_SGT: |
| return AArch64CC::GT; |
| case CmpInst::ICMP_SGE: |
| return AArch64CC::GE; |
| case CmpInst::ICMP_SLT: |
| return AArch64CC::LT; |
| case CmpInst::ICMP_SLE: |
| return AArch64CC::LE; |
| case CmpInst::ICMP_UGT: |
| return AArch64CC::HI; |
| case CmpInst::ICMP_UGE: |
| return AArch64CC::HS; |
| case CmpInst::ICMP_ULT: |
| return AArch64CC::LO; |
| case CmpInst::ICMP_ULE: |
| return AArch64CC::LS; |
| } |
| } |
| |
| /// Return a register which can be used as a bit to test in a TB(N)Z. |
| static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert, |
| MachineRegisterInfo &MRI) { |
| assert(Reg.isValid() && "Expected valid register!"); |
| while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) { |
| unsigned Opc = MI->getOpcode(); |
| |
| if (!MI->getOperand(0).isReg() || |
| !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) |
| break; |
| |
| // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. |
| // |
| // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number |
| // on the truncated x is the same as the bit number on x. |
| if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT || |
| Opc == TargetOpcode::G_TRUNC) { |
| Register NextReg = MI->getOperand(1).getReg(); |
| // Did we find something worth folding? |
| if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg)) |
| break; |
| |
| // NextReg is worth folding. Keep looking. |
| Reg = NextReg; |
| continue; |
| } |
| |
| // Attempt to find a suitable operation with a constant on one side. |
| Optional<uint64_t> C; |
| Register TestReg; |
| switch (Opc) { |
| default: |
| break; |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_XOR: { |
| TestReg = MI->getOperand(1).getReg(); |
| Register ConstantReg = MI->getOperand(2).getReg(); |
| auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI); |
| if (!VRegAndVal) { |
| // AND commutes, check the other side for a constant. |
| // FIXME: Can we canonicalize the constant so that it's always on the |
| // same side at some point earlier? |
| std::swap(ConstantReg, TestReg); |
| VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI); |
| } |
| if (VRegAndVal) |
| C = VRegAndVal->Value.getSExtValue(); |
| break; |
| } |
| case TargetOpcode::G_ASHR: |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_SHL: { |
| TestReg = MI->getOperand(1).getReg(); |
| auto VRegAndVal = |
| getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); |
| if (VRegAndVal) |
| C = VRegAndVal->Value.getSExtValue(); |
| break; |
| } |
| } |
| |
| // Didn't find a constant or viable register. Bail out of the loop. |
| if (!C || !TestReg.isValid()) |
| break; |
| |
| // We found a suitable instruction with a constant. Check to see if we can |
| // walk through the instruction. |
| Register NextReg; |
| unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits(); |
| switch (Opc) { |
| default: |
| break; |
| case TargetOpcode::G_AND: |
| // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set. |
| if ((*C >> Bit) & 1) |
| NextReg = TestReg; |
| break; |
| case TargetOpcode::G_SHL: |
| // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in |
| // the type of the register. |
| if (*C <= Bit && (Bit - *C) < TestRegSize) { |
| NextReg = TestReg; |
| Bit = Bit - *C; |
| } |
| break; |
| case TargetOpcode::G_ASHR: |
| // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits |
| // in x |
| NextReg = TestReg; |
| Bit = Bit + *C; |
| if (Bit >= TestRegSize) |
| Bit = TestRegSize - 1; |
| break; |
| case TargetOpcode::G_LSHR: |
| // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x |
| if ((Bit + *C) < TestRegSize) { |
| NextReg = TestReg; |
| Bit = Bit + *C; |
| } |
| break; |
| case TargetOpcode::G_XOR: |
| // We can walk through a G_XOR by inverting whether we use tbz/tbnz when |
| // appropriate. |
| // |
| // e.g. If x' = xor x, c, and the b-th bit is set in c then |
| // |
| // tbz x', b -> tbnz x, b |
| // |
| // Because x' only has the b-th bit set if x does not. |
| if ((*C >> Bit) & 1) |
| Invert = !Invert; |
| NextReg = TestReg; |
| break; |
| } |
| |
| // Check if we found anything worth folding. |
| if (!NextReg.isValid()) |
| return Reg; |
| Reg = NextReg; |
| } |
| |
| return Reg; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitTestBit( |
| Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const { |
| assert(TestReg.isValid()); |
| assert(ProduceNonFlagSettingCondBr && |
| "Cannot emit TB(N)Z with speculation tracking!"); |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| |
| // Attempt to optimize the test bit by walking over instructions. |
| TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI); |
| LLT Ty = MRI.getType(TestReg); |
| unsigned Size = Ty.getSizeInBits(); |
| assert(!Ty.isVector() && "Expected a scalar!"); |
| assert(Bit < 64 && "Bit is too large!"); |
| |
| // When the test register is a 64-bit register, we have to narrow to make |
| // TBNZW work. |
| bool UseWReg = Bit < 32; |
| unsigned NecessarySize = UseWReg ? 32 : 64; |
| if (Size != NecessarySize) |
| TestReg = moveScalarRegClass( |
| TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass, |
| MIB); |
| |
| static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX}, |
| {AArch64::TBZW, AArch64::TBNZW}}; |
| unsigned Opc = OpcTable[UseWReg][IsNegative]; |
| auto TestBitMI = |
| MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB); |
| constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI); |
| return &*TestBitMI; |
| } |
| |
| bool AArch64InstructionSelector::tryOptAndIntoCompareBranch( |
| MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB, |
| MachineIRBuilder &MIB) const { |
| assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?"); |
| // Given something like this: |
| // |
| // %x = ...Something... |
| // %one = G_CONSTANT i64 1 |
| // %zero = G_CONSTANT i64 0 |
| // %and = G_AND %x, %one |
| // %cmp = G_ICMP intpred(ne), %and, %zero |
| // %cmp_trunc = G_TRUNC %cmp |
| // G_BRCOND %cmp_trunc, %bb.3 |
| // |
| // We want to try and fold the AND into the G_BRCOND and produce either a |
| // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)). |
| // |
| // In this case, we'd get |
| // |
| // TBNZ %x %bb.3 |
| // |
| |
| // Check if the AND has a constant on its RHS which we can use as a mask. |
| // If it's a power of 2, then it's the same as checking a specific bit. |
| // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set) |
| auto MaybeBit = getConstantVRegValWithLookThrough( |
| AndInst.getOperand(2).getReg(), *MIB.getMRI()); |
| if (!MaybeBit) |
| return false; |
| |
| int32_t Bit = MaybeBit->Value.exactLogBase2(); |
| if (Bit < 0) |
| return false; |
| |
| Register TestReg = AndInst.getOperand(1).getReg(); |
| |
| // Emit a TB(N)Z. |
| emitTestBit(TestReg, Bit, Invert, DstMBB, MIB); |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg, |
| bool IsNegative, |
| MachineBasicBlock *DestMBB, |
| MachineIRBuilder &MIB) const { |
| assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!"); |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() == |
| AArch64::GPRRegBankID && |
| "Expected GPRs only?"); |
| auto Ty = MRI.getType(CompareReg); |
| unsigned Width = Ty.getSizeInBits(); |
| assert(!Ty.isVector() && "Expected scalar only?"); |
| assert(Width <= 64 && "Expected width to be at most 64?"); |
| static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX}, |
| {AArch64::CBNZW, AArch64::CBNZX}}; |
| unsigned Opc = OpcTable[IsNegative][Width == 64]; |
| auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB); |
| constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI); |
| return &*BranchMI; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranchFedByFCmp( |
| MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const { |
| assert(FCmp.getOpcode() == TargetOpcode::G_FCMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't |
| // totally clean. Some of them require two branches to implement. |
| auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate(); |
| emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB, |
| Pred); |
| AArch64CC::CondCode CC1, CC2; |
| changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2); |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB); |
| if (CC2 != AArch64CC::AL) |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp( |
| MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z. |
| // |
| // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| // instructions will not be produced, as they are conditional branch |
| // instructions that do not set flags. |
| if (!ProduceNonFlagSettingCondBr) |
| return false; |
| |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| auto Pred = |
| static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate()); |
| Register LHS = ICmp.getOperand(2).getReg(); |
| Register RHS = ICmp.getOperand(3).getReg(); |
| |
| // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that. |
| auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI); |
| MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); |
| |
| // When we can emit a TB(N)Z, prefer that. |
| // |
| // Handle non-commutative condition codes first. |
| // Note that we don't want to do this when we have a G_AND because it can |
| // become a tst. The tst will make the test bit in the TB(N)Z redundant. |
| if (VRegAndVal && !AndInst) { |
| int64_t C = VRegAndVal->Value.getSExtValue(); |
| |
| // When we have a greater-than comparison, we can just test if the msb is |
| // zero. |
| if (C == -1 && Pred == CmpInst::ICMP_SGT) { |
| uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1; |
| emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // When we have a less than comparison, we can just test if the msb is not |
| // zero. |
| if (C == 0 && Pred == CmpInst::ICMP_SLT) { |
| uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1; |
| emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| } |
| |
| // Attempt to handle commutative condition codes. Right now, that's only |
| // eq/ne. |
| if (ICmpInst::isEquality(Pred)) { |
| if (!VRegAndVal) { |
| std::swap(RHS, LHS); |
| VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI); |
| AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI); |
| } |
| |
| if (VRegAndVal && VRegAndVal->Value == 0) { |
| // If there's a G_AND feeding into this branch, try to fold it away by |
| // emitting a TB(N)Z instead. |
| // |
| // Note: If we have LT, then it *is* possible to fold, but it wouldn't be |
| // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding |
| // would be redundant. |
| if (AndInst && |
| tryOptAndIntoCompareBranch( |
| *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) { |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, try to emit a CB(N)Z instead. |
| auto LHSTy = MRI.getType(LHS); |
| if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) { |
| emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranchFedByICmp( |
| MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| if (tryOptCompareBranchFedByICmp(I, ICmp, MIB)) |
| return true; |
| |
| // Couldn't optimize. Emit a compare + a Bcc. |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| auto PredOp = ICmp.getOperand(1); |
| emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB); |
| const AArch64CC::CondCode CC = changeICMPPredToAArch64CC( |
| static_cast<CmpInst::Predicate>(PredOp.getPredicate())); |
| MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectCompareBranch( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) { |
| Register CondReg = I.getOperand(0).getReg(); |
| MachineInstr *CCMI = MRI.getVRegDef(CondReg); |
| if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) { |
| CondReg = CCMI->getOperand(1).getReg(); |
| CCMI = MRI.getVRegDef(CondReg); |
| } |
| |
| // Try to select the G_BRCOND using whatever is feeding the condition if |
| // possible. |
| unsigned CCMIOpc = CCMI->getOpcode(); |
| if (CCMIOpc == TargetOpcode::G_FCMP) |
| return selectCompareBranchFedByFCmp(I, *CCMI, MIB); |
| if (CCMIOpc == TargetOpcode::G_ICMP) |
| return selectCompareBranchFedByICmp(I, *CCMI, MIB); |
| |
| // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| // instructions will not be produced, as they are conditional branch |
| // instructions that do not set flags. |
| if (ProduceNonFlagSettingCondBr) { |
| emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true, |
| I.getOperand(1).getMBB(), MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead. |
| auto TstMI = |
| MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1); |
| constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); |
| auto Bcc = MIB.buildInstr(AArch64::Bcc) |
| .addImm(AArch64CC::EQ) |
| .addMBB(I.getOperand(1).getMBB()); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI); |
| } |
| |
| /// Returns the element immediate value of a vector shift operand if found. |
| /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR. |
| static Optional<int64_t> getVectorShiftImm(Register Reg, |
| MachineRegisterInfo &MRI) { |
| assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand"); |
| MachineInstr *OpMI = MRI.getVRegDef(Reg); |
| assert(OpMI && "Expected to find a vreg def for vector shift operand"); |
| return getAArch64VectorSplatScalar(*OpMI, MRI); |
| } |
| |
| /// Matches and returns the shift immediate value for a SHL instruction given |
| /// a shift operand. |
| static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) { |
| Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI); |
| if (!ShiftImm) |
| return None; |
| // Check the immediate is in range for a SHL. |
| int64_t Imm = *ShiftImm; |
| if (Imm < 0) |
| return None; |
| switch (SrcTy.getElementType().getSizeInBits()) { |
| default: |
| LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift"); |
| return None; |
| case 8: |
| if (Imm > 7) |
| return None; |
| break; |
| case 16: |
| if (Imm > 15) |
| return None; |
| break; |
| case 32: |
| if (Imm > 31) |
| return None; |
| break; |
| case 64: |
| if (Imm > 63) |
| return None; |
| break; |
| } |
| return Imm; |
| } |
| |
| bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_SHL); |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT Ty = MRI.getType(DstReg); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| |
| if (!Ty.isVector()) |
| return false; |
| |
| // Check if we have a vector of constants on RHS that we can select as the |
| // immediate form. |
| Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI); |
| |
| unsigned Opc = 0; |
| if (Ty == LLT::fixed_vector(2, 64)) { |
| Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64; |
| } else if (Ty == LLT::fixed_vector(4, 32)) { |
| Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32; |
| } else if (Ty == LLT::fixed_vector(2, 32)) { |
| Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32; |
| } else if (Ty == LLT::fixed_vector(4, 16)) { |
| Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16; |
| } else if (Ty == LLT::fixed_vector(8, 16)) { |
| Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16; |
| } else if (Ty == LLT::fixed_vector(16, 8)) { |
| Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8; |
| } else if (Ty == LLT::fixed_vector(8, 8)) { |
| Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8; |
| } else { |
| LLVM_DEBUG(dbgs() << "Unhandled G_SHL type"); |
| return false; |
| } |
| |
| auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg}); |
| if (ImmVal) |
| Shl.addImm(*ImmVal); |
| else |
| Shl.addUse(Src2Reg); |
| constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectVectorAshrLshr( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_ASHR || |
| I.getOpcode() == TargetOpcode::G_LSHR); |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT Ty = MRI.getType(DstReg); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| |
| if (!Ty.isVector()) |
| return false; |
| |
| bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR; |
| |
| // We expect the immediate case to be lowered in the PostLegalCombiner to |
| // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents. |
| |
| // There is not a shift right register instruction, but the shift left |
| // register instruction takes a signed value, where negative numbers specify a |
| // right shift. |
| |
| unsigned Opc = 0; |
| unsigned NegOpc = 0; |
| const TargetRegisterClass *RC = |
| getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI); |
| if (Ty == LLT::fixed_vector(2, 64)) { |
| Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64; |
| NegOpc = AArch64::NEGv2i64; |
| } else if (Ty == LLT::fixed_vector(4, 32)) { |
| Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32; |
| NegOpc = AArch64::NEGv4i32; |
| } else if (Ty == LLT::fixed_vector(2, 32)) { |
| Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32; |
| NegOpc = AArch64::NEGv2i32; |
| } else if (Ty == LLT::fixed_vector(4, 16)) { |
| Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16; |
| NegOpc = AArch64::NEGv4i16; |
| } else if (Ty == LLT::fixed_vector(8, 16)) { |
| Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16; |
| NegOpc = AArch64::NEGv8i16; |
| } else if (Ty == LLT::fixed_vector(16, 8)) { |
| Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8; |
| NegOpc = AArch64::NEGv16i8; |
| } else if (Ty == LLT::fixed_vector(8, 8)) { |
| Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8; |
| NegOpc = AArch64::NEGv8i8; |
| } else { |
| LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type"); |
| return false; |
| } |
| |
| auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg}); |
| constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI); |
| auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg}); |
| constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectVaStartAAPCS( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectVaStartDarwin( |
| MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| Register ListReg = I.getOperand(0).getReg(); |
| |
| Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| |
| auto MIB = |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri)) |
| .addDef(ArgsAddrReg) |
| .addFrameIndex(FuncInfo->getVarArgsStackIndex()) |
| .addImm(0) |
| .addImm(0); |
| |
| constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); |
| |
| MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui)) |
| .addUse(ArgsAddrReg) |
| .addUse(ListReg) |
| .addImm(0) |
| .addMemOperand(*I.memoperands_begin()); |
| |
| constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| void AArch64InstructionSelector::materializeLargeCMVal( |
| MachineInstr &I, const Value *V, unsigned OpFlags) { |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {}); |
| MovZ->addOperand(MF, I.getOperand(1)); |
| MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 | |
| AArch64II::MO_NC); |
| MovZ->addOperand(MF, MachineOperand::CreateImm(0)); |
| constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI); |
| |
| auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset, |
| Register ForceDstReg) { |
| Register DstReg = ForceDstReg |
| ? ForceDstReg |
| : MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg); |
| if (auto *GV = dyn_cast<GlobalValue>(V)) { |
| MovI->addOperand(MF, MachineOperand::CreateGA( |
| GV, MovZ->getOperand(1).getOffset(), Flags)); |
| } else { |
| MovI->addOperand( |
| MF, MachineOperand::CreateBA(cast<BlockAddress>(V), |
| MovZ->getOperand(1).getOffset(), Flags)); |
| } |
| MovI->addOperand(MF, MachineOperand::CreateImm(Offset)); |
| constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI); |
| return DstReg; |
| }; |
| Register DstReg = BuildMovK(MovZ.getReg(0), |
| AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0); |
| DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0); |
| BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg()); |
| } |
| |
| bool AArch64InstructionSelector::preISelLower(MachineInstr &I) { |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| switch (I.getOpcode()) { |
| case TargetOpcode::G_SHL: |
| case TargetOpcode::G_ASHR: |
| case TargetOpcode::G_LSHR: { |
| // These shifts are legalized to have 64 bit shift amounts because we want |
| // to take advantage of the existing imported selection patterns that assume |
| // the immediates are s64s. However, if the shifted type is 32 bits and for |
| // some reason we receive input GMIR that has an s64 shift amount that's not |
| // a G_CONSTANT, insert a truncate so that we can still select the s32 |
| // register-register variant. |
| Register SrcReg = I.getOperand(1).getReg(); |
| Register ShiftReg = I.getOperand(2).getReg(); |
| const LLT ShiftTy = MRI.getType(ShiftReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| if (SrcTy.isVector()) |
| return false; |
| assert(!ShiftTy.isVector() && "unexpected vector shift ty"); |
| if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64) |
| return false; |
| auto *AmtMI = MRI.getVRegDef(ShiftReg); |
| assert(AmtMI && "could not find a vreg definition for shift amount"); |
| if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) { |
| // Insert a subregister copy to implement a 64->32 trunc |
| auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {}) |
| .addReg(ShiftReg, 0, AArch64::sub_32); |
| MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID)); |
| I.getOperand(2).setReg(Trunc.getReg(0)); |
| } |
| return true; |
| } |
| case TargetOpcode::G_STORE: { |
| bool Changed = contractCrossBankCopyIntoStore(I, MRI); |
| MachineOperand &SrcOp = I.getOperand(0); |
| if (MRI.getType(SrcOp.getReg()).isPointer()) { |
| // Allow matching with imported patterns for stores of pointers. Unlike |
| // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy |
| // and constrain. |
| auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp); |
| Register NewSrc = Copy.getReg(0); |
| SrcOp.setReg(NewSrc); |
| RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI); |
| Changed = true; |
| } |
| return Changed; |
| } |
| case TargetOpcode::G_PTR_ADD: |
| return convertPtrAddToAdd(I, MRI); |
| case TargetOpcode::G_LOAD: { |
| // For scalar loads of pointers, we try to convert the dest type from p0 |
| // to s64 so that our imported patterns can match. Like with the G_PTR_ADD |
| // conversion, this should be ok because all users should have been |
| // selected already, so the type doesn't matter for them. |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT DstTy = MRI.getType(DstReg); |
| if (!DstTy.isPointer()) |
| return false; |
| MRI.setType(DstReg, LLT::scalar(64)); |
| return true; |
| } |
| case AArch64::G_DUP: { |
| // Convert the type from p0 to s64 to help selection. |
| LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (!DstTy.getElementType().isPointer()) |
| return false; |
| auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg()); |
| MRI.setType(I.getOperand(0).getReg(), |
| DstTy.changeElementType(LLT::scalar(64))); |
| MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass); |
| I.getOperand(1).setReg(NewSrc.getReg(0)); |
| return true; |
| } |
| case TargetOpcode::G_UITOFP: |
| case TargetOpcode::G_SITOFP: { |
| // If both source and destination regbanks are FPR, then convert the opcode |
| // to G_SITOF so that the importer can select it to an fpr variant. |
| // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank |
| // copy. |
| Register SrcReg = I.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| return false; |
| |
| if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) { |
| if (I.getOpcode() == TargetOpcode::G_SITOFP) |
| I.setDesc(TII.get(AArch64::G_SITOF)); |
| else |
| I.setDesc(TII.get(AArch64::G_UITOF)); |
| return true; |
| } |
| return false; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| /// This lowering tries to look for G_PTR_ADD instructions and then converts |
| /// them to a standard G_ADD with a COPY on the source. |
| /// |
| /// The motivation behind this is to expose the add semantics to the imported |
| /// tablegen patterns. We shouldn't need to check for uses being loads/stores, |
| /// because the selector works bottom up, uses before defs. By the time we |
| /// end up trying to select a G_PTR_ADD, we should have already attempted to |
| /// fold this into addressing modes and were therefore unsuccessful. |
| bool AArch64InstructionSelector::convertPtrAddToAdd( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); |
| Register DstReg = I.getOperand(0).getReg(); |
| Register AddOp1Reg = I.getOperand(1).getReg(); |
| const LLT PtrTy = MRI.getType(DstReg); |
| if (PtrTy.getAddressSpace() != 0) |
| return false; |
| |
| const LLT CastPtrTy = |
| PtrTy.isVector() ? LLT::fixed_vector(2, 64) : LLT::scalar(64); |
| auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg); |
| // Set regbanks on the registers. |
| if (PtrTy.isVector()) |
| MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID)); |
| else |
| MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID)); |
| |
| // Now turn the %dst(p0) = G_PTR_ADD %base, off into: |
| // %dst(intty) = G_ADD %intbase, off |
| I.setDesc(TII.get(TargetOpcode::G_ADD)); |
| MRI.setType(DstReg, CastPtrTy); |
| I.getOperand(1).setReg(PtrToInt.getReg(0)); |
| if (!select(*PtrToInt)) { |
| LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd"); |
| return false; |
| } |
| |
| // Also take the opportunity here to try to do some optimization. |
| // Try to convert this into a G_SUB if the offset is a 0-x negate idiom. |
| Register NegatedReg; |
| if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg)))) |
| return true; |
| I.getOperand(2).setReg(NegatedReg); |
| I.setDesc(TII.get(TargetOpcode::G_SUB)); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| // We try to match the immediate variant of LSL, which is actually an alias |
| // for a special case of UBFM. Otherwise, we fall back to the imported |
| // selector which will match the register variant. |
| assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op"); |
| const auto &MO = I.getOperand(2); |
| auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI); |
| if (!VRegAndVal) |
| return false; |
| |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| if (DstTy.isVector()) |
| return false; |
| bool Is64Bit = DstTy.getSizeInBits() == 64; |
| auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO); |
| auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO); |
| |
| if (!Imm1Fn || !Imm2Fn) |
| return false; |
| |
| auto NewI = |
| MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri, |
| {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()}); |
| |
| for (auto &RenderFn : *Imm1Fn) |
| RenderFn(NewI); |
| for (auto &RenderFn : *Imm2Fn) |
| RenderFn(NewI); |
| |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::contractCrossBankCopyIntoStore( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE"); |
| // If we're storing a scalar, it doesn't matter what register bank that |
| // scalar is on. All that matters is the size. |
| // |
| // So, if we see something like this (with a 32-bit scalar as an example): |
| // |
| // %x:gpr(s32) = ... something ... |
| // %y:fpr(s32) = COPY %x:gpr(s32) |
| // G_STORE %y:fpr(s32) |
| // |
| // We can fix this up into something like this: |
| // |
| // G_STORE %x:gpr(s32) |
| // |
| // And then continue the selection process normally. |
| Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI); |
| if (!DefDstReg.isValid()) |
| return false; |
| LLT DefDstTy = MRI.getType(DefDstReg); |
| Register StoreSrcReg = I.getOperand(0).getReg(); |
| LLT StoreSrcTy = MRI.getType(StoreSrcReg); |
| |
| // If we get something strange like a physical register, then we shouldn't |
| // go any further. |
| if (!DefDstTy.isValid()) |
| return false; |
| |
| // Are the source and dst types the same size? |
| if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits()) |
| return false; |
| |
| if (RBI.getRegBank(StoreSrcReg, MRI, TRI) == |
| RBI.getRegBank(DefDstReg, MRI, TRI)) |
| return false; |
| |
| // We have a cross-bank copy, which is entering a store. Let's fold it. |
| I.getOperand(0).setReg(DefDstReg); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::earlySelect(MachineInstr &I) { |
| assert(I.getParent() && "Instruction should be in a basic block!"); |
| assert(I.getParent()->getParent() && "Instruction should be in a function!"); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| switch (I.getOpcode()) { |
| case AArch64::G_DUP: { |
| // Before selecting a DUP instruction, check if it is better selected as a |
| // MOV or load from a constant pool. |
| Register Src = I.getOperand(1).getReg(); |
| auto ValAndVReg = getConstantVRegValWithLookThrough(Src, MRI); |
| if (!ValAndVReg) |
| return false; |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| Register Dst = I.getOperand(0).getReg(); |
| auto *CV = ConstantDataVector::getSplat( |
| MRI.getType(Dst).getNumElements(), |
| ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()), |
| ValAndVReg->Value)); |
| if (!emitConstantVector(Dst, CV, MIB, MRI)) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_BR: { |
| // If the branch jumps to the fallthrough block, don't bother emitting it. |
| // Only do this for -O0 for a good code size improvement, because when |
| // optimizations are enabled we want to leave this choice to |
| // MachineBlockPlacement. |
| bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None; |
| if (EnableOpt || !MBB.isLayoutSuccessor(I.getOperand(0).getMBB())) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_SHL: |
| return earlySelectSHL(I, MRI); |
| case TargetOpcode::G_CONSTANT: { |
| bool IsZero = false; |
| if (I.getOperand(1).isCImm()) |
| IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0; |
| else if (I.getOperand(1).isImm()) |
| IsZero = I.getOperand(1).getImm() == 0; |
| |
| if (!IsZero) |
| return false; |
| |
| Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| if (Ty.getSizeInBits() == 64) { |
| I.getOperand(1).ChangeToRegister(AArch64::XZR, false); |
| RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI); |
| } else if (Ty.getSizeInBits() == 32) { |
| I.getOperand(1).ChangeToRegister(AArch64::WZR, false); |
| RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI); |
| } else |
| return false; |
| |
| I.setDesc(TII.get(TargetOpcode::COPY)); |
| return true; |
| } |
| |
| case TargetOpcode::G_ADD: { |
| // Check if this is being fed by a G_ICMP on either side. |
| // |
| // (cmp pred, x, y) + z |
| // |
| // In the above case, when the cmp is true, we increment z by 1. So, we can |
| // fold the add into the cset for the cmp by using cinc. |
| // |
| // FIXME: This would probably be a lot nicer in PostLegalizerLowering. |
| Register X = I.getOperand(1).getReg(); |
| |
| // Only handle scalars. Scalar G_ICMP is only legal for s32, so bail out |
| // early if we see it. |
| LLT Ty = MRI.getType(X); |
| if (Ty.isVector() || Ty.getSizeInBits() != 32) |
| return false; |
| |
| Register CmpReg = I.getOperand(2).getReg(); |
| MachineInstr *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI); |
| if (!Cmp) { |
| std::swap(X, CmpReg); |
| Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI); |
| if (!Cmp) |
| return false; |
| } |
| auto Pred = |
| static_cast<CmpInst::Predicate>(Cmp->getOperand(1).getPredicate()); |
| emitIntegerCompare(Cmp->getOperand(2), Cmp->getOperand(3), |
| Cmp->getOperand(1), MIB); |
| emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIB, X); |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_OR: { |
| // Look for operations that take the lower `Width=Size-ShiftImm` bits of |
| // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via |
| // shifting and masking that we can replace with a BFI (encoded as a BFM). |
| Register Dst = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(Dst); |
| |
| if (!Ty.isScalar()) |
| return false; |
| |
| unsigned Size = Ty.getSizeInBits(); |
| if (Size != 32 && Size != 64) |
| return false; |
| |
| Register ShiftSrc; |
| int64_t ShiftImm; |
| Register MaskSrc; |
| int64_t MaskImm; |
| if (!mi_match( |
| Dst, MRI, |
| m_GOr(m_OneNonDBGUse(m_GShl(m_Reg(ShiftSrc), m_ICst(ShiftImm))), |
| m_OneNonDBGUse(m_GAnd(m_Reg(MaskSrc), m_ICst(MaskImm)))))) |
| return false; |
| |
| if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm)) |
| return false; |
| |
| int64_t Immr = Size - ShiftImm; |
| int64_t Imms = Size - ShiftImm - 1; |
| unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri; |
| emitInstr(Opc, {Dst}, {MaskSrc, ShiftSrc, Immr, Imms}, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| bool AArch64InstructionSelector::select(MachineInstr &I) { |
| assert(I.getParent() && "Instruction should be in a basic block!"); |
| assert(I.getParent()->getParent() && "Instruction should be in a function!"); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| const AArch64Subtarget *Subtarget = |
| &static_cast<const AArch64Subtarget &>(MF.getSubtarget()); |
| if (Subtarget->requiresStrictAlign()) { |
| // We don't support this feature yet. |
| LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n"); |
| return false; |
| } |
| |
| MIB.setInstrAndDebugLoc(I); |
| |
| unsigned Opcode = I.getOpcode(); |
| // G_PHI requires same handling as PHI |
| if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) { |
| // Certain non-generic instructions also need some special handling. |
| |
| if (Opcode == TargetOpcode::LOAD_STACK_GUARD) |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| |
| if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) { |
| const Register DefReg = I.getOperand(0).getReg(); |
| const LLT DefTy = MRI.getType(DefReg); |
| |
| const RegClassOrRegBank &RegClassOrBank = |
| MRI.getRegClassOrRegBank(DefReg); |
| |
| const TargetRegisterClass *DefRC |
| = RegClassOrBank.dyn_cast<const TargetRegisterClass *>(); |
| if (!DefRC) { |
| if (!DefTy.isValid()) { |
| LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n"); |
| return false; |
| } |
| const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>(); |
| DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI); |
| if (!DefRC) { |
| LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n"); |
| return false; |
| } |
| } |
| |
| I.setDesc(TII.get(TargetOpcode::PHI)); |
| |
| return RBI.constrainGenericRegister(DefReg, *DefRC, MRI); |
| } |
| |
| if (I.isCopy()) |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| |
| return true; |
| } |
| |
| |
| if (I.getNumOperands() != I.getNumExplicitOperands()) { |
| LLVM_DEBUG( |
| dbgs() << "Generic instruction has unexpected implicit operands\n"); |
| return false; |
| } |
| |
| // Try to do some lowering before we start instruction selecting. These |
| // lowerings are purely transformations on the input G_MIR and so selection |
| // must continue after any modification of the instruction. |
| if (preISelLower(I)) { |
| Opcode = I.getOpcode(); // The opcode may have been modified, refresh it. |
| } |
| |
| // There may be patterns where the importer can't deal with them optimally, |
| // but does select it to a suboptimal sequence so our custom C++ selection |
| // code later never has a chance to work on it. Therefore, we have an early |
| // selection attempt here to give priority to certain selection routines |
| // over the imported ones. |
| if (earlySelect(I)) |
| return true; |
| |
| if (selectImpl(I, *CoverageInfo)) |
| return true; |
| |
| LLT Ty = |
| I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{}; |
| |
| switch (Opcode) { |
| case TargetOpcode::G_SBFX: |
| case TargetOpcode::G_UBFX: { |
| static const unsigned OpcTable[2][2] = { |
| {AArch64::UBFMWri, AArch64::UBFMXri}, |
| {AArch64::SBFMWri, AArch64::SBFMXri}}; |
| bool IsSigned = Opcode == TargetOpcode::G_SBFX; |
| unsigned Size = Ty.getSizeInBits(); |
| unsigned Opc = OpcTable[IsSigned][Size == 64]; |
| auto Cst1 = |
| getConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI); |
| assert(Cst1 && "Should have gotten a constant for src 1?"); |
| auto Cst2 = |
| getConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI); |
| assert(Cst2 && "Should have gotten a constant for src 2?"); |
| auto LSB = Cst1->Value.getZExtValue(); |
| auto Width = Cst2->Value.getZExtValue(); |
| auto BitfieldInst = |
| MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)}) |
| .addImm(LSB) |
| .addImm(LSB + Width - 1); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_BRCOND: |
| return selectCompareBranch(I, MF, MRI); |
| |
| case TargetOpcode::G_BRINDIRECT: { |
| I.setDesc(TII.get(AArch64::BR)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_BRJT: |
| return selectBrJT(I, MRI); |
| |
| case AArch64::G_ADD_LOW: { |
| // This op may have been separated from it's ADRP companion by the localizer |
| // or some other code motion pass. Given that many CPUs will try to |
| // macro fuse these operations anyway, select this into a MOVaddr pseudo |
| // which will later be expanded into an ADRP+ADD pair after scheduling. |
| MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg()); |
| if (BaseMI->getOpcode() != AArch64::ADRP) { |
| I.setDesc(TII.get(AArch64::ADDXri)); |
| I.addOperand(MachineOperand::CreateImm(0)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| assert(TM.getCodeModel() == CodeModel::Small && |
| "Expected small code model"); |
| auto Op1 = BaseMI->getOperand(1); |
| auto Op2 = I.getOperand(2); |
| auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {}) |
| .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(), |
| Op1.getTargetFlags()) |
| .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(), |
| Op2.getTargetFlags()); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_BSWAP: { |
| // Handle vector types for G_BSWAP directly. |
| Register DstReg = I.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| // We should only get vector types here; everything else is handled by the |
| // importer right now. |
| if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) { |
| LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n"); |
| return false; |
| } |
| |
| // Only handle 4 and 2 element vectors for now. |
| // TODO: 16-bit elements. |
| unsigned NumElts = DstTy.getNumElements(); |
| if (NumElts != 4 && NumElts != 2) { |
| LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n"); |
| return false; |
| } |
| |
| // Choose the correct opcode for the supported types. Right now, that's |
| // v2s32, v4s32, and v2s64. |
| unsigned Opc = 0; |
| unsigned EltSize = DstTy.getElementType().getSizeInBits(); |
| if (EltSize == 32) |
| Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8 |
| : AArch64::REV32v16i8; |
| else if (EltSize == 64) |
| Opc = AArch64::REV64v16i8; |
| |
| // We should always get something by the time we get here... |
| assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?"); |
| |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_FCONSTANT: |
| case TargetOpcode::G_CONSTANT: { |
| const bool isFP = Opcode == TargetOpcode::G_FCONSTANT; |
| |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| const LLT s128 = LLT::scalar(128); |
| const LLT p0 = LLT::pointer(0, 64); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| const LLT DefTy = MRI.getType(DefReg); |
| const unsigned DefSize = DefTy.getSizeInBits(); |
| const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); |
| |
| // FIXME: Redundant check, but even less readable when factored out. |
| if (isFP) { |
| if (Ty != s32 && Ty != s64 && Ty != s128) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| << " constant, expected: " << s32 << " or " << s64 |
| << " or " << s128 << '\n'); |
| return false; |
| } |
| |
| if (RB.getID() != AArch64::FPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| << " constant on bank: " << RB |
| << ", expected: FPR\n"); |
| return false; |
| } |
| |
| // The case when we have 0.0 is covered by tablegen. Reject it here so we |
| // can be sure tablegen works correctly and isn't rescued by this code. |
| // 0.0 is not covered by tablegen for FP128. So we will handle this |
| // scenario in the code here. |
| if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0)) |
| return false; |
| } else { |
| // s32 and s64 are covered by tablegen. |
| if (Ty != p0 && Ty != s8 && Ty != s16) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| << " constant, expected: " << s32 << ", " << s64 |
| << ", or " << p0 << '\n'); |
| return false; |
| } |
| |
| if (RB.getID() != AArch64::GPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| << " constant on bank: " << RB |
| << ", expected: GPR\n"); |
| return false; |
| } |
| } |
| |
| // We allow G_CONSTANT of types < 32b. |
| const unsigned MovOpc = |
| DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm; |
| |
| if (isFP) { |
| // Either emit a FMOV, or emit a copy to emit a normal mov. |
| const TargetRegisterClass &GPRRC = |
| DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass; |
| const TargetRegisterClass &FPRRC = |
| DefSize == 32 ? AArch64::FPR32RegClass |
| : (DefSize == 64 ? AArch64::FPR64RegClass |
| : AArch64::FPR128RegClass); |
| |
| // For 64b values, emit a constant pool load instead. |
| // For s32, use a cp load if we have optsize/minsize. |
| if (DefSize == 64 || DefSize == 128 || |
| (DefSize == 32 && shouldOptForSize(&MF))) { |
| auto *FPImm = I.getOperand(1).getFPImm(); |
| auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB); |
| if (!LoadMI) { |
| LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n"); |
| return false; |
| } |
| MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()}); |
| I.eraseFromParent(); |
| return RBI.constrainGenericRegister(DefReg, FPRRC, MRI); |
| } |
| |
| // Nope. Emit a copy and use a normal mov instead. |
| const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC); |
| MachineOperand &RegOp = I.getOperand(0); |
| RegOp.setReg(DefGPRReg); |
| MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator())); |
| MIB.buildCopy({DefReg}, {DefGPRReg}); |
| |
| if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n"); |
| return false; |
| } |
| |
| MachineOperand &ImmOp = I.getOperand(1); |
| // FIXME: Is going through int64_t always correct? |
| ImmOp.ChangeToImmediate( |
| ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue()); |
| } else if (I.getOperand(1).isCImm()) { |
| uint64_t Val = I.getOperand(1).getCImm()->getZExtValue(); |
| I.getOperand(1).ChangeToImmediate(Val); |
| } else if (I.getOperand(1).isImm()) { |
| uint64_t Val = I.getOperand(1).getImm(); |
| I.getOperand(1).ChangeToImmediate(Val); |
| } |
| |
| I.setDesc(TII.get(MovOpc)); |
| constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| return true; |
| } |
| case TargetOpcode::G_EXTRACT: { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT DstTy = MRI.getType(DstReg); |
| (void)DstTy; |
| unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| if (SrcTy.getSizeInBits() > 64) { |
| // This should be an extract of an s128, which is like a vector extract. |
| if (SrcTy.getSizeInBits() != 128) |
| return false; |
| // Only support extracting 64 bits from an s128 at the moment. |
| if (DstTy.getSizeInBits() != 64) |
| return false; |
| |
| unsigned Offset = I.getOperand(2).getImm(); |
| if (Offset % 64 != 0) |
| return false; |
| |
| // Check we have the right regbank always. |
| const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!"); |
| |
| if (SrcRB.getID() == AArch64::GPRRegBankID) { |
| MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}) |
| .addUse(SrcReg, 0, Offset == 0 ? AArch64::sube64 : AArch64::subo64); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // Emit the same code as a vector extract. |
| // Offset must be a multiple of 64. |
| unsigned LaneIdx = Offset / 64; |
| MachineInstr *Extract = emitExtractVectorElt( |
| DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB); |
| if (!Extract) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri)); |
| MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() + |
| Ty.getSizeInBits() - 1); |
| |
| if (SrcSize < 64) { |
| assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 && |
| "unexpected G_EXTRACT types"); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64)); |
| MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator())); |
| MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {}) |
| .addReg(DstReg, 0, AArch64::sub_32); |
| RBI.constrainGenericRegister(I.getOperand(0).getReg(), |
| AArch64::GPR32RegClass, MRI); |
| I.getOperand(0).setReg(DstReg); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_INSERT: { |
| LLT SrcTy = MRI.getType(I.getOperand(2).getReg()); |
| LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| // Larger inserts are vectors, same-size ones should be something else by |
| // now (split up or turned into COPYs). |
| if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32) |
| return false; |
| |
| I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri)); |
| unsigned LSB = I.getOperand(3).getImm(); |
| unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits(); |
| I.getOperand(3).setImm((DstSize - LSB) % DstSize); |
| MachineInstrBuilder(MF, I).addImm(Width - 1); |
| |
| if (DstSize < 64) { |
| assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 && |
| "unexpected G_INSERT types"); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64)); |
| BuildMI(MBB, I.getIterator(), I.getDebugLoc(), |
| TII.get(AArch64::SUBREG_TO_REG)) |
| .addDef(SrcReg) |
| .addImm(0) |
| .addUse(I.getOperand(2).getReg()) |
| .addImm(AArch64::sub_32); |
| RBI.constrainGenericRegister(I.getOperand(2).getReg(), |
| AArch64::GPR32RegClass, MRI); |
| I.getOperand(2).setReg(SrcReg); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_FRAME_INDEX: { |
| // allocas and G_FRAME_INDEX are only supported in addrspace(0). |
| if (Ty != LLT::pointer(0, 64)) { |
| LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty |
| << ", expected: " << LLT::pointer(0, 64) << '\n'); |
| return false; |
| } |
| I.setDesc(TII.get(AArch64::ADDXri)); |
| |
| // MOs for a #0 shifted immediate. |
| I.addOperand(MachineOperand::CreateImm(0)); |
| I.addOperand(MachineOperand::CreateImm(0)); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_GLOBAL_VALUE: { |
| auto GV = I.getOperand(1).getGlobal(); |
| if (GV->isThreadLocal()) |
| return selectTLSGlobalValue(I, MRI); |
| |
| unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM); |
| if (OpFlags & AArch64II::MO_GOT) { |
| I.setDesc(TII.get(AArch64::LOADgot)); |
| I.getOperand(1).setTargetFlags(OpFlags); |
| } else if (TM.getCodeModel() == CodeModel::Large) { |
| // Materialize the global using movz/movk instructions. |
| materializeLargeCMVal(I, GV, OpFlags); |
| I.eraseFromParent(); |
| return true; |
| } else if (TM.getCodeModel() == CodeModel::Tiny) { |
| I.setDesc(TII.get(AArch64::ADR)); |
| I.getOperand(1).setTargetFlags(OpFlags); |
| } else { |
| I.setDesc(TII.get(AArch64::MOVaddr)); |
| I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE); |
| MachineInstrBuilder MIB(MF, I); |
| MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(), |
| OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| } |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_ZEXTLOAD: |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_STORE: { |
| bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD; |
| LLT PtrTy = MRI.getType(I.getOperand(1).getReg()); |
| |
| if (PtrTy != LLT::pointer(0, 64)) { |
| LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy |
| << ", expected: " << LLT::pointer(0, 64) << '\n'); |
| return false; |
| } |
| |
| auto &MemOp = **I.memoperands_begin(); |
| uint64_t MemSizeInBytes = MemOp.getSize(); |
| unsigned MemSizeInBits = MemSizeInBytes * 8; |
| AtomicOrdering Order = MemOp.getSuccessOrdering(); |
| |
| // Need special instructions for atomics that affect ordering. |
| if (Order != AtomicOrdering::NotAtomic && |
| Order != AtomicOrdering::Unordered && |
| Order != AtomicOrdering::Monotonic) { |
| assert(I.getOpcode() != TargetOpcode::G_ZEXTLOAD); |
| if (MemSizeInBytes > 64) |
| return false; |
| |
| if (I.getOpcode() == TargetOpcode::G_LOAD) { |
| static unsigned Opcodes[] = {AArch64::LDARB, AArch64::LDARH, |
| AArch64::LDARW, AArch64::LDARX}; |
| I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)])); |
| } else { |
| static unsigned Opcodes[] = {AArch64::STLRB, AArch64::STLRH, |
| AArch64::STLRW, AArch64::STLRX}; |
| I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)])); |
| } |
| constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| const Register PtrReg = I.getOperand(1).getReg(); |
| const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI); |
| // Sanity-check the pointer register. |
| assert(PtrRB.getID() == AArch64::GPRRegBankID && |
| "Load/Store pointer operand isn't a GPR"); |
| assert(MRI.getType(PtrReg).isPointer() && |
| "Load/Store pointer operand isn't a pointer"); |
| #endif |
| |
| const Register ValReg = I.getOperand(0).getReg(); |
| const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI); |
| |
| // Helper lambda for partially selecting I. Either returns the original |
| // instruction with an updated opcode, or a new instruction. |
| auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * { |
| bool IsStore = I.getOpcode() == TargetOpcode::G_STORE; |
| const unsigned NewOpc = |
| selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits); |
| if (NewOpc == I.getOpcode()) |
| return nullptr; |
| // Check if we can fold anything into the addressing mode. |
| auto AddrModeFns = |
| selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes); |
| if (!AddrModeFns) { |
| // Can't fold anything. Use the original instruction. |
| I.setDesc(TII.get(NewOpc)); |
| I.addOperand(MachineOperand::CreateImm(0)); |
| return &I; |
| } |
| |
| // Folded something. Create a new instruction and return it. |
| auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags()); |
| IsStore ? NewInst.addUse(ValReg) : NewInst.addDef(ValReg); |
| NewInst.cloneMemRefs(I); |
| for (auto &Fn : *AddrModeFns) |
| Fn(NewInst); |
| I.eraseFromParent(); |
| return &*NewInst; |
| }; |
| |
| MachineInstr *LoadStore = SelectLoadStoreAddressingMode(); |
| if (!LoadStore) |
| return false; |
| |
| // If we're storing a 0, use WZR/XZR. |
| if (Opcode == TargetOpcode::G_STORE) { |
| auto CVal = getConstantVRegValWithLookThrough( |
| LoadStore->getOperand(0).getReg(), MRI, /*LookThroughInstrs = */ true, |
| /*HandleFConstants = */ false); |
| if (CVal && CVal->Value == 0) { |
| switch (LoadStore->getOpcode()) { |
| case AArch64::STRWui: |
| case AArch64::STRHHui: |
| case AArch64::STRBBui: |
| LoadStore->getOperand(0).setReg(AArch64::WZR); |
| break; |
| case AArch64::STRXui: |
| LoadStore->getOperand(0).setReg(AArch64::XZR); |
| break; |
| } |
| } |
| } |
| |
| if (IsZExtLoad) { |
| // The zextload from a smaller type to i32 should be handled by the |
| // importer. |
| if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64) |
| return false; |
| // If we have a ZEXTLOAD then change the load's type to be a narrower reg |
| // and zero_extend with SUBREG_TO_REG. |
| Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| Register DstReg = LoadStore->getOperand(0).getReg(); |
| LoadStore->getOperand(0).setReg(LdReg); |
| |
| MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator())); |
| MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {}) |
| .addImm(0) |
| .addUse(LdReg) |
| .addImm(AArch64::sub_32); |
| constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI); |
| return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass, |
| MRI); |
| } |
| return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_SMULH: |
| case TargetOpcode::G_UMULH: { |
| // Reject the various things we don't support yet. |
| if (unsupportedBinOp(I, RBI, MRI, TRI)) |
| return false; |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); |
| |
| if (RB.getID() != AArch64::GPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n"); |
| return false; |
| } |
| |
| if (Ty != LLT::scalar(64)) { |
| LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty |
| << ", expected: " << LLT::scalar(64) << '\n'); |
| return false; |
| } |
| |
| unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr |
| : AArch64::UMULHrr; |
| I.setDesc(TII.get(NewOpc)); |
| |
| // Now that we selected an opcode, we need to constrain the register |
| // operands to use appropriate classes. |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_ASHR: |
| if (MRI.getType(I.getOperand(0).getReg()).isVector()) |
| return selectVectorAshrLshr(I, MRI); |
| LLVM_FALLTHROUGH; |
| case TargetOpcode::G_SHL: |
| if (Opcode == TargetOpcode::G_SHL && |
| MRI.getType(I.getOperand(0).getReg()).isVector()) |
| return selectVectorSHL(I, MRI); |
| LLVM_FALLTHROUGH; |
| case TargetOpcode::G_FADD: |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_FMUL: |
| case TargetOpcode::G_FDIV: |
| case TargetOpcode::G_OR: { |
| // Reject the various things we don't support yet. |
| if (unsupportedBinOp(I, RBI, MRI, TRI)) |
| return false; |
| |
| const unsigned OpSize = Ty.getSizeInBits(); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); |
| |
| const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize); |
| if (NewOpc == I.getOpcode()) |
| return false; |
| |
| I.setDesc(TII.get(NewOpc)); |
| // FIXME: Should the type be always reset in setDesc? |
| |
| // Now that we selected an opcode, we need to constrain the register |
| // operands to use appropriate classes. |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_PTR_ADD: { |
| emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2), MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_SADDO: |
| case TargetOpcode::G_UADDO: |
| case TargetOpcode::G_SSUBO: |
| case TargetOpcode::G_USUBO: { |
| // Emit the operation and get the correct condition code. |
| auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(), |
| I.getOperand(2), I.getOperand(3), MIB); |
| |
| // Now, put the overflow result in the register given by the first operand |
| // to the overflow op. CSINC increments the result when the predicate is |
| // false, so to get the increment when it's true, we need to use the |
| // inverse. In this case, we want to increment when carry is set. |
| Register ZReg = AArch64::WZR; |
| auto CsetMI = MIB.buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()}, |
| {ZReg, ZReg}) |
| .addImm(getInvertedCondCode(OpAndCC.second)); |
| constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| case TargetOpcode::G_PTRMASK: { |
| Register MaskReg = I.getOperand(2).getReg(); |
| Optional<int64_t> MaskVal = getConstantVRegSExtVal(MaskReg, MRI); |
| // TODO: Implement arbitrary cases |
| if (!MaskVal || !isShiftedMask_64(*MaskVal)) |
| return false; |
| |
| uint64_t Mask = *MaskVal; |
| I.setDesc(TII.get(AArch64::ANDXri)); |
| I.getOperand(2).ChangeToImmediate( |
| AArch64_AM::encodeLogicalImmediate(Mask, 64)); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_PTRTOINT: |
| case TargetOpcode::G_TRUNC: { |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| const LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| if (DstRB.getID() != SrcRB.getID()) { |
| LLVM_DEBUG( |
| dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n"); |
| return false; |
| } |
| |
| if (DstRB.getID() == AArch64::GPRRegBankID) { |
| const TargetRegisterClass *DstRC = |
| getRegClassForTypeOnBank(DstTy, DstRB, RBI); |
| if (!DstRC) |
| return false; |
| |
| const TargetRegisterClass *SrcRC = |
| getRegClassForTypeOnBank(SrcTy, SrcRB, RBI); |
| if (!SrcRC) |
| return false; |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n"); |
| return false; |
| } |
| |
| if (DstRC == SrcRC) { |
| // Nothing to be done |
| } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) && |
| SrcTy == LLT::scalar(64)) { |
| llvm_unreachable("TableGen can import this case"); |
| return false; |
| } else if (DstRC == &AArch64::GPR32RegClass && |
| SrcRC == &AArch64::GPR64RegClass) { |
| I.getOperand(1).setSubReg(AArch64::sub_32); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n"); |
| return false; |
| } |
| |
| I.setDesc(TII.get(TargetOpcode::COPY)); |
| return true; |
| } else if (DstRB.getID() == AArch64::FPRRegBankID) { |
| if (DstTy == LLT::fixed_vector(4, 16) && |
| SrcTy == LLT::fixed_vector(4, 32)) { |
| I.setDesc(TII.get(AArch64::XTNv4i16)); |
| constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| return true; |
| } |
| |
| if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) { |
| MachineInstr *Extract = emitExtractVectorElt( |
| DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB); |
| if (!Extract) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // We might have a vector G_PTRTOINT, in which case just emit a COPY. |
| if (Opcode == TargetOpcode::G_PTRTOINT) { |
| assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector"); |
| I.setDesc(TII.get(TargetOpcode::COPY)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| case TargetOpcode::G_ANYEXT: { |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| |
| const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI); |
| if (RBDst.getID() != AArch64::GPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst |
| << ", expected: GPR\n"); |
| return false; |
| } |
| |
| const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI); |
| if (RBSrc.getID() != AArch64::GPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc |
| << ", expected: GPR\n"); |
| return false; |
| } |
| |
| const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); |
| |
| if (DstSize == 0) { |
| LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n"); |
| return false; |
| } |
| |
| if (DstSize != 64 && DstSize > 32) { |
| LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize |
| << ", expected: 32 or 64\n"); |
| return false; |
| } |
| // At this point G_ANYEXT is just like a plain COPY, but we need |
| // to explicitly form the 64-bit value if any. |
| if (DstSize > 32) { |
| Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass); |
| BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG)) |
| .addDef(ExtSrc) |
| .addImm(0) |
| .addUse(SrcReg) |
| .addImm(AArch64::sub_32); |
| I.getOperand(1).setReg(ExtSrc); |
| } |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| } |
| |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_SEXT_INREG: |
| case TargetOpcode::G_SEXT: { |
| unsigned Opcode = I.getOpcode(); |
| const bool IsSigned = Opcode != TargetOpcode::G_ZEXT; |
| const Register DefReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(1).getReg(); |
| const LLT DstTy = MRI.getType(DefReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| // SEXT_INREG has the same src reg size as dst, the size of the value to be |
| // extended is encoded in the imm. |
| if (Opcode == TargetOpcode::G_SEXT_INREG) |
| SrcSize = I.getOperand(2).getImm(); |
| |
| if (DstTy.isVector()) |
| return false; // Should be handled by imported patterns. |
| |
| assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() == |
| AArch64::GPRRegBankID && |
| "Unexpected ext regbank"); |
| |
| MachineInstr *ExtI; |
| |
| // First check if we're extending the result of a load which has a dest type |
| // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest |
| // GPR register on AArch64 and all loads which are smaller automatically |
| // zero-extend the upper bits. E.g. |
| // %v(s8) = G_LOAD %p, :: (load 1) |
| // %v2(s32) = G_ZEXT %v(s8) |
| if (!IsSigned) { |
| auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); |
| bool IsGPR = |
| RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID; |
| if (LoadMI && IsGPR) { |
| const MachineMemOperand *MemOp = *LoadMI->memoperands_begin(); |
| unsigned BytesLoaded = MemOp->getSize(); |
| if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded) |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| } |
| |
| // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs) |
| // + SUBREG_TO_REG. |
| // |
| // If we are zero extending from 32 bits to 64 bits, it's possible that |
| // the instruction implicitly does the zero extend for us. In that case, |
| // we only need the SUBREG_TO_REG. |
| if (IsGPR && SrcSize == 32 && DstSize == 64) { |
| // Unlike with the G_LOAD case, we don't want to look through copies |
| // here. (See isDef32.) |
| MachineInstr *Def = MRI.getVRegDef(SrcReg); |
| Register SubregToRegSrc = SrcReg; |
| |
| // Does the instruction implicitly zero extend? |
| if (!Def || !isDef32(*Def)) { |
| // No. Zero out using an OR. |
| Register OrDst = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| const Register ZReg = AArch64::WZR; |
| MIB.buildInstr(AArch64::ORRWrs, {OrDst}, {ZReg, SrcReg}).addImm(0); |
| SubregToRegSrc = OrDst; |
| } |
| |
| MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {}) |
| .addImm(0) |
| .addUse(SubregToRegSrc) |
| .addImm(AArch64::sub_32); |
| |
| if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, |
| MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n"); |
| return false; |
| } |
| |
| if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, |
| MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n"); |
| return false; |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| } |
| |
| if (DstSize == 64) { |
| if (Opcode != TargetOpcode::G_SEXT_INREG) { |
| // FIXME: Can we avoid manually doing this? |
| if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, |
| MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode) |
| << " operand\n"); |
| return false; |
| } |
| SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG, |
| {&AArch64::GPR64RegClass}, {}) |
| .addImm(0) |
| .addUse(SrcReg) |
| .addImm(AArch64::sub_32) |
| .getReg(0); |
| } |
| |
| ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri, |
| {DefReg}, {SrcReg}) |
| .addImm(0) |
| .addImm(SrcSize - 1); |
| } else if (DstSize <= 32) { |
| ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri, |
| {DefReg}, {SrcReg}) |
| .addImm(0) |
| .addImm(SrcSize - 1); |
| } else { |
| return false; |
| } |
| |
| constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| case TargetOpcode::G_SITOFP: |
| case TargetOpcode::G_UITOFP: |
| case TargetOpcode::G_FPTOSI: |
| case TargetOpcode::G_FPTOUI: { |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()), |
| SrcTy = MRI.getType(I.getOperand(1).getReg()); |
| const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy); |
| if (NewOpc == Opcode) |
| return false; |
| |
| I.setDesc(TII.get(NewOpc)); |
| constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| |
| return true; |
| } |
| |
| case TargetOpcode::G_FREEZE: |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| |
| case TargetOpcode::G_INTTOPTR: |
| // The importer is currently unable to import pointer types since they |
| // didn't exist in SelectionDAG. |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| |
| case TargetOpcode::G_BITCAST: |
| // Imported SelectionDAG rules can handle every bitcast except those that |
| // bitcast from a type to the same type. Ideally, these shouldn't occur |
| // but we might not run an optimizer that deletes them. The other exception |
| // is bitcasts involving pointer types, as SelectionDAG has no knowledge |
| // of them. |
| return selectCopy(I, TII, MRI, TRI, RBI); |
| |
| case TargetOpcode::G_SELECT: { |
| if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) { |
| LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty |
| << ", expected: " << LLT::scalar(1) << '\n'); |
| return false; |
| } |
| |
| const Register CondReg = I.getOperand(1).getReg(); |
| const Register TReg = I.getOperand(2).getReg(); |
| const Register FReg = I.getOperand(3).getReg(); |
| |
| if (tryOptSelect(I)) |
| return true; |
| |
| // Make sure to use an unused vreg instead of wzr, so that the peephole |
| // optimizations will be able to optimize these. |
| Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg}) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); |
| if (!emitSelect(I.getOperand(0).getReg(), TReg, FReg, AArch64CC::NE, MIB)) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_ICMP: { |
| if (Ty.isVector()) |
| return selectVectorICmp(I, MRI); |
| |
| if (Ty != LLT::scalar(32)) { |
| LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty |
| << ", expected: " << LLT::scalar(32) << '\n'); |
| return false; |
| } |
| |
| auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate()); |
| emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1), |
| MIB); |
| emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| case TargetOpcode::G_FCMP: { |
| CmpInst::Predicate Pred = |
| static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate()); |
| if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), MIB, |
| Pred) || |
| !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIB)) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| case TargetOpcode::G_VASTART: |
| return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI) |
| : selectVaStartAAPCS(I, MF, MRI); |
| case TargetOpcode::G_INTRINSIC: |
| return selectIntrinsic(I, MRI); |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| return selectIntrinsicWithSideEffects(I, MRI); |
| case TargetOpcode::G_IMPLICIT_DEF: { |
| I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF)); |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| const Register DstReg = I.getOperand(0).getReg(); |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| const TargetRegisterClass *DstRC = |
| getRegClassForTypeOnBank(DstTy, DstRB, RBI); |
| RBI.constrainGenericRegister(DstReg, *DstRC, MRI); |
| return true; |
| } |
| case TargetOpcode::G_BLOCK_ADDR: { |
| if (TM.getCodeModel() == CodeModel::Large) { |
| materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0); |
| I.eraseFromParent(); |
| return true; |
| } else { |
| I.setDesc(TII.get(AArch64::MOVaddrBA)); |
| auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA), |
| I.getOperand(0).getReg()) |
| .addBlockAddress(I.getOperand(1).getBlockAddress(), |
| /* Offset */ 0, AArch64II::MO_PAGE) |
| .addBlockAddress( |
| I.getOperand(1).getBlockAddress(), /* Offset */ 0, |
| AArch64II::MO_NC | AArch64II::MO_PAGEOFF); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI); |
| } |
| } |
| case AArch64::G_DUP: { |
| // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by |
| // imported patterns. Do it manually here. Avoiding generating s16 gpr is |
| // difficult because at RBS we may end up pessimizing the fpr case if we |
| // decided to add an anyextend to fix this. Manual selection is the most |
| // robust solution for now. |
| if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() != |
| AArch64::GPRRegBankID) |
| return false; // We expect the fpr regbank case to be imported. |
| LLT VecTy = MRI.getType(I.getOperand(0).getReg()); |
| if (VecTy == LLT::fixed_vector(8, 8)) |
| I.setDesc(TII.get(AArch64::DUPv8i8gpr)); |
| else if (VecTy == LLT::fixed_vector(16, 8)) |
| I.setDesc(TII.get(AArch64::DUPv16i8gpr)); |
| else if (VecTy == LLT::fixed_vector(4, 16)) |
| I.setDesc(TII.get(AArch64::DUPv4i16gpr)); |
| else if (VecTy == LLT::fixed_vector(8, 16)) |
| I.setDesc(TII.get(AArch64::DUPv8i16gpr)); |
| else |
| return false; |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| case TargetOpcode::G_INTRINSIC_TRUNC: |
| return selectIntrinsicTrunc(I, MRI); |
| case TargetOpcode::G_INTRINSIC_ROUND: |
| return selectIntrinsicRound(I, MRI); |
| case TargetOpcode::G_BUILD_VECTOR: |
| return selectBuildVector(I, MRI); |
| case TargetOpcode::G_MERGE_VALUES: |
| return selectMergeValues(I, MRI); |
| case TargetOpcode::G_UNMERGE_VALUES: |
| return selectUnmergeValues(I, MRI); |
| case TargetOpcode::G_SHUFFLE_VECTOR: |
| return selectShuffleVector(I, MRI); |
| case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| return selectExtractElt(I, MRI); |
| case TargetOpcode::G_INSERT_VECTOR_ELT: |
| return selectInsertElt(I, MRI); |
| case TargetOpcode::G_CONCAT_VECTORS: |
| return selectConcatVectors(I, MRI); |
| case TargetOpcode::G_JUMP_TABLE: |
| return selectJumpTable(I, MRI); |
| case TargetOpcode::G_VECREDUCE_FADD: |
| case TargetOpcode::G_VECREDUCE_ADD: |
| return selectReduction(I, MRI); |
| } |
| |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectReduction(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| Register VecReg = I.getOperand(1).getReg(); |
| LLT VecTy = MRI.getType(VecReg); |
| if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) { |
| // For <2 x i32> ADDPv2i32 generates an FPR64 value, so we need to emit |
| // a subregister copy afterwards. |
| if (VecTy == LLT::fixed_vector(2, 32)) { |
| Register DstReg = I.getOperand(0).getReg(); |
| auto AddP = MIB.buildInstr(AArch64::ADDPv2i32, {&AArch64::FPR64RegClass}, |
| {VecReg, VecReg}); |
| auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}) |
| .addReg(AddP.getReg(0), 0, AArch64::ssub) |
| .getReg(0); |
| RBI.constrainGenericRegister(Copy, AArch64::FPR32RegClass, MRI); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*AddP, TII, TRI, RBI); |
| } |
| |
| unsigned Opc = 0; |
| if (VecTy == LLT::fixed_vector(16, 8)) |
| Opc = AArch64::ADDVv16i8v; |
| else if (VecTy == LLT::fixed_vector(8, 16)) |
| Opc = AArch64::ADDVv8i16v; |
| else if (VecTy == LLT::fixed_vector(4, 32)) |
| Opc = AArch64::ADDVv4i32v; |
| else if (VecTy == LLT::fixed_vector(2, 64)) |
| Opc = AArch64::ADDPv2i64p; |
| else { |
| LLVM_DEBUG(dbgs() << "Unhandled type for add reduction"); |
| return false; |
| } |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) { |
| unsigned Opc = 0; |
| if (VecTy == LLT::fixed_vector(2, 32)) |
| Opc = AArch64::FADDPv2i32p; |
| else if (VecTy == LLT::fixed_vector(2, 64)) |
| Opc = AArch64::FADDPv2i64p; |
| else { |
| LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction"); |
| return false; |
| } |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| return false; |
| } |
| |
| bool AArch64InstructionSelector::selectBrJT(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT"); |
| Register JTAddr = I.getOperand(0).getReg(); |
| unsigned JTI = I.getOperand(1).getIndex(); |
| Register Index = I.getOperand(2).getReg(); |
| |
| Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass); |
| |
| MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr); |
| auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32, |
| {TargetReg, ScratchReg}, {JTAddr, Index}) |
| .addJumpTableIndex(JTI); |
| // Build the indirect branch. |
| MIB.buildInstr(AArch64::BR, {}, {TargetReg}); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table"); |
| assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!"); |
| |
| Register DstReg = I.getOperand(0).getReg(); |
| unsigned JTI = I.getOperand(1).getIndex(); |
| // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later. |
| auto MovMI = |
| MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {}) |
| .addJumpTableIndex(JTI, AArch64II::MO_PAGE) |
| .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF); |
| I.eraseFromParent(); |
| return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::selectTLSGlobalValue( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| if (!STI.isTargetMachO()) |
| return false; |
| MachineFunction &MF = *I.getParent()->getParent(); |
| MF.getFrameInfo().setAdjustsStack(true); |
| |
| const auto &GlobalOp = I.getOperand(1); |
| assert(GlobalOp.getOffset() == 0 && |
| "Shouldn't have an offset on TLS globals!"); |
| const GlobalValue &GV = *GlobalOp.getGlobal(); |
| |
| auto LoadGOT = |
| MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {}) |
| .addGlobalAddress(&GV, 0, AArch64II::MO_TLS); |
| |
| auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass}, |
| {LoadGOT.getReg(0)}) |
| .addImm(0); |
| |
| MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0)); |
| // TLS calls preserve all registers except those that absolutely must be |
| // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be |
| // silly). |
| MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load}) |
| .addUse(AArch64::X0, RegState::Implicit) |
| .addDef(AArch64::X0, RegState::Implicit) |
| .addRegMask(TRI.getTLSCallPreservedMask()); |
| |
| MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0)); |
| RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass, |
| MRI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectIntrinsicTrunc( |
| MachineInstr &I, MachineRegisterInfo &MRI) const { |
| const LLT SrcTy = MRI.getType(I.getOperand(0).getReg()); |
| |
| // Select the correct opcode. |
| unsigned Opc = 0; |
| if (!SrcTy.isVector()) { |
| switch (SrcTy.getSizeInBits()) { |
| default: |
| case 16: |
| Opc = AArch64::FRINTZHr; |
| break; |
| case 32: |
| Opc = AArch64::FRINTZSr; |
| break; |
| case 64: |
| Opc = AArch64::FRINTZDr; |
| break; |
| } |
| } else { |
| unsigned NumElts = SrcTy.getNumElements(); |
| switch (SrcTy.getElementType().getSizeInBits()) { |
| default: |
| break; |
| case 16: |
| if (NumElts == 4) |
| Opc = AArch64::FRINTZv4f16; |
| else if (NumElts == 8) |
| Opc = AArch64::FRINTZv8f16; |
| break; |
| case 32: |
| if (NumElts == 2) |
| Opc = AArch64::FRINTZv2f32; |
| else if (NumElts == 4) |
| Opc = AArch64::FRINTZv4f32; |
| break; |
| case 64: |
| if (NumElts == 2) |
| Opc = AArch64::FRINTZv2f64; |
| break; |
| } |
| } |
| |
| if (!Opc) { |
| // Didn't get an opcode above, bail. |
| LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n"); |
| return false; |
| } |
| |
| // Legalization would have set us up perfectly for this; we just need to |
| // set the opcode and move on. |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::selectIntrinsicRound( |
| MachineInstr &I, MachineRegisterInfo &MRI) const { |
| const LLT SrcTy = MRI.getType(I.getOperand(0).getReg()); |
| |
| // Select the correct opcode. |
| unsigned Opc = 0; |
| if (!SrcTy.isVector()) { |
| switch (SrcTy.getSizeInBits()) { |
| default: |
| case 16: |
| Opc = AArch64::FRINTAHr; |
| break; |
| case 32: |
| Opc = AArch64::FRINTASr; |
| break; |
| case 64: |
| Opc = AArch64::FRINTADr; |
| break; |
| } |
| } else { |
| unsigned NumElts = SrcTy.getNumElements(); |
| switch (SrcTy.getElementType().getSizeInBits()) { |
| default: |
| break; |
| case 16: |
| if (NumElts == 4) |
| Opc = AArch64::FRINTAv4f16; |
| else if (NumElts == 8) |
| Opc = AArch64::FRINTAv8f16; |
| break; |
| case 32: |
| if (NumElts == 2) |
| Opc = AArch64::FRINTAv2f32; |
| else if (NumElts == 4) |
| Opc = AArch64::FRINTAv4f32; |
| break; |
| case 64: |
| if (NumElts == 2) |
| Opc = AArch64::FRINTAv2f64; |
| break; |
| } |
| } |
| |
| if (!Opc) { |
| // Didn't get an opcode above, bail. |
| LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n"); |
| return false; |
| } |
| |
| // Legalization would have set us up perfectly for this; we just need to |
| // set the opcode and move on. |
| I.setDesc(TII.get(Opc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool AArch64InstructionSelector::selectVectorICmp( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| Register DstReg = I.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| Register SrcReg = I.getOperand(2).getReg(); |
| Register Src2Reg = I.getOperand(3).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| |
| unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); |
| unsigned NumElts = DstTy.getNumElements(); |
| |
| // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b |
| // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16 |
| // Third index is cc opcode: |
| // 0 == eq |
| // 1 == ugt |
| // 2 == uge |
| // 3 == ult |
| // 4 == ule |
| // 5 == sgt |
| // 6 == sge |
| // 7 == slt |
| // 8 == sle |
| // ne is done by negating 'eq' result. |
| |
| // This table below assumes that for some comparisons the operands will be |
| // commuted. |
| // ult op == commute + ugt op |
| // ule op == commute + uge op |
| // slt op == commute + sgt op |
| // sle op == commute + sge op |
| unsigned PredIdx = 0; |
| bool SwapOperands = false; |
| CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate(); |
| switch (Pred) { |
| case CmpInst::ICMP_NE: |
| case CmpInst::ICMP_EQ: |
| PredIdx = 0; |
| break; |
| case CmpInst::ICMP_UGT: |
| PredIdx = 1; |
| break; |
| case CmpInst::ICMP_UGE: |
| PredIdx = 2; |
| break; |
| case CmpInst::ICMP_ULT: |
| PredIdx = 3; |
| SwapOperands = true; |
| break; |
| case CmpInst::ICMP_ULE: |
| PredIdx = 4; |
| SwapOperands = true; |
| break; |
| case CmpInst::ICMP_SGT: |
| PredIdx = 5; |
| break; |
| case CmpInst::ICMP_SGE: |
| PredIdx = 6; |
| break; |
| case CmpInst::ICMP_SLT: |
| PredIdx = 7; |
| SwapOperands = true; |
| break; |
| case CmpInst::ICMP_SLE: |
| PredIdx = 8; |
| SwapOperands = true; |
| break; |
| default: |
| llvm_unreachable("Unhandled icmp predicate"); |
| return false; |
| } |
| |
| // This table obviously should be tablegen'd when we have our GISel native |
| // tablegen selector. |
| |
| static const unsigned OpcTable[4][4][9] = { |
| { |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8, |
| AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8, |
| AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8}, |
| {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8, |
| AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8, |
| AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8} |
| }, |
| { |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16, |
| AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16, |
| AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16}, |
| {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16, |
| AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16, |
| AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */} |
| }, |
| { |
| {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32, |
| AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32, |
| AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32}, |
| {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32, |
| AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32, |
| AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */} |
| }, |
| { |
| {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64, |
| AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64, |
| AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */}, |
| {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, |
| 0 /* invalid */} |
| }, |
| }; |
| unsigned EltIdx = Log2_32(SrcEltSize / 8); |
| unsigned NumEltsIdx = Log2_32(NumElts / 2); |
| unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx]; |
| if (!Opc) { |
| LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode"); |
| return false; |
| } |
| |
| const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI); |
| const TargetRegisterClass *SrcRC = |
| getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true); |
| if (!SrcRC) { |
| LLVM_DEBUG(dbgs() << "Could not determine source register class.\n"); |
| return false; |
| } |
| |
| unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0; |
| if (SrcTy.getSizeInBits() == 128) |
| NotOpc = NotOpc ? AArch64::NOTv16i8 : 0; |
| |
| if (SwapOperands) |
| std::swap(SrcReg, Src2Reg); |
| |
| auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg}); |
| constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI); |
| |
| // Invert if we had a 'ne' cc. |
| if (NotOpc) { |
| Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp}); |
| constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI); |
| } else { |
| MIB.buildCopy(DstReg, Cmp.getReg(0)); |
| } |
| RBI.constrainGenericRegister(DstReg, *SrcRC, MRI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitScalarToVector( |
| unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar, |
| MachineIRBuilder &MIRBuilder) const { |
| auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {}); |
| |
| auto BuildFn = [&](unsigned SubregIndex) { |
| auto Ins = |
| MIRBuilder |
| .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar}) |
| .addImm(SubregIndex); |
| constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI); |
| return &*Ins; |
| }; |
| |
| switch (EltSize) { |
| case 16: |
| return BuildFn(AArch64::hsub); |
| case 32: |
| return BuildFn(AArch64::ssub); |
| case 64: |
| return BuildFn(AArch64::dsub); |
| default: |
| return nullptr; |
| } |
| } |
| |
| bool AArch64InstructionSelector::selectMergeValues( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode"); |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| const LLT SrcTy = MRI.getType(I.getOperand(1).getReg()); |
| assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation"); |
| const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI); |
| |
| if (I.getNumOperands() != 3) |
| return false; |
| |
| // Merging 2 s64s into an s128. |
| if (DstTy == LLT::scalar(128)) { |
| if (SrcTy.getSizeInBits() != 64) |
| return false; |
| Register DstReg = I.getOperand(0).getReg(); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {}); |
| MachineInstr *InsMI = |
| emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB); |
| if (!InsMI) |
| return false; |
| MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(), |
| Src2Reg, /* LaneIdx */ 1, RB, MIB); |
| if (!Ins2MI) |
| return false; |
| constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| if (RB.getID() != AArch64::GPRRegBankID) |
| return false; |
| |
| if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32) |
| return false; |
| |
| auto *DstRC = &AArch64::GPR64RegClass; |
| Register SubToRegDef = MRI.createVirtualRegister(DstRC); |
| MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG)) |
| .addDef(SubToRegDef) |
| .addImm(0) |
| .addUse(I.getOperand(1).getReg()) |
| .addImm(AArch64::sub_32); |
| Register SubToRegDef2 = MRI.createVirtualRegister(DstRC); |
| // Need to anyext the second scalar before we can use bfm |
| MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG)) |
| .addDef(SubToRegDef2) |
| .addImm(0) |
| .addUse(I.getOperand(2).getReg()) |
| .addImm(AArch64::sub_32); |
| MachineInstr &BFM = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri)) |
| .addDef(I.getOperand(0).getReg()) |
| .addUse(SubToRegDef) |
| .addUse(SubToRegDef2) |
| .addImm(32) |
| .addImm(31); |
| constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(BFM, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg, |
| const unsigned EltSize) { |
| // Choose a lane copy opcode and subregister based off of the size of the |
| // vector's elements. |
| switch (EltSize) { |
| case 16: |
| CopyOpc = AArch64::CPYi16; |
| ExtractSubReg = AArch64::hsub; |
| break; |
| case 32: |
| CopyOpc = AArch64::CPYi32; |
| ExtractSubReg = AArch64::ssub; |
| break; |
| case 64: |
| CopyOpc = AArch64::CPYi64; |
| ExtractSubReg = AArch64::dsub; |
| break; |
| default: |
| // Unknown size, bail out. |
| LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitExtractVectorElt( |
| Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy, |
| Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const { |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| unsigned CopyOpc = 0; |
| unsigned ExtractSubReg = 0; |
| if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) { |
| LLVM_DEBUG( |
| dbgs() << "Couldn't determine lane copy opcode for instruction.\n"); |
| return nullptr; |
| } |
| |
| const TargetRegisterClass *DstRC = |
| getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true); |
| if (!DstRC) { |
| LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n"); |
| return nullptr; |
| } |
| |
| const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI); |
| const LLT &VecTy = MRI.getType(VecReg); |
| const TargetRegisterClass *VecRC = |
| getRegClassForTypeOnBank(VecTy, VecRB, RBI, true); |
| if (!VecRC) { |
| LLVM_DEBUG(dbgs() << "Could not determine source register class.\n"); |
| return nullptr; |
| } |
| |
| // The register that we're going to copy into. |
| Register InsertReg = VecReg; |
| if (!DstReg) |
| DstReg = MRI.createVirtualRegister(DstRC); |
| // If the lane index is 0, we just use a subregister COPY. |
| if (LaneIdx == 0) { |
| auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {}) |
| .addReg(VecReg, 0, ExtractSubReg); |
| RBI.constrainGenericRegister(*DstReg, *DstRC, MRI); |
| return &*Copy; |
| } |
| |
| // Lane copies require 128-bit wide registers. If we're dealing with an |
| // unpacked vector, then we need to move up to that width. Insert an implicit |
| // def and a subregister insert to get us there. |
| if (VecTy.getSizeInBits() != 128) { |
| MachineInstr *ScalarToVector = emitScalarToVector( |
| VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder); |
| if (!ScalarToVector) |
| return nullptr; |
| InsertReg = ScalarToVector->getOperand(0).getReg(); |
| } |
| |
| MachineInstr *LaneCopyMI = |
| MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx); |
| constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI); |
| |
| // Make sure that we actually constrain the initial copy. |
| RBI.constrainGenericRegister(*DstReg, *DstRC, MRI); |
| return LaneCopyMI; |
| } |
| |
| bool AArch64InstructionSelector::selectExtractElt( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT && |
| "unexpected opcode!"); |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT NarrowTy = MRI.getType(DstReg); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| const LLT WideTy = MRI.getType(SrcReg); |
| (void)WideTy; |
| assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() && |
| "source register size too small!"); |
| assert(!NarrowTy.isVector() && "cannot extract vector into vector!"); |
| |
| // Need the lane index to determine the correct copy opcode. |
| MachineOperand &LaneIdxOp = I.getOperand(2); |
| assert(LaneIdxOp.isReg() && "Lane index operand was not a register?"); |
| |
| if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n"); |
| return false; |
| } |
| |
| // Find the index to extract from. |
| auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI); |
| if (!VRegAndVal) |
| return false; |
| unsigned LaneIdx = VRegAndVal->Value.getSExtValue(); |
| |
| |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg, |
| LaneIdx, MIB); |
| if (!Extract) |
| return false; |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectSplitVectorUnmerge( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| unsigned NumElts = I.getNumOperands() - 1; |
| Register SrcReg = I.getOperand(NumElts).getReg(); |
| const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg()); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| |
| assert(NarrowTy.isVector() && "Expected an unmerge into vectors"); |
| if (SrcTy.getSizeInBits() > 128) { |
| LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge"); |
| return false; |
| } |
| |
| // We implement a split vector operation by treating the sub-vectors as |
| // scalars and extracting them. |
| const RegisterBank &DstRB = |
| *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI); |
| for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) { |
| Register Dst = I.getOperand(OpIdx).getReg(); |
| MachineInstr *Extract = |
| emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB); |
| if (!Extract) |
| return false; |
| } |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && |
| "unexpected opcode"); |
| |
| // TODO: Handle unmerging into GPRs and from scalars to scalars. |
| if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() != |
| AArch64::FPRRegBankID || |
| RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() != |
| AArch64::FPRRegBankID) { |
| LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar " |
| "currently unsupported.\n"); |
| return false; |
| } |
| |
| // The last operand is the vector source register, and every other operand is |
| // a register to unpack into. |
| unsigned NumElts = I.getNumOperands() - 1; |
| Register SrcReg = I.getOperand(NumElts).getReg(); |
| const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg()); |
| const LLT WideTy = MRI.getType(SrcReg); |
| (void)WideTy; |
| assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) && |
| "can only unmerge from vector or s128 types!"); |
| assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() && |
| "source register size too small!"); |
| |
| if (!NarrowTy.isScalar()) |
| return selectSplitVectorUnmerge(I, MRI); |
| |
| // Choose a lane copy opcode and subregister based off of the size of the |
| // vector's elements. |
| unsigned CopyOpc = 0; |
| unsigned ExtractSubReg = 0; |
| if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits())) |
| return false; |
| |
| // Set up for the lane copies. |
| MachineBasicBlock &MBB = *I.getParent(); |
| |
| // Stores the registers we'll be copying from. |
| SmallVector<Register, 4> InsertRegs; |
| |
| // We'll use the first register twice, so we only need NumElts-1 registers. |
| unsigned NumInsertRegs = NumElts - 1; |
| |
| // If our elements fit into exactly 128 bits, then we can copy from the source |
| // directly. Otherwise, we need to do a bit of setup with some subregister |
| // inserts. |
| if (NarrowTy.getSizeInBits() * NumElts == 128) { |
| InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg); |
| } else { |
| // No. We have to perform subregister inserts. For each insert, create an |
| // implicit def and a subregister insert, and save the register we create. |
| const TargetRegisterClass *RC = |
| getMinClassForRegBank(*RBI.getRegBank(SrcReg, MRI, TRI), |
| WideTy.getScalarSizeInBits() * NumElts); |
| unsigned SubReg = 0; |
| bool Found = getSubRegForClass(RC, TRI, SubReg); |
| (void)Found; |
| assert(Found && "expected to find last operand's subeg idx"); |
| for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) { |
| Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass); |
| MachineInstr &ImpDefMI = |
| *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF), |
| ImpDefReg); |
| |
| // Now, create the subregister insert from SrcReg. |
| Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass); |
| MachineInstr &InsMI = |
| *BuildMI(MBB, I, I.getDebugLoc(), |
| TII.get(TargetOpcode::INSERT_SUBREG), InsertReg) |
| .addUse(ImpDefReg) |
| .addUse(SrcReg) |
| .addImm(SubReg); |
| |
| constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI); |
| |
| // Save the register so that we can copy from it after. |
| InsertRegs.push_back(InsertReg); |
| } |
| } |
| |
| // Now that we've created any necessary subregister inserts, we can |
| // create the copies. |
| // |
| // Perform the first copy separately as a subregister copy. |
| Register CopyTo = I.getOperand(0).getReg(); |
| auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {}) |
| .addReg(InsertRegs[0], 0, ExtractSubReg); |
| constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI); |
| |
| // Now, perform the remaining copies as vector lane copies. |
| unsigned LaneIdx = 1; |
| for (Register InsReg : InsertRegs) { |
| Register CopyTo = I.getOperand(LaneIdx).getReg(); |
| MachineInstr &CopyInst = |
| *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo) |
| .addUse(InsReg) |
| .addImm(LaneIdx); |
| constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI); |
| ++LaneIdx; |
| } |
| |
| // Separately constrain the first copy's destination. Because of the |
| // limitation in constrainOperandRegClass, we can't guarantee that this will |
| // actually be constrained. So, do it ourselves using the second operand. |
| const TargetRegisterClass *RC = |
| MRI.getRegClassOrNull(I.getOperand(1).getReg()); |
| if (!RC) { |
| LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n"); |
| return false; |
| } |
| |
| RBI.constrainGenericRegister(CopyTo, *RC, MRI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectConcatVectors( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && |
| "Unexpected opcode"); |
| Register Dst = I.getOperand(0).getReg(); |
| Register Op1 = I.getOperand(1).getReg(); |
| Register Op2 = I.getOperand(2).getReg(); |
| MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIB); |
| if (!ConcatMI) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| unsigned |
| AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal, |
| MachineFunction &MF) const { |
| Type *CPTy = CPVal->getType(); |
| Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy); |
| |
| MachineConstantPool *MCP = MF.getConstantPool(); |
| return MCP->getConstantPoolIndex(CPVal, Alignment); |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool( |
| const Constant *CPVal, MachineIRBuilder &MIRBuilder) const { |
| auto &MF = MIRBuilder.getMF(); |
| unsigned CPIdx = emitConstantPoolEntry(CPVal, MF); |
| |
| auto Adrp = |
| MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {}) |
| .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE); |
| |
| MachineInstr *LoadMI = nullptr; |
| MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF); |
| unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType()); |
| switch (Size) { |
| case 16: |
| LoadMI = |
| &*MIRBuilder |
| .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp}) |
| .addConstantPoolIndex(CPIdx, 0, |
| AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| break; |
| case 8: |
| LoadMI = |
| &*MIRBuilder |
| .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp}) |
| .addConstantPoolIndex(CPIdx, 0, |
| AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| break; |
| case 4: |
| LoadMI = |
| &*MIRBuilder |
| .buildInstr(AArch64::LDRSui, {&AArch64::FPR32RegClass}, {Adrp}) |
| .addConstantPoolIndex(CPIdx, 0, |
| AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| break; |
| default: |
| LLVM_DEBUG(dbgs() << "Could not load from constant pool of type " |
| << *CPVal->getType()); |
| return nullptr; |
| } |
| LoadMI->addMemOperand(MF, MF.getMachineMemOperand(PtrInfo, |
| MachineMemOperand::MOLoad, |
| Size, Align(Size))); |
| constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI); |
| return LoadMI; |
| } |
| |
| /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given |
| /// size and RB. |
| static std::pair<unsigned, unsigned> |
| getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) { |
| unsigned Opc, SubregIdx; |
| if (RB.getID() == AArch64::GPRRegBankID) { |
| if (EltSize == 16) { |
| Opc = AArch64::INSvi16gpr; |
| SubregIdx = AArch64::ssub; |
| } else if (EltSize == 32) { |
| Opc = AArch64::INSvi32gpr; |
| SubregIdx = AArch64::ssub; |
| } else if (EltSize == 64) { |
| Opc = AArch64::INSvi64gpr; |
| SubregIdx = AArch64::dsub; |
| } else { |
| llvm_unreachable("invalid elt size!"); |
| } |
| } else { |
| if (EltSize == 8) { |
| Opc = AArch64::INSvi8lane; |
| SubregIdx = AArch64::bsub; |
| } else if (EltSize == 16) { |
| Opc = AArch64::INSvi16lane; |
| SubregIdx = AArch64::hsub; |
| } else if (EltSize == 32) { |
| Opc = AArch64::INSvi32lane; |
| SubregIdx = AArch64::ssub; |
| } else if (EltSize == 64) { |
| Opc = AArch64::INSvi64lane; |
| SubregIdx = AArch64::dsub; |
| } else { |
| llvm_unreachable("invalid elt size!"); |
| } |
| } |
| return std::make_pair(Opc, SubregIdx); |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitInstr( |
| unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps, |
| std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder, |
| const ComplexRendererFns &RenderFns) const { |
| assert(Opcode && "Expected an opcode?"); |
| assert(!isPreISelGenericOpcode(Opcode) && |
| "Function should only be used to produce selected instructions!"); |
| auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps); |
| if (RenderFns) |
| for (auto &Fn : *RenderFns) |
| Fn(MI); |
| constrainSelectedInstRegOperands(*MI, TII, TRI, RBI); |
| return &*MI; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitAddSub( |
| const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, |
| Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| assert(LHS.isReg() && RHS.isReg() && "Expected register operands?"); |
| auto Ty = MRI.getType(LHS.getReg()); |
| assert(!Ty.isVector() && "Expected a scalar or pointer?"); |
| unsigned Size = Ty.getSizeInBits(); |
| assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only"); |
| bool Is32Bit = Size == 32; |
| |
| // INSTRri form with positive arithmetic immediate. |
| if (auto Fns = selectArithImmed(RHS)) |
| return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS}, |
| MIRBuilder, Fns); |
| |
| // INSTRri form with negative arithmetic immediate. |
| if (auto Fns = selectNegArithImmed(RHS)) |
| return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS}, |
| MIRBuilder, Fns); |
| |
| // INSTRrx form. |
| if (auto Fns = selectArithExtendedRegister(RHS)) |
| return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS}, |
| MIRBuilder, Fns); |
| |
| // INSTRrs form. |
| if (auto Fns = selectShiftedRegister(RHS)) |
| return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS}, |
| MIRBuilder, Fns); |
| return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS}, |
| MIRBuilder); |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| {{AArch64::ADDXri, AArch64::ADDWri}, |
| {AArch64::ADDXrs, AArch64::ADDWrs}, |
| {AArch64::ADDXrr, AArch64::ADDWrr}, |
| {AArch64::SUBXri, AArch64::SUBWri}, |
| {AArch64::ADDXrx, AArch64::ADDWrx}}}; |
| return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder); |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| {{AArch64::ADDSXri, AArch64::ADDSWri}, |
| {AArch64::ADDSXrs, AArch64::ADDSWrs}, |
| {AArch64::ADDSXrr, AArch64::ADDSWrr}, |
| {AArch64::SUBSXri, AArch64::SUBSWri}, |
| {AArch64::ADDSXrx, AArch64::ADDSWrx}}}; |
| return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder); |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| {{AArch64::SUBSXri, AArch64::SUBSWri}, |
| {AArch64::SUBSXrs, AArch64::SUBSWrs}, |
| {AArch64::SUBSXrr, AArch64::SUBSWrr}, |
| {AArch64::ADDSXri, AArch64::ADDSWri}, |
| {AArch64::SUBSXrx, AArch64::SUBSWrx}}}; |
| return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder); |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32); |
| auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass; |
| return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder); |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| assert(LHS.isReg() && RHS.isReg() && "Expected register operands?"); |
| MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| LLT Ty = MRI.getType(LHS.getReg()); |
| unsigned RegSize = Ty.getSizeInBits(); |
| bool Is32Bit = (RegSize == 32); |
| const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri}, |
| {AArch64::ANDSXrs, AArch64::ANDSWrs}, |
| {AArch64::ANDSXrr, AArch64::ANDSWrr}}; |
| // ANDS needs a logical immediate for its immediate form. Check if we can |
| // fold one in. |
| if (auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI)) { |
| int64_t Imm = ValAndVReg->Value.getSExtValue(); |
| |
| if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) { |
| auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS}); |
| TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize)); |
| constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI); |
| return &*TstMI; |
| } |
| } |
| |
| if (auto Fns = selectLogicalShiftedRegister(RHS)) |
| return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns); |
| return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder); |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitIntegerCompare( |
| MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const { |
| assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!"); |
| assert(Predicate.isPredicate() && "Expected predicate?"); |
| MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| LLT CmpTy = MRI.getType(LHS.getReg()); |
| assert(!CmpTy.isVector() && "Expected scalar or pointer"); |
| unsigned Size = CmpTy.getSizeInBits(); |
| (void)Size; |
| assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?"); |
| // Fold the compare into a cmn or tst if possible. |
| if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder)) |
| return FoldCmp; |
| auto Dst = MRI.cloneVirtualRegister(LHS.getReg()); |
| return emitSUBS(Dst, LHS, RHS, MIRBuilder); |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitCSetForFCmp( |
| Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const { |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| #ifndef NDEBUG |
| LLT Ty = MRI.getType(Dst); |
| assert(!Ty.isVector() && Ty.getSizeInBits() == 32 && |
| "Expected a 32-bit scalar register?"); |
| #endif |
| const Register ZeroReg = AArch64::WZR; |
| auto EmitCSet = [&](Register CsetDst, AArch64CC::CondCode CC) { |
| auto CSet = |
| MIRBuilder.buildInstr(AArch64::CSINCWr, {CsetDst}, {ZeroReg, ZeroReg}) |
| .addImm(getInvertedCondCode(CC)); |
| constrainSelectedInstRegOperands(*CSet, TII, TRI, RBI); |
| return &*CSet; |
| }; |
| |
| AArch64CC::CondCode CC1, CC2; |
| changeFCMPPredToAArch64CC(Pred, CC1, CC2); |
| if (CC2 == AArch64CC::AL) |
| return EmitCSet(Dst, CC1); |
| |
| const TargetRegisterClass *RC = &AArch64::GPR32RegClass; |
| Register Def1Reg = MRI.createVirtualRegister(RC); |
| Register Def2Reg = MRI.createVirtualRegister(RC); |
| EmitCSet(Def1Reg, CC1); |
| EmitCSet(Def2Reg, CC2); |
| auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg}); |
| constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI); |
| return &*OrMI; |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitFPCompare(Register LHS, Register RHS, |
| MachineIRBuilder &MIRBuilder, |
| Optional<CmpInst::Predicate> Pred) const { |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| LLT Ty = MRI.getType(LHS); |
| if (Ty.isVector()) |
| return nullptr; |
| unsigned OpSize = Ty.getSizeInBits(); |
| if (OpSize != 32 && OpSize != 64) |
| return nullptr; |
| |
| // If this is a compare against +0.0, then we don't have |
| // to explicitly materialize a constant. |
| const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI); |
| bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative()); |
| |
| auto IsEqualityPred = [](CmpInst::Predicate P) { |
| return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE || |
| P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE; |
| }; |
| if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) { |
| // Try commutating the operands. |
| const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI); |
| if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) { |
| ShouldUseImm = true; |
| std::swap(LHS, RHS); |
| } |
| } |
| unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr}, |
| {AArch64::FCMPSri, AArch64::FCMPDri}}; |
| unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64]; |
| |
| // Partially build the compare. Decide if we need to add a use for the |
| // third operand based off whether or not we're comparing against 0.0. |
| auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS); |
| if (!ShouldUseImm) |
| CmpMI.addUse(RHS); |
| constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI); |
| return &*CmpMI; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitVectorConcat( |
| Optional<Register> Dst, Register Op1, Register Op2, |
| MachineIRBuilder &MIRBuilder) const { |
| // We implement a vector concat by: |
| // 1. Use scalar_to_vector to insert the lower vector into the larger dest |
| // 2. Insert the upper vector into the destination's upper element |
| // TODO: some of this code is common with G_BUILD_VECTOR handling. |
| MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| |
| const LLT Op1Ty = MRI.getType(Op1); |
| const LLT Op2Ty = MRI.getType(Op2); |
| |
| if (Op1Ty != Op2Ty) { |
| LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys"); |
| return nullptr; |
| } |
| assert(Op1Ty.isVector() && "Expected a vector for vector concat"); |
| |
| if (Op1Ty.getSizeInBits() >= 128) { |
| LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors"); |
| return nullptr; |
| } |
| |
| // At the moment we just support 64 bit vector concats. |
| if (Op1Ty.getSizeInBits() != 64) { |
| LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors"); |
| return nullptr; |
| } |
| |
| const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits()); |
| const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI); |
| const TargetRegisterClass *DstRC = |
| getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2); |
| |
| MachineInstr *WidenedOp1 = |
| emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder); |
| MachineInstr *WidenedOp2 = |
| emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder); |
| if (!WidenedOp1 || !WidenedOp2) { |
| LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value"); |
| return nullptr; |
| } |
| |
| // Now do the insert of the upper element. |
| unsigned InsertOpc, InsSubRegIdx; |
| std::tie(InsertOpc, InsSubRegIdx) = |
| getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits()); |
| |
| if (!Dst) |
| Dst = MRI.createVirtualRegister(DstRC); |
| auto InsElt = |
| MIRBuilder |
| .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()}) |
| .addImm(1) /* Lane index */ |
| .addUse(WidenedOp2->getOperand(0).getReg()) |
| .addImm(0); |
| constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI); |
| return &*InsElt; |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred, |
| MachineIRBuilder &MIRBuilder, |
| Register SrcReg) const { |
| // CSINC increments the result when the predicate is false. Invert it. |
| const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC( |
| CmpInst::getInversePredicate((CmpInst::Predicate)Pred)); |
| auto I = MIRBuilder.buildInstr(AArch64::CSINCWr, {DefReg}, {SrcReg, SrcReg}) |
| .addImm(InvCC); |
| constrainSelectedInstRegOperands(*I, TII, TRI, RBI); |
| return &*I; |
| } |
| |
| std::pair<MachineInstr *, AArch64CC::CondCode> |
| AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst, |
| MachineOperand &LHS, |
| MachineOperand &RHS, |
| MachineIRBuilder &MIRBuilder) const { |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Unexpected opcode!"); |
| case TargetOpcode::G_SADDO: |
| return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS); |
| case TargetOpcode::G_UADDO: |
| return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS); |
| case TargetOpcode::G_SSUBO: |
| return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS); |
| case TargetOpcode::G_USUBO: |
| return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO); |
| } |
| } |
| |
| bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| // We want to recognize this pattern: |
| // |
| // $z = G_FCMP pred, $x, $y |
| // ... |
| // $w = G_SELECT $z, $a, $b |
| // |
| // Where the value of $z is *only* ever used by the G_SELECT (possibly with |
| // some copies/truncs in between.) |
| // |
| // If we see this, then we can emit something like this: |
| // |
| // fcmp $x, $y |
| // fcsel $w, $a, $b, pred |
| // |
| // Rather than emitting both of the rather long sequences in the standard |
| // G_FCMP/G_SELECT select methods. |
| |
| // First, check if the condition is defined by a compare. |
| MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg()); |
| while (CondDef) { |
| // We can only fold if all of the defs have one use. |
| Register CondDefReg = CondDef->getOperand(0).getReg(); |
| if (!MRI.hasOneNonDBGUse(CondDefReg)) { |
| // Unless it's another select. |
| for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) { |
| if (CondDef == &UI) |
| continue; |
| if (UI.getOpcode() != TargetOpcode::G_SELECT) |
| return false; |
| } |
| } |
| |
| // We can skip over G_TRUNC since the condition is 1-bit. |
| // Truncating/extending can have no impact on the value. |
| unsigned Opc = CondDef->getOpcode(); |
| if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC) |
| break; |
| |
| // Can't see past copies from physregs. |
| if (Opc == TargetOpcode::COPY && |
| Register::isPhysicalRegister(CondDef->getOperand(1).getReg())) |
| return false; |
| |
| CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg()); |
| } |
| |
| // Is the condition defined by a compare? |
| if (!CondDef) |
| return false; |
| |
| unsigned CondOpc = CondDef->getOpcode(); |
| if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP) |
| return false; |
| |
| AArch64CC::CondCode CondCode; |
| if (CondOpc == TargetOpcode::G_ICMP) { |
| auto Pred = |
| static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate()); |
| CondCode = changeICMPPredToAArch64CC(Pred); |
| emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3), |
| CondDef->getOperand(1), MIB); |
| } else { |
| // Get the condition code for the select. |
| auto Pred = |
| static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate()); |
| AArch64CC::CondCode CondCode2; |
| changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2); |
| |
| // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two |
| // instructions to emit the comparison. |
| // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be |
| // unnecessary. |
| if (CondCode2 != AArch64CC::AL) |
| return false; |
| |
| if (!emitFPCompare(CondDef->getOperand(2).getReg(), |
| CondDef->getOperand(3).getReg(), MIB)) { |
| LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n"); |
| return false; |
| } |
| } |
| |
| // Emit the select. |
| emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(), |
| I.getOperand(3).getReg(), CondCode, MIB); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare( |
| MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate, |
| MachineIRBuilder &MIRBuilder) const { |
| assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() && |
| "Unexpected MachineOperand"); |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| // We want to find this sort of thing: |
| // x = G_SUB 0, y |
| // G_ICMP z, x |
| // |
| // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead. |
| // e.g: |
| // |
| // cmn z, y |
| |
| // Check if the RHS or LHS of the G_ICMP is defined by a SUB |
| MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI); |
| MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI); |
| auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate()); |
| // Given this: |
| // |
| // x = G_SUB 0, y |
| // G_ICMP x, z |
| // |
| // Produce this: |
| // |
| // cmn y, z |
| if (isCMN(LHSDef, P, MRI)) |
| return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder); |
| |
| // Same idea here, but with the RHS of the compare instead: |
| // |
| // Given this: |
| // |
| // x = G_SUB 0, y |
| // G_ICMP z, x |
| // |
| // Produce this: |
| // |
| // cmn z, y |
| if (isCMN(RHSDef, P, MRI)) |
| return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder); |
| |
| // Given this: |
| // |
| // z = G_AND x, y |
| // G_ICMP z, 0 |
| // |
| // Produce this if the compare is signed: |
| // |
| // tst x, y |
| if (!CmpInst::isUnsigned(P) && LHSDef && |
| LHSDef->getOpcode() == TargetOpcode::G_AND) { |
| // Make sure that the RHS is 0. |
| auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI); |
| if (!ValAndVReg || ValAndVReg->Value != 0) |
| return nullptr; |
| |
| return emitTST(LHSDef->getOperand(1), |
| LHSDef->getOperand(2), MIRBuilder); |
| } |
| |
| return nullptr; |
| } |
| |
| bool AArch64InstructionSelector::selectShuffleVector( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| Register Src1Reg = I.getOperand(1).getReg(); |
| const LLT Src1Ty = MRI.getType(Src1Reg); |
| Register Src2Reg = I.getOperand(2).getReg(); |
| const LLT Src2Ty = MRI.getType(Src2Reg); |
| ArrayRef<int> Mask = I.getOperand(3).getShuffleMask(); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| |
| // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if |
| // it's originated from a <1 x T> type. Those should have been lowered into |
| // G_BUILD_VECTOR earlier. |
| if (!Src1Ty.isVector() || !Src2Ty.isVector()) { |
| LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n"); |
| return false; |
| } |
| |
| unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8; |
| |
| SmallVector<Constant *, 64> CstIdxs; |
| for (int Val : Mask) { |
| // For now, any undef indexes we'll just assume to be 0. This should be |
| // optimized in future, e.g. to select DUP etc. |
| Val = Val < 0 ? 0 : Val; |
| for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { |
| unsigned Offset = Byte + Val * BytesPerElt; |
| CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset)); |
| } |
| } |
| |
| // Use a constant pool to load the index vector for TBL. |
| Constant *CPVal = ConstantVector::get(CstIdxs); |
| MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIB); |
| if (!IndexLoad) { |
| LLVM_DEBUG(dbgs() << "Could not load from a constant pool"); |
| return false; |
| } |
| |
| if (DstTy.getSizeInBits() != 128) { |
| assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty"); |
| // This case can be done with TBL1. |
| MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIB); |
| if (!Concat) { |
| LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1"); |
| return false; |
| } |
| |
| // The constant pool load will be 64 bits, so need to convert to FPR128 reg. |
| IndexLoad = emitScalarToVector(64, &AArch64::FPR128RegClass, |
| IndexLoad->getOperand(0).getReg(), MIB); |
| |
| auto TBL1 = MIB.buildInstr( |
| AArch64::TBLv16i8One, {&AArch64::FPR128RegClass}, |
| {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()}); |
| constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI); |
| |
| auto Copy = |
| MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {}) |
| .addReg(TBL1.getReg(0), 0, AArch64::dsub); |
| RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive |
| // Q registers for regalloc. |
| SmallVector<Register, 2> Regs = {Src1Reg, Src2Reg}; |
| auto RegSeq = createQTuple(Regs, MIB); |
| auto TBL2 = MIB.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)}, |
| {RegSeq, IndexLoad->getOperand(0)}); |
| constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| MachineInstr *AArch64InstructionSelector::emitLaneInsert( |
| Optional<Register> DstReg, Register SrcReg, Register EltReg, |
| unsigned LaneIdx, const RegisterBank &RB, |
| MachineIRBuilder &MIRBuilder) const { |
| MachineInstr *InsElt = nullptr; |
| const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; |
| MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| |
| // Create a register to define with the insert if one wasn't passed in. |
| if (!DstReg) |
| DstReg = MRI.createVirtualRegister(DstRC); |
| |
| unsigned EltSize = MRI.getType(EltReg).getSizeInBits(); |
| unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first; |
| |
| if (RB.getID() == AArch64::FPRRegBankID) { |
| auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder); |
| InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg}) |
| .addImm(LaneIdx) |
| .addUse(InsSub->getOperand(0).getReg()) |
| .addImm(0); |
| } else { |
| InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg}) |
| .addImm(LaneIdx) |
| .addUse(EltReg); |
| } |
| |
| constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI); |
| return InsElt; |
| } |
| |
| bool AArch64InstructionSelector::selectInsertElt(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT); |
| |
| // Get information on the destination. |
| Register DstReg = I.getOperand(0).getReg(); |
| const LLT DstTy = MRI.getType(DstReg); |
| unsigned VecSize = DstTy.getSizeInBits(); |
| |
| // Get information on the element we want to insert into the destination. |
| Register EltReg = I.getOperand(2).getReg(); |
| const LLT EltTy = MRI.getType(EltReg); |
| unsigned EltSize = EltTy.getSizeInBits(); |
| if (EltSize < 16 || EltSize > 64) |
| return false; // Don't support all element types yet. |
| |
| // Find the definition of the index. Bail out if it's not defined by a |
| // G_CONSTANT. |
| Register IdxReg = I.getOperand(3).getReg(); |
| auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI); |
| if (!VRegAndVal) |
| return false; |
| unsigned LaneIdx = VRegAndVal->Value.getSExtValue(); |
| |
| // Perform the lane insert. |
| Register SrcReg = I.getOperand(1).getReg(); |
| const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI); |
| |
| if (VecSize < 128) { |
| // If the vector we're inserting into is smaller than 128 bits, widen it |
| // to 128 to do the insert. |
| MachineInstr *ScalarToVec = |
| emitScalarToVector(VecSize, &AArch64::FPR128RegClass, SrcReg, MIB); |
| if (!ScalarToVec) |
| return false; |
| SrcReg = ScalarToVec->getOperand(0).getReg(); |
| } |
| |
| // Create an insert into a new FPR128 register. |
| // Note that if our vector is already 128 bits, we end up emitting an extra |
| // register. |
| MachineInstr *InsMI = |
| emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIB); |
| |
| if (VecSize < 128) { |
| // If we had to widen to perform the insert, then we have to demote back to |
| // the original size to get the result we want. |
| Register DemoteVec = InsMI->getOperand(0).getReg(); |
| const TargetRegisterClass *RC = |
| getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize); |
| if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { |
| LLVM_DEBUG(dbgs() << "Unsupported register class!\n"); |
| return false; |
| } |
| unsigned SubReg = 0; |
| if (!getSubRegForClass(RC, TRI, SubReg)) |
| return false; |
| if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { |
| LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize |
| << "\n"); |
| return false; |
| } |
| MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}) |
| .addReg(DemoteVec, 0, SubReg); |
| RBI.constrainGenericRegister(DstReg, *RC, MRI); |
| } else { |
| // No widening needed. |
| InsMI->getOperand(0).setReg(DstReg); |
| constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI); |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| MachineInstr * |
| AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV, |
| MachineIRBuilder &MIRBuilder, |
| MachineRegisterInfo &MRI) { |
| LLT DstTy = MRI.getType(Dst); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| if (CV->isNullValue()) { |
| if (DstSize == 128) { |
| auto Mov = |
| MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0); |
| constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI); |
| return &*Mov; |
| } |
| |
| if (DstSize == 64) { |
| auto Mov = |
| MIRBuilder |
| .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {}) |
| .addImm(0); |
| auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {}) |
| .addReg(Mov.getReg(0), 0, AArch64::dsub); |
| RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI); |
| return &*Copy; |
| } |
| } |
| |
| auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder); |
| if (!CPLoad) { |
| LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!"); |
| return nullptr; |
| } |
| |
| auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0)); |
| RBI.constrainGenericRegister( |
| Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI); |
| return &*Copy; |
| } |
| |
| bool AArch64InstructionSelector::tryOptConstantBuildVec( |
| MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| assert(DstSize <= 128 && "Unexpected build_vec type!"); |
| if (DstSize < 32) |
| return false; |
| // Check if we're building a constant vector, in which case we want to |
| // generate a constant pool load instead of a vector insert sequence. |
| SmallVector<Constant *, 16> Csts; |
| for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) { |
| // Try to find G_CONSTANT or G_FCONSTANT |
| auto *OpMI = |
| getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI); |
| if (OpMI) |
| Csts.emplace_back( |
| const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm())); |
| else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT, |
| I.getOperand(Idx).getReg(), MRI))) |
| Csts.emplace_back( |
| const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm())); |
| else |
| return false; |
| } |
| Constant *CV = ConstantVector::get(Csts); |
| if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI)) |
| return false; |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR); |
| // Until we port more of the optimized selections, for now just use a vector |
| // insert sequence. |
| const LLT DstTy = MRI.getType(I.getOperand(0).getReg()); |
| const LLT EltTy = MRI.getType(I.getOperand(1).getReg()); |
| unsigned EltSize = EltTy.getSizeInBits(); |
| |
| if (tryOptConstantBuildVec(I, DstTy, MRI)) |
| return true; |
| if (EltSize < 16 || EltSize > 64) |
| return false; // Don't support all element types yet. |
| const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI); |
| |
| const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; |
| MachineInstr *ScalarToVec = |
| emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC, |
| I.getOperand(1).getReg(), MIB); |
| if (!ScalarToVec) |
| return false; |
| |
| Register DstVec = ScalarToVec->getOperand(0).getReg(); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| |
| // Keep track of the last MI we inserted. Later on, we might be able to save |
| // a copy using it. |
| MachineInstr *PrevMI = nullptr; |
| for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) { |
| // Note that if we don't do a subregister copy, we can end up making an |
| // extra register. |
| PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB, |
| MIB); |
| DstVec = PrevMI->getOperand(0).getReg(); |
| } |
| |
| // If DstTy's size in bits is less than 128, then emit a subregister copy |
| // from DstVec to the last register we've defined. |
| if (DstSize < 128) { |
| // Force this to be FPR using the destination vector. |
| const TargetRegisterClass *RC = |
| getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize); |
| if (!RC) |
| return false; |
| if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { |
| LLVM_DEBUG(dbgs() << "Unsupported register class!\n"); |
| return false; |
| } |
| |
| unsigned SubReg = 0; |
| if (!getSubRegForClass(RC, TRI, SubReg)) |
| return false; |
| if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { |
| LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize |
| << "\n"); |
| return false; |
| } |
| |
| Register Reg = MRI.createVirtualRegister(RC); |
| Register DstReg = I.getOperand(0).getReg(); |
| |
| MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}).addReg(DstVec, 0, SubReg); |
| MachineOperand &RegOp = I.getOperand(1); |
| RegOp.setReg(Reg); |
| RBI.constrainGenericRegister(DstReg, *RC, MRI); |
| } else { |
| // We don't need a subregister copy. Save a copy by re-using the |
| // destination register on the final insert. |
| assert(PrevMI && "PrevMI was null?"); |
| PrevMI->getOperand(0).setReg(I.getOperand(0).getReg()); |
| constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI); |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the |
| /// ID if it exists, and 0 otherwise. |
| static unsigned findIntrinsicID(MachineInstr &I) { |
| auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) { |
| return Op.isIntrinsicID(); |
| }); |
| if (IntrinOp == I.operands_end()) |
| return 0; |
| return IntrinOp->getIntrinsicID(); |
| } |
| |
| bool AArch64InstructionSelector::selectIntrinsicWithSideEffects( |
| MachineInstr &I, MachineRegisterInfo &MRI) { |
| // Find the intrinsic ID. |
| unsigned IntrinID = findIntrinsicID(I); |
| if (!IntrinID) |
| return false; |
| |
| // Select the instruction. |
| switch (IntrinID) { |
| default: |
| return false; |
| case Intrinsic::aarch64_ldxp: |
| case Intrinsic::aarch64_ldaxp: { |
| auto NewI = MIB.buildInstr( |
| IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX, |
| {I.getOperand(0).getReg(), I.getOperand(1).getReg()}, |
| {I.getOperand(3)}); |
| NewI.cloneMemRefs(I); |
| constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI); |
| break; |
| } |
| case Intrinsic::trap: |
| MIB.buildInstr(AArch64::BRK, {}, {}).addImm(1); |
| break; |
| case Intrinsic::debugtrap: |
| MIB.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000); |
| break; |
| case Intrinsic::ubsantrap: |
| MIB.buildInstr(AArch64::BRK, {}, {}) |
| .addImm(I.getOperand(1).getImm() | ('U' << 8)); |
| break; |
| case Intrinsic::aarch64_neon_st2: { |
| Register Src1 = I.getOperand(1).getReg(); |
| Register Src2 = I.getOperand(2).getReg(); |
| Register Ptr = I.getOperand(3).getReg(); |
| LLT Ty = MRI.getType(Src1); |
| const LLT S8 = LLT::scalar(8); |
| const LLT S16 = LLT::scalar(16); |
| const LLT S32 = LLT::scalar(32); |
| const LLT S64 = LLT::scalar(64); |
| const LLT P0 = LLT::pointer(0, 64); |
| unsigned Opc; |
| if (Ty == LLT::fixed_vector(8, S8)) |
| Opc = AArch64::ST2Twov8b; |
| else if (Ty == LLT::fixed_vector(16, S8)) |
| Opc = AArch64::ST2Twov16b; |
| else if (Ty == LLT::fixed_vector(4, S16)) |
| Opc = AArch64::ST2Twov4h; |
| else if (Ty == LLT::fixed_vector(8, S16)) |
| Opc = AArch64::ST2Twov8h; |
| else if (Ty == LLT::fixed_vector(2, S32)) |
| Opc = AArch64::ST2Twov2s; |
| else if (Ty == LLT::fixed_vector(4, S32)) |
| Opc = AArch64::ST2Twov4s; |
| else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0)) |
| Opc = AArch64::ST2Twov2d; |
| else if (Ty == S64 || Ty == P0) |
| Opc = AArch64::ST1Twov1d; |
| else |
| llvm_unreachable("Unexpected type for st2!"); |
| SmallVector<Register, 2> Regs = {Src1, Src2}; |
| Register Tuple = Ty.getSizeInBits() == 128 ? createQTuple(Regs, MIB) |
| : createDTuple(Regs, MIB); |
| auto Store = MIB.buildInstr(Opc, {}, {Tuple, Ptr}); |
| Store.cloneMemRefs(I); |
| constrainSelectedInstRegOperands(*Store, TII, TRI, RBI); |
| break; |
| } |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I, |
| MachineRegisterInfo &MRI) { |
| unsigned IntrinID = findIntrinsicID(I); |
| if (!IntrinID) |
| return false; |
| |
| switch (IntrinID) { |
| default: |
| break; |
| case Intrinsic::aarch64_crypto_sha1h: { |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg = I.getOperand(2).getReg(); |
| |
| // FIXME: Should this be an assert? |
| if (MRI.getType(DstReg).getSizeInBits() != 32 || |
| MRI.getType(SrcReg).getSizeInBits() != 32) |
| return false; |
| |
| // The operation has to happen on FPRs. Set up some new FPR registers for |
| // the source and destination if they are on GPRs. |
| if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) { |
| SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass); |
| MIB.buildCopy({SrcReg}, {I.getOperand(2)}); |
| |
| // Make sure the copy ends up getting constrained properly. |
| RBI.constrainGenericRegister(I.getOperand(2).getReg(), |
| AArch64::GPR32RegClass, MRI); |
| } |
| |
| if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) |
| DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass); |
| |
| // Actually insert the instruction. |
| auto SHA1Inst = MIB.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg}); |
| constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI); |
| |
| // Did we create a new register for the destination? |
| if (DstReg != I.getOperand(0).getReg()) { |
| // Yep. Copy the result of the instruction back into the original |
| // destination. |
| MIB.buildCopy({I.getOperand(0)}, {DstReg}); |
| RBI.constrainGenericRegister(I.getOperand(0).getReg(), |
| AArch64::GPR32RegClass, MRI); |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| case Intrinsic::frameaddress: |
| case Intrinsic::returnaddress: { |
| MachineFunction &MF = *I.getParent()->getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| unsigned Depth = I.getOperand(2).getImm(); |
| Register DstReg = I.getOperand(0).getReg(); |
| RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI); |
| |
| if (Depth == 0 && IntrinID == Intrinsic::returnaddress) { |
| if (!MFReturnAddr) { |
| // Insert the copy from LR/X30 into the entry block, before it can be |
| // clobbered by anything. |
| MFI.setReturnAddressIsTaken(true); |
| MFReturnAddr = getFunctionLiveInPhysReg(MF, TII, AArch64::LR, |
| AArch64::GPR64RegClass); |
| } |
| |
| if (STI.hasPAuth()) { |
| MIB.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr}); |
| } else { |
| MIB.buildCopy({Register(AArch64::LR)}, {MFReturnAddr}); |
| MIB.buildInstr(AArch64::XPACLRI); |
| MIB.buildCopy({DstReg}, {Register(AArch64::LR)}); |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| MFI.setFrameAddressIsTaken(true); |
| Register FrameAddr(AArch64::FP); |
| while (Depth--) { |
| Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass); |
| auto Ldr = |
| MIB.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr}).addImm(0); |
| constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI); |
| FrameAddr = NextFrame; |
| } |
| |
| if (IntrinID == Intrinsic::frameaddress) |
| MIB.buildCopy({DstReg}, {FrameAddr}); |
| else { |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (STI.hasPAuth()) { |
| Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| MIB.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1); |
| MIB.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg}); |
| } else { |
| MIB.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr}) |
| .addImm(1); |
| MIB.buildInstr(AArch64::XPACLRI); |
| MIB.buildCopy({DstReg}, {Register(AArch64::LR)}); |
| } |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| case Intrinsic::swift_async_context_addr: |
| auto Sub = MIB.buildInstr(AArch64::SUBXri, {I.getOperand(0).getReg()}, |
| {Register(AArch64::FP)}) |
| .addImm(8) |
| .addImm(0); |
| constrainSelectedInstRegOperands(*Sub, TII, TRI, RBI); |
| |
| MF->getFrameInfo().setFrameAddressIsTaken(true); |
| MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); |
| I.eraseFromParent(); |
| return true; |
| } |
| return false; |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const { |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None || *MaybeImmed > 31) |
| return None; |
| uint64_t Enc = (32 - *MaybeImmed) & 0x1f; |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}}; |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const { |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None || *MaybeImmed > 31) |
| return None; |
| uint64_t Enc = 31 - *MaybeImmed; |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}}; |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const { |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None || *MaybeImmed > 63) |
| return None; |
| uint64_t Enc = (64 - *MaybeImmed) & 0x3f; |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}}; |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const { |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None || *MaybeImmed > 63) |
| return None; |
| uint64_t Enc = 63 - *MaybeImmed; |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}}; |
| } |
| |
| /// Helper to select an immediate value that can be represented as a 12-bit |
| /// value shifted left by either 0 or 12. If it is possible to do so, return |
| /// the immediate and shift value. If not, return None. |
| /// |
| /// Used by selectArithImmed and selectNegArithImmed. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::select12BitValueWithLeftShift( |
| uint64_t Immed) const { |
| unsigned ShiftAmt; |
| if (Immed >> 12 == 0) { |
| ShiftAmt = 0; |
| } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { |
| ShiftAmt = 12; |
| Immed = Immed >> 12; |
| } else |
| return None; |
| |
| unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt); |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); }, |
| }}; |
| } |
| |
| /// SelectArithImmed - Select an immediate value that can be represented as |
| /// a 12-bit value shifted left by either 0 or 12. If so, return true with |
| /// Val set to the 12-bit value and Shift set to the shifter operand. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const { |
| // This function is called from the addsub_shifted_imm ComplexPattern, |
| // which lists [imm] as the list of opcode it's interested in, however |
| // we still need to check whether the operand is actually an immediate |
| // here because the ComplexPattern opcode list is only used in |
| // root-level opcode matching. |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None) |
| return None; |
| return select12BitValueWithLeftShift(*MaybeImmed); |
| } |
| |
| /// SelectNegArithImmed - As above, but negates the value before trying to |
| /// select it. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const { |
| // We need a register here, because we need to know if we have a 64 or 32 |
| // bit immediate. |
| if (!Root.isReg()) |
| return None; |
| auto MaybeImmed = getImmedFromMO(Root); |
| if (MaybeImmed == None) |
| return None; |
| uint64_t Immed = *MaybeImmed; |
| |
| // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0" |
| // have the opposite effect on the C flag, so this pattern mustn't match under |
| // those circumstances. |
| if (Immed == 0) |
| return None; |
| |
| // Check if we're dealing with a 32-bit type on the root or a 64-bit type on |
| // the root. |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| if (MRI.getType(Root.getReg()).getSizeInBits() == 32) |
| Immed = ~((uint32_t)Immed) + 1; |
| else |
| Immed = ~Immed + 1ULL; |
| |
| if (Immed & 0xFFFFFFFFFF000000ULL) |
| return None; |
| |
| Immed &= 0xFFFFFFULL; |
| return select12BitValueWithLeftShift(Immed); |
| } |
| |
| /// Return true if it is worth folding MI into an extended register. That is, |
| /// if it's safe to pull it into the addressing mode of a load or store as a |
| /// shift. |
| bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg( |
| MachineInstr &MI, const MachineRegisterInfo &MRI) const { |
| // Always fold if there is one use, or if we're optimizing for size. |
| Register DefReg = MI.getOperand(0).getReg(); |
| if (MRI.hasOneNonDBGUse(DefReg) || |
| MI.getParent()->getParent()->getFunction().hasOptSize()) |
| return true; |
| |
| // It's better to avoid folding and recomputing shifts when we don't have a |
| // fastpath. |
| if (!STI.hasLSLFast()) |
| return false; |
| |
| // We have a fastpath, so folding a shift in and potentially computing it |
| // many times may be beneficial. Check if this is only used in memory ops. |
| // If it is, then we should fold. |
| return all_of(MRI.use_nodbg_instructions(DefReg), |
| [](MachineInstr &Use) { return Use.mayLoadOrStore(); }); |
| } |
| |
| static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) { |
| switch (Type) { |
| case AArch64_AM::SXTB: |
| case AArch64_AM::SXTH: |
| case AArch64_AM::SXTW: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectExtendedSHL( |
| MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset, |
| unsigned SizeInBytes, bool WantsExt) const { |
| assert(Base.isReg() && "Expected base to be a register operand"); |
| assert(Offset.isReg() && "Expected offset to be a register operand"); |
| |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg()); |
| if (!OffsetInst) |
| return None; |
| |
| unsigned OffsetOpc = OffsetInst->getOpcode(); |
| bool LookedThroughZExt = false; |
| if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) { |
| // Try to look through a ZEXT. |
| if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt) |
| return None; |
| |
| OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg()); |
| OffsetOpc = OffsetInst->getOpcode(); |
| LookedThroughZExt = true; |
| |
| if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) |
| return None; |
| } |
| // Make sure that the memory op is a valid size. |
| int64_t LegalShiftVal = Log2_32(SizeInBytes); |
| if (LegalShiftVal == 0) |
| return None; |
| if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI)) |
| return None; |
| |
| // Now, try to find the specific G_CONSTANT. Start by assuming that the |
| // register we will offset is the LHS, and the register containing the |
| // constant is the RHS. |
| Register OffsetReg = OffsetInst->getOperand(1).getReg(); |
| Register ConstantReg = OffsetInst->getOperand(2).getReg(); |
| auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI); |
| if (!ValAndVReg) { |
| // We didn't get a constant on the RHS. If the opcode is a shift, then |
| // we're done. |
| if (OffsetOpc == TargetOpcode::G_SHL) |
| return None; |
| |
| // If we have a G_MUL, we can use either register. Try looking at the RHS. |
| std::swap(OffsetReg, ConstantReg); |
| ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI); |
| if (!ValAndVReg) |
| return None; |
| } |
| |
| // The value must fit into 3 bits, and must be positive. Make sure that is |
| // true. |
| int64_t ImmVal = ValAndVReg->Value.getSExtValue(); |
| |
| // Since we're going to pull this into a shift, the constant value must be |
| // a power of 2. If we got a multiply, then we need to check this. |
| if (OffsetOpc == TargetOpcode::G_MUL) { |
| if (!isPowerOf2_32(ImmVal)) |
| return None; |
| |
| // Got a power of 2. So, the amount we'll shift is the log base-2 of that. |
| ImmVal = Log2_32(ImmVal); |
| } |
| |
| if ((ImmVal & 0x7) != ImmVal) |
| return None; |
| |
| // We are only allowed to shift by LegalShiftVal. This shift value is built |
| // into the instruction, so we can't just use whatever we want. |
| if (ImmVal != LegalShiftVal) |
| return None; |
| |
| unsigned SignExtend = 0; |
| if (WantsExt) { |
| // Check if the offset is defined by an extend, unless we looked through a |
| // G_ZEXT earlier. |
| if (!LookedThroughZExt) { |
| MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI); |
| auto Ext = getExtendTypeForInst(*ExtInst, MRI, true); |
| if (Ext == AArch64_AM::InvalidShiftExtend) |
| return None; |
| |
| SignExtend = isSignExtendShiftType(Ext) ? 1 : 0; |
| // We only support SXTW for signed extension here. |
| if (SignExtend && Ext != AArch64_AM::SXTW) |
| return None; |
| OffsetReg = ExtInst->getOperand(1).getReg(); |
| } |
| |
| // Need a 32-bit wide register here. |
| MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg())); |
| OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB); |
| } |
| |
| // We can use the LHS of the GEP as the base, and the LHS of the shift as an |
| // offset. Signify that we are shifting by setting the shift flag to 1. |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); }, |
| [=](MachineInstrBuilder &MIB) { |
| // Need to add both immediates here to make sure that they are both |
| // added to the instruction. |
| MIB.addImm(SignExtend); |
| MIB.addImm(1); |
| }}}; |
| } |
| |
| /// This is used for computing addresses like this: |
| /// |
| /// ldr x1, [x2, x3, lsl #3] |
| /// |
| /// Where x2 is the base register, and x3 is an offset register. The shift-left |
| /// is a constant value specific to this load instruction. That is, we'll never |
| /// see anything other than a 3 here (which corresponds to the size of the |
| /// element being loaded.) |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeShiftedExtendXReg( |
| MachineOperand &Root, unsigned SizeInBytes) const { |
| if (!Root.isReg()) |
| return None; |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| |
| // We want to find something like this: |
| // |
| // val = G_CONSTANT LegalShiftVal |
| // shift = G_SHL off_reg val |
| // ptr = G_PTR_ADD base_reg shift |
| // x = G_LOAD ptr |
| // |
| // And fold it into this addressing mode: |
| // |
| // ldr x, [base_reg, off_reg, lsl #LegalShiftVal] |
| |
| // Check if we can find the G_PTR_ADD. |
| MachineInstr *PtrAdd = |
| getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI); |
| if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI)) |
| return None; |
| |
| // Now, try to match an opcode which will match our specific offset. |
| // We want a G_SHL or a G_MUL. |
| MachineInstr *OffsetInst = |
| getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI); |
| return selectExtendedSHL(Root, PtrAdd->getOperand(1), |
| OffsetInst->getOperand(0), SizeInBytes, |
| /*WantsExt=*/false); |
| } |
| |
| /// This is used for computing addresses like this: |
| /// |
| /// ldr x1, [x2, x3] |
| /// |
| /// Where x2 is the base register, and x3 is an offset register. |
| /// |
| /// When possible (or profitable) to fold a G_PTR_ADD into the address calculation, |
| /// this will do so. Otherwise, it will return None. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeRegisterOffset( |
| MachineOperand &Root) const { |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| |
| // We need a GEP. |
| MachineInstr *Gep = MRI.getVRegDef(Root.getReg()); |
| if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD) |
| return None; |
| |
| // If this is used more than once, let's not bother folding. |
| // TODO: Check if they are memory ops. If they are, then we can still fold |
| // without having to recompute anything. |
| if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg())) |
| return None; |
| |
| // Base is the GEP's LHS, offset is its RHS. |
| return {{[=](MachineInstrBuilder &MIB) { |
| MIB.addUse(Gep->getOperand(1).getReg()); |
| }, |
| [=](MachineInstrBuilder &MIB) { |
| MIB.addUse(Gep->getOperand(2).getReg()); |
| }, |
| [=](MachineInstrBuilder &MIB) { |
| // Need to add both immediates here to make sure that they are both |
| // added to the instruction. |
| MIB.addImm(0); |
| MIB.addImm(0); |
| }}}; |
| } |
| |
| /// This is intended to be equivalent to selectAddrModeXRO in |
| /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root, |
| unsigned SizeInBytes) const { |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| if (!Root.isReg()) |
| return None; |
| MachineInstr *PtrAdd = |
| getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI); |
| if (!PtrAdd) |
| return None; |
| |
| // Check for an immediates which cannot be encoded in the [base + imm] |
| // addressing mode, and can't be encoded in an add/sub. If this happens, we'll |
| // end up with code like: |
| // |
| // mov x0, wide |
| // add x1 base, x0 |
| // ldr x2, [x1, x0] |
| // |
| // In this situation, we can use the [base, xreg] addressing mode to save an |
| // add/sub: |
| // |
| // mov x0, wide |
| // ldr x2, [base, x0] |
| auto ValAndVReg = |
| getConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI); |
| if (ValAndVReg) { |
| unsigned Scale = Log2_32(SizeInBytes); |
| int64_t ImmOff = ValAndVReg->Value.getSExtValue(); |
| |
| // Skip immediates that can be selected in the load/store addresing |
| // mode. |
| if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 && |
| ImmOff < (0x1000 << Scale)) |
| return None; |
| |
| // Helper lambda to decide whether or not it is preferable to emit an add. |
| auto isPreferredADD = [](int64_t ImmOff) { |
| // Constants in [0x0, 0xfff] can be encoded in an add. |
| if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) |
| return true; |
| |
| // Can it be encoded in an add lsl #12? |
| if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL) |
| return false; |
| |
| // It can be encoded in an add lsl #12, but we may not want to. If it is |
| // possible to select this as a single movz, then prefer that. A single |
| // movz is faster than an add with a shift. |
| return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && |
| (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; |
| }; |
| |
| // If the immediate can be encoded in a single add/sub, then bail out. |
| if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) |
| return None; |
| } |
| |
| // Try to fold shifts into the addressing mode. |
| auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes); |
| if (AddrModeFns) |
| return AddrModeFns; |
| |
| // If that doesn't work, see if it's possible to fold in registers from |
| // a GEP. |
| return selectAddrModeRegisterOffset(Root); |
| } |
| |
| /// This is used for computing addresses like this: |
| /// |
| /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal] |
| /// |
| /// Where we have a 64-bit base register, a 32-bit offset register, and an |
| /// extend (which may or may not be signed). |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root, |
| unsigned SizeInBytes) const { |
| MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| |
| MachineInstr *PtrAdd = |
| getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI); |
| if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI)) |
| return None; |
| |
| MachineOperand &LHS = PtrAdd->getOperand(1); |
| MachineOperand &RHS = PtrAdd->getOperand(2); |
| MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI); |
| |
| // The first case is the same as selectAddrModeXRO, except we need an extend. |
| // In this case, we try to find a shift and extend, and fold them into the |
| // addressing mode. |
| // |
| // E.g. |
| // |
| // off_reg = G_Z/S/ANYEXT ext_reg |
| // val = G_CONSTANT LegalShiftVal |
| // shift = G_SHL off_reg val |
| // ptr = G_PTR_ADD base_reg shift |
| // x = G_LOAD ptr |
| // |
| // In this case we can get a load like this: |
| // |
| // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal] |
| auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0), |
| SizeInBytes, /*WantsExt=*/true); |
| if (ExtendedShl) |
| return ExtendedShl; |
| |
| // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though. |
| // |
| // e.g. |
| // ldr something, [base_reg, ext_reg, sxtw] |
| if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI)) |
| return None; |
| |
| // Check if this is an extend. We'll get an extend type if it is. |
| AArch64_AM::ShiftExtendType Ext = |
| getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true); |
| if (Ext == AArch64_AM::InvalidShiftExtend) |
| return None; |
| |
| // Need a 32-bit wide register. |
| MachineIRBuilder MIB(*PtrAdd); |
| Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(), |
| AArch64::GPR32RegClass, MIB); |
| unsigned SignExtend = Ext == AArch64_AM::SXTW; |
| |
| // Base is LHS, offset is ExtReg. |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }, |
| [=](MachineInstrBuilder &MIB) { |
| MIB.addImm(SignExtend); |
| MIB.addImm(0); |
| }}}; |
| } |
| |
| /// Select a "register plus unscaled signed 9-bit immediate" address. This |
| /// should only match when there is an offset that is not valid for a scaled |
| /// immediate addressing mode. The "Size" argument is the size in bytes of the |
| /// memory reference, which is needed here to know what is valid for a scaled |
| /// immediate. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root, |
| unsigned Size) const { |
| MachineRegisterInfo &MRI = |
| Root.getParent()->getParent()->getParent()->getRegInfo(); |
| |
| if (!Root.isReg()) |
| return None; |
| |
| if (!isBaseWithConstantOffset(Root, MRI)) |
| return None; |
| |
| MachineInstr *RootDef = MRI.getVRegDef(Root.getReg()); |
| if (!RootDef) |
| return None; |
| |
| MachineOperand &OffImm = RootDef->getOperand(2); |
| if (!OffImm.isReg()) |
| return None; |
| MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg()); |
| if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT) |
| return None; |
| int64_t RHSC; |
| MachineOperand &RHSOp1 = RHS->getOperand(1); |
| if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64) |
| return None; |
| RHSC = RHSOp1.getCImm()->getSExtValue(); |
| |
| // If the offset is valid as a scaled immediate, don't match here. |
| if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size))) |
| return None; |
| if (RHSC >= -256 && RHSC < 256) { |
| MachineOperand &Base = RootDef->getOperand(1); |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.add(Base); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); }, |
| }}; |
| } |
| return None; |
| } |
| |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef, |
| unsigned Size, |
| MachineRegisterInfo &MRI) const { |
| if (RootDef.getOpcode() != AArch64::G_ADD_LOW) |
| return None; |
| MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg()); |
| if (Adrp.getOpcode() != AArch64::ADRP) |
| return None; |
| |
| // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG. |
| auto Offset = Adrp.getOperand(1).getOffset(); |
| if (Offset % Size != 0) |
| return None; |
| |
| auto GV = Adrp.getOperand(1).getGlobal(); |
| if (GV->isThreadLocal()) |
| return None; |
| |
| auto &MF = *RootDef.getParent()->getParent(); |
| if (GV->getPointerAlignment(MF.getDataLayout()) < Size) |
| return None; |
| |
| unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget()); |
| MachineIRBuilder MIRBuilder(RootDef); |
| Register AdrpReg = Adrp.getOperand(0).getReg(); |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); }, |
| [=](MachineInstrBuilder &MIB) { |
| MIB.addGlobalAddress(GV, Offset, |
| OpFlags | AArch64II::MO_PAGEOFF | |
| AArch64II::MO_NC); |
| }}}; |
| } |
| |
| /// Select a "register plus scaled unsigned 12-bit immediate" address. The |
| /// "Size" argument is the size in bytes of the memory reference, which |
| /// determines the scale. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root, |
| unsigned Size) const { |
| MachineFunction &MF = *Root.getParent()->getParent()->getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (!Root.isReg()) |
| return None; |
| |
| MachineInstr *RootDef = MRI.getVRegDef(Root.getReg()); |
| if (!RootDef) |
| return None; |
| |
| if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, |
| }}; |
| } |
| |
| CodeModel::Model CM = MF.getTarget().getCodeModel(); |
| // Check if we can fold in the ADD of small code model ADRP + ADD address. |
| if (CM == CodeModel::Small) { |
| auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI); |
| if (OpFns) |
| return OpFns; |
| } |
| |
| if (isBaseWithConstantOffset(Root, MRI)) { |
| MachineOperand &LHS = RootDef->getOperand(1); |
| MachineOperand &RHS = RootDef->getOperand(2); |
| MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg()); |
| MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg()); |
| if (LHSDef && RHSDef) { |
| int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue(); |
| unsigned Scale = Log2_32(Size); |
| if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) { |
| if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); }, |
| }}; |
| |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.add(LHS); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); }, |
| }}; |
| } |
| } |
| } |
| |
| // Before falling back to our general case, check if the unscaled |
| // instructions can handle this. If so, that's preferable. |
| if (selectAddrModeUnscaled(Root, Size).hasValue()) |
| return None; |
| |
| return {{ |
| [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, |
| }}; |
| } |
| |
| /// Given a shift instruction, return the correct shift type for that |
| /// instruction. |
| static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) { |
| // TODO: Handle AArch64_AM::ROR |
| switch (MI.getOpcode()) { |
| default: |
| return AArch64_AM::InvalidShiftExtend; |
| case TargetOpcode::G_SHL: |
| return AArch64_AM::LSL; |
| case TargetOpcode::G_LSHR: |
| return AArch64_AM::LSR; |
| case TargetOpcode::G_ASHR: |
| return AArch64_AM::ASR; |
| } |
| } |
| |
| /// Select a "shifted register" operand. If the value is not shifted, set the |
| /// shift operand to a default value of "lsl 0". |
| /// |
| /// TODO: Allow shifted register to be rotated in logical instructions. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const { |
| if (!Root.isReg()) |
| return None; |
| MachineRegisterInfo &MRI = |
| Root.getParent()->getParent()->getParent()->getRegInfo(); |
| |
| // Check if the operand is defined by an instruction which corresponds to |
| // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc. |
| // |
| // TODO: Handle AArch64_AM::ROR for logical instructions. |
| MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg()); |
| if (!ShiftInst) |
| return None; |
| AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst); |
| if (ShType == AArch64_AM::InvalidShiftExtend) |
| return None; |
| if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI)) |
| return None; |
| |
| // Need an immediate on the RHS. |
| MachineOperand &ShiftRHS = ShiftInst->getOperand(2); |
| auto Immed = getImmedFromMO(ShiftRHS); |
| if (!Immed) |
| return None; |
| |
| // We have something that we can fold. Fold in the shift's LHS and RHS into |
| // the instruction. |
| MachineOperand &ShiftLHS = ShiftInst->getOperand(1); |
| Register ShiftReg = ShiftLHS.getReg(); |
| |
| unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits(); |
| unsigned Val = *Immed & (NumBits - 1); |
| unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val); |
| |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); }, |
| [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}}; |
| } |
| |
| AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst( |
| MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const { |
| unsigned Opc = MI.getOpcode(); |
| |
| // Handle explicit extend instructions first. |
| if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) { |
| unsigned Size; |
| if (Opc == TargetOpcode::G_SEXT) |
| Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| else |
| Size = MI.getOperand(2).getImm(); |
| assert(Size != 64 && "Extend from 64 bits?"); |
| switch (Size) { |
| case 8: |
| return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTB; |
| case 16: |
| return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTH; |
| case 32: |
| return AArch64_AM::SXTW; |
| default: |
| return AArch64_AM::InvalidShiftExtend; |
| } |
| } |
| |
| if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) { |
| unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| assert(Size != 64 && "Extend from 64 bits?"); |
| switch (Size) { |
| case 8: |
| return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTB; |
| case 16: |
| return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTH; |
| case 32: |
| return AArch64_AM::UXTW; |
| default: |
| return AArch64_AM::InvalidShiftExtend; |
| } |
| } |
| |
| // Don't have an explicit extend. Try to handle a G_AND with a constant mask |
| // on the RHS. |
| if (Opc != TargetOpcode::G_AND) |
| return AArch64_AM::InvalidShiftExtend; |
| |
| Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2)); |
| if (!MaybeAndMask) |
| return AArch64_AM::InvalidShiftExtend; |
| uint64_t AndMask = *MaybeAndMask; |
| switch (AndMask) { |
| default: |
| return AArch64_AM::InvalidShiftExtend; |
| case 0xFF: |
| return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend; |
| case 0xFFFF: |
| return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend; |
| case 0xFFFFFFFF: |
| return AArch64_AM::UXTW; |
| } |
| } |
| |
| Register AArch64InstructionSelector::moveScalarRegClass( |
| Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| auto Ty = MRI.getType(Reg); |
| assert(!Ty.isVector() && "Expected scalars only!"); |
| if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC)) |
| return Reg; |
| |
| // Create a copy and immediately select it. |
| // FIXME: We should have an emitCopy function? |
| auto Copy = MIB.buildCopy({&RC}, {Reg}); |
| selectCopy(*Copy, TII, MRI, TRI, RBI); |
| return Copy.getReg(0); |
| } |
| |
| /// Select an "extended register" operand. This operand folds in an extend |
| /// followed by an optional left shift. |
| InstructionSelector::ComplexRendererFns |
| AArch64InstructionSelector::selectArithExtendedRegister( |
| MachineOperand &Root) const { |
| if (!Root.isReg()) |
| return None; |
| MachineRegisterInfo &MRI = |
| Root.getParent()->getParent()->getParent()->getRegInfo(); |
| |
| uint64_t ShiftVal = 0; |
| Register ExtReg; |
| AArch64_AM::ShiftExtendType Ext; |
| MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI); |
| if (!RootDef) |
| return None; |
| |
| if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI)) |
| return None; |
| |
| // Check if we can fold a shift and an extend. |
| if (RootDef->getOpcode() == TargetOpcode::G_SHL) { |
| // Look for a constant on the RHS of the shift. |
| MachineOperand &RHS = RootDef->getOperand(2); |
| Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS); |
| if (!MaybeShiftVal) |
| return None; |
| ShiftVal = *MaybeShiftVal; |
| if (ShiftVal > 4) |
| return None; |
| // Look for a valid extend instruction on the LHS of the shift. |
| MachineOperand &LHS = RootDef->getOperand(1); |
| MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI); |
| if (!ExtDef) |
| return None; |
| Ext = getExtendTypeForInst(*ExtDef, MRI); |
| if (Ext == AArch64_AM::InvalidShiftExtend) |
| return None; |
| ExtReg = ExtDef->getOperand(1).getReg(); |
| } else { |
| // Didn't get a shift. Try just folding an extend. |
| Ext = getExtendTypeForInst(*RootDef, MRI); |
| if (Ext == AArch64_AM::InvalidShiftExtend) |
| return None; |
| ExtReg = RootDef->getOperand(1).getReg(); |
| |
| // If we have a 32 bit instruction which zeroes out the high half of a |
| // register, we get an implicit zero extend for free. Check if we have one. |
| // FIXME: We actually emit the extend right now even though we don't have |
| // to. |
| if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) { |
| MachineInstr *ExtInst = MRI.getVRegDef(ExtReg); |
| if (ExtInst && isDef32(*ExtInst)) |
| return None; |
| } |
| } |
| |
| // We require a GPR32 here. Narrow the ExtReg if needed using a subregister |
| // copy. |
| MachineIRBuilder MIB(*RootDef); |
| ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB); |
| |
| return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }, |
| [=](MachineInstrBuilder &MIB) { |
| MIB.addImm(getArithExtendImm(Ext, ShiftVal)); |
| }}}; |
| } |
| |
| void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB, |
| const MachineInstr &MI, |
| int OpIdx) const { |
| const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| "Expected G_CONSTANT"); |
| Optional<int64_t> CstVal = |
| getConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI); |
| assert(CstVal && "Expected constant value"); |
| MIB.addImm(CstVal.getValue()); |
| } |
| |
| void AArch64InstructionSelector::renderLogicalImm32( |
| MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { |
| assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| "Expected G_CONSTANT"); |
| uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue(); |
| uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32); |
| MIB.addImm(Enc); |
| } |
| |
| void AArch64InstructionSelector::renderLogicalImm64( |
| MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { |
| assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| "Expected G_CONSTANT"); |
| uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue(); |
| uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64); |
| MIB.addImm(Enc); |
| } |
| |
| void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB, |
| const MachineInstr &MI, |
| int OpIdx) const { |
| assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| "Expected G_FCONSTANT"); |
| MIB.addImm( |
| AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF())); |
| } |
| |
| void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB, |
| const MachineInstr &MI, |
| int OpIdx) const { |
| assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| "Expected G_FCONSTANT"); |
| MIB.addImm( |
| AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF())); |
| } |
| |
| void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB, |
| const MachineInstr &MI, |
| int OpIdx) const { |
| assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| "Expected G_FCONSTANT"); |
| MIB.addImm( |
| AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF())); |
| } |
| |
| bool AArch64InstructionSelector::isLoadStoreOfNumBytes( |
| const MachineInstr &MI, unsigned NumBytes) const { |
| if (!MI.mayLoadOrStore()) |
| return false; |
| assert(MI.hasOneMemOperand() && |
| "Expected load/store to have only one mem op!"); |
| return (*MI.memoperands_begin())->getSize() == NumBytes; |
| } |
| |
| bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const { |
| const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32) |
| return false; |
| |
| // Only return true if we know the operation will zero-out the high half of |
| // the 64-bit register. Truncates can be subregister copies, which don't |
| // zero out the high bits. Copies and other copy-like instructions can be |
| // fed by truncates, or could be lowered as subregister copies. |
| switch (MI.getOpcode()) { |
| default: |
| return true; |
| case TargetOpcode::COPY: |
| case TargetOpcode::G_BITCAST: |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_PHI: |
| return false; |
| } |
| } |
| |
| |
| // Perform fixups on the given PHI instruction's operands to force them all |
| // to be the same as the destination regbank. |
| static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI, |
| const AArch64RegisterBankInfo &RBI) { |
| assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI"); |
| Register DstReg = MI.getOperand(0).getReg(); |
| const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg); |
| assert(DstRB && "Expected PHI dst to have regbank assigned"); |
| MachineIRBuilder MIB(MI); |
| |
| // Go through each operand and ensure it has the same regbank. |
| for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| if (!MO.isReg()) |
| continue; |
| Register OpReg = MO.getReg(); |
| const RegisterBank *RB = MRI.getRegBankOrNull(OpReg); |
| if (RB != DstRB) { |
| // Insert a cross-bank copy. |
| auto *OpDef = MRI.getVRegDef(OpReg); |
| const LLT &Ty = MRI.getType(OpReg); |
| MachineBasicBlock &OpDefBB = *OpDef->getParent(); |
| |
| // Any instruction we insert must appear after all PHIs in the block |
| // for the block to be valid MIR. |
| MachineBasicBlock::iterator InsertPt = std::next(OpDef->getIterator()); |
| if (InsertPt != OpDefBB.end() && InsertPt->isPHI()) |
| InsertPt = OpDefBB.getFirstNonPHI(); |
| MIB.setInsertPt(*OpDef->getParent(), InsertPt); |
| auto Copy = MIB.buildCopy(Ty, OpReg); |
| MRI.setRegBank(Copy.getReg(0), *DstRB); |
| MO.setReg(Copy.getReg(0)); |
| } |
| } |
| } |
| |
| void AArch64InstructionSelector::processPHIs(MachineFunction &MF) { |
| // We're looking for PHIs, build a list so we don't invalidate iterators. |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<MachineInstr *, 32> Phis; |
| for (auto &BB : MF) { |
| for (auto &MI : BB) { |
| if (MI.getOpcode() == TargetOpcode::G_PHI) |
| Phis.emplace_back(&MI); |
| } |
| } |
| |
| for (auto *MI : Phis) { |
| // We need to do some work here if the operand types are < 16 bit and they |
| // are split across fpr/gpr banks. Since all types <32b on gpr |
| // end up being assigned gpr32 regclasses, we can end up with PHIs here |
| // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't |
| // be selecting heterogenous regbanks for operands if possible, but we |
| // still need to be able to deal with it here. |
| // |
| // To fix this, if we have a gpr-bank operand < 32b in size and at least |
| // one other operand is on the fpr bank, then we add cross-bank copies |
| // to homogenize the operand banks. For simplicity the bank that we choose |
| // to settle on is whatever bank the def operand has. For example: |
| // |
| // %endbb: |
| // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2 |
| // => |
| // %bb2: |
| // ... |
| // %in2_copy:gpr(s16) = COPY %in2:fpr(s16) |
| // ... |
| // %endbb: |
| // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2 |
| bool HasGPROp = false, HasFPROp = false; |
| for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) { |
| const auto &MO = MI->getOperand(OpIdx); |
| if (!MO.isReg()) |
| continue; |
| const LLT &Ty = MRI.getType(MO.getReg()); |
| if (!Ty.isValid() || !Ty.isScalar()) |
| break; |
| if (Ty.getSizeInBits() >= 32) |
| break; |
| const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg()); |
| // If for some reason we don't have a regbank yet. Don't try anything. |
| if (!RB) |
| break; |
| |
| if (RB->getID() == AArch64::GPRRegBankID) |
| HasGPROp = true; |
| else |
| HasFPROp = true; |
| } |
| // We have heterogenous regbanks, need to fixup. |
| if (HasGPROp && HasFPROp) |
| fixupPHIOpBanks(*MI, MRI, RBI); |
| } |
| } |
| |
| namespace llvm { |
| InstructionSelector * |
| createAArch64InstructionSelector(const AArch64TargetMachine &TM, |
| AArch64Subtarget &Subtarget, |
| AArch64RegisterBankInfo &RBI) { |
| return new AArch64InstructionSelector(TM, Subtarget, RBI); |
| } |
| } |