| //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Custom DAG lowering for SI |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SIISelLowering.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUInstrInfo.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/KnownBits.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "si-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| static cl::opt<bool> DisableLoopAlignment( |
| "amdgpu-disable-loop-alignment", |
| cl::desc("Do not align and prefetch loops"), |
| cl::init(false)); |
| |
| static cl::opt<bool> VGPRReserveforSGPRSpill( |
| "amdgpu-reserve-vgpr-for-sgpr-spill", |
| cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true)); |
| |
| static cl::opt<bool> UseDivergentRegisterIndexing( |
| "amdgpu-use-divergent-register-indexing", |
| cl::Hidden, |
| cl::desc("Use indirect register addressing for divergent indexes"), |
| cl::init(false)); |
| |
| static bool hasFP32Denormals(const MachineFunction &MF) { |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| return Info->getMode().allFP32Denormals(); |
| } |
| |
| static bool hasFP64FP16Denormals(const MachineFunction &MF) { |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| return Info->getMode().allFP64FP16Denormals(); |
| } |
| |
| static unsigned findFirstFreeSGPR(CCState &CCInfo) { |
| unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); |
| for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { |
| if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { |
| return AMDGPU::SGPR0 + Reg; |
| } |
| } |
| llvm_unreachable("Cannot allocate sgpr"); |
| } |
| |
| SITargetLowering::SITargetLowering(const TargetMachine &TM, |
| const GCNSubtarget &STI) |
| : AMDGPUTargetLowering(TM, STI), |
| Subtarget(&STI) { |
| addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); |
| addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); |
| |
| addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); |
| |
| addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); |
| |
| const SIRegisterInfo *TRI = STI.getRegisterInfo(); |
| const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); |
| |
| addRegisterClass(MVT::f64, V64RegClass); |
| addRegisterClass(MVT::v2f32, V64RegClass); |
| |
| addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); |
| addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); |
| |
| addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); |
| |
| addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); |
| |
| addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); |
| addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); |
| |
| addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); |
| addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); |
| |
| addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); |
| addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); |
| |
| addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); |
| addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); |
| |
| addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); |
| |
| addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); |
| |
| addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); |
| |
| addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); |
| |
| addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); |
| addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); |
| |
| if (Subtarget->has16BitInsts()) { |
| addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); |
| |
| // Unless there are also VOP3P operations, not operations are really legal. |
| addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); |
| addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); |
| } |
| |
| addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); |
| addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); |
| |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // The boolean content concept here is too inflexible. Compares only ever |
| // really produce a 1-bit result. Any copy/extend from these will turn into a |
| // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as |
| // it's what most targets use. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| |
| // We need to custom lower vector stores from local memory |
| setOperationAction(ISD::LOAD, MVT::v2i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v3i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v5i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v6i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v7i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v8i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v16i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::i1, Custom); |
| setOperationAction(ISD::LOAD, MVT::v32i32, Custom); |
| |
| setOperationAction(ISD::STORE, MVT::v2i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v3i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v4i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v5i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v6i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v7i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v8i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v16i32, Custom); |
| setOperationAction(ISD::STORE, MVT::i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v32i32, Custom); |
| |
| setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); |
| setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); |
| setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); |
| setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); |
| |
| setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); |
| setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); |
| setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::i1, Promote); |
| setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); |
| |
| setOperationAction(ISD::SETCC, MVT::i1, Promote); |
| setOperationAction(ISD::SETCC, MVT::v2i1, Expand); |
| setOperationAction(ISD::SETCC, MVT::v4i1, Expand); |
| AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
| |
| setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand); |
| setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i1, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i64, Expand); |
| setOperationAction(ISD::BR_CC, MVT::f32, Expand); |
| setOperationAction(ISD::BR_CC, MVT::f64, Expand); |
| |
| setOperationAction(ISD::UADDO, MVT::i32, Legal); |
| setOperationAction(ISD::USUBO, MVT::i32, Legal); |
| |
| setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); |
| setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); |
| |
| #if 0 |
| setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); |
| setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); |
| #endif |
| |
| // We only support LOAD/STORE and vector manipulation ops for vectors |
| // with > 4 elements. |
| for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, |
| MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, |
| MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, |
| MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, |
| MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) { |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| case ISD::BUILD_VECTOR: |
| case ISD::BITCAST: |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::INSERT_VECTOR_ELT: |
| case ISD::EXTRACT_SUBVECTOR: |
| case ISD::SCALAR_TO_VECTOR: |
| break; |
| case ISD::INSERT_SUBVECTOR: |
| case ISD::CONCAT_VECTORS: |
| setOperationAction(Op, VT, Custom); |
| break; |
| default: |
| setOperationAction(Op, VT, Expand); |
| break; |
| } |
| } |
| } |
| |
| setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); |
| |
| // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that |
| // is expanded to avoid having two separate loops in case the index is a VGPR. |
| |
| // Most operations are naturally 32-bit vector operations. We only support |
| // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. |
| for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); |
| } |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); |
| |
| // Avoid stack access for these. |
| // TODO: Generalize to more vector types. |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom); |
| |
| // Deal with vec3 vector operations when widened to vec4. |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom); |
| |
| // Deal with vec5/6/7 vector operations when widened to vec8. |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom); |
| |
| // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, |
| // and output demarshalling |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); |
| |
| // We can't return success/failure, only the old value, |
| // let LLVM add the comparison |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); |
| |
| if (Subtarget->hasFlatAddressSpace()) { |
| setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); |
| setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); |
| } |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| |
| // FIXME: This should be narrowed to i32, but that only happens if i64 is |
| // illegal. |
| // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. |
| setOperationAction(ISD::BSWAP, MVT::i64, Legal); |
| setOperationAction(ISD::BSWAP, MVT::i32, Legal); |
| |
| // On SI this is s_memtime and s_memrealtime on VI. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| setOperationAction(ISD::TRAP, MVT::Other, Custom); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction(ISD::FPOW, MVT::f16, Promote); |
| setOperationAction(ISD::FPOWI, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG, MVT::f16, Custom); |
| setOperationAction(ISD::FEXP, MVT::f16, Custom); |
| setOperationAction(ISD::FLOG10, MVT::f16, Custom); |
| } |
| |
| if (Subtarget->hasMadMacF32Insts()) |
| setOperationAction(ISD::FMAD, MVT::f32, Legal); |
| |
| if (!Subtarget->hasBFI()) { |
| // fcopysign can be done in a single instruction with BFI. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| } |
| |
| if (!Subtarget->hasBCNT(32)) |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| |
| if (!Subtarget->hasBCNT(64)) |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| |
| if (Subtarget->hasFFBH()) |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); |
| |
| if (Subtarget->hasFFBL()) |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); |
| |
| // We only really have 32-bit BFE instructions (and 16-bit on VI). |
| // |
| // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any |
| // effort to match them now. We want this to be false for i64 cases when the |
| // extraction isn't restricted to the upper or lower half. Ideally we would |
| // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that |
| // span the midpoint are probably relatively rare, so don't worry about them |
| // for now. |
| if (Subtarget->hasBFE()) |
| setHasExtractBitsInsn(true); |
| |
| // Clamp modifier on add/sub |
| if (Subtarget->hasIntClamp()) { |
| setOperationAction(ISD::UADDSAT, MVT::i32, Legal); |
| setOperationAction(ISD::USUBSAT, MVT::i32, Legal); |
| } |
| |
| if (Subtarget->hasAddNoCarry()) { |
| setOperationAction(ISD::SADDSAT, MVT::i16, Legal); |
| setOperationAction(ISD::SSUBSAT, MVT::i16, Legal); |
| setOperationAction(ISD::SADDSAT, MVT::i32, Legal); |
| setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); |
| } |
| |
| setOperationAction(ISD::FMINNUM, MVT::f32, Custom); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Custom); |
| setOperationAction(ISD::FMINNUM, MVT::f64, Custom); |
| setOperationAction(ISD::FMAXNUM, MVT::f64, Custom); |
| |
| |
| // These are really only legal for ieee_mode functions. We should be avoiding |
| // them for functions that don't have ieee_mode enabled, so just say they are |
| // legal. |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); |
| |
| |
| if (Subtarget->haveRoundOpsF64()) { |
| setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| } else { |
| setOperationAction(ISD::FCEIL, MVT::f64, Custom); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Custom); |
| setOperationAction(ISD::FRINT, MVT::f64, Custom); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Custom); |
| } |
| |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FSIN, MVT::f32, Custom); |
| setOperationAction(ISD::FCOS, MVT::f32, Custom); |
| setOperationAction(ISD::FDIV, MVT::f32, Custom); |
| setOperationAction(ISD::FDIV, MVT::f64, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction(ISD::Constant, MVT::i16, Legal); |
| |
| setOperationAction(ISD::SMIN, MVT::i16, Legal); |
| setOperationAction(ISD::SMAX, MVT::i16, Legal); |
| |
| setOperationAction(ISD::UMIN, MVT::i16, Legal); |
| setOperationAction(ISD::UMAX, MVT::i16, Legal); |
| |
| setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); |
| AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); |
| |
| setOperationAction(ISD::ROTR, MVT::i16, Expand); |
| setOperationAction(ISD::ROTL, MVT::i16, Expand); |
| |
| setOperationAction(ISD::SDIV, MVT::i16, Promote); |
| setOperationAction(ISD::UDIV, MVT::i16, Promote); |
| setOperationAction(ISD::SREM, MVT::i16, Promote); |
| setOperationAction(ISD::UREM, MVT::i16, Promote); |
| setOperationAction(ISD::UADDSAT, MVT::i16, Legal); |
| setOperationAction(ISD::USUBSAT, MVT::i16, Legal); |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); |
| |
| setOperationAction(ISD::CTTZ, MVT::i16, Promote); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); |
| setOperationAction(ISD::CTLZ, MVT::i16, Promote); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); |
| setOperationAction(ISD::CTPOP, MVT::i16, Promote); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); |
| |
| setOperationAction(ISD::BR_CC, MVT::i16, Expand); |
| |
| setOperationAction(ISD::LOAD, MVT::i16, Custom); |
| |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| |
| setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); |
| AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); |
| setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); |
| AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom); |
| |
| // F16 - Constant Actions. |
| setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
| |
| // F16 - Load/Store Actions. |
| setOperationAction(ISD::LOAD, MVT::f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); |
| setOperationAction(ISD::STORE, MVT::f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); |
| |
| // F16 - VOP1 Actions. |
| setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); |
| setOperationAction(ISD::FCOS, MVT::f16, Custom); |
| setOperationAction(ISD::FSIN, MVT::f16, Custom); |
| |
| setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); |
| setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::f16, Custom); |
| |
| // F16 - VOP2 Actions. |
| setOperationAction(ISD::BR_CC, MVT::f16, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); |
| |
| setOperationAction(ISD::FDIV, MVT::f16, Custom); |
| |
| // F16 - VOP3 Actions. |
| setOperationAction(ISD::FMA, MVT::f16, Legal); |
| if (STI.hasMadF16()) |
| setOperationAction(ISD::FMAD, MVT::f16, Legal); |
| |
| for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) { |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| case ISD::BUILD_VECTOR: |
| case ISD::BITCAST: |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::INSERT_VECTOR_ELT: |
| case ISD::INSERT_SUBVECTOR: |
| case ISD::EXTRACT_SUBVECTOR: |
| case ISD::SCALAR_TO_VECTOR: |
| break; |
| case ISD::CONCAT_VECTORS: |
| setOperationAction(Op, VT, Custom); |
| break; |
| default: |
| setOperationAction(Op, VT, Expand); |
| break; |
| } |
| } |
| } |
| |
| // v_perm_b32 can handle either of these. |
| setOperationAction(ISD::BSWAP, MVT::i16, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v2i16, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); |
| |
| // XXX - Do these do anything? Vector constants turn into build_vector. |
| setOperationAction(ISD::Constant, MVT::v2i16, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::UNDEF, MVT::v2i16, Legal); |
| setOperationAction(ISD::UNDEF, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::STORE, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::STORE, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::LOAD, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); |
| |
| setOperationAction(ISD::AND, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::OR, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::XOR, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); |
| setOperationAction(ISD::LOAD, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); |
| setOperationAction(ISD::STORE, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); |
| |
| setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); |
| |
| setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand); |
| |
| if (!Subtarget->hasVOP3PInsts()) { |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); |
| } |
| |
| setOperationAction(ISD::FNEG, MVT::v2f16, Legal); |
| // This isn't really legal, but this avoids the legalizer unrolling it (and |
| // allows matching fneg (fabs x) patterns) |
| setOperationAction(ISD::FABS, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Custom); |
| setOperationAction(ISD::FMINNUM, MVT::f16, Custom); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal); |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal); |
| |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom); |
| |
| setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand); |
| setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand); |
| } |
| |
| if (Subtarget->hasVOP3PInsts()) { |
| setOperationAction(ISD::ADD, MVT::v2i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v2i16, Legal); |
| setOperationAction(ISD::SHL, MVT::v2i16, Legal); |
| setOperationAction(ISD::SRL, MVT::v2i16, Legal); |
| setOperationAction(ISD::SRA, MVT::v2i16, Legal); |
| setOperationAction(ISD::SMIN, MVT::v2i16, Legal); |
| setOperationAction(ISD::UMIN, MVT::v2i16, Legal); |
| setOperationAction(ISD::SMAX, MVT::v2i16, Legal); |
| setOperationAction(ISD::UMAX, MVT::v2i16, Legal); |
| |
| setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal); |
| setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal); |
| setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal); |
| setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal); |
| |
| setOperationAction(ISD::FADD, MVT::v2f16, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f16, Legal); |
| setOperationAction(ISD::FMA, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::SHL, MVT::v4i16, Custom); |
| setOperationAction(ISD::SRA, MVT::v4i16, Custom); |
| setOperationAction(ISD::SRL, MVT::v4i16, Custom); |
| setOperationAction(ISD::ADD, MVT::v4i16, Custom); |
| setOperationAction(ISD::SUB, MVT::v4i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::SMIN, MVT::v4i16, Custom); |
| setOperationAction(ISD::SMAX, MVT::v4i16, Custom); |
| setOperationAction(ISD::UMIN, MVT::v4i16, Custom); |
| setOperationAction(ISD::UMAX, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom); |
| setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom); |
| setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom); |
| setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::FADD, MVT::v4f16, Custom); |
| setOperationAction(ISD::FMUL, MVT::v4f16, Custom); |
| setOperationAction(ISD::FMA, MVT::v4f16, Custom); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom); |
| setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom); |
| |
| setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom); |
| setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom); |
| setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom); |
| |
| setOperationAction(ISD::FEXP, MVT::v2f16, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4i16, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f16, Custom); |
| |
| if (Subtarget->hasPackedFP32Ops()) { |
| setOperationAction(ISD::FADD, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v2f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f32, Legal); |
| |
| for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) { |
| setOperationAction(ISD::FADD, VT, Custom); |
| setOperationAction(ISD::FMUL, VT, Custom); |
| setOperationAction(ISD::FMA, VT, Custom); |
| } |
| } |
| } |
| |
| setOperationAction(ISD::FNEG, MVT::v4f16, Custom); |
| setOperationAction(ISD::FABS, MVT::v4f16, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction(ISD::SELECT, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::SELECT, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); |
| } else { |
| // Legalization hack. |
| setOperationAction(ISD::SELECT, MVT::v2i16, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2f16, Custom); |
| |
| setOperationAction(ISD::FNEG, MVT::v2f16, Custom); |
| setOperationAction(ISD::FABS, MVT::v2f16, Custom); |
| } |
| |
| for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { |
| setOperationAction(ISD::SELECT, VT, Custom); |
| } |
| |
| setOperationAction(ISD::SMULO, MVT::i64, Custom); |
| setOperationAction(ISD::UMULO, MVT::i64, Custom); |
| |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); |
| |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); |
| |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); |
| |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::ADDCARRY); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::SUBCARRY); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::FSUB); |
| setTargetDAGCombine(ISD::FMINNUM); |
| setTargetDAGCombine(ISD::FMAXNUM); |
| setTargetDAGCombine(ISD::FMINNUM_IEEE); |
| setTargetDAGCombine(ISD::FMAXNUM_IEEE); |
| setTargetDAGCombine(ISD::FMA); |
| setTargetDAGCombine(ISD::SMIN); |
| setTargetDAGCombine(ISD::SMAX); |
| setTargetDAGCombine(ISD::UMIN); |
| setTargetDAGCombine(ISD::UMAX); |
| setTargetDAGCombine(ISD::SETCC); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::XOR); |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::UINT_TO_FP); |
| setTargetDAGCombine(ISD::FCANONICALIZE); |
| setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); |
| setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| |
| // All memory operations. Some folding on the pointer operand is done to help |
| // matching the constant offsets in the addressing modes. |
| setTargetDAGCombine(ISD::LOAD); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD); |
| setTargetDAGCombine(ISD::ATOMIC_STORE); |
| setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); |
| setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); |
| setTargetDAGCombine(ISD::ATOMIC_SWAP); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); |
| setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD); |
| setTargetDAGCombine(ISD::INTRINSIC_VOID); |
| setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); |
| |
| // FIXME: In other contexts we pretend this is a per-function property. |
| setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); |
| |
| setSchedulingPreference(Sched::RegPressure); |
| } |
| |
| const GCNSubtarget *SITargetLowering::getSubtarget() const { |
| return Subtarget; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering queries |
| //===----------------------------------------------------------------------===// |
| |
| // v_mad_mix* support a conversion from f16 to f32. |
| // |
| // There is only one special case when denormals are enabled we don't currently, |
| // where this is OK to use. |
| bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, |
| EVT DestVT, EVT SrcVT) const { |
| return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || |
| (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && |
| DestVT.getScalarType() == MVT::f32 && |
| SrcVT.getScalarType() == MVT::f16 && |
| // TODO: This probably only requires no input flushing? |
| !hasFP32Denormals(DAG.getMachineFunction()); |
| } |
| |
| bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { |
| // SI has some legal vector types, but no legal vector operations. Say no |
| // shuffles are legal in order to prefer scalarizing some vector operations. |
| return false; |
| } |
| |
| MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (CC == CallingConv::AMDGPU_KERNEL) |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| |
| if (VT.isVector()) { |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| if (Size == 16) { |
| if (Subtarget->has16BitInsts()) |
| return VT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
| return VT.isInteger() ? MVT::i32 : MVT::f32; |
| } |
| |
| if (Size < 16) |
| return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; |
| return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; |
| } |
| |
| if (VT.getSizeInBits() > 32) |
| return MVT::i32; |
| |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (CC == CallingConv::AMDGPU_KERNEL) |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| |
| if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| |
| // FIXME: Should probably promote 8-bit vectors to i16. |
| if (Size == 16 && Subtarget->has16BitInsts()) |
| return (NumElts + 1) / 2; |
| |
| if (Size <= 32) |
| return NumElts; |
| |
| if (Size > 32) |
| return NumElts * ((Size + 31) / 32); |
| } else if (VT.getSizeInBits() > 32) |
| return (VT.getSizeInBits() + 31) / 32; |
| |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( |
| LLVMContext &Context, CallingConv::ID CC, |
| EVT VT, EVT &IntermediateVT, |
| unsigned &NumIntermediates, MVT &RegisterVT) const { |
| if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| // FIXME: We should fix the ABI to be the same on targets without 16-bit |
| // support, but unless we can properly handle 3-vectors, it will be still be |
| // inconsistent. |
| if (Size == 16 && Subtarget->has16BitInsts()) { |
| RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
| IntermediateVT = RegisterVT; |
| NumIntermediates = (NumElts + 1) / 2; |
| return NumIntermediates; |
| } |
| |
| if (Size == 32) { |
| RegisterVT = ScalarVT.getSimpleVT(); |
| IntermediateVT = RegisterVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| if (Size < 16 && Subtarget->has16BitInsts()) { |
| // FIXME: Should probably form v2i16 pieces |
| RegisterVT = MVT::i16; |
| IntermediateVT = ScalarVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| |
| if (Size != 16 && Size <= 32) { |
| RegisterVT = MVT::i32; |
| IntermediateVT = ScalarVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| if (Size > 32) { |
| RegisterVT = MVT::i32; |
| IntermediateVT = RegisterVT; |
| NumIntermediates = NumElts * ((Size + 31) / 32); |
| return NumIntermediates; |
| } |
| } |
| |
| return TargetLowering::getVectorTypeBreakdownForCallingConv( |
| Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); |
| } |
| |
| static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) { |
| assert(DMaskLanes != 0); |
| |
| if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { |
| unsigned NumElts = std::min(DMaskLanes, VT->getNumElements()); |
| return EVT::getVectorVT(Ty->getContext(), |
| EVT::getEVT(VT->getElementType()), |
| NumElts); |
| } |
| |
| return EVT::getEVT(Ty); |
| } |
| |
| // Peek through TFE struct returns to only use the data size. |
| static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) { |
| auto *ST = dyn_cast<StructType>(Ty); |
| if (!ST) |
| return memVTFromImageData(Ty, DMaskLanes); |
| |
| // Some intrinsics return an aggregate type - special case to work out the |
| // correct memVT. |
| // |
| // Only limited forms of aggregate type currently expected. |
| if (ST->getNumContainedTypes() != 2 || |
| !ST->getContainedType(1)->isIntegerTy(32)) |
| return EVT(); |
| return memVTFromImageData(ST->getContainedType(0), DMaskLanes); |
| } |
| |
| bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &CI, |
| MachineFunction &MF, |
| unsigned IntrID) const { |
| if (const AMDGPU::RsrcIntrinsic *RsrcIntr = |
| AMDGPU::lookupRsrcIntrinsic(IntrID)) { |
| AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), |
| (Intrinsic::ID)IntrID); |
| if (Attr.hasFnAttribute(Attribute::ReadNone)) |
| return false; |
| |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (RsrcIntr->IsImage) { |
| Info.ptrVal = |
| MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); |
| Info.align.reset(); |
| } else { |
| Info.ptrVal = |
| MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); |
| } |
| |
| Info.flags = MachineMemOperand::MODereferenceable; |
| if (Attr.hasFnAttribute(Attribute::ReadOnly)) { |
| unsigned DMaskLanes = 4; |
| |
| if (RsrcIntr->IsImage) { |
| const AMDGPU::ImageDimIntrinsicInfo *Intr |
| = AMDGPU::getImageDimIntrinsicInfo(IntrID); |
| const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
| AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); |
| |
| if (!BaseOpcode->Gather4) { |
| // If this isn't a gather, we may have excess loaded elements in the |
| // IR type. Check the dmask for the real number of elements loaded. |
| unsigned DMask |
| = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); |
| DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); |
| } |
| |
| Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes); |
| } else |
| Info.memVT = EVT::getEVT(CI.getType()); |
| |
| // FIXME: What does alignment mean for an image? |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.flags |= MachineMemOperand::MOLoad; |
| } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) { |
| Info.opc = ISD::INTRINSIC_VOID; |
| |
| Type *DataTy = CI.getArgOperand(0)->getType(); |
| if (RsrcIntr->IsImage) { |
| unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); |
| unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask); |
| Info.memVT = memVTFromImageData(DataTy, DMaskLanes); |
| } else |
| Info.memVT = EVT::getEVT(DataTy); |
| |
| Info.flags |= MachineMemOperand::MOStore; |
| } else { |
| // Atomic |
| Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : |
| ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); |
| Info.flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MODereferenceable; |
| |
| // XXX - Should this be volatile without known ordering? |
| Info.flags |= MachineMemOperand::MOVolatile; |
| } |
| return true; |
| } |
| |
| switch (IntrID) { |
| case Intrinsic::amdgcn_atomic_inc: |
| case Intrinsic::amdgcn_atomic_dec: |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: |
| case Intrinsic::amdgcn_ds_fadd: |
| case Intrinsic::amdgcn_ds_fmin: |
| case Intrinsic::amdgcn_ds_fmax: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); |
| if (!Vol->isZero()) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| |
| return true; |
| } |
| case Intrinsic::amdgcn_buffer_atomic_fadd: { |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); |
| Info.ptrVal = |
| MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4)); |
| if (!Vol || !Vol->isZero()) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); |
| if (!Vol->isZero()) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| |
| return true; |
| } |
| case Intrinsic::amdgcn_global_atomic_csub: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::amdgcn_image_bvh_intersect_ray: { |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? |
| Info.ptrVal = |
| MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MODereferenceable; |
| return true; |
| } |
| case Intrinsic::amdgcn_global_atomic_fadd: |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fadd: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmax: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_gws_init: |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| case Intrinsic::amdgcn_ds_gws_sema_br: |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| Info.ptrVal = |
| MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo()); |
| |
| // This is an abstract access, but we need to specify a type and size. |
| Info.memVT = MVT::i32; |
| Info.size = 4; |
| Info.align = Align(4); |
| |
| Info.flags = MachineMemOperand::MOStore; |
| if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, |
| SmallVectorImpl<Value*> &Ops, |
| Type *&AccessTy) const { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::amdgcn_atomic_inc: |
| case Intrinsic::amdgcn_atomic_dec: |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: |
| case Intrinsic::amdgcn_ds_fadd: |
| case Intrinsic::amdgcn_ds_fmin: |
| case Intrinsic::amdgcn_ds_fmax: |
| case Intrinsic::amdgcn_global_atomic_fadd: |
| case Intrinsic::amdgcn_flat_atomic_fadd: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmax: |
| case Intrinsic::amdgcn_global_atomic_csub: { |
| Value *Ptr = II->getArgOperand(0); |
| AccessTy = II->getType(); |
| Ops.push_back(Ptr); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { |
| if (!Subtarget->hasFlatInstOffsets()) { |
| // Flat instructions do not have offsets, and only have the register |
| // address. |
| return AM.BaseOffs == 0 && AM.Scale == 0; |
| } |
| |
| return AM.Scale == 0 && |
| (AM.BaseOffs == 0 || |
| Subtarget->getInstrInfo()->isLegalFLATOffset( |
| AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); |
| } |
| |
| bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { |
| if (Subtarget->hasFlatGlobalInsts()) |
| return AM.Scale == 0 && |
| (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( |
| AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, |
| SIInstrFlags::FlatGlobal)); |
| |
| if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { |
| // Assume the we will use FLAT for all global memory accesses |
| // on VI. |
| // FIXME: This assumption is currently wrong. On VI we still use |
| // MUBUF instructions for the r + i addressing mode. As currently |
| // implemented, the MUBUF instructions only work on buffer < 4GB. |
| // It may be possible to support > 4GB buffers with MUBUF instructions, |
| // by setting the stride value in the resource descriptor which would |
| // increase the size limit to (stride * 4GB). However, this is risky, |
| // because it has never been validated. |
| return isLegalFlatAddressingMode(AM); |
| } |
| |
| return isLegalMUBUFAddressingMode(AM); |
| } |
| |
| bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { |
| // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and |
| // additionally can do r + r + i with addr64. 32-bit has more addressing |
| // mode options. Depending on the resource constant, it can also do |
| // (i64 r0) + (i32 r1) * (i14 i). |
| // |
| // Private arrays end up using a scratch buffer most of the time, so also |
| // assume those use MUBUF instructions. Scratch loads / stores are currently |
| // implemented as mubuf instructions with offen bit set, so slightly |
| // different than the normal addr64. |
| if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) |
| return false; |
| |
| // FIXME: Since we can split immediate into soffset and immediate offset, |
| // would it make sense to allow any immediate? |
| |
| switch (AM.Scale) { |
| case 0: // r + i or just i, depending on HasBaseReg. |
| return true; |
| case 1: |
| return true; // We have r + r or r + i. |
| case 2: |
| if (AM.HasBaseReg) { |
| // Reject 2 * r + r. |
| return false; |
| } |
| |
| // Allow 2 * r as r + r |
| // Or 2 * r + i is allowed as r + r + i. |
| return true; |
| default: // Don't allow n * r |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS) |
| return isLegalGlobalAddressingMode(AM); |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::BUFFER_FAT_POINTER) { |
| // If the offset isn't a multiple of 4, it probably isn't going to be |
| // correctly aligned. |
| // FIXME: Can we get the real alignment here? |
| if (AM.BaseOffs % 4 != 0) |
| return isLegalMUBUFAddressingMode(AM); |
| |
| // There are no SMRD extloads, so if we have to do a small type access we |
| // will use a MUBUF load. |
| // FIXME?: We also need to do this if unaligned, but we don't know the |
| // alignment here. |
| if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) |
| return isLegalGlobalAddressingMode(AM); |
| |
| if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { |
| // SMRD instructions have an 8-bit, dword offset on SI. |
| if (!isUInt<8>(AM.BaseOffs / 4)) |
| return false; |
| } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { |
| // On CI+, this can also be a 32-bit literal constant offset. If it fits |
| // in 8-bits, it can use a smaller encoding. |
| if (!isUInt<32>(AM.BaseOffs / 4)) |
| return false; |
| } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { |
| // On VI, these use the SMEM format and the offset is 20-bit in bytes. |
| if (!isUInt<20>(AM.BaseOffs)) |
| return false; |
| } else |
| llvm_unreachable("unhandled generation"); |
| |
| if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
| return true; |
| |
| if (AM.Scale == 1 && AM.HasBaseReg) |
| return true; |
| |
| return false; |
| |
| } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| return isLegalMUBUFAddressingMode(AM); |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || |
| AS == AMDGPUAS::REGION_ADDRESS) { |
| // Basic, single offset DS instructions allow a 16-bit unsigned immediate |
| // field. |
| // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have |
| // an 8-bit dword offset but we don't know the alignment here. |
| if (!isUInt<16>(AM.BaseOffs)) |
| return false; |
| |
| if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
| return true; |
| |
| if (AM.Scale == 1 && AM.HasBaseReg) |
| return true; |
| |
| return false; |
| } else if (AS == AMDGPUAS::FLAT_ADDRESS || |
| AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { |
| // For an unknown address space, this usually means that this is for some |
| // reason being used for pure arithmetic, and not based on some addressing |
| // computation. We don't have instructions that compute pointers with any |
| // addressing modes, so treat them as having no offset like flat |
| // instructions. |
| return isLegalFlatAddressingMode(AM); |
| } |
| |
| // Assume a user alias of global for unknown address spaces. |
| return isLegalGlobalAddressingMode(AM); |
| } |
| |
| bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, |
| const SelectionDAG &DAG) const { |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { |
| return (MemVT.getSizeInBits() <= 4 * 32); |
| } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); |
| return (MemVT.getSizeInBits() <= MaxPrivateBits); |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
| return (MemVT.getSizeInBits() <= 2 * 32); |
| } |
| return true; |
| } |
| |
| bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( |
| unsigned Size, unsigned AddrSpace, Align Alignment, |
| MachineMemOperand::Flags Flags, bool *IsFast) const { |
| if (IsFast) |
| *IsFast = false; |
| |
| if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || |
| AddrSpace == AMDGPUAS::REGION_ADDRESS) { |
| // Check if alignment requirements for ds_read/write instructions are |
| // disabled. |
| if (Subtarget->hasUnalignedDSAccessEnabled() && |
| !Subtarget->hasLDSMisalignedBug()) { |
| if (IsFast) |
| *IsFast = Alignment != Align(2); |
| return true; |
| } |
| |
| // Either, the alignment requirements are "enabled", or there is an |
| // unaligned LDS access related hardware bug though alignment requirements |
| // are "disabled". In either case, we need to check for proper alignment |
| // requirements. |
| // |
| if (Size == 64) { |
| // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we |
| // can do a 4 byte aligned, 8 byte access in a single operation using |
| // ds_read2/write2_b32 with adjacent offsets. |
| bool AlignedBy4 = Alignment >= Align(4); |
| if (IsFast) |
| *IsFast = AlignedBy4; |
| |
| return AlignedBy4; |
| } |
| if (Size == 96) { |
| // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on |
| // gfx8 and older. |
| bool AlignedBy16 = Alignment >= Align(16); |
| if (IsFast) |
| *IsFast = AlignedBy16; |
| |
| return AlignedBy16; |
| } |
| if (Size == 128) { |
| // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on |
| // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a |
| // single operation using ds_read2/write2_b64. |
| bool AlignedBy8 = Alignment >= Align(8); |
| if (IsFast) |
| *IsFast = AlignedBy8; |
| |
| return AlignedBy8; |
| } |
| } |
| |
| if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { |
| bool AlignedBy4 = Alignment >= Align(4); |
| if (IsFast) |
| *IsFast = AlignedBy4; |
| |
| return AlignedBy4 || |
| Subtarget->enableFlatScratch() || |
| Subtarget->hasUnalignedScratchAccess(); |
| } |
| |
| // FIXME: We have to be conservative here and assume that flat operations |
| // will access scratch. If we had access to the IR function, then we |
| // could determine if any private memory was used in the function. |
| if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasUnalignedScratchAccess()) { |
| bool AlignedBy4 = Alignment >= Align(4); |
| if (IsFast) |
| *IsFast = AlignedBy4; |
| |
| return AlignedBy4; |
| } |
| |
| if (Subtarget->hasUnalignedBufferAccessEnabled() && |
| !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS || |
| AddrSpace == AMDGPUAS::REGION_ADDRESS)) { |
| // If we have an uniform constant load, it still requires using a slow |
| // buffer instruction if unaligned. |
| if (IsFast) { |
| // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so |
| // 2-byte alignment is worse than 1 unless doing a 2-byte accesss. |
| *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || |
| AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? |
| Alignment >= Align(4) : Alignment != Align(2); |
| } |
| |
| return true; |
| } |
| |
| // Smaller than dword value must be aligned. |
| if (Size < 32) |
| return false; |
| |
| // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the |
| // byte-address are ignored, thus forcing Dword alignment. |
| // This applies to private, global, and constant memory. |
| if (IsFast) |
| *IsFast = true; |
| |
| return Size >= 32 && Alignment >= Align(4); |
| } |
| |
| bool SITargetLowering::allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
| bool *IsFast) const { |
| if (IsFast) |
| *IsFast = false; |
| |
| // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, |
| // which isn't a simple VT. |
| // Until MVT is extended to handle this, simply check for the size and |
| // rely on the condition below: allow accesses if the size is a multiple of 4. |
| if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && |
| VT.getStoreSize() > 16)) { |
| return false; |
| } |
| |
| return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, |
| Alignment, Flags, IsFast); |
| } |
| |
| EVT SITargetLowering::getOptimalMemOpType( |
| const MemOp &Op, const AttributeList &FuncAttributes) const { |
| // FIXME: Should account for address space here. |
| |
| // The default fallback uses the private pointer size as a guess for a type to |
| // use. Make sure we switch these to 64-bit accesses. |
| |
| if (Op.size() >= 16 && |
| Op.isDstAligned(Align(4))) // XXX: Should only do for global |
| return MVT::v4i32; |
| |
| if (Op.size() >= 8 && Op.isDstAligned(Align(4))) |
| return MVT::v2i32; |
| |
| // Use the default. |
| return MVT::Other; |
| } |
| |
| bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { |
| const MemSDNode *MemNode = cast<MemSDNode>(N); |
| const Value *Ptr = MemNode->getMemOperand()->getValue(); |
| const Instruction *I = dyn_cast_or_null<Instruction>(Ptr); |
| return I && I->getMetadata("amdgpu.noclobber"); |
| } |
| |
| bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { |
| return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || |
| AS == AMDGPUAS::PRIVATE_ADDRESS; |
| } |
| |
| bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| // Flat -> private/local is a simple truncate. |
| // Flat -> global is no-op |
| if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
| return true; |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| return TM.isNoopAddrSpaceCast(SrcAS, DestAS); |
| } |
| |
| bool SITargetLowering::isMemOpUniform(const SDNode *N) const { |
| const MemSDNode *MemNode = cast<MemSDNode>(N); |
| |
| return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| SITargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarType().bitsLE(MVT::i16)) |
| return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| // FIXME: Could be smarter if called for vector constants. |
| return true; |
| } |
| |
| bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { |
| if (Subtarget->has16BitInsts() && VT == MVT::i16) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| |
| // These operations are done with 32-bit instructions anyway. |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SELECT: |
| // TODO: Extensions? |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // SimplifySetCC uses this function to determine whether or not it should |
| // create setcc with i1 operands. We don't have instructions for i1 setcc. |
| if (VT == MVT::i1 && Op == ISD::SETCC) |
| return false; |
| |
| return TargetLowering::isTypeDesirableForOp(Op, VT); |
| } |
| |
| SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, |
| const SDLoc &SL, |
| SDValue Chain, |
| uint64_t Offset) const { |
| const DataLayout &DL = DAG.getDataLayout(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| const ArgDescriptor *InputPtrReg; |
| const TargetRegisterClass *RC; |
| LLT ArgTy; |
| |
| std::tie(InputPtrReg, RC, ArgTy) = |
| Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
| |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); |
| SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, |
| MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); |
| |
| return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); |
| } |
| |
| SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, |
| const SDLoc &SL) const { |
| uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), |
| FIRST_IMPLICIT); |
| return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); |
| } |
| |
| SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, |
| const SDLoc &SL, SDValue Val, |
| bool Signed, |
| const ISD::InputArg *Arg) const { |
| // First, if it is a widened vector, narrow it. |
| if (VT.isVector() && |
| VT.getVectorNumElements() != MemVT.getVectorNumElements()) { |
| EVT NarrowedVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), |
| VT.getVectorNumElements()); |
| Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, |
| DAG.getConstant(0, SL, MVT::i32)); |
| } |
| |
| // Then convert the vector elements or scalar value. |
| if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && |
| VT.bitsLT(MemVT)) { |
| unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; |
| Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); |
| } |
| |
| if (MemVT.isFloatingPoint()) |
| Val = getFPExtOrFPRound(DAG, Val, SL, VT); |
| else if (Signed) |
| Val = DAG.getSExtOrTrunc(Val, SL, VT); |
| else |
| Val = DAG.getZExtOrTrunc(Val, SL, VT); |
| |
| return Val; |
| } |
| |
| SDValue SITargetLowering::lowerKernargMemParameter( |
| SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, |
| uint64_t Offset, Align Alignment, bool Signed, |
| const ISD::InputArg *Arg) const { |
| MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
| |
| // Try to avoid using an extload by loading earlier than the argument address, |
| // and extracting the relevant bits. The load should hopefully be merged with |
| // the previous argument. |
| if (MemVT.getStoreSize() < 4 && Alignment < 4) { |
| // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). |
| int64_t AlignDownOffset = alignDown(Offset, 4); |
| int64_t OffsetDiff = Offset - AlignDownOffset; |
| |
| EVT IntVT = MemVT.changeTypeToInteger(); |
| |
| // TODO: If we passed in the base kernel offset we could have a better |
| // alignment than 4, but we don't really need it. |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); |
| SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| |
| SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); |
| SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); |
| |
| SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); |
| ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); |
| ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); |
| |
| |
| return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); |
| } |
| |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); |
| SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| |
| SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); |
| return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); |
| } |
| |
| SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, |
| const SDLoc &SL, SDValue Chain, |
| const ISD::InputArg &Arg) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| if (Arg.Flags.isByVal()) { |
| unsigned Size = Arg.Flags.getByValSize(); |
| int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); |
| return DAG.getFrameIndex(FrameIdx, MVT::i32); |
| } |
| |
| unsigned ArgOffset = VA.getLocMemOffset(); |
| unsigned ArgSize = VA.getValVT().getStoreSize(); |
| |
| int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| SDValue ArgValue; |
| |
| // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| MVT MemVT = VA.getValVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| break; |
| case CCValAssign::BCvt: |
| MemVT = VA.getLocVT(); |
| break; |
| case CCValAssign::SExt: |
| ExtType = ISD::SEXTLOAD; |
| break; |
| case CCValAssign::ZExt: |
| ExtType = ISD::ZEXTLOAD; |
| break; |
| case CCValAssign::AExt: |
| ExtType = ISD::EXTLOAD; |
| break; |
| } |
| |
| ArgValue = DAG.getExtLoad( |
| ExtType, SL, VA.getLocVT(), Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), |
| MemVT); |
| return ArgValue; |
| } |
| |
| SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, |
| const SIMachineFunctionInfo &MFI, |
| EVT VT, |
| AMDGPUFunctionArgInfo::PreloadedValue PVID) const { |
| const ArgDescriptor *Reg; |
| const TargetRegisterClass *RC; |
| LLT Ty; |
| |
| std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); |
| return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); |
| } |
| |
| static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, |
| CallingConv::ID CallConv, |
| ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, |
| FunctionType *FType, |
| SIMachineFunctionInfo *Info) { |
| for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { |
| const ISD::InputArg *Arg = &Ins[I]; |
| |
| assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && |
| "vector type argument should have been split"); |
| |
| // First check if it's a PS input addr. |
| if (CallConv == CallingConv::AMDGPU_PS && |
| !Arg->Flags.isInReg() && PSInputNum <= 15) { |
| bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); |
| |
| // Inconveniently only the first part of the split is marked as isSplit, |
| // so skip to the end. We only want to increment PSInputNum once for the |
| // entire split argument. |
| if (Arg->Flags.isSplit()) { |
| while (!Arg->Flags.isSplitEnd()) { |
| assert((!Arg->VT.isVector() || |
| Arg->VT.getScalarSizeInBits() == 16) && |
| "unexpected vector split in ps argument type"); |
| if (!SkipArg) |
| Splits.push_back(*Arg); |
| Arg = &Ins[++I]; |
| } |
| } |
| |
| if (SkipArg) { |
| // We can safely skip PS inputs. |
| Skipped.set(Arg->getOrigArgIndex()); |
| ++PSInputNum; |
| continue; |
| } |
| |
| Info->markPSInputAllocated(PSInputNum); |
| if (Arg->Used) |
| Info->markPSInputEnabled(PSInputNum); |
| |
| ++PSInputNum; |
| } |
| |
| Splits.push_back(*Arg); |
| } |
| } |
| |
| // Allocate special inputs passed in VGPRs. |
| void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| const LLT S32 = LLT::scalar(32); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (Info.hasWorkItemIDX()) { |
| Register Reg = AMDGPU::VGPR0; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| unsigned Mask = (Subtarget->hasPackedTID() && |
| Info.hasWorkItemIDY()) ? 0x3ff : ~0u; |
| Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
| } |
| |
| if (Info.hasWorkItemIDY()) { |
| assert(Info.hasWorkItemIDX()); |
| if (Subtarget->hasPackedTID()) { |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
| 0x3ff << 10)); |
| } else { |
| unsigned Reg = AMDGPU::VGPR1; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); |
| } |
| } |
| |
| if (Info.hasWorkItemIDZ()) { |
| assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); |
| if (Subtarget->hasPackedTID()) { |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
| 0x3ff << 20)); |
| } else { |
| unsigned Reg = AMDGPU::VGPR2; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); |
| } |
| } |
| } |
| |
| // Try to allocate a VGPR at the end of the argument list, or if no argument |
| // VGPRs are left allocating a stack slot. |
| // If \p Mask is is given it indicates bitfield position in the register. |
| // If \p Arg is given use it with new ]p Mask instead of allocating new. |
| static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, |
| ArgDescriptor Arg = ArgDescriptor()) { |
| if (Arg.isSet()) |
| return ArgDescriptor::createArg(Arg, Mask); |
| |
| ArrayRef<MCPhysReg> ArgVGPRs |
| = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); |
| unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); |
| if (RegIdx == ArgVGPRs.size()) { |
| // Spill to stack required. |
| int64_t Offset = CCInfo.AllocateStack(4, Align(4)); |
| |
| return ArgDescriptor::createStack(Offset, Mask); |
| } |
| |
| unsigned Reg = ArgVGPRs[RegIdx]; |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); |
| MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); |
| return ArgDescriptor::createRegister(Reg, Mask); |
| } |
| |
| static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, |
| const TargetRegisterClass *RC, |
| unsigned NumArgRegs) { |
| ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32); |
| unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); |
| if (RegIdx == ArgSGPRs.size()) |
| report_fatal_error("ran out of SGPRs for arguments"); |
| |
| unsigned Reg = ArgSGPRs[RegIdx]; |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| MF.addLiveIn(Reg, RC); |
| return ArgDescriptor::createRegister(Reg); |
| } |
| |
| // If this has a fixed position, we still should allocate the register in the |
| // CCInfo state. Technically we could get away with this for values passed |
| // outside of the normal argument range. |
| static void allocateFixedSGPRInputImpl(CCState &CCInfo, |
| const TargetRegisterClass *RC, |
| MCRegister Reg) { |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| MF.addLiveIn(Reg, RC); |
| } |
| |
| static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { |
| if (Arg) { |
| allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, |
| Arg.getRegister()); |
| } else |
| Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); |
| } |
| |
| static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { |
| if (Arg) { |
| allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, |
| Arg.getRegister()); |
| } else |
| Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); |
| } |
| |
| /// Allocate implicit function VGPR arguments at the end of allocated user |
| /// arguments. |
| void SITargetLowering::allocateSpecialInputVGPRs( |
| CCState &CCInfo, MachineFunction &MF, |
| const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
| const unsigned Mask = 0x3ff; |
| ArgDescriptor Arg; |
| |
| if (Info.hasWorkItemIDX()) { |
| Arg = allocateVGPR32Input(CCInfo, Mask); |
| Info.setWorkItemIDX(Arg); |
| } |
| |
| if (Info.hasWorkItemIDY()) { |
| Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); |
| Info.setWorkItemIDY(Arg); |
| } |
| |
| if (Info.hasWorkItemIDZ()) |
| Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); |
| } |
| |
| /// Allocate implicit function VGPR arguments in fixed registers. |
| void SITargetLowering::allocateSpecialInputVGPRsFixed( |
| CCState &CCInfo, MachineFunction &MF, |
| const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
| Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); |
| if (!Reg) |
| report_fatal_error("failed to allocated VGPR for implicit arguments"); |
| |
| const unsigned Mask = 0x3ff; |
| Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); |
| } |
| |
| void SITargetLowering::allocateSpecialInputSGPRs( |
| CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| auto &ArgInfo = Info.getArgInfo(); |
| |
| // TODO: Unify handling with private memory pointers. |
| |
| if (Info.hasDispatchPtr()) |
| allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); |
| |
| if (Info.hasQueuePtr()) |
| allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); |
| |
| // Implicit arg ptr takes the place of the kernarg segment pointer. This is a |
| // constant offset from the kernarg segment. |
| if (Info.hasImplicitArgPtr()) |
| allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); |
| |
| if (Info.hasDispatchID()) |
| allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); |
| |
| // flat_scratch_init is not applicable for non-kernel functions. |
| |
| if (Info.hasWorkGroupIDX()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); |
| |
| if (Info.hasWorkGroupIDY()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); |
| |
| if (Info.hasWorkGroupIDZ()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); |
| } |
| |
| // Allocate special inputs passed in user SGPRs. |
| void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| if (Info.hasImplicitBufferPtr()) { |
| Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); |
| MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(ImplicitBufferPtrReg); |
| } |
| |
| // FIXME: How should these inputs interact with inreg / custom SGPR inputs? |
| if (Info.hasPrivateSegmentBuffer()) { |
| Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); |
| MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); |
| CCInfo.AllocateReg(PrivateSegmentBufferReg); |
| } |
| |
| if (Info.hasDispatchPtr()) { |
| Register DispatchPtrReg = Info.addDispatchPtr(TRI); |
| MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(DispatchPtrReg); |
| } |
| |
| if (Info.hasQueuePtr()) { |
| Register QueuePtrReg = Info.addQueuePtr(TRI); |
| MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(QueuePtrReg); |
| } |
| |
| if (Info.hasKernargSegmentPtr()) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| Register InputPtrReg = Info.addKernargSegmentPtr(TRI); |
| CCInfo.AllocateReg(InputPtrReg); |
| |
| Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); |
| MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); |
| } |
| |
| if (Info.hasDispatchID()) { |
| Register DispatchIDReg = Info.addDispatchID(TRI); |
| MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(DispatchIDReg); |
| } |
| |
| if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { |
| Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); |
| MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(FlatScratchInitReg); |
| } |
| |
| // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read |
| // these from the dispatch pointer. |
| } |
| |
| // Allocate special input registers that are initialized per-wave. |
| void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| SIMachineFunctionInfo &Info, |
| CallingConv::ID CallConv, |
| bool IsShader) const { |
| if (Info.hasWorkGroupIDX()) { |
| Register Reg = Info.addWorkGroupIDX(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasWorkGroupIDY()) { |
| Register Reg = Info.addWorkGroupIDY(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasWorkGroupIDZ()) { |
| Register Reg = Info.addWorkGroupIDZ(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasWorkGroupInfo()) { |
| Register Reg = Info.addWorkGroupInfo(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasPrivateSegmentWaveByteOffset()) { |
| // Scratch wave offset passed in system SGPR. |
| unsigned PrivateSegmentWaveByteOffsetReg; |
| |
| if (IsShader) { |
| PrivateSegmentWaveByteOffsetReg = |
| Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); |
| |
| // This is true if the scratch wave byte offset doesn't have a fixed |
| // location. |
| if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { |
| PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); |
| Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); |
| } |
| } else |
| PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); |
| |
| MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); |
| } |
| } |
| |
| static void reservePrivateMemoryRegs(const TargetMachine &TM, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) { |
| // Now that we've figured out where the scratch register inputs are, see if |
| // should reserve the arguments and use them directly. |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool HasStackObjects = MFI.hasStackObjects(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| |
| // Record that we know we have non-spill stack objects so we don't need to |
| // check all stack objects later. |
| if (HasStackObjects) |
| Info.setHasNonSpillStackObjects(true); |
| |
| // Everything live out of a block is spilled with fast regalloc, so it's |
| // almost certain that spilling will be required. |
| if (TM.getOptLevel() == CodeGenOpt::None) |
| HasStackObjects = true; |
| |
| // For now assume stack access is needed in any callee functions, so we need |
| // the scratch registers to pass in. |
| bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); |
| |
| if (!ST.enableFlatScratch()) { |
| if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { |
| // If we have stack objects, we unquestionably need the private buffer |
| // resource. For the Code Object V2 ABI, this will be the first 4 user |
| // SGPR inputs. We can reserve those and use them directly. |
| |
| Register PrivateSegmentBufferReg = |
| Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); |
| Info.setScratchRSrcReg(PrivateSegmentBufferReg); |
| } else { |
| unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); |
| // We tentatively reserve the last registers (skipping the last registers |
| // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, |
| // we'll replace these with the ones immediately after those which were |
| // really allocated. In the prologue copies will be inserted from the |
| // argument to these reserved registers. |
| |
| // Without HSA, relocations are used for the scratch pointer and the |
| // buffer resource setup is always inserted in the prologue. Scratch wave |
| // offset is still in an input SGPR. |
| Info.setScratchRSrcReg(ReservedBufferReg); |
| } |
| } |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // For entry functions we have to set up the stack pointer if we use it, |
| // whereas non-entry functions get this "for free". This means there is no |
| // intrinsic advantage to using S32 over S34 in cases where we do not have |
| // calls but do need a frame pointer (i.e. if we are requested to have one |
| // because frame pointer elimination is disabled). To keep things simple we |
| // only ever use S32 as the call ABI stack pointer, and so using it does not |
| // imply we need a separate frame pointer. |
| // |
| // Try to use s32 as the SP, but move it if it would interfere with input |
| // arguments. This won't work with calls though. |
| // |
| // FIXME: Move SP to avoid any possible inputs, or find a way to spill input |
| // registers. |
| if (!MRI.isLiveIn(AMDGPU::SGPR32)) { |
| Info.setStackPtrOffsetReg(AMDGPU::SGPR32); |
| } else { |
| assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); |
| |
| if (MFI.hasCalls()) |
| report_fatal_error("call in graphics shader with too many input SGPRs"); |
| |
| for (unsigned Reg : AMDGPU::SGPR_32RegClass) { |
| if (!MRI.isLiveIn(Reg)) { |
| Info.setStackPtrOffsetReg(Reg); |
| break; |
| } |
| } |
| |
| if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) |
| report_fatal_error("failed to find register for SP"); |
| } |
| |
| // hasFP should be accurate for entry functions even before the frame is |
| // finalized, because it does not rely on the known stack size, only |
| // properties like whether variable sized objects are present. |
| if (ST.getFrameLowering()->hasFP(MF)) { |
| Info.setFrameOffsetReg(AMDGPU::SGPR33); |
| } |
| } |
| |
| bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { |
| const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
| return !Info->isEntryFunction(); |
| } |
| |
| void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
| |
| } |
| |
| void SITargetLowering::insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| |
| const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
| if (!IStart) |
| return; |
| |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator MBBI = Entry->begin(); |
| for (const MCPhysReg *I = IStart; *I; ++I) { |
| const TargetRegisterClass *RC = nullptr; |
| if (AMDGPU::SReg_64RegClass.contains(*I)) |
| RC = &AMDGPU::SGPR_64RegClass; |
| else if (AMDGPU::SReg_32RegClass.contains(*I)) |
| RC = &AMDGPU::SGPR_32RegClass; |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| |
| Register NewVR = MRI->createVirtualRegister(RC); |
| // Create copy from CSR to a virtual register. |
| Entry->addLiveIn(*I); |
| BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(*I); |
| |
| // Insert the copy-back instructions right before the terminator. |
| for (auto *Exit : Exits) |
| BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
| TII->get(TargetOpcode::COPY), *I) |
| .addReg(NewVR); |
| } |
| } |
| |
| SDValue SITargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &Fn = MF.getFunction(); |
| FunctionType *FType = MF.getFunction().getFunctionType(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { |
| DiagnosticInfoUnsupported NoGraphicsHSA( |
| Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoGraphicsHSA); |
| return DAG.getEntryNode(); |
| } |
| |
| Info->allocateModuleLDSGlobal(Fn.getParent()); |
| |
| SmallVector<ISD::InputArg, 16> Splits; |
| SmallVector<CCValAssign, 16> ArgLocs; |
| BitVector Skipped(Ins.size()); |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| bool IsGraphics = AMDGPU::isGraphics(CallConv); |
| bool IsKernel = AMDGPU::isKernel(CallConv); |
| bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); |
| |
| if (IsGraphics) { |
| assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && |
| (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && |
| !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && |
| !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && |
| !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && |
| !Info->hasWorkItemIDZ()); |
| } |
| |
| if (CallConv == CallingConv::AMDGPU_PS) { |
| processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); |
| |
| // At least one interpolation mode must be enabled or else the GPU will |
| // hang. |
| // |
| // Check PSInputAddr instead of PSInputEnable. The idea is that if the user |
| // set PSInputAddr, the user wants to enable some bits after the compilation |
| // based on run-time states. Since we can't know what the final PSInputEna |
| // will look like, so we shouldn't do anything here and the user should take |
| // responsibility for the correct programming. |
| // |
| // Otherwise, the following restrictions apply: |
| // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. |
| // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be |
| // enabled too. |
| if ((Info->getPSInputAddr() & 0x7F) == 0 || |
| ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { |
| CCInfo.AllocateReg(AMDGPU::VGPR0); |
| CCInfo.AllocateReg(AMDGPU::VGPR1); |
| Info->markPSInputAllocated(0); |
| Info->markPSInputEnabled(0); |
| } |
| if (Subtarget->isAmdPalOS()) { |
| // For isAmdPalOS, the user does not enable some bits after compilation |
| // based on run-time states; the register values being generated here are |
| // the final ones set in hardware. Therefore we need to apply the |
| // workaround to PSInputAddr and PSInputEnable together. (The case where |
| // a bit is set in PSInputAddr but not PSInputEnable is where the |
| // frontend set up an input arg for a particular interpolation mode, but |
| // nothing uses that input arg. Really we should have an earlier pass |
| // that removes such an arg.) |
| unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); |
| if ((PsInputBits & 0x7F) == 0 || |
| ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) |
| Info->markPSInputEnabled( |
| countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); |
| } |
| } else if (IsKernel) { |
| assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); |
| } else { |
| Splits.append(Ins.begin(), Ins.end()); |
| } |
| |
| if (IsEntryFunc) { |
| allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); |
| allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); |
| } else { |
| // For the fixed ABI, pass workitem IDs in the last argument register. |
| if (AMDGPUTargetMachine::EnableFixedFunctionABI) |
| allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); |
| } |
| |
| if (IsKernel) { |
| analyzeFormalArgumentsCompute(CCInfo, Ins); |
| } else { |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); |
| CCInfo.AnalyzeFormalArguments(Splits, AssignFn); |
| } |
| |
| SmallVector<SDValue, 16> Chains; |
| |
| // FIXME: This is the minimum kernel argument alignment. We should improve |
| // this to the maximum alignment of the arguments. |
| // |
| // FIXME: Alignment of explicit arguments totally broken with non-0 explicit |
| // kern arg offset. |
| const Align KernelArgBaseAlign = Align(16); |
| |
| for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { |
| const ISD::InputArg &Arg = Ins[i]; |
| if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { |
| InVals.push_back(DAG.getUNDEF(Arg.VT)); |
| continue; |
| } |
| |
| CCValAssign &VA = ArgLocs[ArgIdx++]; |
| MVT VT = VA.getLocVT(); |
| |
| if (IsEntryFunc && VA.isMemLoc()) { |
| VT = Ins[i].VT; |
| EVT MemVT = VA.getLocVT(); |
| |
| const uint64_t Offset = VA.getLocMemOffset(); |
| Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); |
| |
| if (Arg.Flags.isByRef()) { |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, |
| Arg.Flags.getPointerAddrSpace())) { |
| Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, |
| Arg.Flags.getPointerAddrSpace()); |
| } |
| |
| InVals.push_back(Ptr); |
| continue; |
| } |
| |
| SDValue Arg = lowerKernargMemParameter( |
| DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); |
| Chains.push_back(Arg.getValue(1)); |
| |
| auto *ParamTy = |
| dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); |
| if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && |
| ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { |
| // On SI local pointers are just offsets into LDS, so they are always |
| // less than 16-bits. On CI and newer they could potentially be |
| // real pointers, so we can't guarantee their size. |
| Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, |
| DAG.getValueType(MVT::i16)); |
| } |
| |
| InVals.push_back(Arg); |
| continue; |
| } else if (!IsEntryFunc && VA.isMemLoc()) { |
| SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); |
| InVals.push_back(Val); |
| if (!Arg.Flags.isByVal()) |
| Chains.push_back(Val.getValue(1)); |
| continue; |
| } |
| |
| assert(VA.isRegLoc() && "Parameter must be in a register!"); |
| |
| Register Reg = VA.getLocReg(); |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); |
| EVT ValVT = VA.getValVT(); |
| |
| Reg = MF.addLiveIn(Reg, RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); |
| |
| if (Arg.Flags.isSRet()) { |
| // The return object should be reasonably addressable. |
| |
| // FIXME: This helps when the return is a real sret. If it is a |
| // automatically inserted sret (i.e. CanLowerReturn returns false), an |
| // extra copy is inserted in SelectionDAGBuilder which obscures this. |
| unsigned NumBits |
| = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); |
| Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
| DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, |
| DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
| DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { |
| // Special inputs come after user arguments. |
| allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); |
| } |
| |
| // Start adding system SGPRs. |
| if (IsEntryFunc) { |
| allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); |
| } else { |
| CCInfo.AllocateReg(Info->getScratchRSrcReg()); |
| allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); |
| } |
| |
| auto &ArgUsageInfo = |
| DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
| ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); |
| |
| unsigned StackArgSize = CCInfo.getNextStackOffset(); |
| Info->setBytesInStackArgArea(StackArgSize); |
| |
| return Chains.empty() ? Chain : |
| DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| } |
| |
| // TODO: If return values can't fit in registers, we should return as many as |
| // possible in registers before passing on stack. |
| bool SITargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, |
| MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| // Replacing returns with sret/stack usage doesn't make sense for shaders. |
| // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn |
| // for shaders. Vector types should be explicitly handled by CC. |
| if (AMDGPU::isEntryFunctionCC(CallConv)) |
| return true; |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); |
| } |
| |
| SDValue |
| SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (AMDGPU::isKernel(CallConv)) { |
| return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, |
| OutVals, DL, DAG); |
| } |
| |
| bool IsShader = AMDGPU::isShader(CallConv); |
| |
| Info->setIfReturnsVoid(Outs.empty()); |
| bool IsWaveEnd = Info->returnsVoid() && IsShader; |
| |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 48> RVLocs; |
| SmallVector<ISD::OutputArg, 48> Splits; |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 48> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| |
| // Add return address for callable functions. |
| if (!Info->isEntryFunction()) { |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| SDValue ReturnAddrReg = CreateLiveInRegister( |
| DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); |
| |
| SDValue ReturnAddrVirtualReg = DAG.getRegister( |
| MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass), |
| MVT::i64); |
| Chain = |
| DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(ReturnAddrVirtualReg); |
| } |
| |
| // Copy the result values into the output registers. |
| for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; |
| ++I, ++RealRVLocIdx) { |
| CCValAssign &VA = RVLocs[I]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| // TODO: Partially return in registers if return values don't fit. |
| SDValue Arg = OutVals[RealRVLocIdx]; |
| |
| // Copied from other backends. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // FIXME: Does sret work properly? |
| if (!Info->isEntryFunction()) { |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *I = |
| TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
| if (I) { |
| for (; *I; ++I) { |
| if (AMDGPU::SReg_64RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i64)); |
| else if (AMDGPU::SReg_32RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i32)); |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| } |
| } |
| } |
| |
| // Update chain and glue. |
| RetOps[0] = Chain; |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| unsigned Opc = AMDGPUISD::ENDPGM; |
| if (!IsWaveEnd) |
| Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; |
| return DAG.getNode(Opc, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue SITargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, |
| SDValue ThisVal) const { |
| CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| SDValue Val; |
| |
| if (VA.isRegLoc()) { |
| Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } else if (VA.isMemLoc()) { |
| report_fatal_error("TODO: return values in memory"); |
| } else |
| llvm_unreachable("unknown argument location type"); |
| |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| // Add code to pass special inputs required depending on used features separate |
| // from the explicit user arguments present in the IR. |
| void SITargetLowering::passSpecialInputs( |
| CallLoweringInfo &CLI, |
| CCState &CCInfo, |
| const SIMachineFunctionInfo &Info, |
| SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, |
| SmallVectorImpl<SDValue> &MemOpChains, |
| SDValue Chain) const { |
| // If we don't have a call site, this was a call inserted by |
| // legalization. These can never use special inputs. |
| if (!CLI.CB) |
| return; |
| |
| SelectionDAG &DAG = CLI.DAG; |
| const SDLoc &DL = CLI.DL; |
| |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); |
| |
| const AMDGPUFunctionArgInfo *CalleeArgInfo |
| = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; |
| if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { |
| auto &ArgUsageInfo = |
| DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
| CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); |
| } |
| |
| // TODO: Unify with private memory register handling. This is complicated by |
| // the fact that at least in kernels, the input argument is not necessarily |
| // in the same location as the input. |
| AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { |
| AMDGPUFunctionArgInfo::DISPATCH_PTR, |
| AMDGPUFunctionArgInfo::QUEUE_PTR, |
| AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, |
| AMDGPUFunctionArgInfo::DISPATCH_ID, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_X, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Z |
| }; |
| |
| for (auto InputID : InputRegs) { |
| const ArgDescriptor *OutgoingArg; |
| const TargetRegisterClass *ArgRC; |
| LLT ArgTy; |
| |
| std::tie(OutgoingArg, ArgRC, ArgTy) = |
| CalleeArgInfo->getPreloadedValue(InputID); |
| if (!OutgoingArg) |
| continue; |
| |
| const ArgDescriptor *IncomingArg; |
| const TargetRegisterClass *IncomingArgRC; |
| LLT Ty; |
| std::tie(IncomingArg, IncomingArgRC, Ty) = |
| CallerArgInfo.getPreloadedValue(InputID); |
| assert(IncomingArgRC == ArgRC); |
| |
| // All special arguments are ints for now. |
| EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; |
| SDValue InputReg; |
| |
| if (IncomingArg) { |
| InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); |
| } else { |
| // The implicit arg ptr is special because it doesn't have a corresponding |
| // input for kernels, and is computed from the kernarg segment pointer. |
| assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); |
| InputReg = getImplicitArgPtr(DAG, DL); |
| } |
| |
| if (OutgoingArg->isRegister()) { |
| RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
| if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) |
| report_fatal_error("failed to allocate implicit input argument"); |
| } else { |
| unsigned SpecialArgOffset = |
| CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); |
| SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
| SpecialArgOffset); |
| MemOpChains.push_back(ArgStore); |
| } |
| } |
| |
| // Pack workitem IDs into a single register or pass it as is if already |
| // packed. |
| const ArgDescriptor *OutgoingArg; |
| const TargetRegisterClass *ArgRC; |
| LLT Ty; |
| |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); |
| if (!OutgoingArg) |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); |
| if (!OutgoingArg) |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); |
| if (!OutgoingArg) |
| return; |
| |
| const ArgDescriptor *IncomingArgX = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); |
| const ArgDescriptor *IncomingArgY = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); |
| const ArgDescriptor *IncomingArgZ = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); |
| |
| SDValue InputReg; |
| SDLoc SL; |
| |
| // If incoming ids are not packed we need to pack them. |
| if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) |
| InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); |
| |
| if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { |
| SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); |
| Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, |
| DAG.getShiftAmountConstant(10, MVT::i32, SL)); |
| InputReg = InputReg.getNode() ? |
| DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; |
| } |
| |
| if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { |
| SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); |
| Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, |
| DAG.getShiftAmountConstant(20, MVT::i32, SL)); |
| InputReg = InputReg.getNode() ? |
| DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; |
| } |
| |
| if (!InputReg.getNode()) { |
| // Workitem ids are already packed, any of present incoming arguments |
| // will carry all required fields. |
| ArgDescriptor IncomingArg = ArgDescriptor::createArg( |
| IncomingArgX ? *IncomingArgX : |
| IncomingArgY ? *IncomingArgY : |
| *IncomingArgZ, ~0u); |
| InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); |
| } |
| |
| if (OutgoingArg->isRegister()) { |
| RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
| CCInfo.AllocateReg(OutgoingArg->getRegister()); |
| } else { |
| unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); |
| SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
| SpecialArgOffset); |
| MemOpChains.push_back(ArgStore); |
| } |
| } |
| |
| static bool canGuaranteeTCO(CallingConv::ID CC) { |
| return CC == CallingConv::Fast; |
| } |
| |
| /// Return true if we might ever do TCO for calls with this calling convention. |
| static bool mayTailCallThisCC(CallingConv::ID CC) { |
| switch (CC) { |
| case CallingConv::C: |
| case CallingConv::AMDGPU_Gfx: |
| return true; |
| default: |
| return canGuaranteeTCO(CC); |
| } |
| } |
| |
| bool SITargetLowering::isEligibleForTailCallOptimization( |
| SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| if (!mayTailCallThisCC(CalleeCC)) |
| return false; |
| |
| // For a divergent call target, we need to do a waterfall loop over the |
| // possible callees which precludes us from using a simple jump. |
| if (Callee->isDivergent()) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &CallerF = MF.getFunction(); |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| |
| // Kernels aren't callable, and don't have a live in return address so it |
| // doesn't make sense to do a tail call with entry functions. |
| if (!CallerPreserved) |
| return false; |
| |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| if (DAG.getTarget().Options.GuaranteedTailCallOpt) { |
| if (canGuaranteeTCO(CalleeCC) && CCMatch) |
| return true; |
| return false; |
| } |
| |
| // TODO: Can we handle var args? |
| if (IsVarArg) |
| return false; |
| |
| for (const Argument &Arg : CallerF.args()) { |
| if (Arg.hasByValAttr()) |
| return false; |
| } |
| |
| LLVMContext &Ctx = *DAG.getContext(); |
| |
| // Check that the call results are passed in the same way. |
| if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, |
| CCAssignFnForCall(CalleeCC, IsVarArg), |
| CCAssignFnForCall(CallerCC, IsVarArg))) |
| return false; |
| |
| // The callee has to preserve all registers the caller needs to preserve. |
| if (!CCMatch) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // Nothing more to check if the callee is taking no arguments. |
| if (Outs.empty()) |
| return true; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); |
| |
| const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); |
| // If the stack arguments for this call do not fit into our own save area then |
| // the call cannot be made tail. |
| // TODO: Is this really necessary? |
| if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) |
| return false; |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); |
| } |
| |
| bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| if (!CI->isTailCall()) |
| return false; |
| |
| const Function *ParentFn = CI->getParent()->getParent(); |
| if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) |
| return false; |
| return true; |
| } |
| |
| // The wave scratch offset register is used as the global base pointer. |
| SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| const SDLoc &DL = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| bool IsSibCall = false; |
| bool IsThisReturn = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (Callee.isUndef() || isNullConstant(Callee)) { |
| if (!CLI.IsTailCall) { |
| for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) |
| InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); |
| } |
| |
| return Chain; |
| } |
| |
| if (IsVarArg) { |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported call to variadic function "); |
| } |
| |
| if (!CLI.CB) |
| report_fatal_error("unsupported libcall legalization"); |
| |
| if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported required tail call to function "); |
| } |
| |
| if (AMDGPU::isShader(CallConv)) { |
| // Note the issue is with the CC of the called function, not of the call |
| // itself. |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported call to a shader function "); |
| } |
| |
| if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && |
| CallConv != CallingConv::AMDGPU_Gfx) { |
| // Only allow calls with specific calling conventions. |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported calling convention for call from " |
| "graphics shader of function "); |
| } |
| |
| if (IsTailCall) { |
| IsTailCall = isEligibleForTailCallOptimization( |
| Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); |
| if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| } |
| |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| |
| // A sibling call is one where we're under the usual C ABI and not planning |
| // to change that but can still do a tail call: |
| if (!TailCallOpt && IsTailCall) |
| IsSibCall = true; |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| } |
| |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); |
| |
| if (AMDGPUTargetMachine::EnableFixedFunctionABI && |
| CallConv != CallingConv::AMDGPU_Gfx) { |
| // With a fixed ABI, allocate fixed registers before user arguments. |
| passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); |
| } |
| |
| CCInfo.AnalyzeCallOperands(Outs, AssignFn); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| if (IsSibCall) { |
| // Since we're not changing the ABI to make this a tail call, the memory |
| // operands are already available in the caller's incoming argument space. |
| NumBytes = 0; |
| } |
| |
| // FPDiff is the byte offset of the call's argument area from the callee's. |
| // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| // by this amount for a tail call. In a sibling call it must be 0 because the |
| // caller will deallocate the entire stack and the callee still expects its |
| // arguments to begin at SP+0. Completely unused for non-tail calls. |
| int32_t FPDiff = 0; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) { |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); |
| |
| if (!Subtarget->enableFlatScratch()) { |
| SmallVector<SDValue, 4> CopyFromChains; |
| |
| // In the HSA case, this should be an identity copy. |
| SDValue ScratchRSrcReg |
| = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); |
| RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); |
| CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); |
| Chain = DAG.getTokenFactor(DL, CopyFromChains); |
| } |
| } |
| |
| MVT PtrVT = MVT::i32; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::FPExt: |
| Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| SDValue DstAddr; |
| MachinePointerInfo DstInfo; |
| |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| int32_t Offset = LocMemOffset; |
| |
| SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); |
| MaybeAlign Alignment; |
| |
| if (IsTailCall) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| unsigned OpSize = Flags.isByVal() ? |
| Flags.getByValSize() : VA.getValVT().getStoreSize(); |
| |
| // FIXME: We can have better than the minimum byval required alignment. |
| Alignment = |
| Flags.isByVal() |
| ? Flags.getNonZeroByValAlign() |
| : commonAlignment(Subtarget->getStackAlignment(), Offset); |
| |
| Offset = Offset + FPDiff; |
| int FI = MFI.CreateFixedObject(OpSize, Offset, true); |
| |
| DstAddr = DAG.getFrameIndex(FI, PtrVT); |
| DstInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| |
| // Make sure any stack arguments overlapping with where we're storing |
| // are loaded before this eventual operation. Otherwise they'll be |
| // clobbered. |
| |
| // FIXME: Why is this really necessary? This seems to just result in a |
| // lot of code to copy the stack and write them back to the same |
| // locations, which are supposed to be immutable? |
| Chain = addTokenForArgument(Chain, DAG, MFI, FI); |
| } else { |
| // Stores to the argument stack area are relative to the stack pointer. |
| SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), |
| MVT::i32); |
| DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); |
| DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); |
| Alignment = |
| commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); |
| } |
| |
| if (Outs[i].Flags.isByVal()) { |
| SDValue SizeNode = |
| DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); |
| SDValue Cpy = |
| DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, |
| Outs[i].Flags.getNonZeroByValAlign(), |
| /*isVol = */ false, /*AlwaysInline = */ true, |
| /*isTailCall = */ false, DstInfo, |
| MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); |
| |
| MemOpChains.push_back(Cpy); |
| } else { |
| SDValue Store = |
| DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); |
| MemOpChains.push_back(Store); |
| } |
| } |
| } |
| |
| if (!AMDGPUTargetMachine::EnableFixedFunctionABI && |
| CallConv != CallingConv::AMDGPU_Gfx) { |
| // Copy special input registers after user input arguments. |
| passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (auto &RegToPass : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, |
| RegToPass.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| |
| SDValue PhysReturnAddrReg; |
| if (IsTailCall) { |
| // Since the return is being combined with the call, we need to pass on the |
| // return address. |
| |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| SDValue ReturnAddrReg = CreateLiveInRegister( |
| DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); |
| |
| PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), |
| MVT::i64); |
| Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // We don't usually want to end the call-sequence here because we would tidy |
| // the frame up *after* the call, however in the ABI-changing tail-call case |
| // we've carefully laid out the parameters so that when sp is reset they'll be |
| // in the correct location. |
| if (IsTailCall && !IsSibCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getTargetConstant(NumBytes, DL, MVT::i32), |
| DAG.getTargetConstant(0, DL, MVT::i32), |
| InFlag, DL); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| // Add a redundant copy of the callee global which will not be legalized, as |
| // we need direct access to the callee later. |
| if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = GSD->getGlobal(); |
| Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); |
| } else { |
| Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); |
| } |
| |
| if (IsTailCall) { |
| // Each tail call may have to adjust the stack by a different amount, so |
| // this information must travel along with the operation for eventual |
| // consumption by emitEpilogue. |
| Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); |
| |
| Ops.push_back(PhysReturnAddrReg); |
| } |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (auto &RegToPass : RegsToPass) { |
| Ops.push_back(DAG.getRegister(RegToPass.first, |
| RegToPass.second.getValueType())); |
| } |
| |
| // Add a register mask operand representing the call-preserved registers. |
| |
| auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); |
| const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| // If we're doing a tall call, use a TC_RETURN here rather than an |
| // actual call instruction. |
| if (IsTailCall) { |
| MFI.setHasTailCall(); |
| return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); |
| } |
| |
| // Returns a chain and a flag for retval copy to use. |
| SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); |
| Chain = Call.getValue(0); |
| InFlag = Call.getValue(1); |
| |
| uint64_t CalleePopBytes = NumBytes; |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), |
| DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), |
| InFlag, DL); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
| InVals, IsThisReturn, |
| IsThisReturn ? OutVals[0] : SDValue()); |
| } |
| |
| // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, |
| // except for applying the wave size scale to the increment amount. |
| SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( |
| SDValue Op, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Tmp1 = Op; |
| SDValue Tmp2 = Op.getValue(1); |
| SDValue Tmp3 = Op.getOperand(2); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| Register SPReg = Info->getStackPtrOffsetReg(); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const TargetFrameLowering *TFL = ST.getFrameLowering(); |
| unsigned Opc = |
| TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? |
| ISD::ADD : ISD::SUB; |
| |
| SDValue ScaledSize = DAG.getNode( |
| ISD::SHL, dl, VT, Size, |
| DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); |
| |
| Align StackAlign = TFL->getStackAlign(); |
| Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value |
| if (Alignment && *Alignment > StackAlign) { |
| Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, |
| DAG.getConstant(-(uint64_t)Alignment->value() |
| << ST.getWavefrontSizeLog2(), |
| dl, VT)); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
| Tmp2 = DAG.getCALLSEQ_END( |
| Chain, DAG.getIntPtrConstant(0, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); |
| |
| return DAG.getMergeValues({Tmp1, Tmp2}, dl); |
| } |
| |
| SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| // We only handle constant sizes here to allow non-entry block, static sized |
| // allocas. A truly dynamic value is more difficult to support because we |
| // don't know if the size value is uniform or not. If the size isn't uniform, |
| // we would need to do a wave reduction to get the maximum size to know how |
| // much to increment the uniform stack pointer. |
| SDValue Size = Op.getOperand(1); |
| if (isa<ConstantSDNode>(Size)) |
| return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. |
| |
| return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| |
| Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("m0", AMDGPU::M0) |
| .Case("exec", AMDGPU::EXEC) |
| .Case("exec_lo", AMDGPU::EXEC_LO) |
| .Case("exec_hi", AMDGPU::EXEC_HI) |
| .Case("flat_scratch", AMDGPU::FLAT_SCR) |
| .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) |
| .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) |
| .Default(Register()); |
| |
| if (Reg == AMDGPU::NoRegister) { |
| report_fatal_error(Twine("invalid register name \"" |
| + StringRef(RegName) + "\".")); |
| |
| } |
| |
| if (!Subtarget->hasFlatScrRegister() && |
| Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { |
| report_fatal_error(Twine("invalid register \"" |
| + StringRef(RegName) + "\" for subtarget.")); |
| } |
| |
| switch (Reg) { |
| case AMDGPU::M0: |
| case AMDGPU::EXEC_LO: |
| case AMDGPU::EXEC_HI: |
| case AMDGPU::FLAT_SCR_LO: |
| case AMDGPU::FLAT_SCR_HI: |
| if (VT.getSizeInBits() == 32) |
| return Reg; |
| break; |
| case AMDGPU::EXEC: |
| case AMDGPU::FLAT_SCR: |
| if (VT.getSizeInBits() == 64) |
| return Reg; |
| break; |
| default: |
| llvm_unreachable("missing register type checking"); |
| } |
| |
| report_fatal_error(Twine("invalid type for register \"" |
| + StringRef(RegName) + "\".")); |
| } |
| |
| // If kill is not the last instruction, split the block so kill is always a |
| // proper terminator. |
| MachineBasicBlock * |
| SITargetLowering::splitKillBlock(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); |
| return SplitBB; |
| } |
| |
| // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, |
| // \p MI will be the only instruction in the loop body block. Otherwise, it will |
| // be the first instruction in the remainder block. |
| // |
| /// \returns { LoopBody, Remainder } |
| static std::pair<MachineBasicBlock *, MachineBasicBlock *> |
| splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { |
| MachineFunction *MF = MBB.getParent(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| // To insert the loop we need to split the block. Move everything after this |
| // point to a new block, and insert a new empty block between the two. |
| MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); |
| MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); |
| MachineFunction::iterator MBBI(MBB); |
| ++MBBI; |
| |
| MF->insert(MBBI, LoopBB); |
| MF->insert(MBBI, RemainderBB); |
| |
| LoopBB->addSuccessor(LoopBB); |
| LoopBB->addSuccessor(RemainderBB); |
| |
| // Move the rest of the block into a new block. |
| RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); |
| |
| if (InstInLoop) { |
| auto Next = std::next(I); |
| |
| // Move instruction to loop body. |
| LoopBB->splice(LoopBB->begin(), &MBB, I, Next); |
| |
| // Move the rest of the block. |
| RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); |
| } else { |
| RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); |
| } |
| |
| MBB.addSuccessor(LoopBB); |
| |
| return std::make_pair(LoopBB, RemainderBB); |
| } |
| |
| /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. |
| void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| auto I = MI.getIterator(); |
| auto E = std::next(I); |
| |
| BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) |
| .addImm(0); |
| |
| MIBundleBuilder Bundler(*MBB, I, E); |
| finalizeBundle(*MBB, Bundler.begin()); |
| } |
| |
| MachineBasicBlock * |
| SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| |
| MachineBasicBlock *LoopBB; |
| MachineBasicBlock *RemainderBB; |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| // Apparently kill flags are only valid if the def is in the same block? |
| if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) |
| Src->setIsKill(false); |
| |
| std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); |
| |
| MachineBasicBlock::iterator I = LoopBB->end(); |
| |
| const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( |
| AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); |
| |
| // Clear TRAP_STS.MEM_VIOL |
| BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) |
| .addImm(0) |
| .addImm(EncodedReg); |
| |
| bundleInstWithWaitcnt(MI); |
| |
| Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| |
| // Load and check TRAP_STS.MEM_VIOL |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) |
| .addImm(EncodedReg); |
| |
| // FIXME: Do we need to use an isel pseudo that may clobber scc? |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
| .addReg(Reg, RegState::Kill) |
| .addImm(0); |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
| .addMBB(LoopBB); |
| |
| return RemainderBB; |
| } |
| |
| // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the |
| // wavefront. If the value is uniform and just happens to be in a VGPR, this |
| // will only do one iteration. In the worst case, this will loop 64 times. |
| // |
| // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. |
| static MachineBasicBlock::iterator |
| emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, |
| MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, |
| const DebugLoc &DL, const MachineOperand &Idx, |
| unsigned InitReg, unsigned ResultReg, unsigned PhiReg, |
| unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, |
| Register &SGPRIdxReg) { |
| |
| MachineFunction *MF = OrigBB.getParent(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineBasicBlock::iterator I = LoopBB.begin(); |
| |
| const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
| Register PhiExec = MRI.createVirtualRegister(BoolRC); |
| Register NewExec = MRI.createVirtualRegister(BoolRC); |
| Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
| Register CondReg = MRI.createVirtualRegister(BoolRC); |
| |
| BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) |
| .addReg(InitReg) |
| .addMBB(&OrigBB) |
| .addReg(ResultReg) |
| .addMBB(&LoopBB); |
| |
| BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) |
| .addReg(InitSaveExecReg) |
| .addMBB(&OrigBB) |
| .addReg(NewExec) |
| .addMBB(&LoopBB); |
| |
| // Read the next variant <- also loop target. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) |
| .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); |
| |
| // Compare the just read M0 value to all possible Idx values. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) |
| .addReg(CurrentIdxReg) |
| .addReg(Idx.getReg(), 0, Idx.getSubReg()); |
| |
| // Update EXEC, save the original EXEC value to VCC. |
| BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 |
| : AMDGPU::S_AND_SAVEEXEC_B64), |
| NewExec) |
| .addReg(CondReg, RegState::Kill); |
| |
| MRI.setSimpleHint(NewExec, CondReg); |
| |
| if (UseGPRIdxMode) { |
| if (Offset == 0) { |
| SGPRIdxReg = CurrentIdxReg; |
| } else { |
| SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) |
| .addReg(CurrentIdxReg, RegState::Kill) |
| .addImm(Offset); |
| } |
| } else { |
| // Move index from VCC into M0 |
| if (Offset == 0) { |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
| .addReg(CurrentIdxReg, RegState::Kill); |
| } else { |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
| .addReg(CurrentIdxReg, RegState::Kill) |
| .addImm(Offset); |
| } |
| } |
| |
| // Update EXEC, switch all done bits to 0 and all todo bits to 1. |
| unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| MachineInstr *InsertPt = |
| BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term |
| : AMDGPU::S_XOR_B64_term), Exec) |
| .addReg(Exec) |
| .addReg(NewExec); |
| |
| // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use |
| // s_cbranch_scc0? |
| |
| // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) |
| .addMBB(&LoopBB); |
| |
| return InsertPt->getIterator(); |
| } |
| |
| // This has slightly sub-optimal regalloc when the source vector is killed by |
| // the read. The register allocator does not understand that the kill is |
| // per-workitem, so is kept alive for the whole loop so we end up not re-using a |
| // subregister from it, using 1 more VGPR than necessary. This was saved when |
| // this was expanded after register allocation. |
| static MachineBasicBlock::iterator |
| loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, |
| unsigned InitResultReg, unsigned PhiReg, int Offset, |
| bool UseGPRIdxMode, Register &SGPRIdxReg) { |
| MachineFunction *MF = MBB.getParent(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); |
| Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); |
| unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); |
| |
| // Save the EXEC mask |
| BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) |
| .addReg(Exec); |
| |
| MachineBasicBlock *LoopBB; |
| MachineBasicBlock *RemainderBB; |
| std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, |
| InitResultReg, DstReg, PhiReg, TmpExec, |
| Offset, UseGPRIdxMode, SGPRIdxReg); |
| |
| MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); |
| MachineFunction::iterator MBBI(LoopBB); |
| ++MBBI; |
| MF->insert(MBBI, LandingPad); |
| LoopBB->removeSuccessor(RemainderBB); |
| LandingPad->addSuccessor(RemainderBB); |
| LoopBB->addSuccessor(LandingPad); |
| MachineBasicBlock::iterator First = LandingPad->begin(); |
| BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) |
| .addReg(SaveExec); |
| |
| return InsPt; |
| } |
| |
| // Returns subreg index, offset |
| static std::pair<unsigned, int> |
| computeIndirectRegAndOffset(const SIRegisterInfo &TRI, |
| const TargetRegisterClass *SuperRC, |
| unsigned VecReg, |
| int Offset) { |
| int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; |
| |
| // Skip out of bounds offsets, or else we would end up using an undefined |
| // register. |
| if (Offset >= NumElts || Offset < 0) |
| return std::make_pair(AMDGPU::sub0, Offset); |
| |
| return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); |
| } |
| |
| static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, |
| MachineRegisterInfo &MRI, MachineInstr &MI, |
| int Offset) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| assert(Idx->getReg() != AMDGPU::NoRegister); |
| |
| if (Offset == 0) { |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); |
| } else { |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
| .add(*Idx) |
| .addImm(Offset); |
| } |
| } |
| |
| static Register getIndirectSGPRIdx(const SIInstrInfo *TII, |
| MachineRegisterInfo &MRI, MachineInstr &MI, |
| int Offset) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| if (Offset == 0) |
| return Idx->getReg(); |
| |
| Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) |
| .add(*Idx) |
| .addImm(Offset); |
| return Tmp; |
| } |
| |
| static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| const GCNSubtarget &ST) { |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineFunction *MF = MBB.getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); |
| int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
| |
| const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); |
| const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
| |
| unsigned SubReg; |
| std::tie(SubReg, Offset) |
| = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); |
| |
| const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
| |
| // Check for a SGPR index. |
| if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| if (UseGPRIdxMode) { |
| // TODO: Look at the uses to avoid the copy. This may require rescheduling |
| // to avoid interfering with other uses, so probably requires a new |
| // optimization pass. |
| Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
| BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
| .addReg(SrcReg) |
| .addReg(Idx) |
| .addImm(SubReg); |
| } else { |
| setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
| |
| BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
| .addReg(SrcReg, 0, SubReg) |
| .addReg(SrcReg, RegState::Implicit); |
| } |
| |
| MI.eraseFromParent(); |
| |
| return &MBB; |
| } |
| |
| // Control flow needs to be inserted if indexing with a VGPR. |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); |
| |
| Register SGPRIdxReg; |
| auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, |
| UseGPRIdxMode, SGPRIdxReg); |
| |
| MachineBasicBlock *LoopBB = InsPt->getParent(); |
| |
| if (UseGPRIdxMode) { |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
| |
| BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
| .addReg(SrcReg) |
| .addReg(SGPRIdxReg) |
| .addImm(SubReg); |
| } else { |
| BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
| .addReg(SrcReg, 0, SubReg) |
| .addReg(SrcReg, RegState::Implicit); |
| } |
| |
| MI.eraseFromParent(); |
| |
| return LoopBB; |
| } |
| |
| static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| const GCNSubtarget &ST) { |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineFunction *MF = MBB.getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); |
| int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
| const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); |
| const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
| |
| // This can be an immediate, but will be folded later. |
| assert(Val->getReg()); |
| |
| unsigned SubReg; |
| std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, |
| SrcVec->getReg(), |
| Offset); |
| const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
| |
| if (Idx->getReg() == AMDGPU::NoRegister) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| assert(Offset == 0); |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) |
| .add(*SrcVec) |
| .add(*Val) |
| .addImm(SubReg); |
| |
| MI.eraseFromParent(); |
| return &MBB; |
| } |
| |
| // Check for a SGPR index. |
| if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| if (UseGPRIdxMode) { |
| Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
| BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
| .addReg(SrcVec->getReg()) |
| .add(*Val) |
| .addReg(Idx) |
| .addImm(SubReg); |
| } else { |
| setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
| TRI.getRegSizeInBits(*VecRC), 32, false); |
| BuildMI(MBB, I, DL, MovRelDesc, Dst) |
| .addReg(SrcVec->getReg()) |
| .add(*Val) |
| .addImm(SubReg); |
| } |
| MI.eraseFromParent(); |
| return &MBB; |
| } |
| |
| // Control flow needs to be inserted if indexing with a VGPR. |
| if (Val->isReg()) |
| MRI.clearKillFlags(Val->getReg()); |
| |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| Register PhiReg = MRI.createVirtualRegister(VecRC); |
| |
| Register SGPRIdxReg; |
| auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, |
| UseGPRIdxMode, SGPRIdxReg); |
| MachineBasicBlock *LoopBB = InsPt->getParent(); |
| |
| if (UseGPRIdxMode) { |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
| |
| BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
| .addReg(PhiReg) |
| .add(*Val) |
| .addReg(SGPRIdxReg) |
| .addImm(AMDGPU::sub0); |
| } else { |
| const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
| TRI.getRegSizeInBits(*VecRC), 32, false); |
| BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) |
| .addReg(PhiReg) |
| .add(*Val) |
| .addImm(AMDGPU::sub0); |
| } |
| |
| MI.eraseFromParent(); |
| return LoopBB; |
| } |
| |
| MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *BB) const { |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| MachineFunction *MF = BB->getParent(); |
| SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); |
| |
| switch (MI.getOpcode()) { |
| case AMDGPU::S_UADDO_PSEUDO: |
| case AMDGPU::S_USUBO_PSEUDO: { |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineOperand &Dest0 = MI.getOperand(0); |
| MachineOperand &Dest1 = MI.getOperand(1); |
| MachineOperand &Src0 = MI.getOperand(2); |
| MachineOperand &Src1 = MI.getOperand(3); |
| |
| unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) |
| ? AMDGPU::S_ADD_I32 |
| : AMDGPU::S_SUB_I32; |
| BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) |
| .addImm(1) |
| .addImm(0); |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::S_ADD_U64_PSEUDO: |
| case AMDGPU::S_SUB_U64_PSEUDO: { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &Src0 = MI.getOperand(1); |
| MachineOperand &Src1 = MI.getOperand(2); |
| |
| Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| |
| MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
| MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
| |
| MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
| MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
| |
| bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); |
| |
| unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; |
| unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; |
| BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); |
| BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
| .addReg(DestSub0) |
| .addImm(AMDGPU::sub0) |
| .addReg(DestSub1) |
| .addImm(AMDGPU::sub1); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::V_ADD_U64_PSEUDO: |
| case AMDGPU::V_SUB_U64_PSEUDO: { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); |
| |
| const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| |
| Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| |
| Register CarryReg = MRI.createVirtualRegister(CarryRC); |
| Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); |
| |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &Src0 = MI.getOperand(1); |
| MachineOperand &Src1 = MI.getOperand(2); |
| |
| const TargetRegisterClass *Src0RC = Src0.isReg() |
| ? MRI.getRegClass(Src0.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| const TargetRegisterClass *Src1RC = Src1.isReg() |
| ? MRI.getRegClass(Src1.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| |
| const TargetRegisterClass *Src0SubRC = |
| TRI->getSubRegClass(Src0RC, AMDGPU::sub0); |
| const TargetRegisterClass *Src1SubRC = |
| TRI->getSubRegClass(Src1RC, AMDGPU::sub1); |
| |
| MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); |
| MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); |
| |
| MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); |
| MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); |
| |
| unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
| MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) |
| .addReg(CarryReg, RegState::Define) |
| .add(SrcReg0Sub0) |
| .add(SrcReg1Sub0) |
| .addImm(0); // clamp bit |
| |
| unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; |
| MachineInstr *HiHalf = |
| BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) |
| .addReg(DeadCarryReg, RegState::Define | RegState::Dead) |
| .add(SrcReg0Sub1) |
| .add(SrcReg1Sub1) |
| .addReg(CarryReg, RegState::Kill) |
| .addImm(0); // clamp bit |
| |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
| .addReg(DestSub0) |
| .addImm(AMDGPU::sub0) |
| .addReg(DestSub1) |
| .addImm(AMDGPU::sub1); |
| TII->legalizeOperands(*LoHalf); |
| TII->legalizeOperands(*HiHalf); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::S_ADD_CO_PSEUDO: |
| case AMDGPU::S_SUB_CO_PSEUDO: { |
| // This pseudo has a chance to be selected |
| // only from uniform add/subcarry node. All the VGPR operands |
| // therefore assumed to be splat vectors. |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineBasicBlock::iterator MII = MI; |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &CarryDest = MI.getOperand(1); |
| MachineOperand &Src0 = MI.getOperand(2); |
| MachineOperand &Src1 = MI.getOperand(3); |
| MachineOperand &Src2 = MI.getOperand(4); |
| unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) |
| ? AMDGPU::S_ADDC_U32 |
| : AMDGPU::S_SUBB_U32; |
| if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { |
| Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) |
| .addReg(Src0.getReg()); |
| Src0.setReg(RegOp0); |
| } |
| if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { |
| Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) |
| .addReg(Src1.getReg()); |
| Src1.setReg(RegOp1); |
| } |
| Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| if (TRI->isVectorRegister(MRI, Src2.getReg())) { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) |
| .addReg(Src2.getReg()); |
| Src2.setReg(RegOp2); |
| } |
| |
| const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); |
| if (TRI->getRegSizeInBits(*Src2RC) == 64) { |
| if (ST.hasScalarCompareEq64()) { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) |
| .addReg(Src2.getReg()) |
| .addImm(0); |
| } else { |
| const TargetRegisterClass *SubRC = |
| TRI->getSubRegClass(Src2RC, AMDGPU::sub0); |
| MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( |
| MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); |
| MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( |
| MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); |
| Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) |
| .add(Src2Sub0) |
| .add(Src2Sub1); |
| |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
| .addReg(Src2_32, RegState::Kill) |
| .addImm(0); |
| } |
| } else { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32)) |
| .addReg(Src2.getReg()) |
| .addImm(0); |
| } |
| |
| BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); |
| |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg()) |
| .addReg(AMDGPU::SCC); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_INIT_M0: { |
| BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), |
| TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
| .add(MI.getOperand(0)); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::GET_GROUPSTATICSIZE: { |
| assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || |
| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); |
| DebugLoc DL = MI.getDebugLoc(); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) |
| .add(MI.getOperand(0)) |
| .addImm(MFI->getLDSSize()); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_INDIRECT_SRC_V1: |
| case AMDGPU::SI_INDIRECT_SRC_V2: |
| case AMDGPU::SI_INDIRECT_SRC_V4: |
| case AMDGPU::SI_INDIRECT_SRC_V8: |
| case AMDGPU::SI_INDIRECT_SRC_V16: |
| case AMDGPU::SI_INDIRECT_SRC_V32: |
| return emitIndirectSrc(MI, *BB, *getSubtarget()); |
| case AMDGPU::SI_INDIRECT_DST_V1: |
| case AMDGPU::SI_INDIRECT_DST_V2: |
| case AMDGPU::SI_INDIRECT_DST_V4: |
| case AMDGPU::SI_INDIRECT_DST_V8: |
| case AMDGPU::SI_INDIRECT_DST_V16: |
| case AMDGPU::SI_INDIRECT_DST_V32: |
| return emitIndirectDst(MI, *BB, *getSubtarget()); |
| case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: |
| case AMDGPU::SI_KILL_I1_PSEUDO: |
| return splitKillBlock(MI, BB); |
| case AMDGPU::V_CNDMASK_B64_PSEUDO: { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| Register Src0 = MI.getOperand(1).getReg(); |
| Register Src1 = MI.getOperand(2).getReg(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| Register SrcCond = MI.getOperand(3).getReg(); |
| |
| Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| Register SrcCondCopy = MRI.createVirtualRegister(CondRC); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) |
| .addReg(SrcCond); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) |
| .addImm(0) |
| .addReg(Src0, 0, AMDGPU::sub0) |
| .addImm(0) |
| .addReg(Src1, 0, AMDGPU::sub0) |
| .addReg(SrcCondCopy); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) |
| .addImm(0) |
| .addReg(Src0, 0, AMDGPU::sub1) |
| .addImm(0) |
| .addReg(Src1, 0, AMDGPU::sub1) |
| .addReg(SrcCondCopy); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) |
| .addReg(DstLo) |
| .addImm(AMDGPU::sub0) |
| .addReg(DstHi) |
| .addImm(AMDGPU::sub1); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_BR_UNDEF: { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
| .add(MI.getOperand(0)); |
| Br->getOperand(1).setIsUndef(true); // read undef SCC |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::ADJCALLSTACKUP: |
| case AMDGPU::ADJCALLSTACKDOWN: { |
| const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
| MachineInstrBuilder MIB(*MF, &MI); |
| MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) |
| .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); |
| return BB; |
| } |
| case AMDGPU::SI_CALL_ISEL: { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); |
| |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); |
| |
| for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) |
| MIB.add(MI.getOperand(I)); |
| |
| MIB.cloneMemRefs(MI); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::V_ADD_CO_U32_e32: |
| case AMDGPU::V_SUB_CO_U32_e32: |
| case AMDGPU::V_SUBREV_CO_U32_e32: { |
| // TODO: Define distinct V_*_I32_Pseudo instructions instead. |
| const DebugLoc &DL = MI.getDebugLoc(); |
| unsigned Opc = MI.getOpcode(); |
| |
| bool NeedClampOperand = false; |
| if (TII->pseudoToMCOpcode(Opc) == -1) { |
| Opc = AMDGPU::getVOPe64(Opc); |
| NeedClampOperand = true; |
| } |
| |
| auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); |
| if (TII->isVOP3(*I)) { |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| I.addReg(TRI->getVCC(), RegState::Define); |
| } |
| I.add(MI.getOperand(1)) |
| .add(MI.getOperand(2)); |
| if (NeedClampOperand) |
| I.addImm(0); // clamp bit for e64 encoding |
| |
| TII->legalizeOperands(*I); |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::DS_GWS_INIT: |
| case AMDGPU::DS_GWS_SEMA_BR: |
| case AMDGPU::DS_GWS_BARRIER: |
| if (Subtarget->needsAlignedVGPRs()) { |
| // Add implicit aligned super-reg to force alignment on the data operand. |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0); |
| Register DataReg = Op->getReg(); |
| bool IsAGPR = TRI->isAGPR(MRI, DataReg); |
| Register Undef = MRI.createVirtualRegister( |
| IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef); |
| Register NewVR = |
| MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass |
| : &AMDGPU::VReg_64_Align2RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR) |
| .addReg(DataReg, 0, Op->getSubReg()) |
| .addImm(AMDGPU::sub0) |
| .addReg(Undef) |
| .addImm(AMDGPU::sub1); |
| Op->setReg(NewVR); |
| Op->setSubReg(AMDGPU::sub0); |
| MI.addOperand(MachineOperand::CreateReg(NewVR, false, true)); |
| } |
| LLVM_FALLTHROUGH; |
| case AMDGPU::DS_GWS_SEMA_V: |
| case AMDGPU::DS_GWS_SEMA_P: |
| case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: |
| // A s_waitcnt 0 is required to be the instruction immediately following. |
| if (getSubtarget()->hasGWSAutoReplay()) { |
| bundleInstWithWaitcnt(MI); |
| return BB; |
| } |
| |
| return emitGWSMemViolTestLoop(MI, BB); |
| case AMDGPU::S_SETREG_B32: { |
| // Try to optimize cases that only set the denormal mode or rounding mode. |
| // |
| // If the s_setreg_b32 fully sets all of the bits in the rounding mode or |
| // denormal mode to a constant, we can use s_round_mode or s_denorm_mode |
| // instead. |
| // |
| // FIXME: This could be predicates on the immediate, but tablegen doesn't |
| // allow you to have a no side effect instruction in the output of a |
| // sideeffecting pattern. |
| unsigned ID, Offset, Width; |
| AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); |
| if (ID != AMDGPU::Hwreg::ID_MODE) |
| return BB; |
| |
| const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); |
| const unsigned SetMask = WidthMask << Offset; |
| |
| if (getSubtarget()->hasDenormModeInst()) { |
| unsigned SetDenormOp = 0; |
| unsigned SetRoundOp = 0; |
| |
| // The dedicated instructions can only set the whole denorm or round mode |
| // at once, not a subset of bits in either. |
| if (SetMask == |
| (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { |
| // If this fully sets both the round and denorm mode, emit the two |
| // dedicated instructions for these. |
| SetRoundOp = AMDGPU::S_ROUND_MODE; |
| SetDenormOp = AMDGPU::S_DENORM_MODE; |
| } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { |
| SetRoundOp = AMDGPU::S_ROUND_MODE; |
| } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { |
| SetDenormOp = AMDGPU::S_DENORM_MODE; |
| } |
| |
| if (SetRoundOp || SetDenormOp) { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); |
| if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { |
| unsigned ImmVal = Def->getOperand(1).getImm(); |
| if (SetRoundOp) { |
| BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) |
| .addImm(ImmVal & 0xf); |
| |
| // If we also have the denorm mode, get just the denorm mode bits. |
| ImmVal >>= 4; |
| } |
| |
| if (SetDenormOp) { |
| BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) |
| .addImm(ImmVal & 0xf); |
| } |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| } |
| } |
| |
| // If only FP bits are touched, used the no side effects pseudo. |
| if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | |
| AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) |
| MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); |
| |
| return BB; |
| } |
| default: |
| return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); |
| } |
| } |
| |
| bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { |
| return isTypeLegal(VT.getScalarType()); |
| } |
| |
| bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { |
| // This currently forces unfolding various combinations of fsub into fma with |
| // free fneg'd operands. As long as we have fast FMA (controlled by |
| // isFMAFasterThanFMulAndFAdd), we should perform these. |
| |
| // When fma is quarter rate, for f64 where add / sub are at best half rate, |
| // most of these combines appear to be cycle neutral but save on instruction |
| // count / code size. |
| return true; |
| } |
| |
| EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, |
| EVT VT) const { |
| if (!VT.isVector()) { |
| return MVT::i1; |
| } |
| return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); |
| } |
| |
| MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { |
| // TODO: Should i16 be used always if legal? For now it would force VALU |
| // shifts. |
| return (VT == MVT::i16) ? MVT::i16 : MVT::i32; |
| } |
| |
| LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { |
| return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) |
| ? Ty.changeElementSize(16) |
| : Ty.changeElementSize(32); |
| } |
| |
| // Answering this is somewhat tricky and depends on the specific device which |
| // have different rates for fma or all f64 operations. |
| // |
| // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other |
| // regardless of which device (although the number of cycles differs between |
| // devices), so it is always profitable for f64. |
| // |
| // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable |
| // only on full rate devices. Normally, we should prefer selecting v_mad_f32 |
| // which we can always do even without fused FP ops since it returns the same |
| // result as the separate operations and since it is always full |
| // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 |
| // however does not support denormals, so we do report fma as faster if we have |
| // a fast fma device and require denormals. |
| // |
| bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| EVT VT) const { |
| VT = VT.getScalarType(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: { |
| // If mad is not available this depends only on if f32 fma is full rate. |
| if (!Subtarget->hasMadMacF32Insts()) |
| return Subtarget->hasFastFMAF32(); |
| |
| // Otherwise f32 mad is always full rate and returns the same result as |
| // the separate operations so should be preferred over fma. |
| // However does not support denomals. |
| if (hasFP32Denormals(MF)) |
| return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); |
| |
| // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. |
| return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); |
| } |
| case MVT::f64: |
| return true; |
| case MVT::f16: |
| return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, |
| const SDNode *N) const { |
| // TODO: Check future ftz flag |
| // v_mad_f32/v_mac_f32 do not support denormals. |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::f32) |
| return Subtarget->hasMadMacF32Insts() && |
| !hasFP32Denormals(DAG.getMachineFunction()); |
| if (VT == MVT::f16) { |
| return Subtarget->hasMadF16() && |
| !hasFP64FP16Denormals(DAG.getMachineFunction()); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG Lowering Operations |
| //===----------------------------------------------------------------------===// |
| |
| // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
| // wider vector type is legal. |
| SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4f16 || VT == MVT::v4i16); |
| |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| |
| SDLoc SL(Op); |
| SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
| // wider vector type is legal. |
| SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || |
| VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); |
| |
| SDValue Lo0, Hi0; |
| std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| SDValue Lo1, Hi1; |
| std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
| |
| SDLoc SL(Op); |
| |
| SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || |
| VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); |
| |
| SDValue Lo0, Hi0; |
| std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| SDValue Lo1, Hi1; |
| std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
| SDValue Lo2, Hi2; |
| std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); |
| |
| SDLoc SL(Op); |
| |
| SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| |
| SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::LOAD: { |
| SDValue Result = LowerLOAD(Op, DAG); |
| assert((!Result.getNode() || |
| Result.getNode()->getNumValues() == 2) && |
| "Load should return a value and a chain"); |
| return Result; |
| } |
| |
| case ISD::FSIN: |
| case ISD::FCOS: |
| return LowerTrig(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::FDIV: return LowerFDIV(Op, DAG); |
| case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); |
| case ISD::STORE: return LowerSTORE(Op, DAG); |
| case ISD::GlobalAddress: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| return LowerGlobalAddress(MFI, Op, DAG); |
| } |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); |
| case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: |
| return lowerINSERT_SUBVECTOR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return lowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return lowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return lowerBUILD_VECTOR(Op, DAG); |
| case ISD::FP_ROUND: |
| return lowerFP_ROUND(Op, DAG); |
| case ISD::TRAP: |
| return lowerTRAP(Op, DAG); |
| case ISD::DEBUGTRAP: |
| return lowerDEBUGTRAP(Op, DAG); |
| case ISD::FABS: |
| case ISD::FNEG: |
| case ISD::FCANONICALIZE: |
| case ISD::BSWAP: |
| return splitUnaryVectorOp(Op, DAG); |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| return lowerFMINNUM_FMAXNUM(Op, DAG); |
| case ISD::FMA: |
| return splitTernaryVectorOp(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::FADD: |
| case ISD::FMUL: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::UADDSAT: |
| case ISD::USUBSAT: |
| case ISD::SADDSAT: |
| case ISD::SSUBSAT: |
| return splitBinaryVectorOp(Op, DAG); |
| case ISD::SMULO: |
| case ISD::UMULO: |
| return lowerXMULO(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // Used for D16: Casts the result of an instruction into the right vector, |
| // packs values if loads return unpacked values. |
| static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, |
| const SDLoc &DL, |
| SelectionDAG &DAG, bool Unpacked) { |
| if (!LoadVT.isVector()) |
| return Result; |
| |
| // Cast back to the original packed type or to a larger type that is a |
| // multiple of 32 bit for D16. Widening the return type is a required for |
| // legalization. |
| EVT FittingLoadVT = LoadVT; |
| if ((LoadVT.getVectorNumElements() % 2) == 1) { |
| FittingLoadVT = |
| EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
| LoadVT.getVectorNumElements() + 1); |
| } |
| |
| if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. |
| // Truncate to v2i16/v4i16. |
| EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); |
| |
| // Workaround legalizer not scalarizing truncate after vector op |
| // legalization but not creating intermediate vector trunc. |
| SmallVector<SDValue, 4> Elts; |
| DAG.ExtractVectorElements(Result, Elts); |
| for (SDValue &Elt : Elts) |
| Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); |
| |
| // Pad illegal v1i16/v3fi6 to v4i16 |
| if ((LoadVT.getVectorNumElements() % 2) == 1) |
| Elts.push_back(DAG.getUNDEF(MVT::i16)); |
| |
| Result = DAG.getBuildVector(IntLoadVT, DL, Elts); |
| |
| // Bitcast to original type (v2f16/v4f16). |
| return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
| } |
| |
| // Cast back to the original packed type. |
| return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
| } |
| |
| SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, |
| MemSDNode *M, |
| SelectionDAG &DAG, |
| ArrayRef<SDValue> Ops, |
| bool IsIntrinsic) const { |
| SDLoc DL(M); |
| |
| bool Unpacked = Subtarget->hasUnpackedD16VMem(); |
| EVT LoadVT = M->getValueType(0); |
| |
| EVT EquivLoadVT = LoadVT; |
| if (LoadVT.isVector()) { |
| if (Unpacked) { |
| EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| LoadVT.getVectorNumElements()); |
| } else if ((LoadVT.getVectorNumElements() % 2) == 1) { |
| // Widen v3f16 to legal type |
| EquivLoadVT = |
| EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
| LoadVT.getVectorNumElements() + 1); |
| } |
| } |
| |
| // Change from v4f16/v2f16 to EquivLoadVT. |
| SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); |
| |
| SDValue Load |
| = DAG.getMemIntrinsicNode( |
| IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, |
| VTList, Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| |
| SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); |
| |
| return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); |
| } |
| |
| SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, |
| SelectionDAG &DAG, |
| ArrayRef<SDValue> Ops) const { |
| SDLoc DL(M); |
| EVT LoadVT = M->getValueType(0); |
| EVT EltType = LoadVT.getScalarType(); |
| EVT IntVT = LoadVT.changeTypeToInteger(); |
| |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| |
| unsigned Opc = |
| IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD; |
| |
| if (IsD16) { |
| return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); |
| } |
| |
| // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics |
| if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); |
| |
| if (isTypeLegal(LoadVT)) { |
| return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, |
| M->getMemOperand(), DAG); |
| } |
| |
| EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); |
| SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); |
| SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, |
| M->getMemOperand(), DAG); |
| return DAG.getMergeValues( |
| {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, |
| DL); |
| } |
| |
| static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, |
| SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); |
| unsigned CondCode = CD->getZExtValue(); |
| if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) |
| return DAG.getUNDEF(VT); |
| |
| ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); |
| |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| |
| SDLoc DL(N); |
| |
| EVT CmpVT = LHS.getValueType(); |
| if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { |
| unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? |
| ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); |
| RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); |
| } |
| |
| ISD::CondCode CCOpcode = getICmpCondCode(IcInput); |
| |
| unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
| EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
| |
| SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, |
| DAG.getCondCode(CCOpcode)); |
| if (VT.bitsEq(CCVT)) |
| return SetCC; |
| return DAG.getZExtOrTrunc(SetCC, DL, VT); |
| } |
| |
| static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, |
| SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| const auto *CD = cast<ConstantSDNode>(N->getOperand(3)); |
| |
| unsigned CondCode = CD->getZExtValue(); |
| if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) |
| return DAG.getUNDEF(VT); |
| |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| EVT CmpVT = Src0.getValueType(); |
| SDLoc SL(N); |
| |
| if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { |
| Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); |
| Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); |
| } |
| |
| FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); |
| ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); |
| unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
| EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
| SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, |
| Src1, DAG.getCondCode(CCOpcode)); |
| if (VT.bitsEq(CCVT)) |
| return SetCC; |
| return DAG.getZExtOrTrunc(SetCC, SL, VT); |
| } |
| |
| static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, |
| SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(1); |
| SDLoc SL(N); |
| |
| if (Src.getOpcode() == ISD::SETCC) { |
| // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) |
| return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), |
| Src.getOperand(1), Src.getOperand(2)); |
| } |
| if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { |
| // (ballot 0) -> 0 |
| if (Arg->isNullValue()) |
| return DAG.getConstant(0, SL, VT); |
| |
| // (ballot 1) -> EXEC/EXEC_LO |
| if (Arg->isOne()) { |
| Register Exec; |
| if (VT.getScalarSizeInBits() == 32) |
| Exec = AMDGPU::EXEC_LO; |
| else if (VT.getScalarSizeInBits() == 64) |
| Exec = AMDGPU::EXEC; |
| else |
| return SDValue(); |
| |
| return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); |
| } |
| } |
| |
| // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) |
| // ISD::SETNE) |
| return DAG.getNode( |
| AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), |
| DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); |
| } |
| |
| void SITargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::INSERT_VECTOR_ELT: { |
| if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) |
| Results.push_back(Res); |
| return; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) |
| Results.push_back(Res); |
| return; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IID) { |
| case Intrinsic::amdgcn_cvt_pkrtz: { |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| SDLoc SL(N); |
| SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, |
| Src0, Src1); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); |
| return; |
| } |
| case Intrinsic::amdgcn_cvt_pknorm_i16: |
| case Intrinsic::amdgcn_cvt_pknorm_u16: |
| case Intrinsic::amdgcn_cvt_pk_i16: |
| case Intrinsic::amdgcn_cvt_pk_u16: { |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| SDLoc SL(N); |
| unsigned Opcode; |
| |
| if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) |
| Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; |
| else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) |
| Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; |
| else if (IID == Intrinsic::amdgcn_cvt_pk_i16) |
| Opcode = AMDGPUISD::CVT_PK_I16_I32; |
| else |
| Opcode = AMDGPUISD::CVT_PK_U16_U32; |
| |
| EVT VT = N->getValueType(0); |
| if (isTypeLegal(VT)) |
| Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); |
| else { |
| SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); |
| } |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { |
| if (Res.getOpcode() == ISD::MERGE_VALUES) { |
| // FIXME: Hacky |
| for (unsigned I = 0; I < Res.getNumOperands(); I++) { |
| Results.push_back(Res.getOperand(I)); |
| } |
| } else { |
| Results.push_back(Res); |
| Results.push_back(Res.getValue(1)); |
| } |
| return; |
| } |
| |
| break; |
| } |
| case ISD::SELECT: { |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); |
| SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); |
| SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); |
| |
| EVT SelectVT = NewVT; |
| if (NewVT.bitsLT(MVT::i32)) { |
| LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); |
| RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); |
| SelectVT = MVT::i32; |
| } |
| |
| SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, |
| N->getOperand(0), LHS, RHS); |
| |
| if (NewVT != SelectVT) |
| NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); |
| return; |
| } |
| case ISD::FNEG: { |
| if (N->getValueType(0) != MVT::v2f16) |
| break; |
| |
| SDLoc SL(N); |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
| |
| SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, |
| BC, |
| DAG.getConstant(0x80008000, SL, MVT::i32)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
| return; |
| } |
| case ISD::FABS: { |
| if (N->getValueType(0) != MVT::v2f16) |
| break; |
| |
| SDLoc SL(N); |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
| |
| SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, |
| BC, |
| DAG.getConstant(0x7fff7fff, SL, MVT::i32)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
| return; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /// Helper function for LowerBRCOND |
| static SDNode *findUser(SDValue Value, unsigned Opcode) { |
| |
| SDNode *Parent = Value.getNode(); |
| for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); |
| I != E; ++I) { |
| |
| if (I.getUse().get() != Value) |
| continue; |
| |
| if (I->getOpcode() == Opcode) |
| return *I; |
| } |
| return nullptr; |
| } |
| |
| unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { |
| if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { |
| switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) { |
| case Intrinsic::amdgcn_if: |
| return AMDGPUISD::IF; |
| case Intrinsic::amdgcn_else: |
| return AMDGPUISD::ELSE; |
| case Intrinsic::amdgcn_loop: |
| return AMDGPUISD::LOOP; |
| case Intrinsic::amdgcn_end_cf: |
| llvm_unreachable("should not occur"); |
| default: |
| return 0; |
| } |
| } |
| |
| // break, if_break, else_break are all only used as inputs to loop, not |
| // directly as branch conditions. |
| return 0; |
| } |
| |
| bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { |
| const Triple &TT = getTargetMachine().getTargetTriple(); |
| return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| AMDGPU::shouldEmitConstantsToTextSection(TT); |
| } |
| |
| bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { |
| // FIXME: Either avoid relying on address space here or change the default |
| // address space for functions to avoid the explicit check. |
| return (GV->getValueType()->isFunctionTy() || |
| !isNonGlobalAddrSpace(GV->getAddressSpace())) && |
| !shouldEmitFixup(GV) && |
| !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); |
| } |
| |
| bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { |
| return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); |
| } |
| |
| bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { |
| if (!GV->hasExternalLinkage()) |
| return true; |
| |
| const auto OS = getTargetMachine().getTargetTriple().getOS(); |
| return OS == Triple::AMDHSA || OS == Triple::AMDPAL; |
| } |
| |
| /// This transforms the control flow intrinsics to get the branch destination as |
| /// last parameter, also switches branch target with BR if the need arise |
| SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, |
| SelectionDAG &DAG) const { |
| SDLoc DL(BRCOND); |
| |
| SDNode *Intr = BRCOND.getOperand(1).getNode(); |
| SDValue Target = BRCOND.getOperand(2); |
| SDNode *BR = nullptr; |
| SDNode *SetCC = nullptr; |
| |
| if (Intr->getOpcode() == ISD::SETCC) { |
| // As long as we negate the condition everything is fine |
| SetCC = Intr; |
| Intr = SetCC->getOperand(0).getNode(); |
| |
| } else { |
| // Get the target from BR if we don't negate the condition |
| BR = findUser(BRCOND, ISD::BR); |
| assert(BR && "brcond missing unconditional branch user"); |
| Target = BR->getOperand(1); |
| } |
| |
| unsigned CFNode = isCFIntrinsic(Intr); |
| if (CFNode == 0) { |
| // This is a uniform branch so we don't need to legalize. |
| return BRCOND; |
| } |
| |
| bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || |
| Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; |
| |
| assert(!SetCC || |
| (SetCC->getConstantOperandVal(1) == 1 && |
| cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == |
| ISD::SETNE)); |
| |
| // operands of the new intrinsic call |
| SmallVector<SDValue, 4> Ops; |
| if (HaveChain) |
| Ops.push_back(BRCOND.getOperand(0)); |
| |
| Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); |
| Ops.push_back(Target); |
| |
| ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); |
| |
| // build the new intrinsic call |
| SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); |
| |
| if (!HaveChain) { |
| SDValue Ops[] = { |
| SDValue(Result, 0), |
| BRCOND.getOperand(0) |
| }; |
| |
| Result = DAG.getMergeValues(Ops, DL).getNode(); |
| } |
| |
| if (BR) { |
| // Give the branch instruction our target |
| SDValue Ops[] = { |
| BR->getOperand(0), |
| BRCOND.getOperand(2) |
| }; |
| SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); |
| DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); |
| } |
| |
| SDValue Chain = SDValue(Result, Result->getNumValues() - 1); |
| |
| // Copy the intrinsic results to registers |
| for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { |
| SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); |
| if (!CopyToReg) |
| continue; |
| |
| Chain = DAG.getCopyToReg( |
| Chain, DL, |
| CopyToReg->getOperand(1), |
| SDValue(Result, i - 1), |
| SDValue()); |
| |
| DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); |
| } |
| |
| // Remove the old intrinsic from the chain |
| DAG.ReplaceAllUsesOfValueWith( |
| SDValue(Intr, Intr->getNumValues() - 1), |
| Intr->getOperand(0)); |
| |
| return Chain; |
| } |
| |
| SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| // Checking the depth |
| if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) |
| return DAG.getConstant(0, DL, VT); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| // Check for kernel and shader functions |
| if (Info->isEntryFunction()) |
| return DAG.getConstant(0, DL, VT); |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| // There is a call to @llvm.returnaddress in this function |
| MFI.setReturnAddressIsTaken(true); |
| |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| // Get the return address reg and mark it as an implicit live-in |
| Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); |
| |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
| } |
| |
| SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, |
| SDValue Op, |
| const SDLoc &DL, |
| EVT VT) const { |
| return Op.getValueType().bitsLE(VT) ? |
| DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : |
| DAG.getNode(ISD::FP_ROUND, DL, VT, Op, |
| DAG.getTargetConstant(0, DL, MVT::i32)); |
| } |
| |
| SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::f16 && |
| "Do not know how to custom lower FP_ROUND for non-f16 type"); |
| |
| SDValue Src = Op.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| if (SrcVT != MVT::f64) |
| return Op; |
| |
| SDLoc DL(Op); |
| |
| SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); |
| } |
| |
| SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| bool IsIEEEMode = Info->getMode().IEEE; |
| |
| // FIXME: Assert during selection that this is only selected for |
| // ieee_mode. Currently a combine can produce the ieee version for non-ieee |
| // mode functions, but this happens to be OK since it's only done in cases |
| // where there is known no sNaN. |
| if (IsIEEEMode) |
| return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); |
| |
| if (VT == MVT::v4f16) |
| return splitBinaryVectorOp(Op, DAG); |
| return Op; |
| } |
| |
| SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| bool isSigned = Op.getOpcode() == ISD::SMULO; |
| |
| if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { |
| const APInt &C = RHSC->getAPIntValue(); |
| // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } |
| if (C.isPowerOf2()) { |
| // smulo(x, signed_min) is same as umulo(x, signed_min). |
| bool UseArithShift = isSigned && !C.isMinSignedValue(); |
| SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); |
| SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); |
| SDValue Overflow = DAG.getSetCC(SL, MVT::i1, |
| DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, |
| SL, VT, Result, ShiftAmt), |
| LHS, ISD::SETNE); |
| return DAG.getMergeValues({ Result, Overflow }, SL); |
| } |
| } |
| |
| SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); |
| SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, |
| SL, VT, LHS, RHS); |
| |
| SDValue Sign = isSigned |
| ? DAG.getNode(ISD::SRA, SL, VT, Result, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) |
| : DAG.getConstant(0, SL, VT); |
| SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); |
| |
| return DAG.getMergeValues({ Result, Overflow }, SL); |
| } |
| |
| SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { |
| if (!Subtarget->isTrapHandlerEnabled() || |
| Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) |
| return lowerTrapEndpgm(Op, DAG); |
| |
| if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { |
| switch (*HsaAbiVer) { |
| case ELF::ELFABIVERSION_AMDGPU_HSA_V2: |
| case ELF::ELFABIVERSION_AMDGPU_HSA_V3: |
| return lowerTrapHsaQueuePtr(Op, DAG); |
| case ELF::ELFABIVERSION_AMDGPU_HSA_V4: |
| return Subtarget->supportsGetDoorbellID() ? |
| lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); |
| } |
| } |
| |
| llvm_unreachable("Unknown trap handler"); |
| } |
| |
| SDValue SITargetLowering::lowerTrapEndpgm( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); |
| } |
| |
| SDValue SITargetLowering::lowerTrapHsaQueuePtr( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| Register UserSGPR = Info->getQueuePtrUserSGPR(); |
| assert(UserSGPR != AMDGPU::NoRegister); |
| SDValue QueuePtr = CreateLiveInRegister( |
| DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); |
| SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); |
| SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, |
| QueuePtr, SDValue()); |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
| SDValue Ops[] = { |
| ToReg, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16), |
| SGPR01, |
| ToReg.getValue(1) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::lowerTrapHsa( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
| SDValue Ops[] = { |
| Chain, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (!Subtarget->isTrapHandlerEnabled() || |
| Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { |
| DiagnosticInfoUnsupported NoTrap(MF.getFunction(), |
| "debugtrap handler not supported", |
| Op.getDebugLoc(), |
| DS_Warning); |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| Ctx.diagnose(NoTrap); |
| return Chain; |
| } |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); |
| SDValue Ops[] = { |
| Chain, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| // FIXME: Use inline constants (src_{shared, private}_base) instead. |
| if (Subtarget->hasApertureRegs()) { |
| unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? |
| AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : |
| AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; |
| unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? |
| AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : |
| AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; |
| unsigned Encoding = |
| AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | |
| Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | |
| WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; |
| |
| SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); |
| SDValue ApertureReg = SDValue( |
| DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); |
| SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); |
| return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| Register UserSGPR = Info->getQueuePtrUserSGPR(); |
| assert(UserSGPR != AMDGPU::NoRegister); |
| |
| SDValue QueuePtr = CreateLiveInRegister( |
| DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); |
| |
| // Offset into amd_queue_t for group_segment_aperture_base_hi / |
| // private_segment_aperture_base_hi. |
| uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; |
| |
| SDValue Ptr = |
| DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); |
| |
| // TODO: Use custom target PseudoSourceValue. |
| // TODO: We should use the value from the IR intrinsic call, but it might not |
| // be available and how do we get it? |
| MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
| return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, |
| commonAlignment(Align(64), StructOffset), |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); |
| |
| SDValue Src = ASC->getOperand(0); |
| SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); |
| |
| const AMDGPUTargetMachine &TM = |
| static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); |
| |
| // flat -> local/private |
| if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { |
| unsigned DestAS = ASC->getDestAddressSpace(); |
| |
| if (DestAS == AMDGPUAS::LOCAL_ADDRESS || |
| DestAS == AMDGPUAS::PRIVATE_ADDRESS) { |
| unsigned NullVal = TM.getNullPointerValue(DestAS); |
| SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
| SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); |
| SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
| |
| return DAG.getNode(ISD::SELECT, SL, MVT::i32, |
| NonNull, Ptr, SegmentNullPtr); |
| } |
| } |
| |
| // local/private -> flat |
| if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { |
| unsigned SrcAS = ASC->getSrcAddressSpace(); |
| |
| if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
| SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { |
| unsigned NullVal = TM.getNullPointerValue(SrcAS); |
| SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
| |
| SDValue NonNull |
| = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); |
| |
| SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); |
| SDValue CvtPtr |
| = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); |
| |
| return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, |
| DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), |
| FlatNullPtr); |
| } |
| } |
| |
| if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
| Src.getValueType() == MVT::i64) |
| return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
| |
| // global <-> flat are no-ops and never emitted. |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| DiagnosticInfoUnsupported InvalidAddrSpaceCast( |
| MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); |
| DAG.getContext()->diagnose(InvalidAddrSpaceCast); |
| |
| return DAG.getUNDEF(ASC->getValueType(0)); |
| } |
| |
| // This lowers an INSERT_SUBVECTOR by extracting the individual elements from |
| // the small vector and inserting them into the big vector. That is better than |
| // the default expansion of doing it via a stack slot. Even though the use of |
| // the stack slot would be optimized away afterwards, the stack slot itself |
| // remains. |
| SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Ins = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT InsVT = Ins.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned InsNumElts = InsVT.getVectorNumElements(); |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| SDLoc SL(Op); |
| |
| for (unsigned I = 0; I != InsNumElts; ++I) { |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, |
| DAG.getConstant(I, SL, MVT::i32)); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, |
| DAG.getConstant(IdxVal + I, SL, MVT::i32)); |
| } |
| return Vec; |
| } |
| |
| SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| SDValue InsVal = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned VecSize = VecVT.getSizeInBits(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| |
| |
| assert(VecSize <= 64); |
| |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| SDLoc SL(Op); |
| auto KIdx = dyn_cast<ConstantSDNode>(Idx); |
| |
| if (NumElts == 4 && EltSize == 16 && KIdx) { |
| SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); |
| |
| SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
| DAG.getConstant(0, SL, MVT::i32)); |
| SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
| DAG.getConstant(1, SL, MVT::i32)); |
| |
| SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); |
| SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); |
| |
| unsigned Idx = KIdx->getZExtValue(); |
| bool InsertLo = Idx < 2; |
| SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, |
| InsertLo ? LoVec : HiVec, |
| DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), |
| DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); |
| |
| InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); |
| |
| SDValue Concat = InsertLo ? |
| DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : |
| DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); |
| |
| return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); |
| } |
| |
| if (isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| MVT IntVT = MVT::getIntegerVT(VecSize); |
| |
| // Avoid stack access for dynamic indexing. |
| // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec |
| |
| // Create a congruent vector with the target value in each element so that |
| // the required element can be masked and ORed into the target vector. |
| SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, |
| DAG.getSplatBuildVector(VecVT, SL, InsVal)); |
| |
| assert(isPowerOf2_32(EltSize)); |
| SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
| |
| // Convert vector index to bit-index. |
| SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
| |
| SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
| SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, |
| DAG.getConstant(0xffff, SL, IntVT), |
| ScaledIdx); |
| |
| SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); |
| SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, |
| DAG.getNOT(SL, BFM, IntVT), BCVec); |
| |
| SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); |
| return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); |
| } |
| |
| SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| EVT ResultVT = Op.getValueType(); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| EVT VecVT = Vec.getValueType(); |
| unsigned VecSize = VecVT.getSizeInBits(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| assert(VecSize <= 64); |
| |
| DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); |
| |
| // Make sure we do any optimizations that will make it easier to fold |
| // source modifiers before obscuring it with bit operations. |
| |
| // XXX - Why doesn't this get called when vector_shuffle is expanded? |
| if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) |
| return Combined; |
| |
| unsigned EltSize = EltVT.getSizeInBits(); |
| assert(isPowerOf2_32(EltSize)); |
| |
| MVT IntVT = MVT::getIntegerVT(VecSize); |
| SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
| |
| // Convert vector index to bit-index (* EltSize) |
| SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
| |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
| SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); |
| |
| if (ResultVT == MVT::f16) { |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); |
| return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); |
| } |
| |
| return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); |
| } |
| |
| static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { |
| assert(Elt % 2 == 0); |
| return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); |
| } |
| |
| SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT ResultVT = Op.getValueType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
| |
| EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
| EVT EltVT = PackVT.getVectorElementType(); |
| int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); |
| |
| // vector_shuffle <0,1,6,7> lhs, rhs |
| // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) |
| // |
| // vector_shuffle <6,7,2,3> lhs, rhs |
| // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) |
| // |
| // vector_shuffle <6,7,0,1> lhs, rhs |
| // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) |
| |
| // Avoid scalarizing when both halves are reading from consecutive elements. |
| SmallVector<SDValue, 4> Pieces; |
| for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { |
| if (elementPairIsContiguous(SVN->getMask(), I)) { |
| const int Idx = SVN->getMaskElt(I); |
| int VecIdx = Idx < SrcNumElts ? 0 : 1; |
| int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, |
| PackVT, SVN->getOperand(VecIdx), |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| Pieces.push_back(SubVec); |
| } else { |
| const int Idx0 = SVN->getMaskElt(I); |
| const int Idx1 = SVN->getMaskElt(I + 1); |
| int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; |
| int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; |
| int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; |
| int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; |
| |
| SDValue Vec0 = SVN->getOperand(VecIdx0); |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); |
| |
| SDValue Vec1 = SVN->getOperand(VecIdx1); |
| SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); |
| Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); |
| } |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); |
| } |
| |
| SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::v4i16 || VT == MVT::v4f16) { |
| EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2); |
| |
| // Turn into pair of packed build_vectors. |
| // TODO: Special case for constants that can be materialized with s_mov_b64. |
| SDValue Lo = DAG.getBuildVector(HalfVT, SL, |
| { Op.getOperand(0), Op.getOperand(1) }); |
| SDValue Hi = DAG.getBuildVector(HalfVT, SL, |
| { Op.getOperand(2), Op.getOperand(3) }); |
| |
| SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo); |
| SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi); |
| |
| SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi }); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
| } |
| |
| assert(VT == MVT::v2f16 || VT == MVT::v2i16); |
| assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); |
| |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| |
| // Avoid adding defined bits with the zero_extend. |
| if (Hi.isUndef()) { |
| Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
| SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); |
| return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); |
| } |
| |
| Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); |
| |
| SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, |
| DAG.getConstant(16, SL, MVT::i32)); |
| if (Lo.isUndef()) |
| return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); |
| |
| Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); |
| |
| SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Or); |
| } |
| |
| bool |
| SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // We can fold offsets for anything that doesn't require a GOT relocation. |
| return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || |
| GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| !shouldEmitGOTReloc(GA->getGlobal()); |
| } |
| |
| static SDValue |
| buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, |
| const SDLoc &DL, int64_t Offset, EVT PtrVT, |
| unsigned GAFlags = SIInstrInfo::MO_NONE) { |
| assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); |
| // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is |
| // lowered to the following code sequence: |
| // |
| // For constant address space: |
| // s_getpc_b64 s[0:1] |
| // s_add_u32 s0, s0, $symbol |
| // s_addc_u32 s1, s1, 0 |
| // |
| // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
| // a fixup or relocation is emitted to replace $symbol with a literal |
| // constant, which is a pc-relative offset from the encoding of the $symbol |
| // operand to the global variable. |
| // |
| // For global address space: |
| // s_getpc_b64 s[0:1] |
| // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo |
| // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi |
| // |
| // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
| // fixups or relocations are emitted to replace $symbol@*@lo and |
| // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, |
| // which is a 64-bit pc-relative offset from the encoding of the $symbol |
| // operand to the global variable. |
| // |
| // What we want here is an offset from the value returned by s_getpc |
| // (which is the address of the s_add_u32 instruction) to the global |
| // variable, but since the encoding of $symbol starts 4 bytes after the start |
| // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too |
| // small. This requires us to add 4 to the global variable offset in order to |
| // compute the correct address. Similarly for the s_addc_u32 instruction, the |
| // encoding of $symbol starts 12 bytes after the start of the s_add_u32 |
| // instruction. |
| SDValue PtrLo = |
| DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); |
| SDValue PtrHi; |
| if (GAFlags == SIInstrInfo::MO_NONE) { |
| PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); |
| } else { |
| PtrHi = |
| DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); |
| } |
| return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); |
| } |
| |
| SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); |
| SDLoc DL(GSD); |
| EVT PtrVT = Op.getValueType(); |
| |
| const GlobalValue *GV = GSD->getGlobal(); |
| if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
| shouldUseLDSConstAddress(GV)) || |
| GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || |
| GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { |
| if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
| GV->hasExternalLinkage()) { |
| Type *Ty = GV->getValueType(); |
| // HIP uses an unsized array `extern __shared__ T s[]` or similar |
| // zero-sized type in other languages to declare the dynamic shared |
| // memory which size is not known at the compile time. They will be |
| // allocated by the runtime and placed directly after the static |
| // allocated ones. They all share the same offset. |
| if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { |
| assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); |
| // Adjust alignment for that dynamic shared memory array. |
| MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV)); |
| return SDValue( |
| DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); |
| } |
| } |
| return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); |
| } |
| |
| if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), |
| SIInstrInfo::MO_ABS32_LO); |
| return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); |
| } |
| |
| if (shouldEmitFixup(GV)) |
| return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); |
| else if (shouldEmitPCReloc(GV)) |
| return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, |
| SIInstrInfo::MO_REL32); |
| |
| SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, |
| SIInstrInfo::MO_GOTPCREL32); |
| |
| Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); |
| PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); |
| const DataLayout &DataLayout = DAG.getDataLayout(); |
| Align Alignment = DataLayout.getABITypeAlign(PtrTy); |
| MachinePointerInfo PtrInfo |
| = MachinePointerInfo::getGOT(DAG.getMachineFunction()); |
| |
| return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, |
| const SDLoc &DL, SDValue V) const { |
| // We can't use S_MOV_B32 directly, because there is no way to specify m0 as |
| // the destination register. |
| // |
| // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, |
| // so we will end up with redundant moves to m0. |
| // |
| // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. |
| |
| // A Null SDValue creates a glue result. |
| SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, |
| V, Chain); |
| return SDValue(M0, 0); |
| } |
| |
| SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, |
| SDValue Op, |
| MVT VT, |
| unsigned Offset) const { |
| SDLoc SL(Op); |
| SDValue Param = lowerKernargMemParameter( |
| DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); |
| // The local size values will have the hi 16-bits as zero. |
| return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, |
| DAG.getValueType(VT)); |
| } |
| |
| static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, |
| EVT VT) { |
| DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), |
| "non-hsa intrinsic with hsa target", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, |
| EVT VT) { |
| DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), |
| "intrinsic not supported on subtarget", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, |
| ArrayRef<SDValue> Elts) { |
| assert(!Elts.empty()); |
| MVT Type; |
| unsigned NumElts = Elts.size(); |
| |
| if (NumElts <= 8) { |
| Type = MVT::getVectorVT(MVT::f32, NumElts); |
| } else { |
| assert(Elts.size() <= 16); |
| Type = MVT::v16f32; |
| NumElts = 16; |
| } |
| |
| SmallVector<SDValue, 16> VecElts(NumElts); |
| for (unsigned i = 0; i < Elts.size(); ++i) { |
| SDValue Elt = Elts[i]; |
| if (Elt.getValueType() != MVT::f32) |
| Elt = DAG.getBitcast(MVT::f32, Elt); |
| VecElts[i] = Elt; |
| } |
| for (unsigned i = Elts.size(); i < NumElts; ++i) |
| VecElts[i] = DAG.getUNDEF(MVT::f32); |
| |
| if (NumElts == 1) |
| return VecElts[0]; |
| return DAG.getBuildVector(Type, DL, VecElts); |
| } |
| |
| static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, |
| SDValue Src, int ExtraElts) { |
| EVT SrcVT = Src.getValueType(); |
| |
| SmallVector<SDValue, 8> Elts; |
| |
| if (SrcVT.isVector()) |
| DAG.ExtractVectorElements(Src, Elts); |
| else |
| Elts.push_back(Src); |
| |
| SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); |
| while (ExtraElts--) |
| Elts.push_back(Undef); |
| |
| return DAG.getBuildVector(CastVT, DL, Elts); |
| } |
| |
| // Re-construct the required return value for a image load intrinsic. |
| // This is more complicated due to the optional use TexFailCtrl which means the required |
| // return type is an aggregate |
| static SDValue constructRetValue(SelectionDAG &DAG, |
| MachineSDNode *Result, |
| ArrayRef<EVT> ResultTypes, |
| bool IsTexFail, bool Unpacked, bool IsD16, |
| int DMaskPop, int NumVDataDwords, |
| const SDLoc &DL) { |
| // Determine the required return type. This is the same regardless of IsTexFail flag |
| EVT ReqRetVT = ResultTypes[0]; |
| int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; |
| int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? |
| ReqRetNumElts : (ReqRetNumElts + 1) / 2; |
| |
| int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? |
| DMaskPop : (DMaskPop + 1) / 2; |
| |
| MVT DataDwordVT = NumDataDwords == 1 ? |
| MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); |
| |
| MVT MaskPopVT = MaskPopDwords == 1 ? |
| MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); |
| |
| SDValue Data(Result, 0); |
| SDValue TexFail; |
| |
| if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { |
| SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); |
| if (MaskPopVT.isVector()) { |
| Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, |
| SDValue(Result, 0), ZeroIdx); |
| } else { |
| Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, |
| SDValue(Result, 0), ZeroIdx); |
| } |
| } |
| |
| if (DataDwordVT.isVector()) |
| Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, |
| NumDataDwords - MaskPopDwords); |
| |
| if (IsD16) |
| Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); |
| |
| EVT LegalReqRetVT = ReqRetVT; |
| if (!ReqRetVT.isVector()) { |
| Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); |
| } else { |
| // We need to widen the return vector to a legal type |
| if ((ReqRetVT.getVectorNumElements() % 2) == 1 && |
| ReqRetVT.getVectorElementType().getSizeInBits() == 16) { |
| LegalReqRetVT = |
| EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), |
| ReqRetVT.getVectorNumElements() + 1); |
| } |
| } |
| Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); |
| |
| if (IsTexFail) { |
| TexFail = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), |
| DAG.getConstant(MaskPopDwords, DL, MVT::i32)); |
| |
| return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); |
| } |
| |
| if (Result->getNumValues() == 1) |
| return Data; |
| |
| return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); |
| } |
| |
| static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, |
| SDValue *LWE, bool &IsTexFail) { |
| auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); |
| |
| uint64_t Value = TexFailCtrlConst->getZExtValue(); |
| if (Value) { |
| IsTexFail = true; |
| } |
| |
| SDLoc DL(TexFailCtrlConst); |
| *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); |
| Value &= ~(uint64_t)0x1; |
| *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); |
| Value &= ~(uint64_t)0x2; |
| |
| return Value == 0; |
| } |
| |
| static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, |
| MVT PackVectorVT, |
| SmallVectorImpl<SDValue> &PackedAddrs, |
| unsigned DimIdx, unsigned EndIdx, |
| unsigned NumGradients) { |
| SDLoc DL(Op); |
| for (unsigned I = DimIdx; I < EndIdx; I++) { |
| SDValue Addr = Op.getOperand(I); |
| |
| // Gradients are packed with undef for each coordinate. |
| // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: |
| // 1D: undef,dx/dh; undef,dx/dv |
| // 2D: dy/dh,dx/dh; dy/dv,dx/dv |
| // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv |
| if (((I + 1) >= EndIdx) || |
| ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || |
| I == DimIdx + NumGradients - 1))) { |
| if (Addr.getValueType() != MVT::i16) |
| Addr = DAG.getBitcast(MVT::i16, Addr); |
| Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); |
| } else { |
| Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); |
| I++; |
| } |
| Addr = DAG.getBitcast(MVT::f32, Addr); |
| PackedAddrs.push_back(Addr); |
| } |
| } |
| |
| SDValue SITargetLowering::lowerImage(SDValue Op, |
| const AMDGPU::ImageDimIntrinsicInfo *Intr, |
| SelectionDAG &DAG, bool WithChain) const { |
| SDLoc DL(Op); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); |
| const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
| AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); |
| const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); |
| const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = |
| AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); |
| const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = |
| AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); |
| unsigned IntrOpcode = Intr->BaseOpcode; |
| bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); |
| |
| SmallVector<EVT, 3> ResultTypes(Op->values()); |
| SmallVector<EVT, 3> OrigResultTypes(Op->values()); |
| bool IsD16 = false; |
| bool IsG16 = false; |
| bool IsA16 = false; |
| SDValue VData; |
| int NumVDataDwords; |
| bool AdjustRetType = false; |
| |
| // Offset of intrinsic arguments |
| const unsigned ArgOffset = WithChain ? 2 : 1; |
| |
| unsigned DMask; |
| unsigned DMaskLanes = 0; |
| |
| if (BaseOpcode->Atomic) { |
| VData = Op.getOperand(2); |
| |
| bool Is64Bit = VData.getValueType() == MVT::i64; |
| if (BaseOpcode->AtomicX2) { |
| SDValue VData2 = Op.getOperand(3); |
| VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, |
| {VData, VData2}); |
| if (Is64Bit) |
| VData = DAG.getBitcast(MVT::v4i32, VData); |
| |
| ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; |
| DMask = Is64Bit ? 0xf : 0x3; |
| NumVDataDwords = Is64Bit ? 4 : 2; |
| } else { |
| DMask = Is64Bit ? 0x3 : 0x1; |
| NumVDataDwords = Is64Bit ? 2 : 1; |
| } |
| } else { |
| auto *DMaskConst = |
| cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex)); |
| DMask = DMaskConst->getZExtValue(); |
| DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); |
| |
| if (BaseOpcode->Store) { |
| VData = Op.getOperand(2); |
| |
| MVT StoreVT = VData.getSimpleValueType(); |
| if (StoreVT.getScalarType() == MVT::f16) { |
| if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) |
| return Op; // D16 is unsupported for this instruction |
| |
| IsD16 = true; |
| VData = handleD16VData(VData, DAG, true); |
| } |
| |
| NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; |
| } else { |
| // Work out the num dwords based on the dmask popcount and underlying type |
| // and whether packing is supported. |
| MVT LoadVT = ResultTypes[0].getSimpleVT(); |
| if (LoadVT.getScalarType() == MVT::f16) { |
| if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) |
| return Op; // D16 is unsupported for this instruction |
| |
| IsD16 = true; |
| } |
| |
| // Confirm that the return type is large enough for the dmask specified |
| if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || |
| (!LoadVT.isVector() && DMaskLanes > 1)) |
| return Op; |
| |
| // The sq block of gfx8 and gfx9 do not estimate register use correctly |
| // for d16 image_gather4, image_gather4_l, and image_gather4_lz |
| // instructions. |
| if (IsD16 && !Subtarget->hasUnpackedD16VMem() && |
| !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) |
| NumVDataDwords = (DMaskLanes + 1) / 2; |
| else |
| NumVDataDwords = DMaskLanes; |
| |
| AdjustRetType = true; |
| } |
| } |
| |
| unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; |
| SmallVector<SDValue, 4> VAddrs; |
| |
| // Optimize _L to _LZ when _L is zero |
| if (LZMappingInfo) { |
| if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>( |
| Op.getOperand(ArgOffset + Intr->LodIndex))) { |
| if (ConstantLod->isZero() || ConstantLod->isNegative()) { |
| IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l |
| VAddrEnd--; // remove 'lod' |
| } |
| } |
| } |
| |
| // Optimize _mip away, when 'lod' is zero |
| if (MIPMappingInfo) { |
| if (auto *ConstantLod = dyn_cast<ConstantSDNode>( |
| Op.getOperand(ArgOffset + Intr->MipIndex))) { |
| if (ConstantLod->isNullValue()) { |
| IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip |
| VAddrEnd--; // remove 'mip' |
| } |
| } |
| } |
| |
| // Push back extra arguments. |
| for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) |
| VAddrs.push_back(Op.getOperand(ArgOffset + I)); |
| |
| // Check for 16 bit addresses or derivatives and pack if true. |
| MVT VAddrVT = |
| Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); |
| MVT VAddrScalarVT = VAddrVT.getScalarType(); |
| MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; |
| IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; |
| |
| VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); |
| VAddrScalarVT = VAddrVT.getScalarType(); |
| MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; |
| IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; |
| |
| if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { |
| // 16 bit gradients are supported, but are tied to the A16 control |
| // so both gradients and addresses must be 16 bit |
| LLVM_DEBUG( |
| dbgs() << "Failed to lower image intrinsic: 16 bit addresses " |
| "require 16 bit args for both gradients and addresses"); |
| return Op; |
| } |
| |
| if (IsA16) { |
| if (!ST->hasA16()) { |
| LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " |
| "support 16 bit addresses\n"); |
| return Op; |
| } |
| } |
| |
| // We've dealt with incorrect input so we know that if IsA16, IsG16 |
| // are set then we have to compress/pack operands (either address, |
| // gradient or both) |
| // In the case where a16 and gradients are tied (no G16 support) then we |
| // have already verified that both IsA16 and IsG16 are true |
| if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { |
| // Activate g16 |
| const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = |
| AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); |
| IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 |
| } |
| |
| // Add gradients (packed or unpacked) |
| if (IsG16) { |
| // Pack the gradients |
| // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); |
| packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, |
| ArgOffset + Intr->GradientStart, |
| ArgOffset + Intr->CoordStart, Intr->NumGradients); |
| } else { |
| for (unsigned I = ArgOffset + Intr->GradientStart; |
| I < ArgOffset + Intr->CoordStart; I++) |
| VAddrs.push_back(Op.getOperand(I)); |
| } |
| |
| // Add addresses (packed or unpacked) |
| if (IsA16) { |
| packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, |
| ArgOffset + Intr->CoordStart, VAddrEnd, |
| 0 /* No gradients */); |
| } else { |
| // Add uncompressed address |
| for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) |
| VAddrs.push_back(Op.getOperand(I)); |
| } |
| |
| // If the register allocator cannot place the address registers contiguously |
| // without introducing moves, then using the non-sequential address encoding |
| // is always preferable, since it saves VALU instructions and is usually a |
| // wash in terms of code size or even better. |
| // |
| // However, we currently have no way of hinting to the register allocator that |
| // MIMG addresses should be placed contiguously when it is possible to do so, |
| // so force non-NSA for the common 2-address case as a heuristic. |
| // |
| // SIShrinkInstructions will convert NSA encodings to non-NSA after register |
| // allocation when possible. |
| bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && |
| VAddrs.size() >= 3 && |
| VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); |
| SDValue VAddr; |
| if (!UseNSA) |
| VAddr = getBuildDwordsVector(DAG, DL, VAddrs); |
| |
| SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); |
| SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); |
| SDValue Unorm; |
| if (!BaseOpcode->Sampler) { |
| Unorm = True; |
| } else { |
| auto UnormConst = |
| cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex)); |
| |
| Unorm = UnormConst->getZExtValue() ? True : False; |
| } |
| |
| SDValue TFE; |
| SDValue LWE; |
| SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); |
| bool IsTexFail = false; |
| if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) |
| return Op; |
| |
| if (IsTexFail) { |
| if (!DMaskLanes) { |
| // Expecting to get an error flag since TFC is on - and dmask is 0 |
| // Force dmask to be at least 1 otherwise the instruction will fail |
| DMask = 0x1; |
| DMaskLanes = 1; |
| NumVDataDwords = 1; |
| } |
| NumVDataDwords += 1; |
| AdjustRetType = true; |
| } |
| |
| // Has something earlier tagged that the return type needs adjusting |
| // This happens if the instruction is a load or has set TexFailCtrl flags |
| if (AdjustRetType) { |
| // NumVDataDwords reflects the true number of dwords required in the return type |
| if (DMaskLanes == 0 && !BaseOpcode->Store) { |
| // This is a no-op load. This can be eliminated |
| SDValue Undef = DAG.getUNDEF(Op.getValueType()); |
| if (isa<MemSDNode>(Op)) |
| return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); |
| return Undef; |
| } |
| |
| EVT NewVT = NumVDataDwords > 1 ? |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) |
| : MVT::i32; |
| |
| ResultTypes[0] = NewVT; |
| if (ResultTypes.size() == 3) { |
| // Original result was aggregate type used for TexFailCtrl results |
| // The actual instruction returns as a vector type which has now been |
| // created. Remove the aggregate result. |
| ResultTypes.erase(&ResultTypes[1]); |
| } |
| } |
| |
| unsigned CPol = cast<ConstantSDNode>( |
| Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); |
| if (BaseOpcode->Atomic) |
| CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization |
| if (CPol & ~AMDGPU::CPol::ALL) |
| return Op; |
| |
| SmallVector<SDValue, 26> Ops; |
| if (BaseOpcode->Store || BaseOpcode->Atomic) |
| Ops.push_back(VData); // vdata |
| if (UseNSA) |
| append_range(Ops, VAddrs); |
| else |
| Ops.push_back(VAddr); |
| Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); |
| if (BaseOpcode->Sampler) |
| Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); |
| Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); |
| if (IsGFX10Plus) |
| Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); |
| Ops.push_back(Unorm); |
| Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); |
| Ops.push_back(IsA16 && // r128, a16 for gfx9 |
| ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); |
| if (IsGFX10Plus) |
| Ops.push_back(IsA16 ? True : False); |
| if (!Subtarget->hasGFX90AInsts()) { |
| Ops.push_back(TFE); //tfe |
| } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) { |
| report_fatal_error("TFE is not supported on this GPU"); |
| } |
| Ops.push_back(LWE); // lwe |
| if (!IsGFX10Plus) |
| Ops.push_back(DimInfo->DA ? True : False); |
| if (BaseOpcode->HasD16) |
| Ops.push_back(IsD16 ? True : False); |
| if (isa<MemSDNode>(Op)) |
| Ops.push_back(Op.getOperand(0)); // chain |
| |
| int NumVAddrDwords = |
| UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; |
| int Opcode = -1; |
| |
| if (IsGFX10Plus) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, |
| UseNSA ? AMDGPU::MIMGEncGfx10NSA |
| : AMDGPU::MIMGEncGfx10Default, |
| NumVDataDwords, NumVAddrDwords); |
| } else { |
| if (Subtarget->hasGFX90AInsts()) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, |
| NumVDataDwords, NumVAddrDwords); |
| if (Opcode == -1) |
| report_fatal_error( |
| "requested image instruction is not supported on this GPU"); |
| } |
| if (Opcode == -1 && |
| Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, |
| NumVDataDwords, NumVAddrDwords); |
| if (Opcode == -1) |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, |
| NumVDataDwords, NumVAddrDwords); |
| } |
| assert(Opcode != -1); |
| |
| MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); |
| if (auto MemOp = dyn_cast<MemSDNode>(Op)) { |
| MachineMemOperand *MemRef = MemOp->getMemOperand(); |
| DAG.setNodeMemRefs(NewNode, {MemRef}); |
| } |
| |
| if (BaseOpcode->AtomicX2) { |
| SmallVector<SDValue, 1> Elt; |
| DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); |
| return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); |
| } |
| if (BaseOpcode->Store) |
| return SDValue(NewNode, 0); |
| return constructRetValue(DAG, NewNode, |
| OrigResultTypes, IsTexFail, |
| Subtarget->hasUnpackedD16VMem(), IsD16, |
| DMaskLanes, NumVDataDwords, DL); |
| } |
| |
| SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, |
| SDValue Offset, SDValue CachePolicy, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| const DataLayout &DataLayout = DAG.getDataLayout(); |
| Align Alignment = |
| DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo(), |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant, |
| VT.getStoreSize(), Alignment); |
| |
| if (!Offset->isDivergent()) { |
| SDValue Ops[] = { |
| Rsrc, |
| Offset, // Offset |
| CachePolicy |
| }; |
| |
| // Widen vec3 load to vec4. |
| if (VT.isVector() && VT.getVectorNumElements() == 3) { |
| EVT WidenedVT = |
| EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); |
| auto WidenedOp = DAG.getMemIntrinsicNode( |
| AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, |
| MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); |
| auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, |
| DAG.getVectorIdxConstant(0, DL)); |
| return Subvector; |
| } |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, |
| DAG.getVTList(VT), Ops, VT, MMO); |
| } |
| |
| // We have a divergent offset. Emit a MUBUF buffer load instead. We can |
| // assume that the buffer is unswizzled. |
| SmallVector<SDValue, 4> Loads; |
| unsigned NumLoads = 1; |
| MVT LoadVT = VT.getSimpleVT(); |
| unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; |
| assert((LoadVT.getScalarType() == MVT::i32 || |
| LoadVT.getScalarType() == MVT::f32)); |
| |
| if (NumElts == 8 || NumElts == 16) { |
| NumLoads = NumElts / 4; |
| LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); |
| } |
| |
| SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); |
| SDValue Ops[] = { |
| DAG.getEntryNode(), // Chain |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| {}, // voffset |
| {}, // soffset |
| {}, // offset |
| CachePolicy, // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| // Use the alignment to ensure that the required offsets will fit into the |
| // immediate offsets. |
| setBufferOffsets(Offset, DAG, &Ops[3], |
| NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); |
| |
| uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue(); |
| for (unsigned i = 0; i < NumLoads; ++i) { |
| Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); |
| Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, |
| LoadVT, MMO, DAG)); |
| } |
| |
| if (NumElts == 8 || NumElts == 16) |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); |
| |
| return Loads[0]; |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_implicit_buffer_ptr: { |
| if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); |
| } |
| case Intrinsic::amdgcn_dispatch_ptr: |
| case Intrinsic::amdgcn_queue_ptr: { |
| if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { |
| DiagnosticInfoUnsupported BadIntrin( |
| MF.getFunction(), "unsupported hsa intrinsic without hsa target", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? |
| AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; |
| return getPreloadedValue(DAG, *MFI, VT, RegID); |
| } |
| case Intrinsic::amdgcn_implicitarg_ptr: { |
| if (MFI->isEntryFunction()) |
| return getImplicitArgPtr(DAG, DL); |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); |
| } |
| case Intrinsic::amdgcn_kernarg_segment_ptr: { |
| if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { |
| // This only makes sense to call in a kernel, so just lower to null. |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
| } |
| case Intrinsic::amdgcn_dispatch_id: { |
| return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); |
| } |
| case Intrinsic::amdgcn_rcp: |
| return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq: |
| return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq_legacy: |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| return SDValue(); |
| case Intrinsic::amdgcn_rcp_legacy: |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq_clamp: { |
| if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); |
| |
| Type *Type = VT.getTypeForEVT(*DAG.getContext()); |
| APFloat Max = APFloat::getLargest(Type->getFltSemantics()); |
| APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); |
| |
| SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); |
| SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, |
| DAG.getConstantFP(Max, DL, VT)); |
| return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, |
| DAG.getConstantFP(Min, DL, VT)); |
| } |
| case Intrinsic::r600_read_ngroups_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_X, Align(4), |
| false); |
| case Intrinsic::r600_read_ngroups_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_Y, Align(4), |
| false); |
| case Intrinsic::r600_read_ngroups_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_Z, Align(4), |
| false); |
| case Intrinsic::r600_read_global_size_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_X, |
| Align(4), false); |
| case Intrinsic::r600_read_global_size_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_Y, |
| Align(4), false); |
| case Intrinsic::r600_read_global_size_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_Z, |
| Align(4), false); |
| case Intrinsic::r600_read_local_size_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_X); |
| case Intrinsic::r600_read_local_size_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_Y); |
| case Intrinsic::r600_read_local_size_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_Z); |
| case Intrinsic::amdgcn_workgroup_id_x: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_X); |
| case Intrinsic::amdgcn_workgroup_id_y: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); |
| case Intrinsic::amdgcn_workgroup_id_z: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); |
| case Intrinsic::amdgcn_workitem_id_x: |
| return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, |
| SDLoc(DAG.getEntryNode()), |
| MFI->getArgInfo().WorkItemIDX); |
| case Intrinsic::amdgcn_workitem_id_y: |
| return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, |
| SDLoc(DAG.getEntryNode()), |
| MFI->getArgInfo().WorkItemIDY); |
| case Intrinsic::amdgcn_workitem_id_z: |
| return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, |
| SDLoc(DAG.getEntryNode()), |
| MFI->getArgInfo().WorkItemIDZ); |
| case Intrinsic::amdgcn_wavefrontsize: |
| return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), |
| SDLoc(Op), MVT::i32); |
| case Intrinsic::amdgcn_s_buffer_load: { |
| unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| if (CPol & ~AMDGPU::CPol::ALL) |
| return Op; |
| return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| DAG); |
| } |
| case Intrinsic::amdgcn_fdiv_fast: |
| return lowerFDIV_FAST(Op, DAG); |
| case Intrinsic::amdgcn_sin: |
| return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_cos: |
| return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_mul_u24: |
| return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_mul_i24: |
| return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| |
| case Intrinsic::amdgcn_log_clamp: { |
| if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return SDValue(); |
| |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| } |
| case Intrinsic::amdgcn_ldexp: |
| return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, |
| Op.getOperand(1), Op.getOperand(2)); |
| |
| case Intrinsic::amdgcn_fract: |
| return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_class: |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_div_fmas: |
| return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| Op.getOperand(4)); |
| |
| case Intrinsic::amdgcn_div_fixup: |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::amdgcn_div_scale: { |
| const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); |
| |
| // Translate to the operands expected by the machine instruction. The |
| // first parameter must be the same as the first instruction. |
| SDValue Numerator = Op.getOperand(1); |
| SDValue Denominator = Op.getOperand(2); |
| |
| // Note this order is opposite of the machine instruction's operations, |
| // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The |
| // intrinsic has the numerator as the first operand to match a normal |
| // division operation. |
| |
| SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; |
| |
| return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, |
| Denominator, Numerator); |
| } |
| case Intrinsic::amdgcn_icmp: { |
| // There is a Pat that handles this variant, so return it as-is. |
| if (Op.getOperand(1).getValueType() == MVT::i1 && |
| Op.getConstantOperandVal(2) == 0 && |
| Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) |
| return Op; |
| return lowerICMPIntrinsic(*this, Op.getNode(), DAG); |
| } |
| case Intrinsic::amdgcn_fcmp: { |
| return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); |
| } |
| case Intrinsic::amdgcn_ballot: |
| return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); |
| case Intrinsic::amdgcn_fmed3: |
| return DAG.getNode(AMDGPUISD::FMED3, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_fdot2: |
| return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| Op.getOperand(4)); |
| case Intrinsic::amdgcn_fmul_legacy: |
| return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_sffbh: |
| return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_sbfe: |
| return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_ubfe: |
| return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cvt_pknorm_i16: |
| case Intrinsic::amdgcn_cvt_pknorm_u16: |
| case Intrinsic::amdgcn_cvt_pk_i16: |
| case Intrinsic::amdgcn_cvt_pk_u16: { |
| // FIXME: Stop adding cast if v2f16/v2i16 are legal. |
| EVT VT = Op.getValueType(); |
| unsigned Opcode; |
| |
| if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) |
| Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) |
| Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) |
| Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) |
| Opcode = AMDGPUISD::CVT_PK_I16_I32; |
| else |
| Opcode = AMDGPUISD::CVT_PK_U16_U32; |
| |
| if (isTypeLegal(VT)) |
| return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| |
| SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, |
| Op.getOperand(1), Op.getOperand(2)); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Node); |
| } |
| case Intrinsic::amdgcn_fmad_ftz: |
| return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::amdgcn_if_break: |
| return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, |
| Op->getOperand(1), Op->getOperand(2)), 0); |
| |
| case Intrinsic::amdgcn_groupstaticsize: { |
| Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); |
| if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) |
| return Op; |
| |
| const Module *M = MF.getFunction().getParent(); |
| const GlobalValue *GV = |
| M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, |
| SIInstrInfo::MO_ABS32_LO); |
| return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; |
| } |
| case Intrinsic::amdgcn_is_shared: |
| case Intrinsic::amdgcn_is_private: { |
| SDLoc SL(Op); |
| unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? |
| AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; |
| SDValue Aperture = getSegmentAperture(AS, SL, DAG); |
| SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, |
| Op.getOperand(1)); |
| |
| SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, |
| DAG.getConstant(1, SL, MVT::i32)); |
| return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); |
| } |
| case Intrinsic::amdgcn_alignbit: |
| return DAG.getNode(ISD::FSHR, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_perm: |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_reloc_constant: { |
| Module *M = const_cast<Module *>(MF.getFunction().getParent()); |
| const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); |
| auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); |
| auto RelocSymbol = cast<GlobalVariable>( |
| M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); |
| SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, |
| SIInstrInfo::MO_ABS32_LO); |
| return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; |
| } |
| default: |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) |
| return lowerImage(Op, ImageDimIntr, DAG, false); |
| |
| return Op; |
| } |
| } |
| |
| /// Update \p MMO based on the offset inputs to an intrinsic. |
| static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, |
| SDValue SOffset, SDValue Offset, |
| SDValue VIndex = SDValue()) { |
| if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) || |
| !isa<ConstantSDNode>(Offset)) { |
| // The combined offset is not known to be constant, so we cannot represent |
| // it in the MMO. Give up. |
| MMO->setValue((Value *)nullptr); |
| return; |
| } |
| |
| if (VIndex && (!isa<ConstantSDNode>(VIndex) || |
| !cast<ConstantSDNode>(VIndex)->isNullValue())) { |
| // The strided index component of the address is not known to be zero, so we |
| // cannot represent it in the MMO. Give up. |
| MMO->setValue((Value *)nullptr); |
| return; |
| } |
| |
| MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() + |
| cast<ConstantSDNode>(SOffset)->getSExtValue() + |
| cast<ConstantSDNode>(Offset)->getSExtValue()); |
| } |
| |
| SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, |
| SelectionDAG &DAG, |
| unsigned NewOpcode) const { |
| SDLoc DL(Op); |
| |
| SDValue VData = Op.getOperand(2); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| VData, // vdata |
| Op.getOperand(3), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(5), // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); |
| |
| EVT MemVT = VData.getValueType(); |
| return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, |
| M->getMemOperand()); |
| } |
| |
| // Return a value to use for the idxen operand by examining the vindex operand. |
| static unsigned getIdxEn(SDValue VIndex) { |
| if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex)) |
| // No need to set idxen if vindex is known to be zero. |
| return VIndexC->getZExtValue() != 0; |
| return 1; |
| } |
| |
| SDValue |
| SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, |
| unsigned NewOpcode) const { |
| SDLoc DL(Op); |
| |
| SDValue VData = Op.getOperand(2); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| VData, // vdata |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(6), // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); |
| |
| EVT MemVT = VData.getValueType(); |
| return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, |
| M->getMemOperand()); |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| SDLoc DL(Op); |
| |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue Chain = M->getOperand(0); |
| SDValue M0 = M->getOperand(2); |
| SDValue Value = M->getOperand(3); |
| unsigned IndexOperand = M->getConstantOperandVal(7); |
| unsigned WaveRelease = M->getConstantOperandVal(8); |
| unsigned WaveDone = M->getConstantOperandVal(9); |
| |
| unsigned OrderedCountIndex = IndexOperand & 0x3f; |
| IndexOperand &= ~0x3f; |
| unsigned CountDw = 0; |
| |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { |
| CountDw = (IndexOperand >> 24) & 0xf; |
| IndexOperand &= ~(0xf << 24); |
| |
| if (CountDw < 1 || CountDw > 4) { |
| report_fatal_error( |
| "ds_ordered_count: dword count must be between 1 and 4"); |
| } |
| } |
| |
| if (IndexOperand) |
| report_fatal_error("ds_ordered_count: bad index operand"); |
| |
| if (WaveDone && !WaveRelease) |
| report_fatal_error("ds_ordered_count: wave_done requires wave_release"); |
| |
| unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; |
| unsigned ShaderType = |
| SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); |
| unsigned Offset0 = OrderedCountIndex << 2; |
| unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | |
| (Instruction << 4); |
| |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) |
| Offset1 |= (CountDw - 1) << 6; |
| |
| unsigned Offset = Offset0 | (Offset1 << 8); |
| |
| SDValue Ops[] = { |
| Chain, |
| Value, |
| DAG.getTargetConstant(Offset, DL, MVT::i16), |
| copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue |
| }; |
| return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, |
| M->getVTList(), Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_ds_fadd: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| unsigned Opc; |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_fadd: |
| Opc = ISD::ATOMIC_LOAD_FADD; |
| break; |
| } |
| |
| return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), |
| M->getOperand(0), M->getOperand(2), M->getOperand(3), |
| M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_atomic_inc: |
| case Intrinsic::amdgcn_atomic_dec: |
| case Intrinsic::amdgcn_ds_fmin: |
| case Intrinsic::amdgcn_ds_fmax: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| unsigned Opc; |
| switch (IntrID) { |
| case Intrinsic::amdgcn_atomic_inc: |
| Opc = AMDGPUISD::ATOMIC_INC; |
| break; |
| case Intrinsic::amdgcn_atomic_dec: |
| Opc = AMDGPUISD::ATOMIC_DEC; |
| break; |
| case Intrinsic::amdgcn_ds_fmin: |
| Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; |
| break; |
| case Intrinsic::amdgcn_ds_fmax: |
| Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; |
| break; |
| default: |
| llvm_unreachable("Unknown intrinsic!"); |
| } |
| SDValue Ops[] = { |
| M->getOperand(0), // Chain |
| M->getOperand(2), // Ptr |
| M->getOperand(3) // Value |
| }; |
| |
| return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_buffer_load: |
| case Intrinsic::amdgcn_buffer_load_format: { |
| unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(3)); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| Op.getOperand(3), // vindex |
| SDValue(), // voffset -- will be set by setBufferOffsets |
| SDValue(), // soffset -- will be set by setBufferOffsets |
| SDValue(), // offset -- will be set by setBufferOffsets |
| DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen |
| }; |
| setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); |
| |
| unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? |
| AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; |
| |
| EVT VT = Op.getValueType(); |
| EVT IntVT = VT.changeTypeToInteger(); |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); |
| EVT LoadVT = Op.getValueType(); |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| |
| // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics |
| if (LoadVT.getScalarType() == MVT::i8 || |
| LoadVT.getScalarType() == MVT::i16) |
| return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); |
| |
| return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, |
| M->getMemOperand(), DAG); |
| } |
| case Intrinsic::amdgcn_raw_buffer_load: |
| case Intrinsic::amdgcn_raw_buffer_load_format: { |
| const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; |
| |
| auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(4), // soffset |
| Offsets.second, // offset |
| Op.getOperand(5), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); |
| return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); |
| } |
| case Intrinsic::amdgcn_struct_buffer_load: |
| case Intrinsic::amdgcn_struct_buffer_load_format: { |
| const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; |
| |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| Op.getOperand(3), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(5), // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); |
| return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); |
| } |
| case Intrinsic::amdgcn_tbuffer_load: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| EVT LoadVT = Op.getValueType(); |
| |
| unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); |
| unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); |
| unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(3)); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| Op.getOperand(3), // vindex |
| Op.getOperand(4), // voffset |
| Op.getOperand(5), // soffset |
| Op.getOperand(6), // offset |
| DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format |
| DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen |
| }; |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, |
| Op->getVTList(), Ops, LoadVT, M->getMemOperand(), |
| DAG); |
| } |
| case Intrinsic::amdgcn_raw_tbuffer_load: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| EVT LoadVT = Op.getValueType(); |
| auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); |
| |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(4), // soffset |
| Offsets.second, // offset |
| Op.getOperand(5), // format |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, |
| Op->getVTList(), Ops, LoadVT, M->getMemOperand(), |
| DAG); |
| } |
| case Intrinsic::amdgcn_struct_tbuffer_load: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| EVT LoadVT = Op.getValueType(); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // rsrc |
| Op.getOperand(3), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(5), // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // format |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, |
| Op->getVTList(), Ops, LoadVT, M->getMemOperand(), |
| DAG); |
| } |
| case Intrinsic::amdgcn_buffer_atomic_swap: |
| case Intrinsic::amdgcn_buffer_atomic_add: |
| case Intrinsic::amdgcn_buffer_atomic_sub: |
| case Intrinsic::amdgcn_buffer_atomic_csub: |
| case Intrinsic::amdgcn_buffer_atomic_smin: |
| case Intrinsic::amdgcn_buffer_atomic_umin: |
| case Intrinsic::amdgcn_buffer_atomic_smax: |
| case Intrinsic::amdgcn_buffer_atomic_umax: |
| case Intrinsic::amdgcn_buffer_atomic_and: |
| case Intrinsic::amdgcn_buffer_atomic_or: |
| case Intrinsic::amdgcn_buffer_atomic_xor: |
| case Intrinsic::amdgcn_buffer_atomic_fadd: { |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(4)); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // vdata |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| SDValue(), // voffset -- will be set by setBufferOffsets |
| SDValue(), // soffset -- will be set by setBufferOffsets |
| SDValue(), // offset -- will be set by setBufferOffsets |
| DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen |
| }; |
| setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); |
| |
| EVT VT = Op.getValueType(); |
| |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); |
| unsigned Opcode = 0; |
| |
| switch (IntrID) { |
| case Intrinsic::amdgcn_buffer_atomic_swap: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_add: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_sub: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_csub: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_smin: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_umin: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_smax: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_umax: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_and: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_or: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_xor: |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_fadd: |
| if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { |
| DiagnosticInfoUnsupported |
| NoFpRet(DAG.getMachineFunction().getFunction(), |
| "return versions of fp atomics not supported", |
| DL.getDebugLoc(), DS_Error); |
| DAG.getContext()->diagnose(NoFpRet); |
| return SDValue(); |
| } |
| Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; |
| break; |
| default: |
| llvm_unreachable("unhandled atomic opcode"); |
| } |
| |
| return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, |
| M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_raw_buffer_atomic_fadd: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fadd: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); |
| case Intrinsic::amdgcn_raw_buffer_atomic_fmin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fmin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_fmax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fmax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_swap: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); |
| case Intrinsic::amdgcn_raw_buffer_atomic_add: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); |
| case Intrinsic::amdgcn_raw_buffer_atomic_sub: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); |
| case Intrinsic::amdgcn_raw_buffer_atomic_smin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_umin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_smax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_umax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_and: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); |
| case Intrinsic::amdgcn_raw_buffer_atomic_or: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); |
| case Intrinsic::amdgcn_raw_buffer_atomic_xor: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); |
| case Intrinsic::amdgcn_raw_buffer_atomic_inc: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); |
| case Intrinsic::amdgcn_raw_buffer_atomic_dec: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); |
| case Intrinsic::amdgcn_struct_buffer_atomic_swap: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SWAP); |
| case Intrinsic::amdgcn_struct_buffer_atomic_add: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); |
| case Intrinsic::amdgcn_struct_buffer_atomic_sub: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); |
| case Intrinsic::amdgcn_struct_buffer_atomic_smin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_umin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_UMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_smax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_umax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_UMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_and: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); |
| case Intrinsic::amdgcn_struct_buffer_atomic_or: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); |
| case Intrinsic::amdgcn_struct_buffer_atomic_xor: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); |
| case Intrinsic::amdgcn_struct_buffer_atomic_inc: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); |
| case Intrinsic::amdgcn_struct_buffer_atomic_dec: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); |
| |
| case Intrinsic::amdgcn_buffer_atomic_cmpswap: { |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(5)); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // src |
| Op.getOperand(3), // cmp |
| Op.getOperand(4), // rsrc |
| Op.getOperand(5), // vindex |
| SDValue(), // voffset -- will be set by setBufferOffsets |
| SDValue(), // soffset -- will be set by setBufferOffsets |
| SDValue(), // offset -- will be set by setBufferOffsets |
| DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen |
| }; |
| setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); |
| |
| EVT VT = Op.getValueType(); |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, |
| Op->getVTList(), Ops, VT, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // src |
| Op.getOperand(3), // cmp |
| Op.getOperand(4), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(6), // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| EVT VT = Op.getValueType(); |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, |
| Op->getVTList(), Ops, VT, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { |
| auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // src |
| Op.getOperand(3), // cmp |
| Op.getOperand(4), // rsrc |
| Op.getOperand(5), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(7), // soffset |
| Offsets.second, // offset |
| Op.getOperand(8), // cachepolicy |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| EVT VT = Op.getValueType(); |
| auto *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, |
| Op->getVTList(), Ops, VT, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_image_bvh_intersect_ray: { |
| SDLoc DL(Op); |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue NodePtr = M->getOperand(2); |
| SDValue RayExtent = M->getOperand(3); |
| SDValue RayOrigin = M->getOperand(4); |
| SDValue RayDir = M->getOperand(5); |
| SDValue RayInvDir = M->getOperand(6); |
| SDValue TDescr = M->getOperand(7); |
| |
| assert(NodePtr.getValueType() == MVT::i32 || |
| NodePtr.getValueType() == MVT::i64); |
| assert(RayDir.getValueType() == MVT::v4f16 || |
| RayDir.getValueType() == MVT::v4f32); |
| |
| if (!Subtarget->hasGFX10_AEncoding()) { |
| emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); |
| return SDValue(); |
| } |
| |
| bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; |
| bool Is64 = NodePtr.getValueType() == MVT::i64; |
| unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa |
| : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa |
| : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa |
| : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa; |
| |
| SmallVector<SDValue, 16> Ops; |
| |
| auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { |
| SmallVector<SDValue, 3> Lanes; |
| DAG.ExtractVectorElements(Op, Lanes, 0, 3); |
| if (Lanes[0].getValueSizeInBits() == 32) { |
| for (unsigned I = 0; I < 3; ++I) |
| Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); |
| } else { |
| if (IsAligned) { |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Lanes[0], Lanes[1] }))); |
| Ops.push_back(Lanes[2]); |
| } else { |
| SDValue Elt0 = Ops.pop_back_val(); |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Elt0, Lanes[0] }))); |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Lanes[1], Lanes[2] }))); |
| } |
| } |
| }; |
| |
| if (Is64) |
| DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); |
| else |
| Ops.push_back(NodePtr); |
| |
| Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); |
| packLanes(RayOrigin, true); |
| packLanes(RayDir, true); |
| packLanes(RayInvDir, false); |
| Ops.push_back(TDescr); |
| if (IsA16) |
| Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); |
| Ops.push_back(M->getChain()); |
| |
| auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); |
| MachineMemOperand *MemRef = M->getMemOperand(); |
| DAG.setNodeMemRefs(NewNode, {MemRef}); |
| return SDValue(NewNode, 0); |
| } |
| case Intrinsic::amdgcn_global_atomic_fadd: |
| if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) { |
| DiagnosticInfoUnsupported |
| NoFpRet(DAG.getMachineFunction().getFunction(), |
| "return versions of fp atomics not supported", |
| DL.getDebugLoc(), DS_Error); |
| DAG.getContext()->diagnose(NoFpRet); |
| return SDValue(); |
| } |
| LLVM_FALLTHROUGH; |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fadd: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmax: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue Ops[] = { |
| M->getOperand(0), // Chain |
| M->getOperand(2), // Ptr |
| M->getOperand(3) // Value |
| }; |
| unsigned Opcode = 0; |
| switch (IntrID) { |
| case Intrinsic::amdgcn_global_atomic_fadd: |
| case Intrinsic::amdgcn_flat_atomic_fadd: { |
| EVT VT = Op.getOperand(3).getValueType(); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT, |
| DAG.getVTList(VT, MVT::Other), Ops, |
| M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmin: { |
| Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; |
| break; |
| } |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fmax: { |
| Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; |
| break; |
| } |
| default: |
| llvm_unreachable("unhandled atomic opcode"); |
| } |
| return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), |
| M->getVTList(), Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| } |
| default: |
| |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrID)) |
| return lowerImage(Op, ImageDimIntr, DAG, true); |
| |
| return SDValue(); |
| } |
| } |
| |
| // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to |
| // dwordx4 if on SI. |
| SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, |
| SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachineMemOperand *MMO, |
| SelectionDAG &DAG) const { |
| EVT VT = VTList.VTs[0]; |
| EVT WidenedVT = VT; |
| EVT WidenedMemVT = MemVT; |
| if (!Subtarget->hasDwordx3LoadStores() && |
| (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) { |
| WidenedVT = EVT::getVectorVT(*DAG.getContext(), |
| WidenedVT.getVectorElementType(), 4); |
| WidenedMemVT = EVT::getVectorVT(*DAG.getContext(), |
| WidenedMemVT.getVectorElementType(), 4); |
| MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16); |
| } |
| |
| assert(VTList.NumVTs == 2); |
| SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); |
| |
| auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, |
| WidenedMemVT, MMO); |
| if (WidenedVT != VT) { |
| auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp, |
| DAG.getVectorIdxConstant(0, DL)); |
| NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL); |
| } |
| return NewOp; |
| } |
| |
| SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, |
| bool ImageStore) const { |
| EVT StoreVT = VData.getValueType(); |
| |
| // No change for f16 and legal vector D16 types. |
| if (!StoreVT.isVector()) |
| return VData; |
| |
| SDLoc DL(VData); |
| unsigned NumElements = StoreVT.getVectorNumElements(); |
| |
| if (Subtarget->hasUnpackedD16VMem()) { |
| // We need to unpack the packed data to store. |
| EVT IntStoreVT = StoreVT.changeTypeToInteger(); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| EVT EquivStoreVT = |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); |
| return DAG.UnrollVectorOp(ZExt.getNode()); |
| } |
| |
| // The sq block of gfx8.1 does not estimate register use correctly for d16 |
| // image store instructions. The data operand is computed as if it were not a |
| // d16 image instruction. |
| if (ImageStore && Subtarget->hasImageStoreD16Bug()) { |
| // Bitcast to i16 |
| EVT IntStoreVT = StoreVT.changeTypeToInteger(); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| // Decompose into scalars |
| SmallVector<SDValue, 4> Elts; |
| DAG.ExtractVectorElements(IntVData, Elts); |
| |
| // Group pairs of i16 into v2i16 and bitcast to i32 |
| SmallVector<SDValue, 4> PackedElts; |
| for (unsigned I = 0; I < Elts.size() / 2; I += 1) { |
| SDValue Pair = |
| DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); |
| SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); |
| PackedElts.push_back(IntPair); |
| } |
| if ((NumElements % 2) == 1) { |
| // Handle v3i16 |
| unsigned I = Elts.size() / 2; |
| SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, |
| {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); |
| SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); |
| PackedElts.push_back(IntPair); |
| } |
| |
| // Pad using UNDEF |
| PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); |
| |
| // Build final vector |
| EVT VecVT = |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); |
| return DAG.getBuildVector(VecVT, DL, PackedElts); |
| } |
| |
| if (NumElements == 3) { |
| EVT IntStoreVT = |
| EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| EVT WidenedStoreVT = EVT::getVectorVT( |
| *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); |
| EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), |
| WidenedStoreVT.getStoreSizeInBits()); |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); |
| return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); |
| } |
| |
| assert(isTypeLegal(StoreVT)); |
| return VData; |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_exp_compr: { |
| SDValue Src0 = Op.getOperand(4); |
| SDValue Src1 = Op.getOperand(5); |
| // Hack around illegal type on SI by directly selecting it. |
| if (isTypeLegal(Src0.getValueType())) |
| return SDValue(); |
| |
| const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); |
| SDValue Undef = DAG.getUNDEF(MVT::f32); |
| const SDValue Ops[] = { |
| Op.getOperand(2), // tgt |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 |
| Undef, // src2 |
| Undef, // src3 |
| Op.getOperand(7), // vm |
| DAG.getTargetConstant(1, DL, MVT::i1), // compr |
| Op.getOperand(3), // en |
| Op.getOperand(0) // Chain |
| }; |
| |
| unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE; |
| return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); |
| } |
| case Intrinsic::amdgcn_s_barrier: { |
| if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; |
| if (WGSize <= ST.getWavefrontSize()) |
| return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, |
| Op.getOperand(0)), 0); |
| } |
| return SDValue(); |
| }; |
| case Intrinsic::amdgcn_tbuffer_store: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue(); |
| unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue(); |
| unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue(); |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(4)); |
| SDValue Ops[] = { |
| Chain, |
| VData, // vdata |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| Op.getOperand(5), // voffset |
| Op.getOperand(6), // soffset |
| Op.getOperand(7), // offset |
| DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format |
| DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : |
| AMDGPUISD::TBUFFER_STORE_FORMAT; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_struct_tbuffer_store: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| SDValue Ops[] = { |
| Chain, |
| VData, // vdata |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(6), // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // format |
| Op.getOperand(8), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : |
| AMDGPUISD::TBUFFER_STORE_FORMAT; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_raw_tbuffer_store: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| SDValue Ops[] = { |
| Chain, |
| VData, // vdata |
| Op.getOperand(3), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(5), // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // format |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : |
| AMDGPUISD::TBUFFER_STORE_FORMAT; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_buffer_store: |
| case Intrinsic::amdgcn_buffer_store_format: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue(); |
| unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue(); |
| unsigned IdxEn = getIdxEn(Op.getOperand(4)); |
| SDValue Ops[] = { |
| Chain, |
| VData, |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| SDValue(), // voffset -- will be set by setBufferOffsets |
| SDValue(), // soffset -- will be set by setBufferOffsets |
| SDValue(), // offset -- will be set by setBufferOffsets |
| DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy |
| DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen |
| }; |
| setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); |
| |
| unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? |
| AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; |
| Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); |
| |
| // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics |
| EVT VDataType = VData.getValueType().getScalarType(); |
| if (VDataType == MVT::i8 || VDataType == MVT::i16) |
| return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); |
| |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_raw_buffer_store: |
| case Intrinsic::amdgcn_raw_buffer_store_format: { |
| const bool IsFormat = |
| IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; |
| |
| SDValue VData = Op.getOperand(2); |
| EVT VDataVT = VData.getValueType(); |
| EVT EltType = VDataVT.getScalarType(); |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| if (IsD16) { |
| VData = handleD16VData(VData, DAG); |
| VDataVT = VData.getValueType(); |
| } |
| |
| if (!isTypeLegal(VDataVT)) { |
| VData = |
| DAG.getNode(ISD::BITCAST, DL, |
| getEquivalentMemType(*DAG.getContext(), VDataVT), VData); |
| } |
| |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| SDValue Ops[] = { |
| Chain, |
| VData, |
| Op.getOperand(3), // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(5), // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = |
| IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; |
| Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); |
| |
| // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics |
| if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); |
| |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_struct_buffer_store: |
| case Intrinsic::amdgcn_struct_buffer_store_format: { |
| const bool IsFormat = |
| IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; |
| |
| SDValue VData = Op.getOperand(2); |
| EVT VDataVT = VData.getValueType(); |
| EVT EltType = VDataVT.getScalarType(); |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| |
| if (IsD16) { |
| VData = handleD16VData(VData, DAG); |
| VDataVT = VData.getValueType(); |
| } |
| |
| if (!isTypeLegal(VDataVT)) { |
| VData = |
| DAG.getNode(ISD::BITCAST, DL, |
| getEquivalentMemType(*DAG.getContext(), VDataVT), VData); |
| } |
| |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| SDValue Ops[] = { |
| Chain, |
| VData, |
| Op.getOperand(3), // rsrc |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| Op.getOperand(6), // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? |
| AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; |
| Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); |
| |
| // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics |
| EVT VDataType = VData.getValueType().getScalarType(); |
| if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); |
| |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_end_cf: |
| return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, |
| Op->getOperand(2), Chain), 0); |
| |
| default: { |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) |
| return lowerImage(Op, ImageDimIntr, DAG, true); |
| |
| return Op; |
| } |
| } |
| } |
| |
| // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: |
| // offset (the offset that is included in bounds checking and swizzling, to be |
| // split between the instruction's voffset and immoffset fields) and soffset |
| // (the offset that is excluded from bounds checking and swizzling, to go in |
| // the instruction's soffset field). This function takes the first kind of |
| // offset and figures out how to split it between voffset and immoffset. |
| std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( |
| SDValue Offset, SelectionDAG &DAG) const { |
| SDLoc DL(Offset); |
| const unsigned MaxImm = 4095; |
| SDValue N0 = Offset; |
| ConstantSDNode *C1 = nullptr; |
| |
| if ((C1 = dyn_cast<ConstantSDNode>(N0))) |
| N0 = SDValue(); |
| else if (DAG.isBaseWithConstantOffset(N0)) { |
| C1 = cast<ConstantSDNode>(N0.getOperand(1)); |
| N0 = N0.getOperand(0); |
| } |
| |
| if (C1) { |
| unsigned ImmOffset = C1->getZExtValue(); |
| // If the immediate value is too big for the immoffset field, put the value |
| // and -4096 into the immoffset field so that the value that is copied/added |
| // for the voffset field is a multiple of 4096, and it stands more chance |
| // of being CSEd with the copy/add for another similar load/store. |
| // However, do not do that rounding down to a multiple of 4096 if that is a |
| // negative number, as it appears to be illegal to have a negative offset |
| // in the vgpr, even if adding the immediate offset makes it positive. |
| unsigned Overflow = ImmOffset & ~MaxImm; |
| ImmOffset -= Overflow; |
| if ((int32_t)Overflow < 0) { |
| Overflow += ImmOffset; |
| ImmOffset = 0; |
| } |
| C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); |
| if (Overflow) { |
| auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); |
| if (!N0) |
| N0 = OverflowVal; |
| else { |
| SDValue Ops[] = { N0, OverflowVal }; |
| N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); |
| } |
| } |
| } |
| if (!N0) |
| N0 = DAG.getConstant(0, DL, MVT::i32); |
| if (!C1) |
| C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); |
| return {N0, SDValue(C1, 0)}; |
| } |
| |
| // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the |
| // three offsets (voffset, soffset and instoffset) into the SDValue[3] array |
| // pointed to by Offsets. |
| void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, |
| SelectionDAG &DAG, SDValue *Offsets, |
| Align Alignment) const { |
| SDLoc DL(CombinedOffset); |
| if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) { |
| uint32_t Imm = C->getZExtValue(); |
| uint32_t SOffset, ImmOffset; |
| if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, |
| Alignment)) { |
| Offsets[0] = DAG.getConstant(0, DL, MVT::i32); |
| Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); |
| Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); |
| return; |
| } |
| } |
| if (DAG.isBaseWithConstantOffset(CombinedOffset)) { |
| SDValue N0 = CombinedOffset.getOperand(0); |
| SDValue N1 = CombinedOffset.getOperand(1); |
| uint32_t SOffset, ImmOffset; |
| int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); |
| if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, |
| Subtarget, Alignment)) { |
| Offsets[0] = N0; |
| Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); |
| Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); |
| return; |
| } |
| } |
| Offsets[0] = CombinedOffset; |
| Offsets[1] = DAG.getConstant(0, DL, MVT::i32); |
| Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); |
| } |
| |
| // Handle 8 bit and 16 bit buffer loads |
| SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, |
| EVT LoadVT, SDLoc DL, |
| ArrayRef<SDValue> Ops, |
| MemSDNode *M) const { |
| EVT IntVT = LoadVT.changeTypeToInteger(); |
| unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? |
| AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; |
| |
| SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, |
| Ops, IntVT, |
| M->getMemOperand()); |
| SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); |
| LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); |
| |
| return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); |
| } |
| |
| // Handle 8 bit and 16 bit buffer stores |
| SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, |
| EVT VDataType, SDLoc DL, |
| SDValue Ops[], |
| MemSDNode *M) const { |
| if (VDataType == MVT::f16) |
| Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); |
| |
| SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); |
| Ops[1] = BufferStoreExt; |
| unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : |
| AMDGPUISD::BUFFER_STORE_SHORT; |
| ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9); |
| return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, |
| M->getMemOperand()); |
| } |
| |
| static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, |
| ISD::LoadExtType ExtType, SDValue Op, |
| const SDLoc &SL, EVT VT) { |
| if (VT.bitsLT(Op.getValueType())) |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); |
| |
| switch (ExtType) { |
| case ISD::SEXTLOAD: |
| return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); |
| case ISD::ZEXTLOAD: |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); |
| case ISD::EXTLOAD: |
| return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); |
| case ISD::NON_EXTLOAD: |
| return Op; |
| } |
| |
| llvm_unreachable("invalid ext type"); |
| } |
| |
| SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| if (Ld->getAlignment() < 4 || Ld->isDivergent()) |
| return SDValue(); |
| |
| // FIXME: Constant loads should all be marked invariant. |
| unsigned AS = Ld->getAddressSpace(); |
| if (AS != AMDGPUAS::CONSTANT_ADDRESS && |
| AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
| (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) |
| return SDValue(); |
| |
| // Don't do this early, since it may interfere with adjacent load merging for |
| // illegal types. We can avoid losing alignment information for exotic types |
| // pre-legalize. |
| EVT MemVT = Ld->getMemoryVT(); |
| if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || |
| MemVT.getSizeInBits() >= 32) |
| return SDValue(); |
| |
| SDLoc SL(Ld); |
| |
| assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && |
| "unexpected vector extload"); |
| |
| // TODO: Drop only high part of range. |
| SDValue Ptr = Ld->getBasePtr(); |
| SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, |
| MVT::i32, SL, Ld->getChain(), Ptr, |
| Ld->getOffset(), |
| Ld->getPointerInfo(), MVT::i32, |
| Ld->getAlignment(), |
| Ld->getMemOperand()->getFlags(), |
| Ld->getAAInfo(), |
| nullptr); // Drop ranges |
| |
| EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); |
| if (MemVT.isFloatingPoint()) { |
| assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && |
| "unexpected fp extload"); |
| TruncVT = MemVT.changeTypeToInteger(); |
| } |
| |
| SDValue Cvt = NewLoad; |
| if (Ld->getExtensionType() == ISD::SEXTLOAD) { |
| Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, |
| DAG.getValueType(TruncVT)); |
| } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || |
| Ld->getExtensionType() == ISD::NON_EXTLOAD) { |
| Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); |
| } else { |
| assert(Ld->getExtensionType() == ISD::EXTLOAD); |
| } |
| |
| EVT VT = Ld->getValueType(0); |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); |
| |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // We may need to handle exotic cases, such as i16->i64 extloads, so insert |
| // the appropriate extension from the 32-bit load. |
| Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // Handle conversion back to floating point if necessary. |
| Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); |
| |
| return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); |
| } |
| |
| SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| ISD::LoadExtType ExtType = Load->getExtensionType(); |
| EVT MemVT = Load->getMemoryVT(); |
| |
| if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { |
| if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) |
| return SDValue(); |
| |
| // FIXME: Copied from PPC |
| // First, load into 32 bits, then truncate to 1 bit. |
| |
| SDValue Chain = Load->getChain(); |
| SDValue BasePtr = Load->getBasePtr(); |
| MachineMemOperand *MMO = Load->getMemOperand(); |
| |
| EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; |
| |
| SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, |
| BasePtr, RealMemVT, MMO); |
| |
| if (!MemVT.isVector()) { |
| SDValue Ops[] = { |
| DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), |
| NewLD.getValue(1) |
| }; |
| |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SmallVector<SDValue, 3> Elts; |
| for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { |
| SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, |
| DAG.getConstant(I, DL, MVT::i32)); |
| |
| Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); |
| } |
| |
| SDValue Ops[] = { |
| DAG.getBuildVector(MemVT, DL, Elts), |
| NewLD.getValue(1) |
| }; |
| |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| if (!MemVT.isVector()) |
| return SDValue(); |
| |
| assert(Op.getValueType().getVectorElementType() == MVT::i32 && |
| "Custom lowering for non-i32 vectors hasn't been implemented."); |
| |
| unsigned Alignment = Load->getAlignment(); |
| unsigned AS = Load->getAddressSpace(); |
| if (Subtarget->hasLDSMisalignedBug() && |
| AS == AMDGPUAS::FLAT_ADDRESS && |
| Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { |
| return SplitVectorLoad(Op, DAG); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| // If there is a possibilty that flat instruction access scratch memory |
| // then we need to use the same legalization rules we use for private. |
| if (AS == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasMultiDwordFlatScratchAddressing()) |
| AS = MFI->hasFlatScratchInit() ? |
| AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; |
| |
| unsigned NumElements = MemVT.getVectorNumElements(); |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { |
| if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) { |
| if (MemVT.isPow2VectorType()) |
| return SDValue(); |
| return WidenOrSplitVectorLoad(Op, DAG); |
| } |
| // Non-uniform loads will be selected to MUBUF instructions, so they |
| // have the same legalization requirements as global and private |
| // loads. |
| // |
| } |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::GLOBAL_ADDRESS) { |
| if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && |
| Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && |
| Alignment >= 4 && NumElements < 32) { |
| if (MemVT.isPow2VectorType()) |
| return SDValue(); |
| return WidenOrSplitVectorLoad(Op, DAG); |
| } |
| // Non-uniform loads will be selected to MUBUF instructions, so they |
| // have the same legalization requirements as global and private |
| // loads. |
| // |
| } |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::GLOBAL_ADDRESS || |
| AS == AMDGPUAS::FLAT_ADDRESS) { |
| if (NumElements > 4) |
| return SplitVectorLoad(Op, DAG); |
| // v3 loads not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return WidenOrSplitVectorLoad(Op, DAG); |
| |
| // v3 and v4 loads are supported for private and global memory. |
| return SDValue(); |
| } |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| // Depending on the setting of the private_element_size field in the |
| // resource descriptor, we can only make private accesses up to a certain |
| // size. |
| switch (Subtarget->getMaxPrivateElementSize()) { |
| case 4: { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| case 8: |
| if (NumElements > 2) |
| return SplitVectorLoad(Op, DAG); |
| return SDValue(); |
| case 16: |
| // Same as global/flat |
| if (NumElements > 4) |
| return SplitVectorLoad(Op, DAG); |
| // v3 loads not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return WidenOrSplitVectorLoad(Op, DAG); |
| |
| return SDValue(); |
| default: |
| llvm_unreachable("unsupported private_element_size"); |
| } |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
| // Use ds_read_b128 or ds_read_b96 when possible. |
| if (Subtarget->hasDS96AndDS128() && |
| ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) || |
| MemVT.getStoreSize() == 12) && |
| allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, |
| Load->getAlign())) |
| return SDValue(); |
| |
| if (NumElements > 2) |
| return SplitVectorLoad(Op, DAG); |
| |
| // SI has a hardware bug in the LDS / GDS boounds checking: if the base |
| // address is negative, then the instruction is incorrectly treated as |
| // out-of-bounds even if base + offsets is in bounds. Split vectorized |
| // loads here to avoid emitting ds_read2_b32. We may re-combine the |
| // load later in the SILoadStoreOptimizer. |
| if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && |
| NumElements == 2 && MemVT.getStoreSize() == 8 && |
| Load->getAlignment() < 8) { |
| return SplitVectorLoad(Op, DAG); |
| } |
| } |
| |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| MemVT, *Load->getMemOperand())) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| assert(VT.getSizeInBits() == 64); |
| |
| SDLoc DL(Op); |
| SDValue Cond = Op.getOperand(0); |
| |
| SDValue Zero = DAG.getConstant(0, DL, MVT::i32); |
| SDValue One = DAG.getConstant(1, DL, MVT::i32); |
| |
| SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); |
| SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); |
| |
| SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); |
| SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); |
| |
| SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); |
| |
| SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); |
| SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); |
| |
| SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); |
| |
| SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Res); |
| } |
| |
| // Catch division cases where we can use shortcuts with rcp and rsq |
| // instructions. |
| SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| const SDNodeFlags Flags = Op->getFlags(); |
| |
| bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); |
| |
| // Without !fpmath accuracy information, we can't do more because we don't |
| // know exactly whether rcp is accurate enough to meet !fpmath requirement. |
| if (!AllowInaccurateRcp) |
| return SDValue(); |
| |
| if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { |
| if (CLHS->isExactlyValue(1.0)) { |
| // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to |
| // the CI documentation has a worst case error of 1 ulp. |
| // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to |
| // use it as long as we aren't trying to use denormals. |
| // |
| // v_rcp_f16 and v_rsq_f16 DO support denormals. |
| |
| // 1.0 / sqrt(x) -> rsq(x) |
| |
| // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP |
| // error seems really high at 2^29 ULP. |
| if (RHS.getOpcode() == ISD::FSQRT) |
| return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); |
| |
| // 1.0 / x -> rcp(x) |
| return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); |
| } |
| |
| // Same as for 1.0, but expand the sign out of the constant. |
| if (CLHS->isExactlyValue(-1.0)) { |
| // -1.0 / x -> rcp (fneg x) |
| SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); |
| } |
| } |
| |
| // Turn into multiply by the reciprocal. |
| // x / y -> x * (1.0 / y) |
| SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); |
| return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); |
| } |
| |
| SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| const SDNodeFlags Flags = Op->getFlags(); |
| |
| bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || |
| DAG.getTarget().Options.UnsafeFPMath; |
| if (!AllowInaccurateDiv) |
| return SDValue(); |
| |
| SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); |
| SDValue One = DAG.getConstantFP(1.0, SL, VT); |
| |
| SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); |
| SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); |
| |
| R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); |
| SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); |
| R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); |
| SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); |
| SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); |
| return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); |
| } |
| |
| static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, |
| EVT VT, SDValue A, SDValue B, SDValue GlueChain, |
| SDNodeFlags Flags) { |
| if (GlueChain->getNumValues() <= 1) { |
| return DAG.getNode(Opcode, SL, VT, A, B, Flags); |
| } |
| |
| assert(GlueChain->getNumValues() == 3); |
| |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); |
| switch (Opcode) { |
| default: llvm_unreachable("no chain equivalent for opcode"); |
| case ISD::FMUL: |
| Opcode = AMDGPUISD::FMUL_W_CHAIN; |
| break; |
| } |
| |
| return DAG.getNode(Opcode, SL, VTList, |
| {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, |
| Flags); |
| } |
| |
| static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, |
| EVT VT, SDValue A, SDValue B, SDValue C, |
| SDValue GlueChain, SDNodeFlags Flags) { |
| if (GlueChain->getNumValues() <= 1) { |
| return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); |
| } |
| |
| assert(GlueChain->getNumValues() == 3); |
| |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); |
| switch (Opcode) { |
| default: llvm_unreachable("no chain equivalent for opcode"); |
| case ISD::FMA: |
| Opcode = AMDGPUISD::FMA_W_CHAIN; |
| break; |
| } |
| |
| return DAG.getNode(Opcode, SL, VTList, |
| {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, |
| Flags); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) |
| return FastLowered; |
| |
| SDLoc SL(Op); |
| SDValue Src0 = Op.getOperand(0); |
| SDValue Src1 = Op.getOperand(1); |
| |
| SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); |
| SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); |
| |
| SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); |
| SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); |
| |
| SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); |
| SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); |
| } |
| |
| // Faster 2.5 ULP division that does not support denormals. |
| SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| |
| SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); |
| |
| const APFloat K0Val(BitsToFloat(0x6f800000)); |
| const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); |
| |
| const APFloat K1Val(BitsToFloat(0x2f800000)); |
| const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); |
| |
| SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); |
| |
| SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); |
| |
| // TODO: Should this propagate fast-math-flags? |
| r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); |
| |
| // rcp does not support denormals. |
| SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); |
| |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); |
| |
| return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); |
| } |
| |
| // Returns immediate value for setting the F32 denorm mode when using the |
| // S_DENORM_MODE instruction. |
| static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, |
| const SDLoc &SL, const GCNSubtarget *ST) { |
| assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); |
| int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) |
| ? FP_DENORM_FLUSH_NONE |
| : FP_DENORM_FLUSH_IN_FLUSH_OUT; |
| |
| int Mode = SPDenormMode | (DPDenormModeDefault << 2); |
| return DAG.getTargetConstant(Mode, SL, MVT::i32); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) |
| return FastLowered; |
| |
| // The selection matcher assumes anything with a chain selecting to a |
| // mayRaiseFPException machine instruction. Since we're introducing a chain |
| // here, we need to explicitly report nofpexcept for the regular fdiv |
| // lowering. |
| SDNodeFlags Flags = Op->getFlags(); |
| Flags.setNoFPExcept(true); |
| |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); |
| |
| SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); |
| |
| SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, |
| {RHS, RHS, LHS}, Flags); |
| SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, |
| {LHS, RHS, LHS}, Flags); |
| |
| // Denominator is scaled to not be denormal, so using rcp is ok. |
| SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, |
| DenominatorScaled, Flags); |
| SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, |
| DenominatorScaled, Flags); |
| |
| const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | |
| (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | |
| (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); |
| const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); |
| |
| const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); |
| |
| if (!HasFP32Denormals) { |
| // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV |
| // lowering. The chain dependence is insufficient, and we need glue. We do |
| // not need the glue variants in a strictfp function. |
| |
| SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| SDNode *EnableDenorm; |
| if (Subtarget->hasDenormModeInst()) { |
| const SDValue EnableDenormValue = |
| getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); |
| |
| EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, |
| DAG.getEntryNode(), EnableDenormValue).getNode(); |
| } else { |
| const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, |
| SL, MVT::i32); |
| EnableDenorm = |
| DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, |
| {EnableDenormValue, BitField, DAG.getEntryNode()}); |
| } |
| |
| SDValue Ops[3] = { |
| NegDivScale0, |
| SDValue(EnableDenorm, 0), |
| SDValue(EnableDenorm, 1) |
| }; |
| |
| NegDivScale0 = DAG.getMergeValues(Ops, SL); |
| } |
| |
| SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, |
| ApproxRcp, One, NegDivScale0, Flags); |
| |
| SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, |
| ApproxRcp, Fma0, Flags); |
| |
| SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, |
| Fma1, Fma1, Flags); |
| |
| SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, |
| NumeratorScaled, Mul, Flags); |
| |
| SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, |
| Fma2, Fma1, Mul, Fma2, Flags); |
| |
| SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, |
| NumeratorScaled, Fma3, Flags); |
| |
| if (!HasFP32Denormals) { |
| SDNode *DisableDenorm; |
| if (Subtarget->hasDenormModeInst()) { |
| const SDValue DisableDenormValue = |
| getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); |
| |
| DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, |
| Fma4.getValue(1), DisableDenormValue, |
| Fma4.getValue(2)).getNode(); |
| } else { |
| const SDValue DisableDenormValue = |
| DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); |
| |
| DisableDenorm = DAG.getMachineNode( |
| AMDGPU::S_SETREG_B32, SL, MVT::Other, |
| {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); |
| } |
| |
| SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, |
| SDValue(DisableDenorm, 0), DAG.getRoot()); |
| DAG.setRoot(OutputChain); |
| } |
| |
| SDValue Scale = NumeratorScaled.getValue(1); |
| SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, |
| {Fma4, Fma1, Fma3, Scale}, Flags); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) |
| return FastLowered; |
| |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); |
| |
| SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); |
| |
| SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); |
| |
| SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); |
| |
| SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); |
| |
| SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); |
| |
| SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); |
| |
| SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); |
| |
| SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); |
| |
| SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); |
| |
| SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, |
| NegDivScale0, Mul, DivScale1); |
| |
| SDValue Scale; |
| |
| if (!Subtarget->hasUsableDivScaleConditionOutput()) { |
| // Workaround a hardware bug on SI where the condition output from div_scale |
| // is not usable. |
| |
| const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); |
| |
| // Figure out if the scale to use for div_fmas. |
| SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); |
| SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); |
| SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); |
| SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); |
| |
| SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); |
| SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); |
| |
| SDValue Scale0Hi |
| = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); |
| SDValue Scale1Hi |
| = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); |
| |
| SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); |
| SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); |
| Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); |
| } else { |
| Scale = DivScale1.getValue(1); |
| } |
| |
| SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, |
| Fma4, Fma3, Mul, Scale); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32) |
| return LowerFDIV32(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFDIV64(Op, DAG); |
| |
| if (VT == MVT::f16) |
| return LowerFDIV16(Op, DAG); |
| |
| llvm_unreachable("Unexpected type for fdiv"); |
| } |
| |
| SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| EVT VT = Store->getMemoryVT(); |
| |
| if (VT == MVT::i1) { |
| return DAG.getTruncStore(Store->getChain(), DL, |
| DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), |
| Store->getBasePtr(), MVT::i1, Store->getMemOperand()); |
| } |
| |
| assert(VT.isVector() && |
| Store->getValue().getValueType().getScalarType() == MVT::i32); |
| |
| unsigned AS = Store->getAddressSpace(); |
| if (Subtarget->hasLDSMisalignedBug() && |
| AS == AMDGPUAS::FLAT_ADDRESS && |
| Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) { |
| return SplitVectorStore(Op, DAG); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| // If there is a possibilty that flat instruction access scratch memory |
| // then we need to use the same legalization rules we use for private. |
| if (AS == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasMultiDwordFlatScratchAddressing()) |
| AS = MFI->hasFlatScratchInit() ? |
| AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; |
| |
| unsigned NumElements = VT.getVectorNumElements(); |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS || |
| AS == AMDGPUAS::FLAT_ADDRESS) { |
| if (NumElements > 4) |
| return SplitVectorStore(Op, DAG); |
| // v3 stores not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return SplitVectorStore(Op, DAG); |
| |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| VT, *Store->getMemOperand())) |
| return expandUnalignedStore(Store, DAG); |
| |
| return SDValue(); |
| } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| switch (Subtarget->getMaxPrivateElementSize()) { |
| case 4: |
| return scalarizeVectorStore(Store, DAG); |
| case 8: |
| if (NumElements > 2) |
| return SplitVectorStore(Op, DAG); |
| return SDValue(); |
| case 16: |
| if (NumElements > 4 || |
| (NumElements == 3 && !Subtarget->enableFlatScratch())) |
| return SplitVectorStore(Op, DAG); |
| return SDValue(); |
| default: |
| llvm_unreachable("unsupported private_element_size"); |
| } |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
| // Use ds_write_b128 or ds_write_b96 when possible. |
| if (Subtarget->hasDS96AndDS128() && |
| ((Subtarget->useDS128() && VT.getStoreSize() == 16) || |
| (VT.getStoreSize() == 12)) && |
| allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, |
| Store->getAlign())) |
| return SDValue(); |
| |
| if (NumElements > 2) |
| return SplitVectorStore(Op, DAG); |
| |
| // SI has a hardware bug in the LDS / GDS boounds checking: if the base |
| // address is negative, then the instruction is incorrectly treated as |
| // out-of-bounds even if base + offsets is in bounds. Split vectorized |
| // stores here to avoid emitting ds_write2_b32. We may re-combine the |
| // store later in the SILoadStoreOptimizer. |
| if (!Subtarget->hasUsableDSOffset() && |
| NumElements == 2 && VT.getStoreSize() == 8 && |
| Store->getAlignment() < 8) { |
| return SplitVectorStore(Op, DAG); |
| } |
| |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| VT, *Store->getMemOperand())) { |
| if (VT.isVector()) |
| return SplitVectorStore(Op, DAG); |
| return expandUnalignedStore(Store, DAG); |
| } |
| |
| return SDValue(); |
| } else { |
| llvm_unreachable("unhandled address space"); |
| } |
| } |
| |
| SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Arg = Op.getOperand(0); |
| SDValue TrigVal; |
| |
| // Propagate fast-math flags so that the multiply we introduce can be folded |
| // if Arg is already the result of a multiply by constant. |
| auto Flags = Op->getFlags(); |
| |
| SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); |
| |
| if (Subtarget->hasTrigReducedRange()) { |
| SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); |
| TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); |
| } else { |
| TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); |
| } |
| |
| switch (Op.getOpcode()) { |
| case ISD::FCOS: |
| return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); |
| case ISD::FSIN: |
| return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); |
| default: |
| llvm_unreachable("Wrong trig opcode"); |
| } |
| } |
| |
| SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { |
| AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); |
| assert(AtomicNode->isCompareAndSwap()); |
| unsigned AS = AtomicNode->getAddressSpace(); |
| |
| // No custom lowering required for local address space |
| if (!AMDGPU::isFlatGlobalAddrSpace(AS)) |
| return Op; |
| |
| // Non-local address space requires custom lowering for atomic compare |
| // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 |
| SDLoc DL(Op); |
| SDValue ChainIn = Op.getOperand(0); |
| SDValue Addr = Op.getOperand(1); |
| SDValue Old = Op.getOperand(2); |
| SDValue New = Op.getOperand(3); |
| EVT VT = Op.getValueType(); |
| MVT SimpleVT = VT.getSimpleVT(); |
| MVT VecType = MVT::getVectorVT(SimpleVT, 2); |
| |
| SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); |
| SDValue Ops[] = { ChainIn, Addr, NewOld }; |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), |
| Ops, VT, AtomicNode->getMemOperand()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG optimizations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| EVT ScalarVT = VT.getScalarType(); |
| if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| SDValue Src = N->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // TODO: We could try to match extracting the higher bytes, which would be |
| // easier if i8 vectors weren't promoted to i32 vectors, particularly after |
| // types are legalized. v4i8 -> v4f32 is probably the only case to worry |
| // about in practice. |
| if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { |
| if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { |
| SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // For the f16 case, fold to a cast to f32 and then cast back to f16. |
| if (ScalarVT != MVT::f32) { |
| Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, |
| DAG.getTargetConstant(0, DL, MVT::i32)); |
| } |
| return Cvt; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) |
| |
| // This is a variant of |
| // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), |
| // |
| // The normal DAG combiner will do this, but only if the add has one use since |
| // that would increase the number of instructions. |
| // |
| // This prevents us from seeing a constant offset that can be folded into a |
| // memory instruction's addressing mode. If we know the resulting add offset of |
| // a pointer can be folded into an addressing offset, we can replace the pointer |
| // operand with the add of new constant offset. This eliminates one of the uses, |
| // and may allow the remaining use to also be simplified. |
| // |
| SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, |
| unsigned AddrSpace, |
| EVT MemVT, |
| DAGCombinerInfo &DCI) const { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // We only do this to handle cases where it's profitable when there are |
| // multiple uses of the add, so defer to the standard combine. |
| if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || |
| N0->hasOneUse()) |
| return SDValue(); |
| |
| const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); |
| if (!CN1) |
| return SDValue(); |
| |
| const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!CAdd) |
| return SDValue(); |
| |
| // If the resulting offset is too large, we can't fold it into the addressing |
| // mode offset. |
| APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); |
| Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); |
| |
| AddrMode AM; |
| AM.HasBaseReg = true; |
| AM.BaseOffs = Offset.getSExtValue(); |
| if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| |
| SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); |
| SDValue COffset = DAG.getConstant(Offset, SL, VT); |
| |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && |
| (N0.getOpcode() == ISD::OR || |
| N0->getFlags().hasNoUnsignedWrap())); |
| |
| return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); |
| } |
| |
| /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset |
| /// by the chain and intrinsic ID. Theoretically we would also need to check the |
| /// specific intrinsic, but they all place the pointer operand first. |
| static unsigned getBasePtrIndex(const MemSDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::STORE: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| return 2; |
| default: |
| return 1; |
| } |
| } |
| |
| SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| unsigned PtrIdx = getBasePtrIndex(N); |
| SDValue Ptr = N->getOperand(PtrIdx); |
| |
| // TODO: We could also do this for multiplies. |
| if (Ptr.getOpcode() == ISD::SHL) { |
| SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), |
| N->getMemoryVT(), DCI); |
| if (NewPtr) { |
| SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); |
| |
| NewOps[PtrIdx] = NewPtr; |
| return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { |
| return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || |
| (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || |
| (Opc == ISD::XOR && Val == 0); |
| } |
| |
| // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This |
| // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit |
| // integer combine opportunities since most 64-bit operations are decomposed |
| // this way. TODO: We won't want this for SALU especially if it is an inline |
| // immediate. |
| SDValue SITargetLowering::splitBinaryBitConstantOp( |
| DAGCombinerInfo &DCI, |
| const SDLoc &SL, |
| unsigned Opc, SDValue LHS, |
| const ConstantSDNode *CRHS) const { |
| uint64_t Val = CRHS->getZExtValue(); |
| uint32_t ValLo = Lo_32(Val); |
| uint32_t ValHi = Hi_32(Val); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| if ((bitOpWithConstantIsReducible(Opc, ValLo) || |
| bitOpWithConstantIsReducible(Opc, ValHi)) || |
| (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { |
| // If we need to materialize a 64-bit immediate, it will be split up later |
| // anyway. Avoid creating the harder to understand 64-bit immediate |
| // materialization. |
| return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Returns true if argument is a boolean value which is not serialized into |
| // memory or argument and does not require v_cndmask_b32 to be deserialized. |
| static bool isBoolSGPR(SDValue V) { |
| if (V.getValueType() != MVT::i1) |
| return false; |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::SETCC: |
| case AMDGPUISD::FP_CLASS: |
| return true; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); |
| } |
| return false; |
| } |
| |
| // If a constant has all zeroes or all ones within each byte return it. |
| // Otherwise return 0. |
| static uint32_t getConstantPermuteMask(uint32_t C) { |
| // 0xff for any zero byte in the mask |
| uint32_t ZeroByteMask = 0; |
| if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; |
| if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; |
| if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; |
| if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; |
| uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte |
| if ((NonZeroByteMask & C) != NonZeroByteMask) |
| return 0; // Partial bytes selected. |
| return C; |
| } |
| |
| // Check if a node selects whole bytes from its operand 0 starting at a byte |
| // boundary while masking the rest. Returns select mask as in the v_perm_b32 |
| // or -1 if not succeeded. |
| // Note byte select encoding: |
| // value 0-3 selects corresponding source byte; |
| // value 0xc selects zero; |
| // value 0xff selects 0xff. |
| static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { |
| assert(V.getValueSizeInBits() == 32); |
| |
| if (V.getNumOperands() != 2) |
| return ~0; |
| |
| ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); |
| if (!N1) |
| return ~0; |
| |
| uint32_t C = N1->getZExtValue(); |
| |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::AND: |
| if (uint32_t ConstMask = getConstantPermuteMask(C)) { |
| return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); |
| } |
| break; |
| |
| case ISD::OR: |
| if (uint32_t ConstMask = getConstantPermuteMask(C)) { |
| return (0x03020100 & ~ConstMask) | ConstMask; |
| } |
| break; |
| |
| case ISD::SHL: |
| if (C % 8) |
| return ~0; |
| |
| return uint32_t((0x030201000c0c0c0cull << C) >> 32); |
| |
| case ISD::SRL: |
| if (C % 8) |
| return ~0; |
| |
| return uint32_t(0x0c0c0c0c03020100ull >> C); |
| } |
| |
| return ~0; |
| } |
| |
| SDValue SITargetLowering::performAndCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (VT == MVT::i64 && CRHS) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) |
| return Split; |
| } |
| |
| if (CRHS && VT == MVT::i32) { |
| // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb |
| // nb = number of trailing zeroes in mask |
| // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, |
| // given that we are selecting 8 or 16 bit fields starting at byte boundary. |
| uint64_t Mask = CRHS->getZExtValue(); |
| unsigned Bits = countPopulation(Mask); |
| if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && |
| (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { |
| if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { |
| unsigned Shift = CShift->getZExtValue(); |
| unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); |
| unsigned Offset = NB + Shift; |
| if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. |
| SDLoc SL(N); |
| SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, |
| LHS->getOperand(0), |
| DAG.getConstant(Offset, SL, MVT::i32), |
| DAG.getConstant(Bits, SL, MVT::i32)); |
| EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); |
| SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, |
| DAG.getValueType(NarrowVT)); |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, |
| DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); |
| return Shl; |
| } |
| } |
| } |
| |
| // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) |
| if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && |
| isa<ConstantSDNode>(LHS.getOperand(2))) { |
| uint32_t Sel = getConstantPermuteMask(Mask); |
| if (!Sel) |
| return SDValue(); |
| |
| // Select 0xc for all zero bytes |
| Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), |
| LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| |
| // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> |
| // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) |
| if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { |
| ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); |
| |
| SDValue X = LHS.getOperand(0); |
| SDValue Y = RHS.getOperand(0); |
| if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) |
| return SDValue(); |
| |
| if (LCC == ISD::SETO) { |
| if (X != LHS.getOperand(1)) |
| return SDValue(); |
| |
| if (RCC == ISD::SETUNE) { |
| const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); |
| if (!C1 || !C1->isInfinity() || C1->isNegative()) |
| return SDValue(); |
| |
| const uint32_t Mask = SIInstrFlags::N_NORMAL | |
| SIInstrFlags::N_SUBNORMAL | |
| SIInstrFlags::N_ZERO | |
| SIInstrFlags::P_ZERO | |
| SIInstrFlags::P_SUBNORMAL | |
| SIInstrFlags::P_NORMAL; |
| |
| static_assert(((~(SIInstrFlags::S_NAN | |
| SIInstrFlags::Q_NAN | |
| SIInstrFlags::N_INFINITY | |
| SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, |
| "mask not equal"); |
| |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, |
| X, DAG.getConstant(Mask, DL, MVT::i32)); |
| } |
| } |
| } |
| |
| if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) |
| std::swap(LHS, RHS); |
| |
| if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && |
| RHS.hasOneUse()) { |
| ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) |
| // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) |
| const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); |
| if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && |
| (RHS.getOperand(0) == LHS.getOperand(0) && |
| LHS.getOperand(0) == LHS.getOperand(1))) { |
| const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; |
| unsigned NewMask = LCC == ISD::SETO ? |
| Mask->getZExtValue() & ~OrdMask : |
| Mask->getZExtValue() & OrdMask; |
| |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), |
| DAG.getConstant(NewMask, DL, MVT::i32)); |
| } |
| } |
| |
| if (VT == MVT::i32 && |
| (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { |
| // and x, (sext cc from i1) => select cc, x, 0 |
| if (RHS.getOpcode() != ISD::SIGN_EXTEND) |
| std::swap(LHS, RHS); |
| if (isBoolSGPR(RHS.getOperand(0))) |
| return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), |
| LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); |
| } |
| |
| // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && |
| N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { |
| uint32_t LHSMask = getPermuteMask(DAG, LHS); |
| uint32_t RHSMask = getPermuteMask(DAG, RHS); |
| if (LHSMask != ~0u && RHSMask != ~0u) { |
| // Canonicalize the expression in an attempt to have fewer unique masks |
| // and therefore fewer registers used to hold the masks. |
| if (LHSMask > RHSMask) { |
| std::swap(LHSMask, RHSMask); |
| std::swap(LHS, RHS); |
| } |
| |
| // Select 0xc for each lane used from source operand. Zero has 0xc mask |
| // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. |
| uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| |
| // Check of we need to combine values from two sources within a byte. |
| if (!(LHSUsedLanes & RHSUsedLanes) && |
| // If we select high and lower word keep it for SDWA. |
| // TODO: teach SDWA to work with v_perm_b32 and remove the check. |
| !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { |
| // Each byte in each mask is either selector mask 0-3, or has higher |
| // bits set in either of masks, which can be 0xff for 0xff or 0x0c for |
| // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise |
| // mask which is not 0xff wins. By anding both masks we have a correct |
| // result except that 0x0c shall be corrected to give 0x0c only. |
| uint32_t Mask = LHSMask & RHSMask; |
| for (unsigned I = 0; I < 32; I += 8) { |
| uint32_t ByteSel = 0xff << I; |
| if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) |
| Mask &= (0x0c << I) & 0xffffffff; |
| } |
| |
| // Add 4 to each active LHS lane. It will not affect any existing 0xff |
| // or 0x0c. |
| uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); |
| SDLoc DL(N); |
| |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, |
| LHS.getOperand(0), RHS.getOperand(0), |
| DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performOrCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::i1) { |
| // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) |
| if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && |
| RHS.getOpcode() == AMDGPUISD::FP_CLASS) { |
| SDValue Src = LHS.getOperand(0); |
| if (Src != RHS.getOperand(0)) |
| return SDValue(); |
| |
| const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); |
| if (!CLHS || !CRHS) |
| return SDValue(); |
| |
| // Only 10 bits are used. |
| static const uint32_t MaxMask = 0x3ff; |
| |
| uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, |
| Src, DAG.getConstant(NewMask, DL, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) |
| if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && |
| LHS.getOpcode() == AMDGPUISD::PERM && |
| isa<ConstantSDNode>(LHS.getOperand(2))) { |
| uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); |
| if (!Sel) |
| return SDValue(); |
| |
| Sel |= LHS.getConstantOperandVal(2); |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), |
| LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| |
| // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && |
| N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { |
| uint32_t LHSMask = getPermuteMask(DAG, LHS); |
| uint32_t RHSMask = getPermuteMask(DAG, RHS); |
| if (LHSMask != ~0u && RHSMask != ~0u) { |
| // Canonicalize the expression in an attempt to have fewer unique masks |
| // and therefore fewer registers used to hold the masks. |
| if (LHSMask > RHSMask) { |
| std::swap(LHSMask, RHSMask); |
| std::swap(LHS, RHS); |
| } |
| |
| // Select 0xc for each lane used from source operand. Zero has 0xc mask |
| // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. |
| uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| |
| // Check of we need to combine values from two sources within a byte. |
| if (!(LHSUsedLanes & RHSUsedLanes) && |
| // If we select high and lower word keep it for SDWA. |
| // TODO: teach SDWA to work with v_perm_b32 and remove the check. |
| !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { |
| // Kill zero bytes selected by other mask. Zero value is 0xc. |
| LHSMask &= ~RHSUsedLanes; |
| RHSMask &= ~LHSUsedLanes; |
| // Add 4 to each active LHS lane |
| LHSMask |= LHSUsedLanes & 0x04040404; |
| // Combine masks |
| uint32_t Sel = LHSMask | RHSMask; |
| SDLoc DL(N); |
| |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, |
| LHS.getOperand(0), RHS.getOperand(0), |
| DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| } |
| |
| if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // TODO: This could be a generic combine with a predicate for extracting the |
| // high half of an integer being free. |
| |
| // (or i64:x, (zero_extend i32:y)) -> |
| // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) |
| if (LHS.getOpcode() == ISD::ZERO_EXTEND && |
| RHS.getOpcode() != ISD::ZERO_EXTEND) |
| std::swap(LHS, RHS); |
| |
| if (RHS.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue ExtSrc = RHS.getOperand(0); |
| EVT SrcVT = ExtSrc.getValueType(); |
| if (SrcVT == MVT::i32) { |
| SDLoc SL(N); |
| SDValue LowLHS, HiBits; |
| std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); |
| SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); |
| |
| DCI.AddToWorklist(LowOr.getNode()); |
| DCI.AddToWorklist(HiBits.getNode()); |
| |
| SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, |
| LowOr, HiBits); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
| } |
| } |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (CRHS) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) |
| return Split; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performXorCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (CRHS) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) |
| return Split; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (!Subtarget->has16BitInsts() || |
| DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDValue Src = N->getOperand(0); |
| if (Src.getValueType() != MVT::i16) |
| return SDValue(); |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, |
| DAGCombinerInfo &DCI) |
| const { |
| SDValue Src = N->getOperand(0); |
| auto *VTSign = cast<VTSDNode>(N->getOperand(1)); |
| |
| if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && |
| VTSign->getVT() == MVT::i8) || |
| (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && |
| VTSign->getVT() == MVT::i16)) && |
| Src.hasOneUse()) { |
| auto *M = cast<MemSDNode>(Src); |
| SDValue Ops[] = { |
| Src.getOperand(0), // Chain |
| Src.getOperand(1), // rsrc |
| Src.getOperand(2), // vindex |
| Src.getOperand(3), // voffset |
| Src.getOperand(4), // soffset |
| Src.getOperand(5), // offset |
| Src.getOperand(6), |
| Src.getOperand(7) |
| }; |
| // replace with BUFFER_LOAD_BYTE/SHORT |
| SDVTList ResList = DCI.DAG.getVTList(MVT::i32, |
| Src.getOperand(0).getValueType()); |
| unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? |
| AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; |
| SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), |
| ResList, |
| Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| return DCI.DAG.getMergeValues({BufferLoadSignExt, |
| BufferLoadSignExt.getValue(1)}, SDLoc(N)); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performClassCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Mask = N->getOperand(1); |
| |
| // fp_class x, 0 -> false |
| if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { |
| if (CMask->isNullValue()) |
| return DAG.getConstant(0, SDLoc(N), MVT::i1); |
| } |
| |
| if (N->getOperand(0).isUndef()) |
| return DAG.getUNDEF(MVT::i1); |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performRcpCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| |
| if (N0.isUndef()) |
| return N0; |
| |
| if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || |
| N0.getOpcode() == ISD::SINT_TO_FP)) { |
| return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, |
| N->getFlags()); |
| } |
| |
| if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { |
| return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, |
| N0.getOperand(0), N->getFlags()); |
| } |
| |
| return AMDGPUTargetLowering::performRcpCombine(N, DCI); |
| } |
| |
| bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, |
| unsigned MaxDepth) const { |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::FCANONICALIZE) |
| return true; |
| |
| if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| auto F = CFP->getValueAPF(); |
| if (F.isNaN() && F.isSignaling()) |
| return false; |
| return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); |
| } |
| |
| // If source is a result of another standard FP operation it is already in |
| // canonical form. |
| if (MaxDepth == 0) |
| return false; |
| |
| switch (Opcode) { |
| // These will flush denorms if required. |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FCEIL: |
| case ISD::FFLOOR: |
| case ISD::FMA: |
| case ISD::FMAD: |
| case ISD::FSQRT: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| case AMDGPUISD::FMUL_LEGACY: |
| case AMDGPUISD::FMAD_FTZ: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RSQ_CLAMP: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::DIV_SCALE: |
| case AMDGPUISD::DIV_FMAS: |
| case AMDGPUISD::DIV_FIXUP: |
| case AMDGPUISD::FRACT: |
| case AMDGPUISD::LDEXP: |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: |
| case AMDGPUISD::CVT_F32_UBYTE0: |
| case AMDGPUISD::CVT_F32_UBYTE1: |
| case AMDGPUISD::CVT_F32_UBYTE2: |
| case AMDGPUISD::CVT_F32_UBYTE3: |
| return true; |
| |
| // It can/will be lowered or combined as a bit operation. |
| // Need to check their input recursively to handle. |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FCOPYSIGN: |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FSINCOS: |
| return Op.getValueType().getScalarType() != MVT::f16; |
| |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case AMDGPUISD::CLAMP: |
| case AMDGPUISD::FMED3: |
| case AMDGPUISD::FMAX3: |
| case AMDGPUISD::FMIN3: { |
| // FIXME: Shouldn't treat the generic operations different based these. |
| // However, we aren't really required to flush the result from |
| // minnum/maxnum.. |
| |
| // snans will be quieted, so we only need to worry about denormals. |
| if (Subtarget->supportsMinMaxDenormModes() || |
| denormalsEnabledForType(DAG, Op.getValueType())) |
| return true; |
| |
| // Flushing may be required. |
| // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such |
| // targets need to check their input recursively. |
| |
| // FIXME: Does this apply with clamp? It's implemented with max. |
| for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { |
| if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| case ISD::SELECT: { |
| return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && |
| isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); |
| } |
| case ISD::BUILD_VECTOR: { |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| SDValue SrcOp = Op.getOperand(i); |
| if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::EXTRACT_SUBVECTOR: { |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && |
| isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); |
| } |
| case ISD::UNDEF: |
| // Could be anything. |
| return false; |
| |
| case ISD::BITCAST: |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| case ISD::TRUNCATE: { |
| // Hack round the mess we make when legalizing extract_vector_elt |
| if (Op.getValueType() == MVT::i16) { |
| SDValue TruncSrc = Op.getOperand(0); |
| if (TruncSrc.getValueType() == MVT::i32 && |
| TruncSrc.getOpcode() == ISD::BITCAST && |
| TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { |
| return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); |
| } |
| } |
| return false; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntrinsicID |
| = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| // TODO: Handle more intrinsics |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cubeid: |
| case Intrinsic::amdgcn_frexp_mant: |
| case Intrinsic::amdgcn_fdot2: |
| case Intrinsic::amdgcn_rcp: |
| case Intrinsic::amdgcn_rsq: |
| case Intrinsic::amdgcn_rsq_clamp: |
| case Intrinsic::amdgcn_rcp_legacy: |
| case Intrinsic::amdgcn_rsq_legacy: |
| case Intrinsic::amdgcn_trig_preop: |
| return true; |
| default: |
| break; |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| default: |
| return denormalsEnabledForType(DAG, Op.getValueType()) && |
| DAG.isKnownNeverSNaN(Op); |
| } |
| |
| llvm_unreachable("invalid operation"); |
| } |
| |
| bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, |
| unsigned MaxDepth) const { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| unsigned Opcode = MI->getOpcode(); |
| |
| if (Opcode == AMDGPU::G_FCANONICALIZE) |
| return true; |
| |
| if (Opcode == AMDGPU::G_FCONSTANT) { |
| auto F = MI->getOperand(1).getFPImm()->getValueAPF(); |
| if (F.isNaN() && F.isSignaling()) |
| return false; |
| return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF); |
| } |
| |
| if (MaxDepth == 0) |
| return false; |
| |
| switch (Opcode) { |
| case AMDGPU::G_FMINNUM_IEEE: |
| case AMDGPU::G_FMAXNUM_IEEE: { |
| if (Subtarget->supportsMinMaxDenormModes() || |
| denormalsEnabledForType(MRI.getType(Reg), MF)) |
| return true; |
| for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) { |
| if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1)) |
| return false; |
| } |
| return true; |
| } |
| default: |
| return denormalsEnabledForType(MRI.getType(Reg), MF) && |
| isKnownNeverSNaN(Reg, MRI); |
| } |
| |
| llvm_unreachable("invalid operation"); |
| } |
| |
| // Constant fold canonicalize. |
| SDValue SITargetLowering::getCanonicalConstantFP( |
| SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { |
| // Flush denormals to 0 if not enabled. |
| if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) |
| return DAG.getConstantFP(0.0, SL, VT); |
| |
| if (C.isNaN()) { |
| APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); |
| if (C.isSignaling()) { |
| // Quiet a signaling NaN. |
| // FIXME: Is this supposed to preserve payload bits? |
| return DAG.getConstantFP(CanonicalQNaN, SL, VT); |
| } |
| |
| // Make sure it is the canonical NaN bitpattern. |
| // |
| // TODO: Can we use -1 as the canonical NaN value since it's an inline |
| // immediate? |
| if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) |
| return DAG.getConstantFP(CanonicalQNaN, SL, VT); |
| } |
| |
| // Already canonical. |
| return DAG.getConstantFP(C, SL, VT); |
| } |
| |
| static bool vectorEltWillFoldAway(SDValue Op) { |
| return Op.isUndef() || isa<ConstantFPSDNode>(Op); |
| } |
| |
| SDValue SITargetLowering::performFCanonicalizeCombine( |
| SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fcanonicalize undef -> qnan |
| if (N0.isUndef()) { |
| APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); |
| return DAG.getConstantFP(QNaN, SDLoc(N), VT); |
| } |
| |
| if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { |
| EVT VT = N->getValueType(0); |
| return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); |
| } |
| |
| // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), |
| // (fcanonicalize k) |
| // |
| // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 |
| |
| // TODO: This could be better with wider vectors that will be split to v2f16, |
| // and to consider uses since there aren't that many packed operations. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && |
| isTypeLegal(MVT::v2f16)) { |
| SDLoc SL(N); |
| SDValue NewElts[2]; |
| SDValue Lo = N0.getOperand(0); |
| SDValue Hi = N0.getOperand(1); |
| EVT EltVT = Lo.getValueType(); |
| |
| if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { |
| for (unsigned I = 0; I != 2; ++I) { |
| SDValue Op = N0.getOperand(I); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, |
| CFP->getValueAPF()); |
| } else if (Op.isUndef()) { |
| // Handled below based on what the other operand is. |
| NewElts[I] = Op; |
| } else { |
| NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); |
| } |
| } |
| |
| // If one half is undef, and one is constant, perfer a splat vector rather |
| // than the normal qNaN. If it's a register, prefer 0.0 since that's |
| // cheaper to use and may be free with a packed operation. |
| if (NewElts[0].isUndef()) { |
| if (isa<ConstantFPSDNode>(NewElts[1])) |
| NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? |
| NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); |
| } |
| |
| if (NewElts[1].isUndef()) { |
| NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? |
| NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); |
| } |
| |
| return DAG.getBuildVector(VT, SL, NewElts); |
| } |
| } |
| |
| unsigned SrcOpc = N0.getOpcode(); |
| |
| // If it's free to do so, push canonicalizes further up the source, which may |
| // find a canonical source. |
| // |
| // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for |
| // sNaNs. |
| if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { |
| auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); |
| if (CRHS && N0.hasOneUse()) { |
| SDLoc SL(N); |
| SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, |
| N0.getOperand(0)); |
| SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); |
| DCI.AddToWorklist(Canon0.getNode()); |
| |
| return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); |
| } |
| } |
| |
| return isCanonicalized(DAG, N0) ? N0 : SDValue(); |
| } |
| |
| static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { |
| switch (Opc) { |
| case ISD::FMAXNUM: |
| case ISD::FMAXNUM_IEEE: |
| return AMDGPUISD::FMAX3; |
| case ISD::SMAX: |
| return AMDGPUISD::SMAX3; |
| case ISD::UMAX: |
| return AMDGPUISD::UMAX3; |
| case ISD::FMINNUM: |
| case ISD::FMINNUM_IEEE: |
| return AMDGPUISD::FMIN3; |
| case ISD::SMIN: |
| return AMDGPUISD::SMIN3; |
| case ISD::UMIN: |
| return AMDGPUISD::UMIN3; |
| default: |
| llvm_unreachable("Not a min/max opcode"); |
| } |
| } |
| |
| SDValue SITargetLowering::performIntMed3ImmCombine( |
| SelectionDAG &DAG, const SDLoc &SL, |
| SDValue Op0, SDValue Op1, bool Signed) const { |
| ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1); |
| if (!K1) |
| return SDValue(); |
| |
| ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); |
| if (!K0) |
| return SDValue(); |
| |
| if (Signed) { |
| if (K0->getAPIntValue().sge(K1->getAPIntValue())) |
| return SDValue(); |
| } else { |
| if (K0->getAPIntValue().uge(K1->getAPIntValue())) |
| return SDValue(); |
| } |
| |
| EVT VT = K0->getValueType(0); |
| unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; |
| if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { |
| return DAG.getNode(Med3Opc, SL, VT, |
| Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); |
| } |
| |
| // If there isn't a 16-bit med3 operation, convert to 32-bit. |
| if (VT == MVT::i16) { |
| MVT NVT = MVT::i32; |
| unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| |
| SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); |
| SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); |
| SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); |
| |
| SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); |
| } |
| |
| return SDValue(); |
| } |
| |
| static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return C; |
| |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { |
| if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) |
| return C; |
| } |
| |
| return nullptr; |
| } |
| |
| SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, |
| const SDLoc &SL, |
| SDValue Op0, |
| SDValue Op1) const { |
| ConstantFPSDNode *K1 = getSplatConstantFP(Op1); |
| if (!K1) |
| return SDValue(); |
| |
| ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); |
| if (!K0) |
| return SDValue(); |
| |
| // Ordered >= (although NaN inputs should have folded away by now). |
| if (K0->getValueAPF() > K1->getValueAPF()) |
| return SDValue(); |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // TODO: Check IEEE bit enabled? |
| EVT VT = Op0.getValueType(); |
| if (Info->getMode().DX10Clamp) { |
| // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the |
| // hardware fmed3 behavior converting to a min. |
| // FIXME: Should this be allowing -0.0? |
| if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); |
| } |
| |
| // med3 for f16 is only available on gfx9+, and not available for v2f16. |
| if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { |
| // This isn't safe with signaling NaNs because in IEEE mode, min/max on a |
| // signaling NaN gives a quiet NaN. The quiet NaN input to the min would |
| // then give the other result, which is different from med3 with a NaN |
| // input. |
| SDValue Var = Op0.getOperand(0); |
| if (!DAG.isKnownNeverSNaN(Var)) |
| return SDValue(); |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| if ((!K0->hasOneUse() || |
| TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && |
| (!K1->hasOneUse() || |
| TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { |
| return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), |
| Var, SDValue(K0, 0), SDValue(K1, 0)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performMinMaxCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| EVT VT = N->getValueType(0); |
| unsigned Opc = N->getOpcode(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // Only do this if the inner op has one use since this will just increases |
| // register pressure for no benefit. |
| |
| if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && |
| !VT.isVector() && |
| (VT == MVT::i32 || VT == MVT::f32 || |
| ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { |
| // max(max(a, b), c) -> max3(a, b, c) |
| // min(min(a, b), c) -> min3(a, b, c) |
| if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { |
| SDLoc DL(N); |
| return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), |
| DL, |
| N->getValueType(0), |
| Op0.getOperand(0), |
| Op0.getOperand(1), |
| Op1); |
| } |
| |
| // Try commuted. |
| // max(a, max(b, c)) -> max3(a, b, c) |
| // min(a, min(b, c)) -> min3(a, b, c) |
| if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { |
| SDLoc DL(N); |
| return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), |
| DL, |
| N->getValueType(0), |
| Op0, |
| Op1.getOperand(0), |
| Op1.getOperand(1)); |
| } |
| } |
| |
| // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) |
| if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) |
| return Med3; |
| } |
| |
| if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) |
| return Med3; |
| } |
| |
| // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) |
| if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || |
| (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || |
| (Opc == AMDGPUISD::FMIN_LEGACY && |
| Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && |
| (VT == MVT::f32 || VT == MVT::f64 || |
| (VT == MVT::f16 && Subtarget->has16BitInsts()) || |
| (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && |
| Op0.hasOneUse()) { |
| if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool isClampZeroToOne(SDValue A, SDValue B) { |
| if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { |
| if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { |
| // FIXME: Should this be allowing -0.0? |
| return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || |
| (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); |
| } |
| } |
| |
| return false; |
| } |
| |
| // FIXME: Should only worry about snans for version with chain. |
| SDValue SITargetLowering::performFMed3Combine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and |
| // NaNs. With a NaN input, the order of the operands may change the result. |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| SDValue Src0 = N->getOperand(0); |
| SDValue Src1 = N->getOperand(1); |
| SDValue Src2 = N->getOperand(2); |
| |
| if (isClampZeroToOne(Src0, Src1)) { |
| // const_a, const_b, x -> clamp is safe in all cases including signaling |
| // nans. |
| // FIXME: Should this be allowing -0.0? |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); |
| } |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother |
| // handling no dx10-clamp? |
| if (Info->getMode().DX10Clamp) { |
| // If NaNs is clamped to 0, we are free to reorder the inputs. |
| |
| if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) |
| std::swap(Src0, Src1); |
| |
| if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) |
| std::swap(Src1, Src2); |
| |
| if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) |
| std::swap(Src0, Src1); |
| |
| if (isClampZeroToOne(Src1, Src2)) |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue Src0 = N->getOperand(0); |
| SDValue Src1 = N->getOperand(1); |
| if (Src0.isUndef() && Src1.isUndef()) |
| return DCI.DAG.getUNDEF(N->getValueType(0)); |
| return SDValue(); |
| } |
| |
| // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be |
| // expanded into a set of cmp/select instructions. |
| bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, |
| unsigned NumElem, |
| bool IsDivergentIdx) { |
| if (UseDivergentRegisterIndexing) |
| return false; |
| |
| unsigned VecSize = EltSize * NumElem; |
| |
| // Sub-dword vectors of size 2 dword or less have better implementation. |
| if (VecSize <= 64 && EltSize < 32) |
| return false; |
| |
| // Always expand the rest of sub-dword instructions, otherwise it will be |
| // lowered via memory. |
| if (EltSize < 32) |
| return true; |
| |
| // Always do this if var-idx is divergent, otherwise it will become a loop. |
| if (IsDivergentIdx) |
| return true; |
| |
| // Large vectors would yield too many compares and v_cndmask_b32 instructions. |
| unsigned NumInsts = NumElem /* Number of compares */ + |
| ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; |
| return NumInsts <= 16; |
| } |
| |
| static bool shouldExpandVectorDynExt(SDNode *N) { |
| SDValue Idx = N->getOperand(N->getNumOperands() - 1); |
| if (isa<ConstantSDNode>(Idx)) |
| return false; |
| |
| SDValue Vec = N->getOperand(0); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| unsigned NumElem = VecVT.getVectorNumElements(); |
| |
| return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem, |
| Idx->isDivergent()); |
| } |
| |
| SDValue SITargetLowering::performExtractVectorEltCombine( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SDValue Vec = N->getOperand(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| |
| if ((Vec.getOpcode() == ISD::FNEG || |
| Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { |
| SDLoc SL(N); |
| EVT EltVT = N->getValueType(0); |
| SDValue Idx = N->getOperand(1); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec.getOperand(0), Idx); |
| return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt); |
| } |
| |
| // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) |
| // => |
| // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) |
| // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) |
| // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt |
| if (Vec.hasOneUse() && DCI.isBeforeLegalize()) { |
| SDLoc SL(N); |
| EVT EltVT = N->getValueType(0); |
| SDValue Idx = N->getOperand(1); |
| unsigned Opc = Vec.getOpcode(); |
| |
| switch(Opc) { |
| default: |
| break; |
| // TODO: Support other binary operations. |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::ADD: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: { |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec.getOperand(0), Idx); |
| SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec.getOperand(1), Idx); |
| |
| DCI.AddToWorklist(Elt0.getNode()); |
| DCI.AddToWorklist(Elt1.getNode()); |
| return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags()); |
| } |
| } |
| } |
| |
| unsigned VecSize = VecVT.getSizeInBits(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| |
| // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) |
| if (::shouldExpandVectorDynExt(N)) { |
| SDLoc SL(N); |
| SDValue Idx = N->getOperand(1); |
| SDValue V; |
| for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { |
| SDValue IC = DAG.getVectorIdxConstant(I, SL); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); |
| if (I == 0) |
| V = Elt; |
| else |
| V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); |
| } |
| return V; |
| } |
| |
| if (!DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit |
| // elements. This exposes more load reduction opportunities by replacing |
| // multiple small extract_vector_elements with a single 32-bit extract. |
| auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (isa<MemSDNode>(Vec) && |
| EltSize <= 16 && |
| EltVT.isByteSized() && |
| VecSize > 32 && |
| VecSize % 32 == 0 && |
| Idx) { |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); |
| |
| unsigned BitIndex = Idx->getZExtValue() * EltSize; |
| unsigned EltIdx = BitIndex / 32; |
| unsigned LeftoverBitIdx = BitIndex % 32; |
| SDLoc SL(N); |
| |
| SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); |
| DCI.AddToWorklist(Cast.getNode()); |
| |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| DCI.AddToWorklist(Elt.getNode()); |
| SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, |
| DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); |
| DCI.AddToWorklist(Srl.getNode()); |
| |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl); |
| DCI.AddToWorklist(Trunc.getNode()); |
| return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| SITargetLowering::performInsertVectorEltCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue Vec = N->getOperand(0); |
| SDValue Idx = N->getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| |
| // INSERT_VECTOR_ELT (<n x e>, var-idx) |
| // => BUILD_VECTOR n x select (e, const-idx) |
| if (!::shouldExpandVectorDynExt(N)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| SDValue Ins = N->getOperand(1); |
| EVT IdxVT = Idx.getValueType(); |
| |
| SmallVector<SDValue, 16> Ops; |
| for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { |
| SDValue IC = DAG.getConstant(I, SL, IdxVT); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); |
| SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); |
| Ops.push_back(V); |
| } |
| |
| return DAG.getBuildVector(VecVT, SL, Ops); |
| } |
| |
| unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, |
| const SDNode *N0, |
| const SDNode *N1) const { |
| EVT VT = N0->getValueType(0); |
| |
| // Only do this if we are not trying to support denormals. v_mad_f32 does not |
| // support denormals ever. |
| if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || |
| (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && |
| getSubtarget()->hasMadF16())) && |
| isOperationLegal(ISD::FMAD, VT)) |
| return ISD::FMAD; |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || |
| (N0->getFlags().hasAllowContract() && |
| N1->getFlags().hasAllowContract())) && |
| isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { |
| return ISD::FMA; |
| } |
| |
| return 0; |
| } |
| |
| // For a reassociatable opcode perform: |
| // op x, (op y, z) -> op (op x, z), y, if x and z are uniform |
| SDValue SITargetLowering::reassociateScalarOps(SDNode *N, |
| SelectionDAG &DAG) const { |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| unsigned Opc = N->getOpcode(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| if (!(Op0->isDivergent() ^ Op1->isDivergent())) |
| return SDValue(); |
| |
| if (Op0->isDivergent()) |
| std::swap(Op0, Op1); |
| |
| if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Op2 = Op1.getOperand(1); |
| Op1 = Op1.getOperand(0); |
| if (!(Op1->isDivergent() ^ Op2->isDivergent())) |
| return SDValue(); |
| |
| if (Op1->isDivergent()) |
| std::swap(Op1, Op2); |
| |
| // If either operand is constant this will conflict with |
| // DAGCombiner::ReassociateOps(). |
| if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || |
| DAG.isConstantIntBuildVectorOrConstantInt(Op1)) |
| return SDValue(); |
| |
| SDLoc SL(N); |
| SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); |
| return DAG.getNode(Opc, SL, VT, Add1, Op2); |
| } |
| |
| static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, |
| EVT VT, |
| SDValue N0, SDValue N1, SDValue N2, |
| bool Signed) { |
| unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); |
| SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); |
| } |
| |
| SDValue SITargetLowering::performAddCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) |
| && Subtarget->hasMad64_32() && |
| !VT.isVector() && VT.getScalarSizeInBits() > 32 && |
| VT.getScalarSizeInBits() <= 64) { |
| if (LHS.getOpcode() != ISD::MUL) |
| std::swap(LHS, RHS); |
| |
| SDValue MulLHS = LHS.getOperand(0); |
| SDValue MulRHS = LHS.getOperand(1); |
| SDValue AddRHS = RHS; |
| |
| // TODO: Maybe restrict if SGPR inputs. |
| if (numBitsUnsigned(MulLHS, DAG) <= 32 && |
| numBitsUnsigned(MulRHS, DAG) <= 32) { |
| MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); |
| MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); |
| AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); |
| return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); |
| } |
| |
| if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { |
| MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); |
| MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); |
| AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); |
| return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); |
| } |
| |
| return SDValue(); |
| } |
| |
| if (SDValue V = reassociateScalarOps(N, DAG)) { |
| return V; |
| } |
| |
| if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| // add x, zext (setcc) => addcarry x, 0, setcc |
| // add x, sext (setcc) => subcarry x, 0, setcc |
| unsigned Opc = LHS.getOpcode(); |
| if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || |
| Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) |
| std::swap(RHS, LHS); |
| |
| Opc = RHS.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: { |
| auto Cond = RHS.getOperand(0); |
| // If this won't be a real VOPC output, we would still need to insert an |
| // extra instruction anyway. |
| if (!isBoolSGPR(Cond)) |
| break; |
| SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); |
| SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; |
| Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; |
| return DAG.getNode(Opc, SL, VTList, Args); |
| } |
| case ISD::ADDCARRY: { |
| // add x, (addcarry y, 0, cc) => addcarry x, y, cc |
| auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); |
| if (!C || C->getZExtValue() != 0) break; |
| SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; |
| return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performSubCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // sub x, zext (setcc) => subcarry x, 0, setcc |
| // sub x, sext (setcc) => addcarry x, 0, setcc |
| unsigned Opc = RHS.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: { |
| auto Cond = RHS.getOperand(0); |
| // If this won't be a real VOPC output, we would still need to insert an |
| // extra instruction anyway. |
| if (!isBoolSGPR(Cond)) |
| break; |
| SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); |
| SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; |
| Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; |
| return DAG.getNode(Opc, SL, VTList, Args); |
| } |
| } |
| |
| if (LHS.getOpcode() == ISD::SUBCARRY) { |
| // sub (subcarry x, 0, cc), y => subcarry x, y, cc |
| auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); |
| if (!C || !C->isNullValue()) |
| return SDValue(); |
| SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; |
| return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| |
| if (N->getValueType(0) != MVT::i32) |
| return SDValue(); |
| |
| auto C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C || C->getZExtValue() != 0) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue LHS = N->getOperand(0); |
| |
| // addcarry (add x, y), 0, cc => addcarry x, y, cc |
| // subcarry (sub x, y), 0, cc => subcarry x, y, cc |
| unsigned LHSOpc = LHS.getOpcode(); |
| unsigned Opc = N->getOpcode(); |
| if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || |
| (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { |
| SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; |
| return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFAddCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // These should really be instruction patterns, but writing patterns with |
| // source modiifiers is a pain. |
| |
| // fadd (fadd (a, a), b) -> mad 2.0, a, b |
| if (LHS.getOpcode() == ISD::FADD) { |
| SDValue A = LHS.getOperand(0); |
| if (A == LHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); |
| if (FusedOp != 0) { |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); |
| } |
| } |
| } |
| |
| // fadd (b, fadd (a, a)) -> mad 2.0, a, b |
| if (RHS.getOpcode() == ISD::FADD) { |
| SDValue A = RHS.getOperand(0); |
| if (A == RHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); |
| if (FusedOp != 0) { |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFSubCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| assert(!VT.isVector()); |
| |
| // Try to get the fneg to fold into the source modifier. This undoes generic |
| // DAG combines and folds them into the mad. |
| // |
| // Only do this if we are not trying to support denormals. v_mad_f32 does |
| // not support denormals ever. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| if (LHS.getOpcode() == ISD::FADD) { |
| // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) |
| SDValue A = LHS.getOperand(0); |
| if (A == LHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); |
| if (FusedOp != 0){ |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| |
| return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); |
| } |
| } |
| } |
| |
| if (RHS.getOpcode() == ISD::FADD) { |
| // (fsub c, (fadd a, a)) -> mad -2.0, a, c |
| |
| SDValue A = RHS.getOperand(0); |
| if (A == RHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); |
| if (FusedOp != 0){ |
| const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFMACombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| if (!Subtarget->hasDot7Insts() || VT != MVT::f32) |
| return SDValue(); |
| |
| // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> |
| // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) |
| SDValue Op1 = N->getOperand(0); |
| SDValue Op2 = N->getOperand(1); |
| SDValue FMA = N->getOperand(2); |
| |
| if (FMA.getOpcode() != ISD::FMA || |
| Op1.getOpcode() != ISD::FP_EXTEND || |
| Op2.getOpcode() != ISD::FP_EXTEND) |
| return SDValue(); |
| |
| // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, |
| // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract |
| // is sufficient to allow generaing fdot2. |
| const TargetOptions &Options = DAG.getTarget().Options; |
| if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || |
| (N->getFlags().hasAllowContract() && |
| FMA->getFlags().hasAllowContract())) { |
| Op1 = Op1.getOperand(0); |
| Op2 = Op2.getOperand(0); |
| if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| SDValue Vec1 = Op1.getOperand(0); |
| SDValue Idx1 = Op1.getOperand(1); |
| SDValue Vec2 = Op2.getOperand(0); |
| |
| SDValue FMAOp1 = FMA.getOperand(0); |
| SDValue FMAOp2 = FMA.getOperand(1); |
| SDValue FMAAcc = FMA.getOperand(2); |
| |
| if (FMAOp1.getOpcode() != ISD::FP_EXTEND || |
| FMAOp2.getOpcode() != ISD::FP_EXTEND) |
| return SDValue(); |
| |
| FMAOp1 = FMAOp1.getOperand(0); |
| FMAOp2 = FMAOp2.getOperand(0); |
| if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| SDValue Vec3 = FMAOp1.getOperand(0); |
| SDValue Vec4 = FMAOp2.getOperand(0); |
| SDValue Idx2 = FMAOp1.getOperand(1); |
| |
| if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || |
| // Idx1 and Idx2 cannot be the same. |
| Idx1 == Idx2) |
| return SDValue(); |
| |
| if (Vec1 == Vec2 || Vec3 == Vec4) |
| return SDValue(); |
| |
| if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) |
| return SDValue(); |
| |
| if ((Vec1 == Vec3 && Vec2 == Vec4) || |
| (Vec1 == Vec4 && Vec2 == Vec3)) { |
| return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, |
| DAG.getTargetConstant(0, SL, MVT::i1)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performSetCCCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| EVT VT = LHS.getValueType(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| |
| auto CRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (!CRHS) { |
| CRHS = dyn_cast<ConstantSDNode>(LHS); |
| if (CRHS) { |
| std::swap(LHS, RHS); |
| CC = getSetCCSwappedOperands(CC); |
| } |
| } |
| |
| if (CRHS) { |
| if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && |
| isBoolSGPR(LHS.getOperand(0))) { |
| // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 |
| // setcc (sext from i1 cc), -1, eq|sle|uge) => cc |
| // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 |
| // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc |
| if ((CRHS->isAllOnesValue() && |
| (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || |
| (CRHS->isNullValue() && |
| (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) |
| return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(-1, SL, MVT::i1)); |
| if ((CRHS->isAllOnesValue() && |
| (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || |
| (CRHS->isNullValue() && |
| (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) |
| return LHS.getOperand(0); |
| } |
| |
| uint64_t CRHSVal = CRHS->getZExtValue(); |
| if ((CC == ISD::SETEQ || CC == ISD::SETNE) && |
| LHS.getOpcode() == ISD::SELECT && |
| isa<ConstantSDNode>(LHS.getOperand(1)) && |
| isa<ConstantSDNode>(LHS.getOperand(2)) && |
| LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && |
| isBoolSGPR(LHS.getOperand(0))) { |
| // Given CT != FT: |
| // setcc (select cc, CT, CF), CF, eq => xor cc, -1 |
| // setcc (select cc, CT, CF), CF, ne => cc |
| // setcc (select cc, CT, CF), CT, ne => xor cc, -1 |
| // setcc (select cc, CT, CF), CT, eq => cc |
| uint64_t CT = LHS.getConstantOperandVal(1); |
| uint64_t CF = LHS.getConstantOperandVal(2); |
| |
| if ((CF == CRHSVal && CC == ISD::SETEQ) || |
| (CT == CRHSVal && CC == ISD::SETNE)) |
| return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(-1, SL, MVT::i1)); |
| if ((CF == CRHSVal && CC == ISD::SETNE) || |
| (CT == CRHSVal && CC == ISD::SETEQ)) |
| return LHS.getOperand(0); |
| } |
| } |
| |
| if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && |
| VT != MVT::f16)) |
| return SDValue(); |
| |
| // Match isinf/isfinite pattern |
| // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) |
| // (fcmp one (fabs x), inf) -> (fp_class x, |
| // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) |
| if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { |
| const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); |
| if (!CRHS) |
| return SDValue(); |
| |
| const APFloat &APF = CRHS->getValueAPF(); |
| if (APF.isInfinity() && !APF.isNegative()) { |
| const unsigned IsInfMask = SIInstrFlags::P_INFINITY | |
| SIInstrFlags::N_INFINITY; |
| const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | |
| SIInstrFlags::P_ZERO | |
| SIInstrFlags::N_NORMAL | |
| SIInstrFlags::P_NORMAL | |
| SIInstrFlags::N_SUBNORMAL | |
| SIInstrFlags::P_SUBNORMAL; |
| unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; |
| return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(Mask, SL, MVT::i32)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; |
| |
| SDValue Src = N->getOperand(0); |
| SDValue Shift = N->getOperand(0); |
| |
| // TODO: Extend type shouldn't matter (assuming legal types). |
| if (Shift.getOpcode() == ISD::ZERO_EXTEND) |
| Shift = Shift.getOperand(0); |
| |
| if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { |
| // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x |
| // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x |
| // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x |
| // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x |
| // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x |
| if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { |
| Shift = DAG.getZExtOrTrunc(Shift.getOperand(0), |
| SDLoc(Shift.getOperand(0)), MVT::i32); |
| |
| unsigned ShiftOffset = 8 * Offset; |
| if (Shift.getOpcode() == ISD::SHL) |
| ShiftOffset -= C->getZExtValue(); |
| else |
| ShiftOffset += C->getZExtValue(); |
| |
| if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { |
| return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, |
| MVT::f32, Shift); |
| } |
| } |
| } |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); |
| if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { |
| // We simplified Src. If this node is not dead, visit it again so it is |
| // folded properly. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| DCI.AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| |
| // Handle (or x, (srl y, 8)) pattern when known bits are zero. |
| if (SDValue DemandedSrc = |
| TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) |
| return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performClampCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); |
| if (!CSrc) |
| return SDValue(); |
| |
| const MachineFunction &MF = DCI.DAG.getMachineFunction(); |
| const APFloat &F = CSrc->getValueAPF(); |
| APFloat Zero = APFloat::getZero(F.getSemantics()); |
| if (F < Zero || |
| (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { |
| return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); |
| } |
| |
| APFloat One(F.getSemantics(), "1.0"); |
| if (F > One) |
| return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); |
| |
| return SDValue(CSrc, 0); |
| } |
| |
| |
| SDValue SITargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (getTargetMachine().getOptLevel() == CodeGenOpt::None) |
| return SDValue(); |
| switch (N->getOpcode()) { |
| case ISD::ADD: |
| return performAddCombine(N, DCI); |
| case ISD::SUB: |
| return performSubCombine(N, DCI); |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: |
| return performAddCarrySubCarryCombine(N, DCI); |
| case ISD::FADD: |
| return performFAddCombine(N, DCI); |
| case ISD::FSUB: |
| return performFSubCombine(N, DCI); |
| case ISD::SETCC: |
| return performSetCCCombine(N, DCI); |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMAX: |
| case ISD::UMIN: |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: |
| return performMinMaxCombine(N, DCI); |
| case ISD::FMA: |
| return performFMACombine(N, DCI); |
| case ISD::AND: |
| return performAndCombine(N, DCI); |
| case ISD::OR: |
| return performOrCombine(N, DCI); |
| case ISD::XOR: |
| return performXorCombine(N, DCI); |
| case ISD::ZERO_EXTEND: |
| return performZeroExtendCombine(N, DCI); |
| case ISD::SIGN_EXTEND_INREG: |
| return performSignExtendInRegCombine(N , DCI); |
| case AMDGPUISD::FP_CLASS: |
| return performClassCombine(N, DCI); |
| case ISD::FCANONICALIZE: |
| return performFCanonicalizeCombine(N, DCI); |
| case AMDGPUISD::RCP: |
| return performRcpCombine(N, DCI); |
| case AMDGPUISD::FRACT: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::RSQ_CLAMP: |
| case AMDGPUISD::LDEXP: { |
| // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted |
| SDValue Src = N->getOperand(0); |
| if (Src.isUndef()) |
| return Src; |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return performUCharToFloatCombine(N, DCI); |
| case AMDGPUISD::CVT_F32_UBYTE0: |
| case AMDGPUISD::CVT_F32_UBYTE1: |
| case AMDGPUISD::CVT_F32_UBYTE2: |
| case AMDGPUISD::CVT_F32_UBYTE3: |
| return performCvtF32UByteNCombine(N, DCI); |
| case AMDGPUISD::FMED3: |
| return performFMed3Combine(N, DCI); |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: |
| return performCvtPkRTZCombine(N, DCI); |
| case AMDGPUISD::CLAMP: |
| return performClampCombine(N, DCI); |
| case ISD::SCALAR_TO_VECTOR: { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) |
| if (VT == MVT::v2i16 || VT == MVT::v2f16) { |
| SDLoc SL(N); |
| SDValue Src = N->getOperand(0); |
| EVT EltVT = Src.getValueType(); |
| if (EltVT == MVT::f16) |
| Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); |
| |
| SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Ext); |
| } |
| |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| return performExtractVectorEltCombine(N, DCI); |
| case ISD::INSERT_VECTOR_ELT: |
| return performInsertVectorEltCombine(N, DCI); |
| case ISD::LOAD: { |
| if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI)) |
| return Widended; |
| LLVM_FALLTHROUGH; |
| } |
| default: { |
| if (!DCI.isBeforeLegalize()) { |
| if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) |
| return performMemSDNodeCombine(MemNode, DCI); |
| } |
| |
| break; |
| } |
| } |
| |
| return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); |
| } |
| |
| /// Helper function for adjustWritemask |
| static unsigned SubIdx2Lane(unsigned Idx) { |
| switch (Idx) { |
| default: return ~0u; |
| case AMDGPU::sub0: return 0; |
| case AMDGPU::sub1: return 1; |
| case AMDGPU::sub2: return 2; |
| case AMDGPU::sub3: return 3; |
| case AMDGPU::sub4: return 4; // Possible with TFE/LWE |
| } |
| } |
| |
| /// Adjust the writemask of MIMG instructions |
| SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, |
| SelectionDAG &DAG) const { |
| unsigned Opcode = Node->getMachineOpcode(); |
| |
| // Subtract 1 because the vdata output is not a MachineSDNode operand. |
| int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; |
| if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) |
| return Node; // not implemented for D16 |
| |
| SDNode *Users[5] = { nullptr }; |
| unsigned Lane = 0; |
| unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; |
| unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); |
| unsigned NewDmask = 0; |
| unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; |
| unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; |
| bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || |
| Node->getConstantOperandVal(LWEIdx)) ? 1 : 0; |
| unsigned TFCLane = 0; |
| bool HasChain = Node->getNumValues() > 1; |
| |
| if (OldDmask == 0) { |
| // These are folded out, but on the chance it happens don't assert. |
| return Node; |
| } |
| |
| unsigned OldBitsSet = countPopulation(OldDmask); |
| // Work out which is the TFE/LWE lane if that is enabled. |
| if (UsesTFC) { |
| TFCLane = OldBitsSet; |
| } |
| |
| // Try to figure out the used register components |
| for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); |
| I != E; ++I) { |
| |
| // Don't look at users of the chain. |
| if (I.getUse().getResNo() != 0) |
| continue; |
| |
| // Abort if we can't understand the usage |
| if (!I->isMachineOpcode() || |
| I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) |
| return Node; |
| |
| // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. |
| // Note that subregs are packed, i.e. Lane==0 is the first bit set |
| // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit |
| // set, etc. |
| Lane = SubIdx2Lane(I->getConstantOperandVal(1)); |
| if (Lane == ~0u) |
| return Node; |
| |
| // Check if the use is for the TFE/LWE generated result at VGPRn+1. |
| if (UsesTFC && Lane == TFCLane) { |
| Users[Lane] = *I; |
| } else { |
| // Set which texture component corresponds to the lane. |
| unsigned Comp; |
| for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { |
| Comp = countTrailingZeros(Dmask); |
| Dmask &= ~(1 << Comp); |
| } |
| |
| // Abort if we have more than one user per component. |
| if (Users[Lane]) |
| return Node; |
| |
| Users[Lane] = *I; |
| NewDmask |= 1 << Comp; |
| } |
| } |
| |
| // Don't allow 0 dmask, as hardware assumes one channel enabled. |
| bool NoChannels = !NewDmask; |
| if (NoChannels) { |
| if (!UsesTFC) { |
| // No uses of the result and not using TFC. Then do nothing. |
| return Node; |
| } |
| // If the original dmask has one channel - then nothing to do |
| if (OldBitsSet == 1) |
| return Node; |
| // Use an arbitrary dmask - required for the instruction to work |
| NewDmask = 1; |
| } |
| // Abort if there's no change |
| if (NewDmask == OldDmask) |
| return Node; |
| |
| unsigned BitsSet = countPopulation(NewDmask); |
| |
| // Check for TFE or LWE - increase the number of channels by one to account |
| // for the extra return value |
| // This will need adjustment for D16 if this is also included in |
| // adjustWriteMask (this function) but at present D16 are excluded. |
| unsigned NewChannels = BitsSet + UsesTFC; |
| |
| int NewOpcode = |
| AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); |
| assert(NewOpcode != -1 && |
| NewOpcode != static_cast<int>(Node->getMachineOpcode()) && |
| "failed to find equivalent MIMG op"); |
| |
| // Adjust the writemask in the node |
| SmallVector<SDValue, 12> Ops; |
| Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); |
| Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); |
| Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); |
| |
| MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); |
| |
| MVT ResultVT = NewChannels == 1 ? |
| SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : |
| NewChannels == 5 ? 8 : NewChannels); |
| SDVTList NewVTList = HasChain ? |
| DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); |
| |
| |
| MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), |
| NewVTList, Ops); |
| |
| if (HasChain) { |
| // Update chain. |
| DAG.setNodeMemRefs(NewNode, Node->memoperands()); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); |
| } |
| |
| if (NewChannels == 1) { |
| assert(Node->hasNUsesOfValue(1, 0)); |
| SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, |
| SDLoc(Node), Users[Lane]->getValueType(0), |
| SDValue(NewNode, 0)); |
| DAG.ReplaceAllUsesWith(Users[Lane], Copy); |
| return nullptr; |
| } |
| |
| // Update the users of the node with the new indices |
| for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { |
| SDNode *User = Users[i]; |
| if (!User) { |
| // Handle the special case of NoChannels. We set NewDmask to 1 above, but |
| // Users[0] is still nullptr because channel 0 doesn't really have a use. |
| if (i || !NoChannels) |
| continue; |
| } else { |
| SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); |
| DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); |
| } |
| |
| switch (Idx) { |
| default: break; |
| case AMDGPU::sub0: Idx = AMDGPU::sub1; break; |
| case AMDGPU::sub1: Idx = AMDGPU::sub2; break; |
| case AMDGPU::sub2: Idx = AMDGPU::sub3; break; |
| case AMDGPU::sub3: Idx = AMDGPU::sub4; break; |
| } |
| } |
| |
| DAG.RemoveDeadNode(Node); |
| return nullptr; |
| } |
| |
| static bool isFrameIndexOp(SDValue Op) { |
| if (Op.getOpcode() == ISD::AssertZext) |
| Op = Op.getOperand(0); |
| |
| return isa<FrameIndexSDNode>(Op); |
| } |
| |
| /// Legalize target independent instructions (e.g. INSERT_SUBREG) |
| /// with frame index operands. |
| /// LLVM assumes that inputs are to these instructions are registers. |
| SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, |
| SelectionDAG &DAG) const { |
| if (Node->getOpcode() == ISD::CopyToReg) { |
| RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); |
| SDValue SrcVal = Node->getOperand(2); |
| |
| // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have |
| // to try understanding copies to physical registers. |
| if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { |
| SDLoc SL(Node); |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue VReg = DAG.getRegister( |
| MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); |
| |
| SDNode *Glued = Node->getGluedNode(); |
| SDValue ToVReg |
| = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, |
| SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); |
| SDValue ToResultReg |
| = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), |
| VReg, ToVReg.getValue(1)); |
| DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); |
| DAG.RemoveDeadNode(Node); |
| return ToResultReg.getNode(); |
| } |
| } |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < Node->getNumOperands(); ++i) { |
| if (!isFrameIndexOp(Node->getOperand(i))) { |
| Ops.push_back(Node->getOperand(i)); |
| continue; |
| } |
| |
| SDLoc DL(Node); |
| Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, |
| Node->getOperand(i).getValueType(), |
| Node->getOperand(i)), 0)); |
| } |
| |
| return DAG.UpdateNodeOperands(Node, Ops); |
| } |
| |
| /// Fold the instructions after selecting them. |
| /// Returns null if users were already updated. |
| SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, |
| SelectionDAG &DAG) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| unsigned Opcode = Node->getMachineOpcode(); |
| |
| if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && |
| !TII->isGather4(Opcode) && |
| AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) { |
| return adjustWritemask(Node, DAG); |
| } |
| |
| if (Opcode == AMDGPU::INSERT_SUBREG || |
| Opcode == AMDGPU::REG_SEQUENCE) { |
| legalizeTargetIndependentNode(Node, DAG); |
| return Node; |
| } |
| |
| switch (Opcode) { |
| case AMDGPU::V_DIV_SCALE_F32_e64: |
| case AMDGPU::V_DIV_SCALE_F64_e64: { |
| // Satisfy the operand register constraint when one of the inputs is |
| // undefined. Ordinarily each undef value will have its own implicit_def of |
| // a vreg, so force these to use a single register. |
| SDValue Src0 = Node->getOperand(1); |
| SDValue Src1 = Node->getOperand(3); |
| SDValue Src2 = Node->getOperand(5); |
| |
| if ((Src0.isMachineOpcode() && |
| Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && |
| (Src0 == Src1 || Src0 == Src2)) |
| break; |
| |
| MVT VT = Src0.getValueType().getSimpleVT(); |
| const TargetRegisterClass *RC = |
| getRegClassFor(VT, Src0.getNode()->isDivergent()); |
| |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); |
| |
| SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), |
| UndefReg, Src0, SDValue()); |
| |
| // src0 must be the same register as src1 or src2, even if the value is |
| // undefined, so make sure we don't violate this constraint. |
| if (Src0.isMachineOpcode() && |
| Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { |
| if (Src1.isMachineOpcode() && |
| Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) |
| Src0 = Src1; |
| else if (Src2.isMachineOpcode() && |
| Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) |
| Src0 = Src2; |
| else { |
| assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); |
| Src0 = UndefReg; |
| Src1 = UndefReg; |
| } |
| } else |
| break; |
| |
| SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end()); |
| Ops[1] = Src0; |
| Ops[3] = Src1; |
| Ops[5] = Src2; |
| Ops.push_back(ImpDef.getValue(1)); |
| return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); |
| } |
| default: |
| break; |
| } |
| |
| return Node; |
| } |
| |
| // Any MIMG instructions that use tfe or lwe require an initialization of the |
| // result register that will be written in the case of a memory access failure. |
| // The required code is also added to tie this init code to the result of the |
| // img instruction. |
| void SITargetLowering::AddIMGInit(MachineInstr &MI) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| MachineBasicBlock &MBB = *MI.getParent(); |
| |
| MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); |
| MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); |
| MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); |
| |
| if (!TFE && !LWE) // intersect_ray |
| return; |
| |
| unsigned TFEVal = TFE ? TFE->getImm() : 0; |
| unsigned LWEVal = LWE->getImm(); |
| unsigned D16Val = D16 ? D16->getImm() : 0; |
| |
| if (!TFEVal && !LWEVal) |
| return; |
| |
| // At least one of TFE or LWE are non-zero |
| // We have to insert a suitable initialization of the result value and |
| // tie this to the dest of the image instruction. |
| |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| int DstIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); |
| |
| // Calculate which dword we have to initialize to 0. |
| MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); |
| |
| // check that dmask operand is found. |
| assert(MO_Dmask && "Expected dmask operand in instruction"); |
| |
| unsigned dmask = MO_Dmask->getImm(); |
| // Determine the number of active lanes taking into account the |
| // Gather4 special case |
| unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask); |
| |
| bool Packed = !Subtarget->hasUnpackedD16VMem(); |
| |
| unsigned InitIdx = |
| D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; |
| |
| // Abandon attempt if the dst size isn't large enough |
| // - this is in fact an error but this is picked up elsewhere and |
| // reported correctly. |
| uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; |
| if (DstSize < InitIdx) |
| return; |
| |
| // Create a register for the intialization value. |
| Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); |
| unsigned NewDst = 0; // Final initialized value will be in here |
| |
| // If PRTStrictNull feature is enabled (the default) then initialize |
| // all the result registers to 0, otherwise just the error indication |
| // register (VGPRn+1) |
| unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; |
| unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); |
| |
| BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); |
| for (; SizeLeft; SizeLeft--, CurrIdx++) { |
| NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); |
| // Initialize dword |
| Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) |
| .addImm(0); |
| // Insert into the super-reg |
| BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) |
| .addReg(PrevDst) |
| .addReg(SubReg) |
| .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); |
| |
| PrevDst = NewDst; |
| } |
| |
| // Add as an implicit operand |
| MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); |
| |
| // Tie the just added implicit operand to the dst |
| MI.tieOperands(DstIdx, MI.getNumOperands() - 1); |
| } |
| |
| /// Assign the register class depending on the number of |
| /// bits set in the writemask |
| void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| |
| if (TII->isVOP3(MI.getOpcode())) { |
| // Make sure constant bus requirements are respected. |
| TII->legalizeOperandsVOP3(MRI, MI); |
| |
| // Prefer VGPRs over AGPRs in mAI instructions where possible. |
| // This saves a chain-copy of registers and better ballance register |
| // use between vgpr and agpr as agpr tuples tend to be big. |
| if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) { |
| unsigned Opc = MI.getOpcode(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), |
| AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { |
| if (I == -1) |
| break; |
| MachineOperand &Op = MI.getOperand(I); |
| if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID && |
| OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) || |
| !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg())) |
| continue; |
| auto *Src = MRI.getUniqueVRegDef(Op.getReg()); |
| if (!Src || !Src->isCopy() || |
| !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) |
| continue; |
| auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); |
| auto *NewRC = TRI->getEquivalentVGPRClass(RC); |
| // All uses of agpr64 and agpr32 can also accept vgpr except for |
| // v_accvgpr_read, but we do not produce agpr reads during selection, |
| // so no use checks are needed. |
| MRI.setRegClass(Op.getReg(), NewRC); |
| } |
| } |
| |
| return; |
| } |
| |
| // Replace unused atomics with the no return version. |
| int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); |
| if (NoRetAtomicOp != -1) { |
| if (!Node->hasAnyUseOfValue(0)) { |
| int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::cpol); |
| if (CPolIdx != -1) { |
| MachineOperand &CPol = MI.getOperand(CPolIdx); |
| CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC); |
| } |
| MI.RemoveOperand(0); |
| MI.setDesc(TII->get(NoRetAtomicOp)); |
| return; |
| } |
| |
| // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg |
| // instruction, because the return type of these instructions is a vec2 of |
| // the memory type, so it can be tied to the input operand. |
| // This means these instructions always have a use, so we need to add a |
| // special case to check if the atomic has only one extract_subreg use, |
| // which itself has no uses. |
| if ((Node->hasNUsesOfValue(1, 0) && |
| Node->use_begin()->isMachineOpcode() && |
| Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && |
| !Node->use_begin()->hasAnyUseOfValue(0))) { |
| Register Def = MI.getOperand(0).getReg(); |
| |
| // Change this into a noret atomic. |
| MI.setDesc(TII->get(NoRetAtomicOp)); |
| MI.RemoveOperand(0); |
| |
| // If we only remove the def operand from the atomic instruction, the |
| // extract_subreg will be left with a use of a vreg without a def. |
| // So we need to insert an implicit_def to avoid machine verifier |
| // errors. |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), |
| TII->get(AMDGPU::IMPLICIT_DEF), Def); |
| } |
| return; |
| } |
| |
| if (TII->isMIMG(MI) && !MI.mayStore()) |
| AddIMGInit(MI); |
| } |
| |
| static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, |
| uint64_t Val) { |
| SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); |
| return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); |
| } |
| |
| MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, |
| const SDLoc &DL, |
| SDValue Ptr) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| // Build the half of the subregister with the constants before building the |
| // full 128-bit register. If we are building multiple resource descriptors, |
| // this will allow CSEing of the 2-component register. |
| const SDValue Ops0[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), |
| buildSMovImm32(DAG, DL, 0), |
| DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), |
| buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), |
| DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) |
| }; |
| |
| SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, |
| MVT::v2i32, Ops0), 0); |
| |
| // Combine the constants and the pointer. |
| const SDValue Ops1[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), |
| Ptr, |
| DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), |
| SubRegHi, |
| DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) |
| }; |
| |
| return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); |
| } |
| |
| /// Return a resource descriptor with the 'Add TID' bit enabled |
| /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] |
| /// of the resource descriptor) to create an offset, which is added to |
| /// the resource pointer. |
| MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, |
| SDValue Ptr, uint32_t RsrcDword1, |
| uint64_t RsrcDword2And3) const { |
| SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); |
| SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); |
| if (RsrcDword1) { |
| PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, |
| DAG.getConstant(RsrcDword1, DL, MVT::i32)), |
| 0); |
| } |
| |
| SDValue DataLo = buildSMovImm32(DAG, DL, |
| RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); |
| SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); |
| |
| const SDValue Ops[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), |
| PtrLo, |
| DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), |
| PtrHi, |
| DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), |
| DataLo, |
| DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), |
| DataHi, |
| DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) |
| }; |
| |
| return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SI Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, |
| StringRef Constraint, |
| MVT VT) const { |
| const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); |
| |
| const TargetRegisterClass *RC = nullptr; |
| if (Constraint.size() == 1) { |
| const unsigned BitWidth = VT.getSizeInBits(); |
| switch (Constraint[0]) { |
| default: |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| case 's': |
| case 'r': |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::SReg_32RegClass; |
| break; |
| case 64: |
| RC = &AMDGPU::SGPR_64RegClass; |
| break; |
| default: |
| RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::make_pair(0U, nullptr); |
| break; |
| } |
| break; |
| case 'v': |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::VGPR_32RegClass; |
| break; |
| default: |
| RC = TRI->getVGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::make_pair(0U, nullptr); |
| break; |
| } |
| break; |
| case 'a': |
| if (!Subtarget->hasMAIInsts()) |
| break; |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::AGPR_32RegClass; |
| break; |
| default: |
| RC = TRI->getAGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::make_pair(0U, nullptr); |
| break; |
| } |
| break; |
| } |
| // We actually support i128, i16 and f16 as inline parameters |
| // even if they are not reported as legal |
| if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || |
| VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) |
| return std::make_pair(0U, RC); |
| } |
| |
| if (Constraint.size() > 1) { |
| if (Constraint[1] == 'v') { |
| RC = &AMDGPU::VGPR_32RegClass; |
| } else if (Constraint[1] == 's') { |
| RC = &AMDGPU::SGPR_32RegClass; |
| } else if (Constraint[1] == 'a') { |
| RC = &AMDGPU::AGPR_32RegClass; |
| } |
| |
| if (RC) { |
| uint32_t Idx; |
| bool Failed = Constraint.substr(2).getAsInteger(10, Idx); |
| if (!Failed && Idx < RC->getNumRegs()) |
| return std::make_pair(RC->getRegister(Idx), RC); |
| } |
| } |
| |
| // FIXME: Returns VS_32 for physical SGPR constraints |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| static bool isImmConstraint(StringRef Constraint) { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'A': |
| case 'B': |
| case 'C': |
| return true; |
| } |
| } else if (Constraint == "DA" || |
| Constraint == "DB") { |
| return true; |
| } |
| return false; |
| } |
| |
| SITargetLowering::ConstraintType |
| SITargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 's': |
| case 'v': |
| case 'a': |
| return C_RegisterClass; |
| } |
| } |
| if (isImmConstraint(Constraint)) { |
| return C_Other; |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { |
| if (!AMDGPU::isInlinableIntLiteral(Val)) { |
| Val = Val & maskTrailingOnes<uint64_t>(Size); |
| } |
| return Val; |
| } |
| |
| void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| if (isImmConstraint(Constraint)) { |
| uint64_t Val; |
| if (getAsmOperandConstVal(Op, Val) && |
| checkAsmConstraintVal(Op, Constraint, Val)) { |
| Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); |
| Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); |
| } |
| } else { |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| } |
| |
| bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { |
| unsigned Size = Op.getScalarValueSizeInBits(); |
| if (Size > 64) |
| return false; |
| |
| if (Size == 16 && !Subtarget->has16BitInsts()) |
| return false; |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| Val = C->getSExtValue(); |
| return true; |
| } |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { |
| Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
| return true; |
| } |
| if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { |
| if (Size != 16 || Op.getNumOperands() != 2) |
| return false; |
| if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) |
| return false; |
| if (ConstantSDNode *C = V->getConstantSplatNode()) { |
| Val = C->getSExtValue(); |
| return true; |
| } |
| if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { |
| Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SITargetLowering::checkAsmConstraintVal(SDValue Op, |
| const std::string &Constraint, |
| uint64_t Val) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'I': |
| return AMDGPU::isInlinableIntLiteral(Val); |
| case 'J': |
| return isInt<16>(Val); |
| case 'A': |
| return checkAsmConstraintValA(Op, Val); |
| case 'B': |
| return isInt<32>(Val); |
| case 'C': |
| return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || |
| AMDGPU::isInlinableIntLiteral(Val); |
| default: |
| break; |
| } |
| } else if (Constraint.size() == 2) { |
| if (Constraint == "DA") { |
| int64_t HiBits = static_cast<int32_t>(Val >> 32); |
| int64_t LoBits = static_cast<int32_t>(Val); |
| return checkAsmConstraintValA(Op, HiBits, 32) && |
| checkAsmConstraintValA(Op, LoBits, 32); |
| } |
| if (Constraint == "DB") { |
| return true; |
| } |
| } |
| llvm_unreachable("Invalid asm constraint"); |
| } |
| |
| bool SITargetLowering::checkAsmConstraintValA(SDValue Op, |
| uint64_t Val, |
| unsigned MaxSize) const { |
| unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); |
| bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); |
| if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || |
| (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || |
| (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { |
| return true; |
| } |
| return false; |
| } |
| |
| static int getAlignedAGPRClassID(unsigned UnalignedClassID) { |
| switch (UnalignedClassID) { |
| case AMDGPU::VReg_64RegClassID: |
| return AMDGPU::VReg_64_Align2RegClassID; |
| case AMDGPU::VReg_96RegClassID: |
| return AMDGPU::VReg_96_Align2RegClassID; |
| case AMDGPU::VReg_128RegClassID: |
| return AMDGPU::VReg_128_Align2RegClassID; |
| case AMDGPU::VReg_160RegClassID: |
| return AMDGPU::VReg_160_Align2RegClassID; |
| case AMDGPU::VReg_192RegClassID: |
| return AMDGPU::VReg_192_Align2RegClassID; |
| case AMDGPU::VReg_224RegClassID: |
| return AMDGPU::VReg_224_Align2RegClassID; |
| case AMDGPU::VReg_256RegClassID: |
| return AMDGPU::VReg_256_Align2RegClassID; |
| case AMDGPU::VReg_512RegClassID: |
| return AMDGPU::VReg_512_Align2RegClassID; |
| case AMDGPU::VReg_1024RegClassID: |
| return AMDGPU::VReg_1024_Align2RegClassID; |
| case AMDGPU::AReg_64RegClassID: |
| return AMDGPU::AReg_64_Align2RegClassID; |
| case AMDGPU::AReg_96RegClassID: |
| return AMDGPU::AReg_96_Align2RegClassID; |
| case AMDGPU::AReg_128RegClassID: |
| return AMDGPU::AReg_128_Align2RegClassID; |
| case AMDGPU::AReg_160RegClassID: |
| return AMDGPU::AReg_160_Align2RegClassID; |
| case AMDGPU::AReg_192RegClassID: |
| return AMDGPU::AReg_192_Align2RegClassID; |
| case AMDGPU::AReg_256RegClassID: |
| return AMDGPU::AReg_256_Align2RegClassID; |
| case AMDGPU::AReg_512RegClassID: |
| return AMDGPU::AReg_512_Align2RegClassID; |
| case AMDGPU::AReg_1024RegClassID: |
| return AMDGPU::AReg_1024_Align2RegClassID; |
| default: |
| return -1; |
| } |
| } |
| |
| // Figure out which registers should be reserved for stack access. Only after |
| // the function is legalized do we know all of the non-spill stack objects or if |
| // calls are present. |
| void SITargetLowering::finalizeLowering(MachineFunction &MF) const { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| |
| if (Info->isEntryFunction()) { |
| // Callable functions have fixed registers used for stack access. |
| reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); |
| } |
| |
| assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), |
| Info->getStackPtrOffsetReg())); |
| if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) |
| MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); |
| |
| // We need to worry about replacing the default register with itself in case |
| // of MIR testcases missing the MFI. |
| if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) |
| MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); |
| |
| if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) |
| MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); |
| |
| Info->limitOccupancy(MF); |
| |
| if (ST.isWave32() && !MF.empty()) { |
| for (auto &MBB : MF) { |
| for (auto &MI : MBB) { |
| TII->fixImplicitOperands(MI); |
| } |
| } |
| } |
| |
| // FIXME: This is a hack to fixup AGPR classes to use the properly aligned |
| // classes if required. Ideally the register class constraints would differ |
| // per-subtarget, but there's no easy way to achieve that right now. This is |
| // not a problem for VGPRs because the correctly aligned VGPR class is implied |
| // from using them as the register class for legal types. |
| if (ST.needsAlignedVGPRs()) { |
| for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| const Register Reg = Register::index2VirtReg(I); |
| const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); |
| if (!RC) |
| continue; |
| int NewClassID = getAlignedAGPRClassID(RC->getID()); |
| if (NewClassID != -1) |
| MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); |
| } |
| } |
| |
| TargetLoweringBase::finalizeLowering(MF); |
| |
| // Allocate a VGPR for future SGPR Spill if |
| // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used |
| // FIXME: We won't need this hack if we split SGPR allocation from VGPR |
| if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() && |
| !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction()) |
| Info->reserveVGPRforSGPRSpills(MF); |
| } |
| |
| void SITargetLowering::computeKnownBitsForFrameIndex( |
| const int FI, KnownBits &Known, const MachineFunction &MF) const { |
| TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); |
| |
| // Set the high bits to zero based on the maximum allowed scratch size per |
| // wave. We can't use vaddr in MUBUF instructions if we don't know the address |
| // calculation won't overflow, so assume the sign bit is never set. |
| Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); |
| } |
| |
| static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, |
| KnownBits &Known, unsigned Dim) { |
| unsigned MaxValue = |
| ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); |
| Known.Zero.setHighBits(countLeadingZeros(MaxValue)); |
| } |
| |
| void SITargetLowering::computeKnownBitsForTargetInstr( |
| GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, |
| const MachineRegisterInfo &MRI, unsigned Depth) const { |
| const MachineInstr *MI = MRI.getVRegDef(R); |
| switch (MI->getOpcode()) { |
| case AMDGPU::G_INTRINSIC: { |
| switch (MI->getIntrinsicID()) { |
| case Intrinsic::amdgcn_workitem_id_x: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); |
| break; |
| case Intrinsic::amdgcn_workitem_id_y: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); |
| break; |
| case Intrinsic::amdgcn_workitem_id_z: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); |
| break; |
| case Intrinsic::amdgcn_mbcnt_lo: |
| case Intrinsic::amdgcn_mbcnt_hi: { |
| // These return at most the wavefront size - 1. |
| unsigned Size = MRI.getType(R).getSizeInBits(); |
| Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); |
| break; |
| } |
| case Intrinsic::amdgcn_groupstaticsize: { |
| // We can report everything over the maximum size as 0. We can't report |
| // based on the actual size because we don't know if it's accurate or not |
| // at any given point. |
| Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize())); |
| break; |
| } |
| } |
| break; |
| } |
| case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: |
| Known.Zero.setHighBits(24); |
| break; |
| case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: |
| Known.Zero.setHighBits(16); |
| break; |
| } |
| } |
| |
| Align SITargetLowering::computeKnownAlignForTargetInstr( |
| GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, |
| unsigned Depth) const { |
| const MachineInstr *MI = MRI.getVRegDef(R); |
| switch (MI->getOpcode()) { |
| case AMDGPU::G_INTRINSIC: |
| case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { |
| // FIXME: Can this move to generic code? What about the case where the call |
| // site specifies a lower alignment? |
| Intrinsic::ID IID = MI->getIntrinsicID(); |
| LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); |
| AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); |
| if (MaybeAlign RetAlign = Attrs.getRetAlignment()) |
| return *RetAlign; |
| return Align(1); |
| } |
| default: |
| return Align(1); |
| } |
| } |
| |
| Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { |
| const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); |
| const Align CacheLineAlign = Align(64); |
| |
| // Pre-GFX10 target did not benefit from loop alignment |
| if (!ML || DisableLoopAlignment || |
| (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) || |
| getSubtarget()->hasInstFwdPrefetchBug()) |
| return PrefAlign; |
| |
| // On GFX10 I$ is 4 x 64 bytes cache lines. |
| // By default prefetcher keeps one cache line behind and reads two ahead. |
| // We can modify it with S_INST_PREFETCH for larger loops to have two lines |
| // behind and one ahead. |
| // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. |
| // If loop fits 64 bytes it always spans no more than two cache lines and |
| // does not need an alignment. |
| // Else if loop is less or equal 128 bytes we do not need to modify prefetch, |
| // Else if loop is less or equal 192 bytes we need two lines behind. |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const MachineBasicBlock *Header = ML->getHeader(); |
| if (Header->getAlignment() != PrefAlign) |
| return Header->getAlignment(); // Already processed. |
| |
| unsigned LoopSize = 0; |
| for (const MachineBasicBlock *MBB : ML->blocks()) { |
| // If inner loop block is aligned assume in average half of the alignment |
| // size to be added as nops. |
| if (MBB != Header) |
| LoopSize += MBB->getAlignment().value() / 2; |
| |
| for (const MachineInstr &MI : *MBB) { |
| LoopSize += TII->getInstSizeInBytes(MI); |
| if (LoopSize > 192) |
| return PrefAlign; |
| } |
| } |
| |
| if (LoopSize <= 64) |
| return PrefAlign; |
| |
| if (LoopSize <= 128) |
| return CacheLineAlign; |
| |
| // If any of parent loops is surrounded by prefetch instructions do not |
| // insert new for inner loop, which would reset parent's settings. |
| for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { |
| if (MachineBasicBlock *Exit = P->getExitBlock()) { |
| auto I = Exit->getFirstNonDebugInstr(); |
| if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) |
| return CacheLineAlign; |
| } |
| } |
| |
| MachineBasicBlock *Pre = ML->getLoopPreheader(); |
| MachineBasicBlock *Exit = ML->getExitBlock(); |
| |
| if (Pre && Exit) { |
| BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(), |
| TII->get(AMDGPU::S_INST_PREFETCH)) |
| .addImm(1); // prefetch 2 lines behind PC |
| |
| BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(), |
| TII->get(AMDGPU::S_INST_PREFETCH)) |
| .addImm(2); // prefetch 1 line behind PC |
| } |
| |
| return CacheLineAlign; |
| } |
| |
| LLVM_ATTRIBUTE_UNUSED |
| static bool isCopyFromRegOfInlineAsm(const SDNode *N) { |
| assert(N->getOpcode() == ISD::CopyFromReg); |
| do { |
| // Follow the chain until we find an INLINEASM node. |
| N = N->getOperand(0).getNode(); |
| if (N->getOpcode() == ISD::INLINEASM || |
| N->getOpcode() == ISD::INLINEASM_BR) |
| return true; |
| } while (N->getOpcode() == ISD::CopyFromReg); |
| return false; |
| } |
| |
| bool SITargetLowering::isSDNodeSourceOfDivergence( |
| const SDNode *N, FunctionLoweringInfo *FLI, |
| LegacyDivergenceAnalysis *KDA) const { |
| switch (N->getOpcode()) { |
| case ISD::CopyFromReg: { |
| const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); |
| const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| Register Reg = R->getReg(); |
| |
| // FIXME: Why does this need to consider isLiveIn? |
| if (Reg.isPhysical() || MRI.isLiveIn(Reg)) |
| return !TRI->isSGPRReg(MRI, Reg); |
| |
| if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) |
| return KDA->isDivergent(V); |
| |
| assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); |
| return !TRI->isSGPRReg(MRI, Reg); |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *L = cast<LoadSDNode>(N); |
| unsigned AS = L->getAddressSpace(); |
| // A flat load may access private memory. |
| return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; |
| } |
| case ISD::CALLSEQ_END: |
| return true; |
| case ISD::INTRINSIC_WO_CHAIN: |
| return AMDGPU::isIntrinsicSourceOfDivergence( |
| cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); |
| case ISD::INTRINSIC_W_CHAIN: |
| return AMDGPU::isIntrinsicSourceOfDivergence( |
| cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); |
| case AMDGPUISD::ATOMIC_CMP_SWAP: |
| case AMDGPUISD::ATOMIC_INC: |
| case AMDGPUISD::ATOMIC_DEC: |
| case AMDGPUISD::ATOMIC_LOAD_FMIN: |
| case AMDGPUISD::ATOMIC_LOAD_FMAX: |
| case AMDGPUISD::BUFFER_ATOMIC_SWAP: |
| case AMDGPUISD::BUFFER_ATOMIC_ADD: |
| case AMDGPUISD::BUFFER_ATOMIC_SUB: |
| case AMDGPUISD::BUFFER_ATOMIC_SMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_UMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_SMAX: |
| case AMDGPUISD::BUFFER_ATOMIC_UMAX: |
| case AMDGPUISD::BUFFER_ATOMIC_AND: |
| case AMDGPUISD::BUFFER_ATOMIC_OR: |
| case AMDGPUISD::BUFFER_ATOMIC_XOR: |
| case AMDGPUISD::BUFFER_ATOMIC_INC: |
| case AMDGPUISD::BUFFER_ATOMIC_DEC: |
| case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: |
| case AMDGPUISD::BUFFER_ATOMIC_CSUB: |
| case AMDGPUISD::BUFFER_ATOMIC_FADD: |
| case AMDGPUISD::BUFFER_ATOMIC_FMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_FMAX: |
| // Target-specific read-modify-write atomics are sources of divergence. |
| return true; |
| default: |
| if (auto *A = dyn_cast<AtomicSDNode>(N)) { |
| // Generic read-modify-write atomics are sources of divergence. |
| return A->readMem() && A->writeMem(); |
| } |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, |
| EVT VT) const { |
| switch (VT.getScalarType().getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| return hasFP32Denormals(DAG.getMachineFunction()); |
| case MVT::f64: |
| case MVT::f16: |
| return hasFP64FP16Denormals(DAG.getMachineFunction()); |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::denormalsEnabledForType(LLT Ty, |
| MachineFunction &MF) const { |
| switch (Ty.getScalarSizeInBits()) { |
| case 32: |
| return hasFP32Denormals(MF); |
| case 64: |
| case 16: |
| return hasFP64FP16Denormals(MF); |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, |
| const SelectionDAG &DAG, |
| bool SNaN, |
| unsigned Depth) const { |
| if (Op.getOpcode() == AMDGPUISD::CLAMP) { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (Info->getMode().DX10Clamp) |
| return true; // Clamped to 0. |
| return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); |
| } |
| |
| return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, |
| SNaN, Depth); |
| } |
| |
| // Global FP atomic instructions have a hardcoded FP mode and do not support |
| // FP32 denormals, and only support v2f16 denormals. |
| static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { |
| const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); |
| auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); |
| if (&Flt == &APFloat::IEEEsingle()) |
| return DenormMode == DenormalMode::getPreserveSign(); |
| return DenormMode == DenormalMode::getIEEE(); |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { |
| switch (RMW->getOperation()) { |
| case AtomicRMWInst::FAdd: { |
| Type *Ty = RMW->getType(); |
| |
| // We don't have a way to support 16-bit atomics now, so just leave them |
| // as-is. |
| if (Ty->isHalfTy()) |
| return AtomicExpansionKind::None; |
| |
| if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) |
| return AtomicExpansionKind::CmpXChg; |
| |
| unsigned AS = RMW->getPointerAddressSpace(); |
| |
| if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) && |
| Subtarget->hasAtomicFaddInsts()) { |
| // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe |
| // floating point atomic instructions. May generate more efficient code, |
| // but may not respect rounding and denormal modes, and may give incorrect |
| // results for certain memory destinations. |
| if (RMW->getFunction() |
| ->getFnAttribute("amdgpu-unsafe-fp-atomics") |
| .getValueAsString() != "true") |
| return AtomicExpansionKind::CmpXChg; |
| |
| if (Subtarget->hasGFX90AInsts()) { |
| if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS) |
| return AtomicExpansionKind::CmpXChg; |
| |
| auto SSID = RMW->getSyncScopeID(); |
| if (SSID == SyncScope::System || |
| SSID == RMW->getContext().getOrInsertSyncScopeID("one-as")) |
| return AtomicExpansionKind::CmpXChg; |
| |
| return AtomicExpansionKind::None; |
| } |
| |
| if (AS == AMDGPUAS::FLAT_ADDRESS) |
| return AtomicExpansionKind::CmpXChg; |
| |
| return RMW->use_empty() ? AtomicExpansionKind::None |
| : AtomicExpansionKind::CmpXChg; |
| } |
| |
| // DS FP atomics do repect the denormal mode, but the rounding mode is fixed |
| // to round-to-nearest-even. |
| // The only exception is DS_ADD_F64 which never flushes regardless of mode. |
| if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) { |
| if (!Ty->isDoubleTy()) |
| return AtomicExpansionKind::None; |
| |
| return (fpModeMatchesGlobalFPAtomicMode(RMW) || |
| RMW->getFunction() |
| ->getFnAttribute("amdgpu-unsafe-fp-atomics") |
| .getValueAsString() == "true") |
| ? AtomicExpansionKind::None |
| : AtomicExpansionKind::CmpXChg; |
| } |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| default: |
| break; |
| } |
| |
| return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); |
| } |
| |
| const TargetRegisterClass * |
| SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { |
| const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) |
| return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass |
| : &AMDGPU::SReg_32RegClass; |
| if (!TRI->isSGPRClass(RC) && !isDivergent) |
| return TRI->getEquivalentSGPRClass(RC); |
| else if (TRI->isSGPRClass(RC) && isDivergent) |
| return TRI->getEquivalentVGPRClass(RC); |
| |
| return RC; |
| } |
| |
| // FIXME: This is a workaround for DivergenceAnalysis not understanding always |
| // uniform values (as produced by the mask results of control flow intrinsics) |
| // used outside of divergent blocks. The phi users need to also be treated as |
| // always uniform. |
| static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, |
| unsigned WaveSize) { |
| // FIXME: We asssume we never cast the mask results of a control flow |
| // intrinsic. |
| // Early exit if the type won't be consistent as a compile time hack. |
| IntegerType *IT = dyn_cast<IntegerType>(V->getType()); |
| if (!IT || IT->getBitWidth() != WaveSize) |
| return false; |
| |
| if (!isa<Instruction>(V)) |
| return false; |
| if (!Visited.insert(V).second) |
| return false; |
| bool Result = false; |
| for (auto U : V->users()) { |
| if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { |
| if (V == U->getOperand(1)) { |
| switch (Intrinsic->getIntrinsicID()) { |
| default: |
| Result = false; |
| break; |
| case Intrinsic::amdgcn_if_break: |
| case Intrinsic::amdgcn_if: |
| case Intrinsic::amdgcn_else: |
| Result = true; |
| break; |
| } |
| } |
| if (V == U->getOperand(0)) { |
| switch (Intrinsic->getIntrinsicID()) { |
| default: |
| Result = false; |
| break; |
| case Intrinsic::amdgcn_end_cf: |
| case Intrinsic::amdgcn_loop: |
| Result = true; |
| break; |
| } |
| } |
| } else { |
| Result = hasCFUser(U, Visited, WaveSize); |
| } |
| if (Result) |
| break; |
| } |
| return Result; |
| } |
| |
| bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, |
| const Value *V) const { |
| if (const CallInst *CI = dyn_cast<CallInst>(V)) { |
| if (CI->isInlineAsm()) { |
| // FIXME: This cannot give a correct answer. This should only trigger in |
| // the case where inline asm returns mixed SGPR and VGPR results, used |
| // outside the defining block. We don't have a specific result to |
| // consider, so this assumes if any value is SGPR, the overall register |
| // also needs to be SGPR. |
| const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); |
| TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( |
| MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); |
| for (auto &TC : TargetConstraints) { |
| if (TC.Type == InlineAsm::isOutput) { |
| ComputeConstraintToUse(TC, SDValue()); |
| unsigned AssignedReg; |
| const TargetRegisterClass *RC; |
| std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint( |
| SIRI, TC.ConstraintCode, TC.ConstraintVT); |
| if (RC) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg)) |
| return true; |
| else if (SIRI->isSGPRClass(RC)) |
| return true; |
| } |
| } |
| } |
| } |
| } |
| SmallPtrSet<const Value *, 16> Visited; |
| return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); |
| } |
| |
| std::pair<InstructionCost, MVT> |
| SITargetLowering::getTypeLegalizationCost(const DataLayout &DL, |
| Type *Ty) const { |
| std::pair<InstructionCost, MVT> Cost = |
| TargetLoweringBase::getTypeLegalizationCost(DL, Ty); |
| auto Size = DL.getTypeSizeInBits(Ty); |
| // Maximum load or store can handle 8 dwords for scalar and 4 for |
| // vector ALU. Let's assume anything above 8 dwords is expensive |
| // even if legal. |
| if (Size <= 256) |
| return Cost; |
| |
| Cost.first = (Size + 255) / 256; |
| return Cost; |
| } |