| //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // See the Attributor.h file comment and the class descriptions in that file for |
| // more information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/Attributor.h" |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumeBundleQueries.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO/ArgumentPromotion.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "attributor" |
| |
| static cl::opt<bool> ManifestInternal( |
| "attributor-manifest-internal", cl::Hidden, |
| cl::desc("Manifest Attributor internal string attributes."), |
| cl::init(false)); |
| |
| static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128), |
| cl::Hidden); |
| |
| template <> |
| unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0; |
| |
| static cl::opt<unsigned, true> MaxPotentialValues( |
| "attributor-max-potential-values", cl::Hidden, |
| cl::desc("Maximum number of potential values to be " |
| "tracked for each position."), |
| cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues), |
| cl::init(7)); |
| |
| STATISTIC(NumAAs, "Number of abstract attributes created"); |
| |
| // Some helper macros to deal with statistics tracking. |
| // |
| // Usage: |
| // For simple IR attribute tracking overload trackStatistics in the abstract |
| // attribute and choose the right STATS_DECLTRACK_********* macro, |
| // e.g.,: |
| // void trackStatistics() const override { |
| // STATS_DECLTRACK_ARG_ATTR(returned) |
| // } |
| // If there is a single "increment" side one can use the macro |
| // STATS_DECLTRACK with a custom message. If there are multiple increment |
| // sides, STATS_DECL and STATS_TRACK can also be used separately. |
| // |
| #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \ |
| ("Number of " #TYPE " marked '" #NAME "'") |
| #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME |
| #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); |
| #define STATS_DECL(NAME, TYPE, MSG) \ |
| STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); |
| #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); |
| #define STATS_DECLTRACK(NAME, TYPE, MSG) \ |
| { \ |
| STATS_DECL(NAME, TYPE, MSG) \ |
| STATS_TRACK(NAME, TYPE) \ |
| } |
| #define STATS_DECLTRACK_ARG_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) |
| #define STATS_DECLTRACK_CSARG_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, CSArguments, \ |
| BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) |
| #define STATS_DECLTRACK_FN_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) |
| #define STATS_DECLTRACK_CS_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) |
| #define STATS_DECLTRACK_FNRET_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, FunctionReturn, \ |
| BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) |
| #define STATS_DECLTRACK_CSRET_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, CSReturn, \ |
| BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) |
| #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \ |
| STATS_DECLTRACK(NAME, Floating, \ |
| ("Number of floating values known to be '" #NAME "'")) |
| |
| // Specialization of the operator<< for abstract attributes subclasses. This |
| // disambiguates situations where multiple operators are applicable. |
| namespace llvm { |
| #define PIPE_OPERATOR(CLASS) \ |
| raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \ |
| return OS << static_cast<const AbstractAttribute &>(AA); \ |
| } |
| |
| PIPE_OPERATOR(AAIsDead) |
| PIPE_OPERATOR(AANoUnwind) |
| PIPE_OPERATOR(AANoSync) |
| PIPE_OPERATOR(AANoRecurse) |
| PIPE_OPERATOR(AAWillReturn) |
| PIPE_OPERATOR(AANoReturn) |
| PIPE_OPERATOR(AAReturnedValues) |
| PIPE_OPERATOR(AANonNull) |
| PIPE_OPERATOR(AANoAlias) |
| PIPE_OPERATOR(AADereferenceable) |
| PIPE_OPERATOR(AAAlign) |
| PIPE_OPERATOR(AANoCapture) |
| PIPE_OPERATOR(AAValueSimplify) |
| PIPE_OPERATOR(AANoFree) |
| PIPE_OPERATOR(AAHeapToStack) |
| PIPE_OPERATOR(AAReachability) |
| PIPE_OPERATOR(AAMemoryBehavior) |
| PIPE_OPERATOR(AAMemoryLocation) |
| PIPE_OPERATOR(AAValueConstantRange) |
| PIPE_OPERATOR(AAPrivatizablePtr) |
| PIPE_OPERATOR(AAUndefinedBehavior) |
| PIPE_OPERATOR(AAPotentialValues) |
| PIPE_OPERATOR(AANoUndef) |
| PIPE_OPERATOR(AACallEdges) |
| PIPE_OPERATOR(AAFunctionReachability) |
| PIPE_OPERATOR(AAPointerInfo) |
| |
| #undef PIPE_OPERATOR |
| |
| template <> |
| ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, |
| const DerefState &R) { |
| ChangeStatus CS0 = |
| clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState); |
| ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState); |
| return CS0 | CS1; |
| } |
| |
| } // namespace llvm |
| |
| /// Get pointer operand of memory accessing instruction. If \p I is |
| /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, |
| /// is set to false and the instruction is volatile, return nullptr. |
| static const Value *getPointerOperand(const Instruction *I, |
| bool AllowVolatile) { |
| if (!AllowVolatile && I->isVolatile()) |
| return nullptr; |
| |
| if (auto *LI = dyn_cast<LoadInst>(I)) { |
| return LI->getPointerOperand(); |
| } |
| |
| if (auto *SI = dyn_cast<StoreInst>(I)) { |
| return SI->getPointerOperand(); |
| } |
| |
| if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) { |
| return CXI->getPointerOperand(); |
| } |
| |
| if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) { |
| return RMWI->getPointerOperand(); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and |
| /// advanced by \p Offset bytes. To aid later analysis the method tries to build |
| /// getelement pointer instructions that traverse the natural type of \p Ptr if |
| /// possible. If that fails, the remaining offset is adjusted byte-wise, hence |
| /// through a cast to i8*. |
| /// |
| /// TODO: This could probably live somewhere more prominantly if it doesn't |
| /// already exist. |
| static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr, |
| int64_t Offset, IRBuilder<NoFolder> &IRB, |
| const DataLayout &DL) { |
| assert(Offset >= 0 && "Negative offset not supported yet!"); |
| LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset |
| << "-bytes as " << *ResTy << "\n"); |
| |
| if (Offset) { |
| SmallVector<Value *, 4> Indices; |
| std::string GEPName = Ptr->getName().str() + ".0"; |
| |
| // Add 0 index to look through the pointer. |
| assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) && |
| "Offset out of bounds"); |
| Indices.push_back(Constant::getNullValue(IRB.getInt32Ty())); |
| |
| Type *Ty = PtrElemTy; |
| do { |
| auto *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| // Non-aggregate type, we cast and make byte-wise progress now. |
| break; |
| |
| const StructLayout *SL = DL.getStructLayout(STy); |
| if (int64_t(SL->getSizeInBytes()) < Offset) |
| break; |
| |
| uint64_t Idx = SL->getElementContainingOffset(Offset); |
| assert(Idx < STy->getNumElements() && "Offset calculation error!"); |
| uint64_t Rem = Offset - SL->getElementOffset(Idx); |
| Ty = STy->getElementType(Idx); |
| |
| LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset |
| << " Idx: " << Idx << " Rem: " << Rem << "\n"); |
| |
| GEPName += "." + std::to_string(Idx); |
| Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx)); |
| Offset = Rem; |
| } while (Offset); |
| |
| // Create a GEP for the indices collected above. |
| Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName); |
| |
| // If an offset is left we use byte-wise adjustment. |
| if (Offset) { |
| Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy()); |
| Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset), |
| GEPName + ".b" + Twine(Offset)); |
| } |
| } |
| |
| // Ensure the result has the requested type. |
| Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast"); |
| |
| LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n"); |
| return Ptr; |
| } |
| |
| /// Recursively visit all values that might become \p IRP at some point. This |
| /// will be done by looking through cast instructions, selects, phis, and calls |
| /// with the "returned" attribute. Once we cannot look through the value any |
| /// further, the callback \p VisitValueCB is invoked and passed the current |
| /// value, the \p State, and a flag to indicate if we stripped anything. |
| /// Stripped means that we unpacked the value associated with \p IRP at least |
| /// once. Note that the value used for the callback may still be the value |
| /// associated with \p IRP (due to PHIs). To limit how much effort is invested, |
| /// we will never visit more values than specified by \p MaxValues. |
| template <typename StateTy> |
| static bool genericValueTraversal( |
| Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA, |
| StateTy &State, |
| function_ref<bool(Value &, const Instruction *, StateTy &, bool)> |
| VisitValueCB, |
| const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16, |
| function_ref<Value *(Value *)> StripCB = nullptr) { |
| |
| const AAIsDead *LivenessAA = nullptr; |
| if (IRP.getAnchorScope()) |
| LivenessAA = &A.getAAFor<AAIsDead>( |
| QueryingAA, |
| IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()), |
| DepClassTy::NONE); |
| bool AnyDead = false; |
| |
| Value *InitialV = &IRP.getAssociatedValue(); |
| using Item = std::pair<Value *, const Instruction *>; |
| SmallSet<Item, 16> Visited; |
| SmallVector<Item, 16> Worklist; |
| Worklist.push_back({InitialV, CtxI}); |
| |
| int Iteration = 0; |
| do { |
| Item I = Worklist.pop_back_val(); |
| Value *V = I.first; |
| CtxI = I.second; |
| if (StripCB) |
| V = StripCB(V); |
| |
| // Check if we should process the current value. To prevent endless |
| // recursion keep a record of the values we followed! |
| if (!Visited.insert(I).second) |
| continue; |
| |
| // Make sure we limit the compile time for complex expressions. |
| if (Iteration++ >= MaxValues) |
| return false; |
| |
| // Explicitly look through calls with a "returned" attribute if we do |
| // not have a pointer as stripPointerCasts only works on them. |
| Value *NewV = nullptr; |
| if (V->getType()->isPointerTy()) { |
| NewV = V->stripPointerCasts(); |
| } else { |
| auto *CB = dyn_cast<CallBase>(V); |
| if (CB && CB->getCalledFunction()) { |
| for (Argument &Arg : CB->getCalledFunction()->args()) |
| if (Arg.hasReturnedAttr()) { |
| NewV = CB->getArgOperand(Arg.getArgNo()); |
| break; |
| } |
| } |
| } |
| if (NewV && NewV != V) { |
| Worklist.push_back({NewV, CtxI}); |
| continue; |
| } |
| |
| // Look through select instructions, visit assumed potential values. |
| if (auto *SI = dyn_cast<SelectInst>(V)) { |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> C = A.getAssumedConstant( |
| *SI->getCondition(), QueryingAA, UsedAssumedInformation); |
| bool NoValueYet = !C.hasValue(); |
| if (NoValueYet || isa_and_nonnull<UndefValue>(*C)) |
| continue; |
| if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) { |
| if (CI->isZero()) |
| Worklist.push_back({SI->getFalseValue(), CtxI}); |
| else |
| Worklist.push_back({SI->getTrueValue(), CtxI}); |
| continue; |
| } |
| // We could not simplify the condition, assume both values.( |
| Worklist.push_back({SI->getTrueValue(), CtxI}); |
| Worklist.push_back({SI->getFalseValue(), CtxI}); |
| continue; |
| } |
| |
| // Look through phi nodes, visit all live operands. |
| if (auto *PHI = dyn_cast<PHINode>(V)) { |
| assert(LivenessAA && |
| "Expected liveness in the presence of instructions!"); |
| for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { |
| BasicBlock *IncomingBB = PHI->getIncomingBlock(u); |
| bool UsedAssumedInformation = false; |
| if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA, |
| LivenessAA, UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true)) { |
| AnyDead = true; |
| continue; |
| } |
| Worklist.push_back( |
| {PHI->getIncomingValue(u), IncomingBB->getTerminator()}); |
| } |
| continue; |
| } |
| |
| if (UseValueSimplify && !isa<Constant>(V)) { |
| bool UsedAssumedInformation = false; |
| Optional<Value *> SimpleV = |
| A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation); |
| if (!SimpleV.hasValue()) |
| continue; |
| if (!SimpleV.getValue()) |
| return false; |
| Value *NewV = SimpleV.getValue(); |
| if (NewV != V) { |
| Worklist.push_back({NewV, CtxI}); |
| continue; |
| } |
| } |
| |
| // Once a leaf is reached we inform the user through the callback. |
| if (!VisitValueCB(*V, CtxI, State, Iteration > 1)) |
| return false; |
| } while (!Worklist.empty()); |
| |
| // If we actually used liveness information so we have to record a dependence. |
| if (AnyDead) |
| A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL); |
| |
| // All values have been visited. |
| return true; |
| } |
| |
| bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr, |
| SmallVectorImpl<Value *> &Objects, |
| const AbstractAttribute &QueryingAA, |
| const Instruction *CtxI) { |
| auto StripCB = [&](Value *V) { return getUnderlyingObject(V); }; |
| SmallPtrSet<Value *, 8> SeenObjects; |
| auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *, |
| SmallVectorImpl<Value *> &Objects, |
| bool) -> bool { |
| if (SeenObjects.insert(&Val).second) |
| Objects.push_back(&Val); |
| return true; |
| }; |
| if (!genericValueTraversal<decltype(Objects)>( |
| A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI, |
| true, 32, StripCB)) |
| return false; |
| return true; |
| } |
| |
| const Value *stripAndAccumulateMinimalOffsets( |
| Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val, |
| const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
| bool UseAssumed = false) { |
| |
| auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool { |
| const IRPosition &Pos = IRPosition::value(V); |
| // Only track dependence if we are going to use the assumed info. |
| const AAValueConstantRange &ValueConstantRangeAA = |
| A.getAAFor<AAValueConstantRange>(QueryingAA, Pos, |
| UseAssumed ? DepClassTy::OPTIONAL |
| : DepClassTy::NONE); |
| ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed() |
| : ValueConstantRangeAA.getKnown(); |
| // We can only use the lower part of the range because the upper part can |
| // be higher than what the value can really be. |
| ROffset = Range.getSignedMin(); |
| return true; |
| }; |
| |
| return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds, |
| AttributorAnalysis); |
| } |
| |
| static const Value *getMinimalBaseOfAccsesPointerOperand( |
| Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I, |
| int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) { |
| const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); |
| if (!Ptr) |
| return nullptr; |
| APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); |
| const Value *Base = stripAndAccumulateMinimalOffsets( |
| A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds); |
| |
| BytesOffset = OffsetAPInt.getSExtValue(); |
| return Base; |
| } |
| |
| static const Value * |
| getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset, |
| const DataLayout &DL, |
| bool AllowNonInbounds = false) { |
| const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false); |
| if (!Ptr) |
| return nullptr; |
| |
| return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL, |
| AllowNonInbounds); |
| } |
| |
| /// Clamp the information known for all returned values of a function |
| /// (identified by \p QueryingAA) into \p S. |
| template <typename AAType, typename StateType = typename AAType::StateType> |
| static void clampReturnedValueStates( |
| Attributor &A, const AAType &QueryingAA, StateType &S, |
| const IRPosition::CallBaseContext *CBContext = nullptr) { |
| LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " |
| << QueryingAA << " into " << S << "\n"); |
| |
| assert((QueryingAA.getIRPosition().getPositionKind() == |
| IRPosition::IRP_RETURNED || |
| QueryingAA.getIRPosition().getPositionKind() == |
| IRPosition::IRP_CALL_SITE_RETURNED) && |
| "Can only clamp returned value states for a function returned or call " |
| "site returned position!"); |
| |
| // Use an optional state as there might not be any return values and we want |
| // to join (IntegerState::operator&) the state of all there are. |
| Optional<StateType> T; |
| |
| // Callback for each possibly returned value. |
| auto CheckReturnValue = [&](Value &RV) -> bool { |
| const IRPosition &RVPos = IRPosition::value(RV, CBContext); |
| const AAType &AA = |
| A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED); |
| LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr() |
| << " @ " << RVPos << "\n"); |
| const StateType &AAS = AA.getState(); |
| if (T.hasValue()) |
| *T &= AAS; |
| else |
| T = AAS; |
| LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T |
| << "\n"); |
| return T->isValidState(); |
| }; |
| |
| if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA)) |
| S.indicatePessimisticFixpoint(); |
| else if (T.hasValue()) |
| S ^= *T; |
| } |
| |
| /// Helper class for generic deduction: return value -> returned position. |
| template <typename AAType, typename BaseType, |
| typename StateType = typename BaseType::StateType, |
| bool PropagateCallBaseContext = false> |
| struct AAReturnedFromReturnedValues : public BaseType { |
| AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A) |
| : BaseType(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| StateType S(StateType::getBestState(this->getState())); |
| clampReturnedValueStates<AAType, StateType>( |
| A, *this, S, |
| PropagateCallBaseContext ? this->getCallBaseContext() : nullptr); |
| // TODO: If we know we visited all returned values, thus no are assumed |
| // dead, we can take the known information from the state T. |
| return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| } |
| }; |
| |
| /// Clamp the information known at all call sites for a given argument |
| /// (identified by \p QueryingAA) into \p S. |
| template <typename AAType, typename StateType = typename AAType::StateType> |
| static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, |
| StateType &S) { |
| LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " |
| << QueryingAA << " into " << S << "\n"); |
| |
| assert(QueryingAA.getIRPosition().getPositionKind() == |
| IRPosition::IRP_ARGUMENT && |
| "Can only clamp call site argument states for an argument position!"); |
| |
| // Use an optional state as there might not be any return values and we want |
| // to join (IntegerState::operator&) the state of all there are. |
| Optional<StateType> T; |
| |
| // The argument number which is also the call site argument number. |
| unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo(); |
| |
| auto CallSiteCheck = [&](AbstractCallSite ACS) { |
| const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); |
| // Check if a coresponding argument was found or if it is on not associated |
| // (which can happen for callback calls). |
| if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| return false; |
| |
| const AAType &AA = |
| A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED); |
| LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() |
| << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n"); |
| const StateType &AAS = AA.getState(); |
| if (T.hasValue()) |
| *T &= AAS; |
| else |
| T = AAS; |
| LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T |
| << "\n"); |
| return T->isValidState(); |
| }; |
| |
| bool AllCallSitesKnown; |
| if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true, |
| AllCallSitesKnown)) |
| S.indicatePessimisticFixpoint(); |
| else if (T.hasValue()) |
| S ^= *T; |
| } |
| |
| /// This function is the bridge between argument position and the call base |
| /// context. |
| template <typename AAType, typename BaseType, |
| typename StateType = typename AAType::StateType> |
| bool getArgumentStateFromCallBaseContext(Attributor &A, |
| BaseType &QueryingAttribute, |
| IRPosition &Pos, StateType &State) { |
| assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) && |
| "Expected an 'argument' position !"); |
| const CallBase *CBContext = Pos.getCallBaseContext(); |
| if (!CBContext) |
| return false; |
| |
| int ArgNo = Pos.getCallSiteArgNo(); |
| assert(ArgNo >= 0 && "Invalid Arg No!"); |
| |
| const auto &AA = A.getAAFor<AAType>( |
| QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo), |
| DepClassTy::REQUIRED); |
| const StateType &CBArgumentState = |
| static_cast<const StateType &>(AA.getState()); |
| |
| LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument" |
| << "Position:" << Pos << "CB Arg state:" << CBArgumentState |
| << "\n"); |
| |
| // NOTE: If we want to do call site grouping it should happen here. |
| State ^= CBArgumentState; |
| return true; |
| } |
| |
| /// Helper class for generic deduction: call site argument -> argument position. |
| template <typename AAType, typename BaseType, |
| typename StateType = typename AAType::StateType, |
| bool BridgeCallBaseContext = false> |
| struct AAArgumentFromCallSiteArguments : public BaseType { |
| AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A) |
| : BaseType(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| StateType S = StateType::getBestState(this->getState()); |
| |
| if (BridgeCallBaseContext) { |
| bool Success = |
| getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>( |
| A, *this, this->getIRPosition(), S); |
| if (Success) |
| return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| } |
| clampCallSiteArgumentStates<AAType, StateType>(A, *this, S); |
| |
| // TODO: If we know we visited all incoming values, thus no are assumed |
| // dead, we can take the known information from the state T. |
| return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| } |
| }; |
| |
| /// Helper class for generic replication: function returned -> cs returned. |
| template <typename AAType, typename BaseType, |
| typename StateType = typename BaseType::StateType, |
| bool IntroduceCallBaseContext = false> |
| struct AACallSiteReturnedFromReturned : public BaseType { |
| AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A) |
| : BaseType(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| assert(this->getIRPosition().getPositionKind() == |
| IRPosition::IRP_CALL_SITE_RETURNED && |
| "Can only wrap function returned positions for call site returned " |
| "positions!"); |
| auto &S = this->getState(); |
| |
| const Function *AssociatedFunction = |
| this->getIRPosition().getAssociatedFunction(); |
| if (!AssociatedFunction) |
| return S.indicatePessimisticFixpoint(); |
| |
| CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue()); |
| if (IntroduceCallBaseContext) |
| LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:" |
| << CBContext << "\n"); |
| |
| IRPosition FnPos = IRPosition::returned( |
| *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr); |
| const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(S, AA.getState()); |
| } |
| }; |
| |
| /// Helper function to accumulate uses. |
| template <class AAType, typename StateType = typename AAType::StateType> |
| static void followUsesInContext(AAType &AA, Attributor &A, |
| MustBeExecutedContextExplorer &Explorer, |
| const Instruction *CtxI, |
| SetVector<const Use *> &Uses, |
| StateType &State) { |
| auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI); |
| for (unsigned u = 0; u < Uses.size(); ++u) { |
| const Use *U = Uses[u]; |
| if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) { |
| bool Found = Explorer.findInContextOf(UserI, EIt, EEnd); |
| if (Found && AA.followUseInMBEC(A, U, UserI, State)) |
| for (const Use &Us : UserI->uses()) |
| Uses.insert(&Us); |
| } |
| } |
| } |
| |
| /// Use the must-be-executed-context around \p I to add information into \p S. |
| /// The AAType class is required to have `followUseInMBEC` method with the |
| /// following signature and behaviour: |
| /// |
| /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I) |
| /// U - Underlying use. |
| /// I - The user of the \p U. |
| /// Returns true if the value should be tracked transitively. |
| /// |
| template <class AAType, typename StateType = typename AAType::StateType> |
| static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S, |
| Instruction &CtxI) { |
| |
| // Container for (transitive) uses of the associated value. |
| SetVector<const Use *> Uses; |
| for (const Use &U : AA.getIRPosition().getAssociatedValue().uses()) |
| Uses.insert(&U); |
| |
| MustBeExecutedContextExplorer &Explorer = |
| A.getInfoCache().getMustBeExecutedContextExplorer(); |
| |
| followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S); |
| |
| if (S.isAtFixpoint()) |
| return; |
| |
| SmallVector<const BranchInst *, 4> BrInsts; |
| auto Pred = [&](const Instruction *I) { |
| if (const BranchInst *Br = dyn_cast<BranchInst>(I)) |
| if (Br->isConditional()) |
| BrInsts.push_back(Br); |
| return true; |
| }; |
| |
| // Here, accumulate conditional branch instructions in the context. We |
| // explore the child paths and collect the known states. The disjunction of |
| // those states can be merged to its own state. Let ParentState_i be a state |
| // to indicate the known information for an i-th branch instruction in the |
| // context. ChildStates are created for its successors respectively. |
| // |
| // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1} |
| // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2} |
| // ... |
| // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m} |
| // |
| // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m |
| // |
| // FIXME: Currently, recursive branches are not handled. For example, we |
| // can't deduce that ptr must be dereferenced in below function. |
| // |
| // void f(int a, int c, int *ptr) { |
| // if(a) |
| // if (b) { |
| // *ptr = 0; |
| // } else { |
| // *ptr = 1; |
| // } |
| // else { |
| // if (b) { |
| // *ptr = 0; |
| // } else { |
| // *ptr = 1; |
| // } |
| // } |
| // } |
| |
| Explorer.checkForAllContext(&CtxI, Pred); |
| for (const BranchInst *Br : BrInsts) { |
| StateType ParentState; |
| |
| // The known state of the parent state is a conjunction of children's |
| // known states so it is initialized with a best state. |
| ParentState.indicateOptimisticFixpoint(); |
| |
| for (const BasicBlock *BB : Br->successors()) { |
| StateType ChildState; |
| |
| size_t BeforeSize = Uses.size(); |
| followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState); |
| |
| // Erase uses which only appear in the child. |
| for (auto It = Uses.begin() + BeforeSize; It != Uses.end();) |
| It = Uses.erase(It); |
| |
| ParentState &= ChildState; |
| } |
| |
| // Use only known state. |
| S += ParentState; |
| } |
| } |
| |
| /// ------------------------ PointerInfo --------------------------------------- |
| |
| namespace llvm { |
| namespace AA { |
| namespace PointerInfo { |
| |
| /// An access kind description as used by AAPointerInfo. |
| struct OffsetAndSize; |
| |
| struct State; |
| |
| } // namespace PointerInfo |
| } // namespace AA |
| |
| /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage. |
| template <> |
| struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> { |
| using Access = AAPointerInfo::Access; |
| static inline Access getEmptyKey(); |
| static inline Access getTombstoneKey(); |
| static unsigned getHashValue(const Access &A); |
| static bool isEqual(const Access &LHS, const Access &RHS); |
| }; |
| |
| /// Helper that allows OffsetAndSize as a key in a DenseMap. |
| template <> |
| struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize> |
| : DenseMapInfo<std::pair<int64_t, int64_t>> {}; |
| |
| /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign |
| /// but the instruction |
| struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> { |
| using Base = DenseMapInfo<Instruction *>; |
| using Access = AAPointerInfo::Access; |
| static inline Access getEmptyKey(); |
| static inline Access getTombstoneKey(); |
| static unsigned getHashValue(const Access &A); |
| static bool isEqual(const Access &LHS, const Access &RHS); |
| }; |
| |
| } // namespace llvm |
| |
| /// Helper to represent an access offset and size, with logic to deal with |
| /// uncertainty and check for overlapping accesses. |
| struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> { |
| using BaseTy = std::pair<int64_t, int64_t>; |
| OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {} |
| OffsetAndSize(const BaseTy &P) : BaseTy(P) {} |
| int64_t getOffset() const { return first; } |
| int64_t getSize() const { return second; } |
| static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); } |
| |
| /// Return true if this offset and size pair might describe an address that |
| /// overlaps with \p OAS. |
| bool mayOverlap(const OffsetAndSize &OAS) const { |
| // Any unknown value and we are giving up -> overlap. |
| if (OAS.getOffset() == OffsetAndSize::Unknown || |
| OAS.getSize() == OffsetAndSize::Unknown || |
| getOffset() == OffsetAndSize::Unknown || |
| getSize() == OffsetAndSize::Unknown) |
| return true; |
| |
| // Check if one offset point is in the other interval [offset, offset+size]. |
| return OAS.getOffset() + OAS.getSize() > getOffset() && |
| OAS.getOffset() < getOffset() + getSize(); |
| } |
| |
| /// Constant used to represent unknown offset or sizes. |
| static constexpr int64_t Unknown = 1 << 31; |
| }; |
| |
| /// Implementation of the DenseMapInfo. |
| /// |
| ///{ |
| inline llvm::AccessAsInstructionInfo::Access |
| llvm::AccessAsInstructionInfo::getEmptyKey() { |
| return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr); |
| } |
| inline llvm::AccessAsInstructionInfo::Access |
| llvm::AccessAsInstructionInfo::getTombstoneKey() { |
| return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ, |
| nullptr); |
| } |
| unsigned llvm::AccessAsInstructionInfo::getHashValue( |
| const llvm::AccessAsInstructionInfo::Access &A) { |
| return Base::getHashValue(A.getRemoteInst()); |
| } |
| bool llvm::AccessAsInstructionInfo::isEqual( |
| const llvm::AccessAsInstructionInfo::Access &LHS, |
| const llvm::AccessAsInstructionInfo::Access &RHS) { |
| return LHS.getRemoteInst() == RHS.getRemoteInst(); |
| } |
| inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access |
| llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() { |
| return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ, |
| nullptr); |
| } |
| inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access |
| llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() { |
| return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE, |
| nullptr); |
| } |
| |
| unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue( |
| const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) { |
| return detail::combineHashValue( |
| DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()), |
| (A.isWrittenValueYetUndetermined() |
| ? ~0 |
| : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) + |
| A.getKind(); |
| } |
| |
| bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual( |
| const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS, |
| const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) { |
| return LHS == RHS; |
| } |
| ///} |
| |
| /// A type to track pointer/struct usage and accesses for AAPointerInfo. |
| struct AA::PointerInfo::State : public AbstractState { |
| |
| /// Return the best possible representable state. |
| static State getBestState(const State &SIS) { return State(); } |
| |
| /// Return the worst possible representable state. |
| static State getWorstState(const State &SIS) { |
| State R; |
| R.indicatePessimisticFixpoint(); |
| return R; |
| } |
| |
| State() {} |
| State(const State &SIS) : AccessBins(SIS.AccessBins) {} |
| State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {} |
| |
| const State &getAssumed() const { return *this; } |
| |
| /// See AbstractState::isValidState(). |
| bool isValidState() const override { return BS.isValidState(); } |
| |
| /// See AbstractState::isAtFixpoint(). |
| bool isAtFixpoint() const override { return BS.isAtFixpoint(); } |
| |
| /// See AbstractState::indicateOptimisticFixpoint(). |
| ChangeStatus indicateOptimisticFixpoint() override { |
| BS.indicateOptimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractState::indicatePessimisticFixpoint(). |
| ChangeStatus indicatePessimisticFixpoint() override { |
| BS.indicatePessimisticFixpoint(); |
| return ChangeStatus::CHANGED; |
| } |
| |
| State &operator=(const State &R) { |
| if (this == &R) |
| return *this; |
| BS = R.BS; |
| AccessBins = R.AccessBins; |
| return *this; |
| } |
| |
| State &operator=(State &&R) { |
| if (this == &R) |
| return *this; |
| std::swap(BS, R.BS); |
| std::swap(AccessBins, R.AccessBins); |
| return *this; |
| } |
| |
| bool operator==(const State &R) const { |
| if (BS != R.BS) |
| return false; |
| if (AccessBins.size() != R.AccessBins.size()) |
| return false; |
| auto It = begin(), RIt = R.begin(), E = end(); |
| while (It != E) { |
| if (It->getFirst() != RIt->getFirst()) |
| return false; |
| auto &Accs = It->getSecond(); |
| auto &RAccs = RIt->getSecond(); |
| if (Accs.size() != RAccs.size()) |
| return false; |
| auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end(); |
| while (AccIt != AccE) { |
| if (*AccIt != *RAccIt) |
| return false; |
| ++AccIt; |
| ++RAccIt; |
| } |
| ++It; |
| ++RIt; |
| } |
| return true; |
| } |
| bool operator!=(const State &R) const { return !(*this == R); } |
| |
| /// We store accesses in a set with the instruction as key. |
| using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>; |
| |
| /// We store all accesses in bins denoted by their offset and size. |
| using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>; |
| |
| AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); } |
| AccessBinsTy::const_iterator end() const { return AccessBins.end(); } |
| |
| protected: |
| /// The bins with all the accesses for the associated pointer. |
| DenseMap<OffsetAndSize, Accesses> AccessBins; |
| |
| /// Add a new access to the state at offset \p Offset and with size \p Size. |
| /// The access is associated with \p I, writes \p Content (if anything), and |
| /// is of kind \p Kind. |
| /// \Returns CHANGED, if the state changed, UNCHANGED otherwise. |
| ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I, |
| Optional<Value *> Content, |
| AAPointerInfo::AccessKind Kind, Type *Ty, |
| Instruction *RemoteI = nullptr, |
| Accesses *BinPtr = nullptr) { |
| OffsetAndSize Key{Offset, Size}; |
| Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key]; |
| AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty); |
| // Check if we have an access for this instruction in this bin, if not, |
| // simply add it. |
| auto It = Bin.find(Acc); |
| if (It == Bin.end()) { |
| Bin.insert(Acc); |
| return ChangeStatus::CHANGED; |
| } |
| // If the existing access is the same as then new one, nothing changed. |
| AAPointerInfo::Access Before = *It; |
| // The new one will be combined with the existing one. |
| *It &= Acc; |
| return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; |
| } |
| |
| /// See AAPointerInfo::forallInterferingAccesses. |
| bool forallInterferingAccesses( |
| Instruction &I, |
| function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const { |
| if (!isValidState()) |
| return false; |
| // First find the offset and size of I. |
| OffsetAndSize OAS(-1, -1); |
| for (auto &It : AccessBins) { |
| for (auto &Access : It.getSecond()) { |
| if (Access.getRemoteInst() == &I) { |
| OAS = It.getFirst(); |
| break; |
| } |
| } |
| if (OAS.getSize() != -1) |
| break; |
| } |
| if (OAS.getSize() == -1) |
| return true; |
| |
| // Now that we have an offset and size, find all overlapping ones and use |
| // the callback on the accesses. |
| for (auto &It : AccessBins) { |
| OffsetAndSize ItOAS = It.getFirst(); |
| if (!OAS.mayOverlap(ItOAS)) |
| continue; |
| for (auto &Access : It.getSecond()) |
| if (!CB(Access, OAS == ItOAS)) |
| return false; |
| } |
| return true; |
| } |
| |
| private: |
| /// State to track fixpoint and validity. |
| BooleanState BS; |
| }; |
| |
| struct AAPointerInfoImpl |
| : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> { |
| using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>; |
| AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { AAPointerInfo::initialize(A); } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return std::string("PointerInfo ") + |
| (isValidState() ? (std::string("#") + |
| std::to_string(AccessBins.size()) + " bins") |
| : "<invalid>"); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| return AAPointerInfo::manifest(A); |
| } |
| |
| bool forallInterferingAccesses( |
| LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB) |
| const override { |
| return State::forallInterferingAccesses(LI, CB); |
| } |
| bool forallInterferingAccesses( |
| StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB) |
| const override { |
| return State::forallInterferingAccesses(SI, CB); |
| } |
| |
| ChangeStatus translateAndAddCalleeState(Attributor &A, |
| const AAPointerInfo &CalleeAA, |
| int64_t CallArgOffset, CallBase &CB) { |
| using namespace AA::PointerInfo; |
| if (!CalleeAA.getState().isValidState() || !isValidState()) |
| return indicatePessimisticFixpoint(); |
| |
| const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA); |
| bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr(); |
| |
| // Combine the accesses bin by bin. |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| for (auto &It : CalleeImplAA.getState()) { |
| OffsetAndSize OAS = OffsetAndSize::getUnknown(); |
| if (CallArgOffset != OffsetAndSize::Unknown) |
| OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset, |
| It.first.getSize()); |
| Accesses &Bin = AccessBins[OAS]; |
| for (const AAPointerInfo::Access &RAcc : It.second) { |
| if (IsByval && !RAcc.isRead()) |
| continue; |
| bool UsedAssumedInformation = false; |
| Optional<Value *> Content = A.translateArgumentToCallSiteContent( |
| RAcc.getContent(), CB, *this, UsedAssumedInformation); |
| AccessKind AK = |
| AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ |
| : AccessKind::AK_READ_WRITE)); |
| Changed = |
| Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK, |
| RAcc.getType(), RAcc.getRemoteInst(), &Bin); |
| } |
| } |
| return Changed; |
| } |
| |
| /// Statistic tracking for all AAPointerInfo implementations. |
| /// See AbstractAttribute::trackStatistics(). |
| void trackPointerInfoStatistics(const IRPosition &IRP) const {} |
| }; |
| |
| struct AAPointerInfoFloating : public AAPointerInfoImpl { |
| using AccessKind = AAPointerInfo::AccessKind; |
| AAPointerInfoFloating(const IRPosition &IRP, Attributor &A) |
| : AAPointerInfoImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); } |
| |
| /// Deal with an access and signal if it was handled successfully. |
| bool handleAccess(Attributor &A, Instruction &I, Value &Ptr, |
| Optional<Value *> Content, AccessKind Kind, int64_t Offset, |
| ChangeStatus &Changed, Type *Ty, |
| int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) { |
| using namespace AA::PointerInfo; |
| // No need to find a size if one is given or the offset is unknown. |
| if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown && |
| Ty) { |
| const DataLayout &DL = A.getDataLayout(); |
| TypeSize AccessSize = DL.getTypeStoreSize(Ty); |
| if (!AccessSize.isScalable()) |
| Size = AccessSize.getFixedSize(); |
| } |
| Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty); |
| return true; |
| }; |
| |
| /// Helper struct, will support ranges eventually. |
| struct OffsetInfo { |
| int64_t Offset = AA::PointerInfo::OffsetAndSize::Unknown; |
| |
| bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; } |
| }; |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| using namespace AA::PointerInfo; |
| State S = getState(); |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| Value &AssociatedValue = getAssociatedValue(); |
| |
| const DataLayout &DL = A.getDataLayout(); |
| DenseMap<Value *, OffsetInfo> OffsetInfoMap; |
| OffsetInfoMap[&AssociatedValue] = OffsetInfo{0}; |
| |
| auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI, |
| bool &Follow) { |
| OffsetInfo &UsrOI = OffsetInfoMap[Usr]; |
| UsrOI = PtrOI; |
| Follow = true; |
| return true; |
| }; |
| |
| auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| Value *CurPtr = U.get(); |
| User *Usr = U.getUser(); |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " |
| << *Usr << "\n"); |
| |
| OffsetInfo &PtrOI = OffsetInfoMap[CurPtr]; |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) { |
| if (CE->isCast()) |
| return HandlePassthroughUser(Usr, PtrOI, Follow); |
| if (CE->isCompare()) |
| return true; |
| if (!CE->isGEPWithNoNotionalOverIndexing()) { |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE |
| << "\n"); |
| return false; |
| } |
| } |
| if (auto *GEP = dyn_cast<GEPOperator>(Usr)) { |
| OffsetInfo &UsrOI = OffsetInfoMap[Usr]; |
| UsrOI = PtrOI; |
| |
| // TODO: Use range information. |
| if (PtrOI.Offset == OffsetAndSize::Unknown || |
| !GEP->hasAllConstantIndices()) { |
| UsrOI.Offset = OffsetAndSize::Unknown; |
| Follow = true; |
| return true; |
| } |
| |
| SmallVector<Value *, 8> Indices; |
| for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) { |
| if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) { |
| Indices.push_back(CIdx); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP |
| << " : " << *Idx << "\n"); |
| return false; |
| } |
| UsrOI.Offset = PtrOI.Offset + |
| DL.getIndexedOffsetInType( |
| CurPtr->getType()->getPointerElementType(), Indices); |
| Follow = true; |
| return true; |
| } |
| if (isa<CastInst>(Usr) || isa<SelectInst>(Usr)) |
| return HandlePassthroughUser(Usr, PtrOI, Follow); |
| |
| // For PHIs we need to take care of the recurrence explicitly as the value |
| // might change while we iterate through a loop. For now, we give up if |
| // the PHI is not invariant. |
| if (isa<PHINode>(Usr)) { |
| // Check if the PHI is invariant (so far). |
| OffsetInfo &UsrOI = OffsetInfoMap[Usr]; |
| if (UsrOI == PtrOI) |
| return true; |
| |
| // Check if the PHI operand has already an unknown offset as we can't |
| // improve on that anymore. |
| if (PtrOI.Offset == OffsetAndSize::Unknown) { |
| UsrOI = PtrOI; |
| Follow = true; |
| return true; |
| } |
| |
| // Check if the PHI operand is not dependent on the PHI itself. |
| APInt Offset(DL.getIndexTypeSizeInBits(AssociatedValue.getType()), 0); |
| if (&AssociatedValue == CurPtr->stripAndAccumulateConstantOffsets( |
| DL, Offset, /* AllowNonInbounds */ true)) { |
| if (Offset != PtrOI.Offset) { |
| LLVM_DEBUG(dbgs() |
| << "[AAPointerInfo] PHI operand pointer offset mismatch " |
| << *CurPtr << " in " << *Usr << "\n"); |
| return false; |
| } |
| return HandlePassthroughUser(Usr, PtrOI, Follow); |
| } |
| |
| // TODO: Approximate in case we know the direction of the recurrence. |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex " |
| << *CurPtr << " in " << *Usr << "\n"); |
| UsrOI = PtrOI; |
| UsrOI.Offset = OffsetAndSize::Unknown; |
| Follow = true; |
| return true; |
| } |
| |
| if (auto *LoadI = dyn_cast<LoadInst>(Usr)) |
| return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr, |
| AccessKind::AK_READ, PtrOI.Offset, Changed, |
| LoadI->getType()); |
| if (auto *StoreI = dyn_cast<StoreInst>(Usr)) { |
| if (StoreI->getValueOperand() == CurPtr) { |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store " |
| << *StoreI << "\n"); |
| return false; |
| } |
| bool UsedAssumedInformation = false; |
| Optional<Value *> Content = A.getAssumedSimplified( |
| *StoreI->getValueOperand(), *this, UsedAssumedInformation); |
| return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE, |
| PtrOI.Offset, Changed, |
| StoreI->getValueOperand()->getType()); |
| } |
| if (auto *CB = dyn_cast<CallBase>(Usr)) { |
| if (CB->isLifetimeStartOrEnd()) |
| return true; |
| if (CB->isArgOperand(&U)) { |
| unsigned ArgNo = CB->getArgOperandNo(&U); |
| const auto &CSArgPI = A.getAAFor<AAPointerInfo>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), |
| DepClassTy::REQUIRED); |
| Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) | |
| Changed; |
| return true; |
| } |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB |
| << "\n"); |
| // TODO: Allow some call uses |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n"); |
| return false; |
| }; |
| if (!A.checkForAllUses(UsePred, *this, AssociatedValue, |
| /* CheckBBLivenessOnly */ true)) |
| return indicatePessimisticFixpoint(); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Accesses by bin after update:\n"; |
| for (auto &It : AccessBins) { |
| dbgs() << "[" << It.first.getOffset() << "-" |
| << It.first.getOffset() + It.first.getSize() |
| << "] : " << It.getSecond().size() << "\n"; |
| for (auto &Acc : It.getSecond()) { |
| dbgs() << " - " << Acc.getKind() << " - " << *Acc.getLocalInst() |
| << "\n"; |
| if (Acc.getLocalInst() != Acc.getRemoteInst()) |
| dbgs() << " --> " |
| << *Acc.getRemoteInst() << "\n"; |
| if (!Acc.isWrittenValueYetUndetermined()) |
| dbgs() << " - " << Acc.getWrittenValue() << "\n"; |
| } |
| } |
| }); |
| |
| return Changed; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition()); |
| } |
| }; |
| |
| struct AAPointerInfoReturned final : AAPointerInfoImpl { |
| AAPointerInfoReturned(const IRPosition &IRP, Attributor &A) |
| : AAPointerInfoImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition()); |
| } |
| }; |
| |
| struct AAPointerInfoArgument final : AAPointerInfoFloating { |
| AAPointerInfoArgument(const IRPosition &IRP, Attributor &A) |
| : AAPointerInfoFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAPointerInfoFloating::initialize(A); |
| if (getAnchorScope()->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition()); |
| } |
| }; |
| |
| struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating { |
| AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAPointerInfoFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| using namespace AA::PointerInfo; |
| // We handle memory intrinsics explicitly, at least the first (= |
| // destination) and second (=source) arguments as we know how they are |
| // accessed. |
| if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); |
| int64_t LengthVal = OffsetAndSize::Unknown; |
| if (Length) |
| LengthVal = Length->getSExtValue(); |
| Value &Ptr = getAssociatedValue(); |
| unsigned ArgNo = getIRPosition().getCallSiteArgNo(); |
| ChangeStatus Changed; |
| if (ArgNo == 0) { |
| handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed, |
| nullptr, LengthVal); |
| } else if (ArgNo == 1) { |
| handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed, |
| nullptr, LengthVal); |
| } else { |
| LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic " |
| << *MI << "\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| return Changed; |
| } |
| |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg) |
| return indicatePessimisticFixpoint(); |
| const IRPosition &ArgPos = IRPosition::argument(*Arg); |
| auto &ArgAA = |
| A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED); |
| return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI())); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition()); |
| } |
| }; |
| |
| struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating { |
| AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAPointerInfoFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition()); |
| } |
| }; |
| |
| /// -----------------------NoUnwind Function Attribute-------------------------- |
| |
| struct AANoUnwindImpl : AANoUnwind { |
| AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {} |
| |
| const std::string getAsStr() const override { |
| return getAssumed() ? "nounwind" : "may-unwind"; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto Opcodes = { |
| (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, |
| (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet, |
| (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; |
| |
| auto CheckForNoUnwind = [&](Instruction &I) { |
| if (!I.mayThrow()) |
| return true; |
| |
| if (const auto *CB = dyn_cast<CallBase>(&I)) { |
| const auto &NoUnwindAA = A.getAAFor<AANoUnwind>( |
| *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED); |
| return NoUnwindAA.isAssumedNoUnwind(); |
| } |
| return false; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| }; |
| |
| struct AANoUnwindFunction final : public AANoUnwindImpl { |
| AANoUnwindFunction(const IRPosition &IRP, Attributor &A) |
| : AANoUnwindImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } |
| }; |
| |
| /// NoUnwind attribute deduction for a call sites. |
| struct AANoUnwindCallSite final : AANoUnwindImpl { |
| AANoUnwindCallSite(const IRPosition &IRP, Attributor &A) |
| : AANoUnwindImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoUnwindImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } |
| }; |
| |
| /// --------------------- Function Return Values ------------------------------- |
| |
| /// "Attribute" that collects all potential returned values and the return |
| /// instructions that they arise from. |
| /// |
| /// If there is a unique returned value R, the manifest method will: |
| /// - mark R with the "returned" attribute, if R is an argument. |
| class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState { |
| |
| /// Mapping of values potentially returned by the associated function to the |
| /// return instructions that might return them. |
| MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues; |
| |
| /// State flags |
| /// |
| ///{ |
| bool IsFixed = false; |
| bool IsValidState = true; |
| ///} |
| |
| public: |
| AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A) |
| : AAReturnedValues(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // Reset the state. |
| IsFixed = false; |
| IsValidState = true; |
| ReturnedValues.clear(); |
| |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| assert(!F->getReturnType()->isVoidTy() && |
| "Did not expect a void return type!"); |
| |
| // The map from instruction opcodes to those instructions in the function. |
| auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F); |
| |
| // Look through all arguments, if one is marked as returned we are done. |
| for (Argument &Arg : F->args()) { |
| if (Arg.hasReturnedAttr()) { |
| auto &ReturnInstSet = ReturnedValues[&Arg]; |
| if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret)) |
| for (Instruction *RI : *Insts) |
| ReturnInstSet.insert(cast<ReturnInst>(RI)); |
| |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| } |
| |
| if (!A.isFunctionIPOAmendable(*F)) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override; |
| |
| /// See AbstractAttribute::getState(...). |
| AbstractState &getState() override { return *this; } |
| |
| /// See AbstractAttribute::getState(...). |
| const AbstractState &getState() const override { return *this; } |
| |
| /// See AbstractAttribute::updateImpl(Attributor &A). |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| llvm::iterator_range<iterator> returned_values() override { |
| return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); |
| } |
| |
| llvm::iterator_range<const_iterator> returned_values() const override { |
| return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end()); |
| } |
| |
| /// Return the number of potential return values, -1 if unknown. |
| size_t getNumReturnValues() const override { |
| return isValidState() ? ReturnedValues.size() : -1; |
| } |
| |
| /// Return an assumed unique return value if a single candidate is found. If |
| /// there cannot be one, return a nullptr. If it is not clear yet, return the |
| /// Optional::NoneType. |
| Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; |
| |
| /// See AbstractState::checkForAllReturnedValues(...). |
| bool checkForAllReturnedValuesAndReturnInsts( |
| function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) |
| const override; |
| |
| /// Pretty print the attribute similar to the IR representation. |
| const std::string getAsStr() const override; |
| |
| /// See AbstractState::isAtFixpoint(). |
| bool isAtFixpoint() const override { return IsFixed; } |
| |
| /// See AbstractState::isValidState(). |
| bool isValidState() const override { return IsValidState; } |
| |
| /// See AbstractState::indicateOptimisticFixpoint(...). |
| ChangeStatus indicateOptimisticFixpoint() override { |
| IsFixed = true; |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| ChangeStatus indicatePessimisticFixpoint() override { |
| IsFixed = true; |
| IsValidState = false; |
| return ChangeStatus::CHANGED; |
| } |
| }; |
| |
| ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| |
| // Bookkeeping. |
| assert(isValidState()); |
| STATS_DECLTRACK(KnownReturnValues, FunctionReturn, |
| "Number of function with known return values"); |
| |
| // Check if we have an assumed unique return value that we could manifest. |
| Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A); |
| |
| if (!UniqueRV.hasValue() || !UniqueRV.getValue()) |
| return Changed; |
| |
| // Bookkeeping. |
| STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, |
| "Number of function with unique return"); |
| // If the assumed unique return value is an argument, annotate it. |
| if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) { |
| if (UniqueRVArg->getType()->canLosslesslyBitCastTo( |
| getAssociatedFunction()->getReturnType())) { |
| getIRPosition() = IRPosition::argument(*UniqueRVArg); |
| Changed = IRAttribute::manifest(A); |
| } |
| } |
| return Changed; |
| } |
| |
| const std::string AAReturnedValuesImpl::getAsStr() const { |
| return (isAtFixpoint() ? "returns(#" : "may-return(#") + |
| (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")"; |
| } |
| |
| Optional<Value *> |
| AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const { |
| // If checkForAllReturnedValues provides a unique value, ignoring potential |
| // undef values that can also be present, it is assumed to be the actual |
| // return value and forwarded to the caller of this method. If there are |
| // multiple, a nullptr is returned indicating there cannot be a unique |
| // returned value. |
| Optional<Value *> UniqueRV; |
| Type *Ty = getAssociatedFunction()->getReturnType(); |
| |
| auto Pred = [&](Value &RV) -> bool { |
| UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty); |
| return UniqueRV != Optional<Value *>(nullptr); |
| }; |
| |
| if (!A.checkForAllReturnedValues(Pred, *this)) |
| UniqueRV = nullptr; |
| |
| return UniqueRV; |
| } |
| |
| bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts( |
| function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) |
| const { |
| if (!isValidState()) |
| return false; |
| |
| // Check all returned values but ignore call sites as long as we have not |
| // encountered an overdefined one during an update. |
| for (auto &It : ReturnedValues) { |
| Value *RV = It.first; |
| if (!Pred(*RV, It.second)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| |
| auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret, |
| bool) -> bool { |
| bool UsedAssumedInformation = false; |
| Optional<Value *> SimpleRetVal = |
| A.getAssumedSimplified(V, *this, UsedAssumedInformation); |
| if (!SimpleRetVal.hasValue()) |
| return true; |
| if (!SimpleRetVal.getValue()) |
| return false; |
| Value *RetVal = *SimpleRetVal; |
| assert(AA::isValidInScope(*RetVal, Ret.getFunction()) && |
| "Assumed returned value should be valid in function scope!"); |
| if (ReturnedValues[RetVal].insert(&Ret)) |
| Changed = ChangeStatus::CHANGED; |
| return true; |
| }; |
| |
| auto ReturnInstCB = [&](Instruction &I) { |
| ReturnInst &Ret = cast<ReturnInst>(I); |
| return genericValueTraversal<ReturnInst>( |
| A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB, |
| &I); |
| }; |
| |
| // Discover returned values from all live returned instructions in the |
| // associated function. |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret}, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| return Changed; |
| } |
| |
| struct AAReturnedValuesFunction final : public AAReturnedValuesImpl { |
| AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A) |
| : AAReturnedValuesImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) } |
| }; |
| |
| /// Returned values information for a call sites. |
| struct AAReturnedValuesCallSite final : AAReturnedValuesImpl { |
| AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A) |
| : AAReturnedValuesImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites instead of |
| // redirecting requests to the callee. |
| llvm_unreachable("Abstract attributes for returned values are not " |
| "supported for call sites yet!"); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| }; |
| |
| /// ------------------------ NoSync Function Attribute ------------------------- |
| |
| struct AANoSyncImpl : AANoSync { |
| AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {} |
| |
| const std::string getAsStr() const override { |
| return getAssumed() ? "nosync" : "may-sync"; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| /// Helper function used to determine whether an instruction is non-relaxed |
| /// atomic. In other words, if an atomic instruction does not have unordered |
| /// or monotonic ordering |
| static bool isNonRelaxedAtomic(Instruction *I); |
| |
| /// Helper function specific for intrinsics which are potentially volatile |
| static bool isNoSyncIntrinsic(Instruction *I); |
| }; |
| |
| bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) { |
| if (!I->isAtomic()) |
| return false; |
| |
| if (auto *FI = dyn_cast<FenceInst>(I)) |
| // All legal orderings for fence are stronger than monotonic. |
| return FI->getSyncScopeID() != SyncScope::SingleThread; |
| else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) { |
| // Unordered is not a legal ordering for cmpxchg. |
| return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic || |
| AI->getFailureOrdering() != AtomicOrdering::Monotonic); |
| } |
| |
| AtomicOrdering Ordering; |
| switch (I->getOpcode()) { |
| case Instruction::AtomicRMW: |
| Ordering = cast<AtomicRMWInst>(I)->getOrdering(); |
| break; |
| case Instruction::Store: |
| Ordering = cast<StoreInst>(I)->getOrdering(); |
| break; |
| case Instruction::Load: |
| Ordering = cast<LoadInst>(I)->getOrdering(); |
| break; |
| default: |
| llvm_unreachable( |
| "New atomic operations need to be known in the attributor."); |
| } |
| |
| return (Ordering != AtomicOrdering::Unordered && |
| Ordering != AtomicOrdering::Monotonic); |
| } |
| |
| /// Return true if this intrinsic is nosync. This is only used for intrinsics |
| /// which would be nosync except that they have a volatile flag. All other |
| /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td. |
| bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) { |
| if (auto *MI = dyn_cast<MemIntrinsic>(I)) |
| return !MI->isVolatile(); |
| return false; |
| } |
| |
| ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { |
| |
| auto CheckRWInstForNoSync = [&](Instruction &I) { |
| /// We are looking for volatile instructions or Non-Relaxed atomics. |
| |
| if (const auto *CB = dyn_cast<CallBase>(&I)) { |
| if (CB->hasFnAttr(Attribute::NoSync)) |
| return true; |
| |
| if (isNoSyncIntrinsic(&I)) |
| return true; |
| |
| const auto &NoSyncAA = A.getAAFor<AANoSync>( |
| *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED); |
| return NoSyncAA.isAssumedNoSync(); |
| } |
| |
| if (!I.isVolatile() && !isNonRelaxedAtomic(&I)) |
| return true; |
| |
| return false; |
| }; |
| |
| auto CheckForNoSync = [&](Instruction &I) { |
| // At this point we handled all read/write effects and they are all |
| // nosync, so they can be skipped. |
| if (I.mayReadOrWriteMemory()) |
| return true; |
| |
| // non-convergent and readnone imply nosync. |
| return !cast<CallBase>(I).isConvergent(); |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this, |
| UsedAssumedInformation) || |
| !A.checkForAllCallLikeInstructions(CheckForNoSync, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| struct AANoSyncFunction final : public AANoSyncImpl { |
| AANoSyncFunction(const IRPosition &IRP, Attributor &A) |
| : AANoSyncImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } |
| }; |
| |
| /// NoSync attribute deduction for a call sites. |
| struct AANoSyncCallSite final : AANoSyncImpl { |
| AANoSyncCallSite(const IRPosition &IRP, Attributor &A) |
| : AANoSyncImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoSyncImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } |
| }; |
| |
| /// ------------------------ No-Free Attributes ---------------------------- |
| |
| struct AANoFreeImpl : public AANoFree { |
| AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto CheckForNoFree = [&](Instruction &I) { |
| const auto &CB = cast<CallBase>(I); |
| if (CB.hasFnAttr(Attribute::NoFree)) |
| return true; |
| |
| const auto &NoFreeAA = A.getAAFor<AANoFree>( |
| *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED); |
| return NoFreeAA.isAssumedNoFree(); |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumed() ? "nofree" : "may-free"; |
| } |
| }; |
| |
| struct AANoFreeFunction final : public AANoFreeImpl { |
| AANoFreeFunction(const IRPosition &IRP, Attributor &A) |
| : AANoFreeImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } |
| }; |
| |
| /// NoFree attribute deduction for a call sites. |
| struct AANoFreeCallSite final : AANoFreeImpl { |
| AANoFreeCallSite(const IRPosition &IRP, Attributor &A) |
| : AANoFreeImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoFreeImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } |
| }; |
| |
| /// NoFree attribute for floating values. |
| struct AANoFreeFloating : AANoFreeImpl { |
| AANoFreeFloating(const IRPosition &IRP, Attributor &A) |
| : AANoFreeImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} |
| |
| /// See Abstract Attribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| const IRPosition &IRP = getIRPosition(); |
| |
| const auto &NoFreeAA = A.getAAFor<AANoFree>( |
| *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL); |
| if (NoFreeAA.isAssumedNoFree()) |
| return ChangeStatus::UNCHANGED; |
| |
| Value &AssociatedValue = getIRPosition().getAssociatedValue(); |
| auto Pred = [&](const Use &U, bool &Follow) -> bool { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| if (auto *CB = dyn_cast<CallBase>(UserI)) { |
| if (CB->isBundleOperand(&U)) |
| return false; |
| if (!CB->isArgOperand(&U)) |
| return true; |
| unsigned ArgNo = CB->getArgOperandNo(&U); |
| |
| const auto &NoFreeArg = A.getAAFor<AANoFree>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), |
| DepClassTy::REQUIRED); |
| return NoFreeArg.isAssumedNoFree(); |
| } |
| |
| if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || |
| isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { |
| Follow = true; |
| return true; |
| } |
| if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) || |
| isa<ReturnInst>(UserI)) |
| return true; |
| |
| // Unknown user. |
| return false; |
| }; |
| if (!A.checkForAllUses(Pred, *this, AssociatedValue)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| }; |
| |
| /// NoFree attribute for a call site argument. |
| struct AANoFreeArgument final : AANoFreeFloating { |
| AANoFreeArgument(const IRPosition &IRP, Attributor &A) |
| : AANoFreeFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } |
| }; |
| |
| /// NoFree attribute for call site arguments. |
| struct AANoFreeCallSiteArgument final : AANoFreeFloating { |
| AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AANoFreeFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg) |
| return indicatePessimisticFixpoint(); |
| const IRPosition &ArgPos = IRPosition::argument(*Arg); |
| auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), ArgAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)}; |
| }; |
| |
| /// NoFree attribute for function return value. |
| struct AANoFreeReturned final : AANoFreeFloating { |
| AANoFreeReturned(const IRPosition &IRP, Attributor &A) |
| : AANoFreeFloating(IRP, A) { |
| llvm_unreachable("NoFree is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| llvm_unreachable("NoFree is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable("NoFree is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| }; |
| |
| /// NoFree attribute deduction for a call site return value. |
| struct AANoFreeCallSiteReturned final : AANoFreeFloating { |
| AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AANoFreeFloating(IRP, A) {} |
| |
| ChangeStatus manifest(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } |
| }; |
| |
| /// ------------------------ NonNull Argument Attribute ------------------------ |
| static int64_t getKnownNonNullAndDerefBytesForUse( |
| Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue, |
| const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { |
| TrackUse = false; |
| |
| const Value *UseV = U->get(); |
| if (!UseV->getType()->isPointerTy()) |
| return 0; |
| |
| // We need to follow common pointer manipulation uses to the accesses they |
| // feed into. We can try to be smart to avoid looking through things we do not |
| // like for now, e.g., non-inbounds GEPs. |
| if (isa<CastInst>(I)) { |
| TrackUse = true; |
| return 0; |
| } |
| |
| if (isa<GetElementPtrInst>(I)) { |
| TrackUse = true; |
| return 0; |
| } |
| |
| Type *PtrTy = UseV->getType(); |
| const Function *F = I->getFunction(); |
| bool NullPointerIsDefined = |
| F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true; |
| const DataLayout &DL = A.getInfoCache().getDL(); |
| if (const auto *CB = dyn_cast<CallBase>(I)) { |
| if (CB->isBundleOperand(U)) { |
| if (RetainedKnowledge RK = getKnowledgeFromUse( |
| U, {Attribute::NonNull, Attribute::Dereferenceable})) { |
| IsNonNull |= |
| (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined); |
| return RK.ArgValue; |
| } |
| return 0; |
| } |
| |
| if (CB->isCallee(U)) { |
| IsNonNull |= !NullPointerIsDefined; |
| return 0; |
| } |
| |
| unsigned ArgNo = CB->getArgOperandNo(U); |
| IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); |
| // As long as we only use known information there is no need to track |
| // dependences here. |
| auto &DerefAA = |
| A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE); |
| IsNonNull |= DerefAA.isKnownNonNull(); |
| return DerefAA.getKnownDereferenceableBytes(); |
| } |
| |
| int64_t Offset; |
| const Value *Base = |
| getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL); |
| if (Base) { |
| if (Base == &AssociatedValue && |
| getPointerOperand(I, /* AllowVolatile */ false) == UseV) { |
| int64_t DerefBytes = |
| (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset; |
| |
| IsNonNull |= !NullPointerIsDefined; |
| return std::max(int64_t(0), DerefBytes); |
| } |
| } |
| |
| /// Corner case when an offset is 0. |
| Base = getBasePointerOfAccessPointerOperand(I, Offset, DL, |
| /*AllowNonInbounds*/ true); |
| if (Base) { |
| if (Offset == 0 && Base == &AssociatedValue && |
| getPointerOperand(I, /* AllowVolatile */ false) == UseV) { |
| int64_t DerefBytes = |
| (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()); |
| IsNonNull |= !NullPointerIsDefined; |
| return std::max(int64_t(0), DerefBytes); |
| } |
| } |
| |
| return 0; |
| } |
| |
| struct AANonNullImpl : AANonNull { |
| AANonNullImpl(const IRPosition &IRP, Attributor &A) |
| : AANonNull(IRP, A), |
| NullIsDefined(NullPointerIsDefined( |
| getAnchorScope(), |
| getAssociatedValue().getType()->getPointerAddressSpace())) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| Value &V = getAssociatedValue(); |
| if (!NullIsDefined && |
| hasAttr({Attribute::NonNull, Attribute::Dereferenceable}, |
| /* IgnoreSubsumingPositions */ false, &A)) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<ConstantPointerNull>(V)) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| AANonNull::initialize(A); |
| |
| bool CanBeNull, CanBeFreed; |
| if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull, |
| CanBeFreed)) { |
| if (!CanBeNull) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| } |
| |
| if (isa<GlobalValue>(&getAssociatedValue())) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| if (Instruction *CtxI = getCtxI()) |
| followUsesInMBEC(*this, A, getState(), *CtxI); |
| } |
| |
| /// See followUsesInMBEC |
| bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| AANonNull::StateType &State) { |
| bool IsNonNull = false; |
| bool TrackUse = false; |
| getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I, |
| IsNonNull, TrackUse); |
| State.setKnown(IsNonNull); |
| return TrackUse; |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumed() ? "nonnull" : "may-null"; |
| } |
| |
| /// Flag to determine if the underlying value can be null and still allow |
| /// valid accesses. |
| const bool NullIsDefined; |
| }; |
| |
| /// NonNull attribute for a floating value. |
| struct AANonNullFloating : public AANonNullImpl { |
| AANonNullFloating(const IRPosition &IRP, Attributor &A) |
| : AANonNullImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| const DataLayout &DL = A.getDataLayout(); |
| |
| DominatorTree *DT = nullptr; |
| AssumptionCache *AC = nullptr; |
| InformationCache &InfoCache = A.getInfoCache(); |
| if (const Function *Fn = getAnchorScope()) { |
| DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn); |
| AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn); |
| } |
| |
| auto VisitValueCB = [&](Value &V, const Instruction *CtxI, |
| AANonNull::StateType &T, bool Stripped) -> bool { |
| const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V), |
| DepClassTy::REQUIRED); |
| if (!Stripped && this == &AA) { |
| if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT)) |
| T.indicatePessimisticFixpoint(); |
| } else { |
| // Use abstract attribute information. |
| const AANonNull::StateType &NS = AA.getState(); |
| T ^= NS; |
| } |
| return T.isValidState(); |
| }; |
| |
| StateType T; |
| if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T, |
| VisitValueCB, getCtxI())) |
| return indicatePessimisticFixpoint(); |
| |
| return clampStateAndIndicateChange(getState(), T); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } |
| }; |
| |
| /// NonNull attribute for function return value. |
| struct AANonNullReturned final |
| : AAReturnedFromReturnedValues<AANonNull, AANonNull> { |
| AANonNullReturned(const IRPosition &IRP, Attributor &A) |
| : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {} |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumed() ? "nonnull" : "may-null"; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } |
| }; |
| |
| /// NonNull attribute for function argument. |
| struct AANonNullArgument final |
| : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> { |
| AANonNullArgument(const IRPosition &IRP, Attributor &A) |
| : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } |
| }; |
| |
| struct AANonNullCallSiteArgument final : AANonNullFloating { |
| AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AANonNullFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } |
| }; |
| |
| /// NonNull attribute for a call site return position. |
| struct AANonNullCallSiteReturned final |
| : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> { |
| AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } |
| }; |
| |
| /// ------------------------ No-Recurse Attributes ---------------------------- |
| |
| struct AANoRecurseImpl : public AANoRecurse { |
| AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {} |
| |
| /// See AbstractAttribute::getAsStr() |
| const std::string getAsStr() const override { |
| return getAssumed() ? "norecurse" : "may-recurse"; |
| } |
| }; |
| |
| struct AANoRecurseFunction final : AANoRecurseImpl { |
| AANoRecurseFunction(const IRPosition &IRP, Attributor &A) |
| : AANoRecurseImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoRecurseImpl::initialize(A); |
| if (const Function *F = getAnchorScope()) |
| if (A.getInfoCache().getSccSize(*F) != 1) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| |
| // If all live call sites are known to be no-recurse, we are as well. |
| auto CallSitePred = [&](AbstractCallSite ACS) { |
| const auto &NoRecurseAA = A.getAAFor<AANoRecurse>( |
| *this, IRPosition::function(*ACS.getInstruction()->getFunction()), |
| DepClassTy::NONE); |
| return NoRecurseAA.isKnownNoRecurse(); |
| }; |
| bool AllCallSitesKnown; |
| if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) { |
| // If we know all call sites and all are known no-recurse, we are done. |
| // If all known call sites, which might not be all that exist, are known |
| // to be no-recurse, we are not done but we can continue to assume |
| // no-recurse. If one of the call sites we have not visited will become |
| // live, another update is triggered. |
| if (AllCallSitesKnown) |
| indicateOptimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // If the above check does not hold anymore we look at the calls. |
| auto CheckForNoRecurse = [&](Instruction &I) { |
| const auto &CB = cast<CallBase>(I); |
| if (CB.hasFnAttr(Attribute::NoRecurse)) |
| return true; |
| |
| const auto &NoRecurseAA = A.getAAFor<AANoRecurse>( |
| *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED); |
| if (!NoRecurseAA.isAssumedNoRecurse()) |
| return false; |
| |
| // Recursion to the same function |
| if (CB.getCalledFunction() == getAnchorScope()) |
| return false; |
| |
| return true; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } |
| }; |
| |
| /// NoRecurse attribute deduction for a call sites. |
| struct AANoRecurseCallSite final : AANoRecurseImpl { |
| AANoRecurseCallSite(const IRPosition &IRP, Attributor &A) |
| : AANoRecurseImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoRecurseImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } |
| }; |
| |
| /// -------------------- Undefined-Behavior Attributes ------------------------ |
| |
| struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior { |
| AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A) |
| : AAUndefinedBehavior(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| // through a pointer (i.e. also branches etc.) |
| ChangeStatus updateImpl(Attributor &A) override { |
| const size_t UBPrevSize = KnownUBInsts.size(); |
| const size_t NoUBPrevSize = AssumedNoUBInsts.size(); |
| |
| auto InspectMemAccessInstForUB = [&](Instruction &I) { |
| // Skip instructions that are already saved. |
| if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) |
| return true; |
| |
| // If we reach here, we know we have an instruction |
| // that accesses memory through a pointer operand, |
| // for which getPointerOperand() should give it to us. |
| Value *PtrOp = |
| const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true)); |
| assert(PtrOp && |
| "Expected pointer operand of memory accessing instruction"); |
| |
| // Either we stopped and the appropriate action was taken, |
| // or we got back a simplified value to continue. |
| Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I); |
| if (!SimplifiedPtrOp.hasValue() || !SimplifiedPtrOp.getValue()) |
| return true; |
| const Value *PtrOpVal = SimplifiedPtrOp.getValue(); |
| |
| // A memory access through a pointer is considered UB |
| // only if the pointer has constant null value. |
| // TODO: Expand it to not only check constant values. |
| if (!isa<ConstantPointerNull>(PtrOpVal)) { |
| AssumedNoUBInsts.insert(&I); |
| return true; |
| } |
| const Type *PtrTy = PtrOpVal->getType(); |
| |
| // Because we only consider instructions inside functions, |
| // assume that a parent function exists. |
| const Function *F = I.getFunction(); |
| |
| // A memory access using constant null pointer is only considered UB |
| // if null pointer is _not_ defined for the target platform. |
| if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace())) |
| AssumedNoUBInsts.insert(&I); |
| else |
| KnownUBInsts.insert(&I); |
| return true; |
| }; |
| |
| auto InspectBrInstForUB = [&](Instruction &I) { |
| // A conditional branch instruction is considered UB if it has `undef` |
| // condition. |
| |
| // Skip instructions that are already saved. |
| if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) |
| return true; |
| |
| // We know we have a branch instruction. |
| auto *BrInst = cast<BranchInst>(&I); |
| |
| // Unconditional branches are never considered UB. |
| if (BrInst->isUnconditional()) |
| return true; |
| |
| // Either we stopped and the appropriate action was taken, |
| // or we got back a simplified value to continue. |
| Optional<Value *> SimplifiedCond = |
| stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst); |
| if (!SimplifiedCond.hasValue() || !SimplifiedCond.getValue()) |
| return true; |
| AssumedNoUBInsts.insert(&I); |
| return true; |
| }; |
| |
| auto InspectCallSiteForUB = [&](Instruction &I) { |
| // Check whether a callsite always cause UB or not |
| |
| // Skip instructions that are already saved. |
| if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I)) |
| return true; |
| |
| // Check nonnull and noundef argument attribute violation for each |
| // callsite. |
| CallBase &CB = cast<CallBase>(I); |
| Function *Callee = CB.getCalledFunction(); |
| if (!Callee) |
| return true; |
| for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) { |
| // If current argument is known to be simplified to null pointer and the |
| // corresponding argument position is known to have nonnull attribute, |
| // the argument is poison. Furthermore, if the argument is poison and |
| // the position is known to have noundef attriubte, this callsite is |
| // considered UB. |
| if (idx >= Callee->arg_size()) |
| break; |
| Value *ArgVal = CB.getArgOperand(idx); |
| if (!ArgVal) |
| continue; |
| // Here, we handle three cases. |
| // (1) Not having a value means it is dead. (we can replace the value |
| // with undef) |
| // (2) Simplified to undef. The argument violate noundef attriubte. |
| // (3) Simplified to null pointer where known to be nonnull. |
| // The argument is a poison value and violate noundef attribute. |
| IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx); |
| auto &NoUndefAA = |
| A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE); |
| if (!NoUndefAA.isKnownNoUndef()) |
| continue; |
| bool UsedAssumedInformation = false; |
| Optional<Value *> SimplifiedVal = A.getAssumedSimplified( |
| IRPosition::value(*ArgVal), *this, UsedAssumedInformation); |
| if (UsedAssumedInformation) |
| continue; |
| if (SimplifiedVal.hasValue() && !SimplifiedVal.getValue()) |
| return true; |
| if (!SimplifiedVal.hasValue() || |
| isa<UndefValue>(*SimplifiedVal.getValue())) { |
| KnownUBInsts.insert(&I); |
| continue; |
| } |
| if (!ArgVal->getType()->isPointerTy() || |
| !isa<ConstantPointerNull>(*SimplifiedVal.getValue())) |
| continue; |
| auto &NonNullAA = |
| A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE); |
| if (NonNullAA.isKnownNonNull()) |
| KnownUBInsts.insert(&I); |
| } |
| return true; |
| }; |
| |
| auto InspectReturnInstForUB = |
| [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) { |
| // Check if a return instruction always cause UB or not |
| // Note: It is guaranteed that the returned position of the anchor |
| // scope has noundef attribute when this is called. |
| // We also ensure the return position is not "assumed dead" |
| // because the returned value was then potentially simplified to |
| // `undef` in AAReturnedValues without removing the `noundef` |
| // attribute yet. |
| |
| // When the returned position has noundef attriubte, UB occur in the |
| // following cases. |
| // (1) Returned value is known to be undef. |
| // (2) The value is known to be a null pointer and the returned |
| // position has nonnull attribute (because the returned value is |
| // poison). |
| bool FoundUB = false; |
| if (isa<UndefValue>(V)) { |
| FoundUB = true; |
| } else { |
| if (isa<ConstantPointerNull>(V)) { |
| auto &NonNullAA = A.getAAFor<AANonNull>( |
| *this, IRPosition::returned(*getAnchorScope()), |
| DepClassTy::NONE); |
| if (NonNullAA.isKnownNonNull()) |
| FoundUB = true; |
| } |
| } |
| |
| if (FoundUB) |
| for (ReturnInst *RI : RetInsts) |
| KnownUBInsts.insert(RI); |
| return true; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| A.checkForAllInstructions(InspectMemAccessInstForUB, *this, |
| {Instruction::Load, Instruction::Store, |
| Instruction::AtomicCmpXchg, |
| Instruction::AtomicRMW}, |
| UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true); |
| A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br}, |
| UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true); |
| A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this, |
| UsedAssumedInformation); |
| |
| // If the returned position of the anchor scope has noundef attriubte, check |
| // all returned instructions. |
| if (!getAnchorScope()->getReturnType()->isVoidTy()) { |
| const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope()); |
| if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) { |
| auto &RetPosNoUndefAA = |
| A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE); |
| if (RetPosNoUndefAA.isKnownNoUndef()) |
| A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB, |
| *this); |
| } |
| } |
| |
| if (NoUBPrevSize != AssumedNoUBInsts.size() || |
| UBPrevSize != KnownUBInsts.size()) |
| return ChangeStatus::CHANGED; |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| bool isKnownToCauseUB(Instruction *I) const override { |
| return KnownUBInsts.count(I); |
| } |
| |
| bool isAssumedToCauseUB(Instruction *I) const override { |
| // In simple words, if an instruction is not in the assumed to _not_ |
| // cause UB, then it is assumed UB (that includes those |
| // in the KnownUBInsts set). The rest is boilerplate |
| // is to ensure that it is one of the instructions we test |
| // for UB. |
| |
| switch (I->getOpcode()) { |
| case Instruction::Load: |
| case Instruction::Store: |
| case Instruction::AtomicCmpXchg: |
| case Instruction::AtomicRMW: |
| return !AssumedNoUBInsts.count(I); |
| case Instruction::Br: { |
| auto BrInst = cast<BranchInst>(I); |
| if (BrInst->isUnconditional()) |
| return false; |
| return !AssumedNoUBInsts.count(I); |
| } break; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| if (KnownUBInsts.empty()) |
| return ChangeStatus::UNCHANGED; |
| for (Instruction *I : KnownUBInsts) |
| A.changeToUnreachableAfterManifest(I); |
| return ChangeStatus::CHANGED; |
| } |
| |
| /// See AbstractAttribute::getAsStr() |
| const std::string getAsStr() const override { |
| return getAssumed() ? "undefined-behavior" : "no-ub"; |
| } |
| |
| /// Note: The correctness of this analysis depends on the fact that the |
| /// following 2 sets will stop changing after some point. |
| /// "Change" here means that their size changes. |
| /// The size of each set is monotonically increasing |
| /// (we only add items to them) and it is upper bounded by the number of |
| /// instructions in the processed function (we can never save more |
| /// elements in either set than this number). Hence, at some point, |
| /// they will stop increasing. |
| /// Consequently, at some point, both sets will have stopped |
| /// changing, effectively making the analysis reach a fixpoint. |
| |
| /// Note: These 2 sets are disjoint and an instruction can be considered |
| /// one of 3 things: |
| /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in |
| /// the KnownUBInsts set. |
| /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior |
| /// has a reason to assume it). |
| /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior |
| /// could not find a reason to assume or prove that it can cause UB, |
| /// hence it assumes it doesn't. We have a set for these instructions |
| /// so that we don't reprocess them in every update. |
| /// Note however that instructions in this set may cause UB. |
| |
| protected: |
| /// A set of all live instructions _known_ to cause UB. |
| SmallPtrSet<Instruction *, 8> KnownUBInsts; |
| |
| private: |
| /// A set of all the (live) instructions that are assumed to _not_ cause UB. |
| SmallPtrSet<Instruction *, 8> AssumedNoUBInsts; |
| |
| // Should be called on updates in which if we're processing an instruction |
| // \p I that depends on a value \p V, one of the following has to happen: |
| // - If the value is assumed, then stop. |
| // - If the value is known but undef, then consider it UB. |
| // - Otherwise, do specific processing with the simplified value. |
| // We return None in the first 2 cases to signify that an appropriate |
| // action was taken and the caller should stop. |
| // Otherwise, we return the simplified value that the caller should |
| // use for specific processing. |
| Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V, |
| Instruction *I) { |
| bool UsedAssumedInformation = false; |
| Optional<Value *> SimplifiedV = A.getAssumedSimplified( |
| IRPosition::value(*V), *this, UsedAssumedInformation); |
| if (!UsedAssumedInformation) { |
| // Don't depend on assumed values. |
| if (!SimplifiedV.hasValue()) { |
| // If it is known (which we tested above) but it doesn't have a value, |
| // then we can assume `undef` and hence the instruction is UB. |
| KnownUBInsts.insert(I); |
| return llvm::None; |
| } |
| if (!SimplifiedV.getValue()) |
| return nullptr; |
| V = *SimplifiedV; |
| } |
| if (isa<UndefValue>(V)) { |
| KnownUBInsts.insert(I); |
| return llvm::None; |
| } |
| return V; |
| } |
| }; |
| |
| struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl { |
| AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A) |
| : AAUndefinedBehaviorImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECL(UndefinedBehaviorInstruction, Instruction, |
| "Number of instructions known to have UB"); |
| BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) += |
| KnownUBInsts.size(); |
| } |
| }; |
| |
| /// ------------------------ Will-Return Attributes ---------------------------- |
| |
| // Helper function that checks whether a function has any cycle which we don't |
| // know if it is bounded or not. |
| // Loops with maximum trip count are considered bounded, any other cycle not. |
| static bool mayContainUnboundedCycle(Function &F, Attributor &A) { |
| ScalarEvolution *SE = |
| A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F); |
| LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F); |
| // If either SCEV or LoopInfo is not available for the function then we assume |
| // any cycle to be unbounded cycle. |
| // We use scc_iterator which uses Tarjan algorithm to find all the maximal |
| // SCCs.To detect if there's a cycle, we only need to find the maximal ones. |
| if (!SE || !LI) { |
| for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI) |
| if (SCCI.hasCycle()) |
| return true; |
| return false; |
| } |
| |
| // If there's irreducible control, the function may contain non-loop cycles. |
| if (mayContainIrreducibleControl(F, LI)) |
| return true; |
| |
| // Any loop that does not have a max trip count is considered unbounded cycle. |
| for (auto *L : LI->getLoopsInPreorder()) { |
| if (!SE->getSmallConstantMaxTripCount(L)) |
| return true; |
| } |
| return false; |
| } |
| |
| struct AAWillReturnImpl : public AAWillReturn { |
| AAWillReturnImpl(const IRPosition &IRP, Attributor &A) |
| : AAWillReturn(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAWillReturn::initialize(A); |
| |
| if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| } |
| |
| /// Check for `mustprogress` and `readonly` as they imply `willreturn`. |
| bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) { |
| // Check for `mustprogress` in the scope and the associated function which |
| // might be different if this is a call site. |
| if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) && |
| (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress())) |
| return false; |
| |
| const auto &MemAA = |
| A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE); |
| if (!MemAA.isAssumedReadOnly()) |
| return false; |
| if (KnownOnly && !MemAA.isKnownReadOnly()) |
| return false; |
| if (!MemAA.isKnownReadOnly()) |
| A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL); |
| |
| return true; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false)) |
| return ChangeStatus::UNCHANGED; |
| |
| auto CheckForWillReturn = [&](Instruction &I) { |
| IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I)); |
| const auto &WillReturnAA = |
| A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED); |
| if (WillReturnAA.isKnownWillReturn()) |
| return true; |
| if (!WillReturnAA.isAssumedWillReturn()) |
| return false; |
| const auto &NoRecurseAA = |
| A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED); |
| return NoRecurseAA.isAssumedNoRecurse(); |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::getAsStr() |
| const std::string getAsStr() const override { |
| return getAssumed() ? "willreturn" : "may-noreturn"; |
| } |
| }; |
| |
| struct AAWillReturnFunction final : AAWillReturnImpl { |
| AAWillReturnFunction(const IRPosition &IRP, Attributor &A) |
| : AAWillReturnImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAWillReturnImpl::initialize(A); |
| |
| Function *F = getAnchorScope(); |
| if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A)) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } |
| }; |
| |
| /// WillReturn attribute deduction for a call sites. |
| struct AAWillReturnCallSite final : AAWillReturnImpl { |
| AAWillReturnCallSite(const IRPosition &IRP, Attributor &A) |
| : AAWillReturnImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAWillReturnImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || !A.isFunctionIPOAmendable(*F)) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false)) |
| return ChangeStatus::UNCHANGED; |
| |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } |
| }; |
| |
| /// -------------------AAReachability Attribute-------------------------- |
| |
| struct AAReachabilityImpl : AAReachability { |
| AAReachabilityImpl(const IRPosition &IRP, Attributor &A) |
| : AAReachability(IRP, A) {} |
| |
| const std::string getAsStr() const override { |
| // TODO: Return the number of reachable queries. |
| return "reachable"; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| }; |
| |
| struct AAReachabilityFunction final : public AAReachabilityImpl { |
| AAReachabilityFunction(const IRPosition &IRP, Attributor &A) |
| : AAReachabilityImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); } |
| }; |
| |
| /// ------------------------ NoAlias Argument Attribute ------------------------ |
| |
| struct AANoAliasImpl : AANoAlias { |
| AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) { |
| assert(getAssociatedType()->isPointerTy() && |
| "Noalias is a pointer attribute"); |
| } |
| |
| const std::string getAsStr() const override { |
| return getAssumed() ? "noalias" : "may-alias"; |
| } |
| }; |
| |
| /// NoAlias attribute for a floating value. |
| struct AANoAliasFloating final : AANoAliasImpl { |
| AANoAliasFloating(const IRPosition &IRP, Attributor &A) |
| : AANoAliasImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoAliasImpl::initialize(A); |
| Value *Val = &getAssociatedValue(); |
| do { |
| CastInst *CI = dyn_cast<CastInst>(Val); |
| if (!CI) |
| break; |
| Value *Base = CI->getOperand(0); |
| if (!Base->hasOneUse()) |
| break; |
| Val = Base; |
| } while (true); |
| |
| if (!Val->getType()->isPointerTy()) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<AllocaInst>(Val)) |
| indicateOptimisticFixpoint(); |
| else if (isa<ConstantPointerNull>(Val) && |
| !NullPointerIsDefined(getAnchorScope(), |
| Val->getType()->getPointerAddressSpace())) |
| indicateOptimisticFixpoint(); |
| else if (Val != &getAssociatedValue()) { |
| const auto &ValNoAliasAA = A.getAAFor<AANoAlias>( |
| *this, IRPosition::value(*Val), DepClassTy::OPTIONAL); |
| if (ValNoAliasAA.isKnownNoAlias()) |
| indicateOptimisticFixpoint(); |
| } |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Implement this. |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(noalias) |
| } |
| }; |
| |
| /// NoAlias attribute for an argument. |
| struct AANoAliasArgument final |
| : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { |
| using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>; |
| AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| Base::initialize(A); |
| // See callsite argument attribute and callee argument attribute. |
| if (hasAttr({Attribute::ByVal})) |
| indicateOptimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::update(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // We have to make sure no-alias on the argument does not break |
| // synchronization when this is a callback argument, see also [1] below. |
| // If synchronization cannot be affected, we delegate to the base updateImpl |
| // function, otherwise we give up for now. |
| |
| // If the function is no-sync, no-alias cannot break synchronization. |
| const auto &NoSyncAA = |
| A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()), |
| DepClassTy::OPTIONAL); |
| if (NoSyncAA.isAssumedNoSync()) |
| return Base::updateImpl(A); |
| |
| // If the argument is read-only, no-alias cannot break synchronization. |
| const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( |
| *this, getIRPosition(), DepClassTy::OPTIONAL); |
| if (MemBehaviorAA.isAssumedReadOnly()) |
| return Base::updateImpl(A); |
| |
| // If the argument is never passed through callbacks, no-alias cannot break |
| // synchronization. |
| bool AllCallSitesKnown; |
| if (A.checkForAllCallSites( |
| [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this, |
| true, AllCallSitesKnown)) |
| return Base::updateImpl(A); |
| |
| // TODO: add no-alias but make sure it doesn't break synchronization by |
| // introducing fake uses. See: |
| // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel, |
| // International Workshop on OpenMP 2018, |
| // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf |
| |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } |
| }; |
| |
| struct AANoAliasCallSiteArgument final : AANoAliasImpl { |
| AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AANoAliasImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // See callsite argument attribute and callee argument attribute. |
| const auto &CB = cast<CallBase>(getAnchorValue()); |
| if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias)) |
| indicateOptimisticFixpoint(); |
| Value &Val = getAssociatedValue(); |
| if (isa<ConstantPointerNull>(Val) && |
| !NullPointerIsDefined(getAnchorScope(), |
| Val.getType()->getPointerAddressSpace())) |
| indicateOptimisticFixpoint(); |
| } |
| |
| /// Determine if the underlying value may alias with the call site argument |
| /// \p OtherArgNo of \p ICS (= the underlying call site). |
| bool mayAliasWithArgument(Attributor &A, AAResults *&AAR, |
| const AAMemoryBehavior &MemBehaviorAA, |
| const CallBase &CB, unsigned OtherArgNo) { |
| // We do not need to worry about aliasing with the underlying IRP. |
| if (this->getCalleeArgNo() == (int)OtherArgNo) |
| return false; |
| |
| // If it is not a pointer or pointer vector we do not alias. |
| const Value *ArgOp = CB.getArgOperand(OtherArgNo); |
| if (!ArgOp->getType()->isPtrOrPtrVectorTy()) |
| return false; |
| |
| auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>( |
| *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE); |
| |
| // If the argument is readnone, there is no read-write aliasing. |
| if (CBArgMemBehaviorAA.isAssumedReadNone()) { |
| A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| return false; |
| } |
| |
| // If the argument is readonly and the underlying value is readonly, there |
| // is no read-write aliasing. |
| bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly(); |
| if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) { |
| A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| return false; |
| } |
| |
| // We have to utilize actual alias analysis queries so we need the object. |
| if (!AAR) |
| AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope()); |
| |
| // Try to rule it out at the call site. |
| bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp); |
| LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between " |
| "callsite arguments: " |
| << getAssociatedValue() << " " << *ArgOp << " => " |
| << (IsAliasing ? "" : "no-") << "alias \n"); |
| |
| return IsAliasing; |
| } |
| |
| bool |
| isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR, |
| const AAMemoryBehavior &MemBehaviorAA, |
| const AANoAlias &NoAliasAA) { |
| // We can deduce "noalias" if the following conditions hold. |
| // (i) Associated value is assumed to be noalias in the definition. |
| // (ii) Associated value is assumed to be no-capture in all the uses |
| // possibly executed before this callsite. |
| // (iii) There is no other pointer argument which could alias with the |
| // value. |
| |
| bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias(); |
| if (!AssociatedValueIsNoAliasAtDef) { |
| LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue() |
| << " is not no-alias at the definition\n"); |
| return false; |
| } |
| |
| A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL); |
| |
| const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); |
| const Function *ScopeFn = VIRP.getAnchorScope(); |
| auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE); |
| // Check whether the value is captured in the scope using AANoCapture. |
| // Look at CFG and check only uses possibly executed before this |
| // callsite. |
| auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| |
| // If UserI is the curr instruction and there is a single potential use of |
| // the value in UserI we allow the use. |
| // TODO: We should inspect the operands and allow those that cannot alias |
| // with the value. |
| if (UserI == getCtxI() && UserI->getNumOperands() == 1) |
| return true; |
| |
| if (ScopeFn) { |
| const auto &ReachabilityAA = A.getAAFor<AAReachability>( |
| *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL); |
| |
| if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI())) |
| return true; |
| |
| if (auto *CB = dyn_cast<CallBase>(UserI)) { |
| if (CB->isArgOperand(&U)) { |
| |
| unsigned ArgNo = CB->getArgOperandNo(&U); |
| |
| const auto &NoCaptureAA = A.getAAFor<AANoCapture>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), |
| DepClassTy::OPTIONAL); |
| |
| if (NoCaptureAA.isAssumedNoCapture()) |
| return true; |
| } |
| } |
| } |
| |
| // For cases which can potentially have more users |
| if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) || |
| isa<SelectInst>(U)) { |
| Follow = true; |
| return true; |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n"); |
| return false; |
| }; |
| |
| if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) { |
| if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) { |
| LLVM_DEBUG( |
| dbgs() << "[AANoAliasCSArg] " << getAssociatedValue() |
| << " cannot be noalias as it is potentially captured\n"); |
| return false; |
| } |
| } |
| A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL); |
| |
| // Check there is no other pointer argument which could alias with the |
| // value passed at this call site. |
| // TODO: AbstractCallSite |
| const auto &CB = cast<CallBase>(getAnchorValue()); |
| for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands(); |
| OtherArgNo++) |
| if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo)) |
| return false; |
| |
| return true; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // If the argument is readnone we are done as there are no accesses via the |
| // argument. |
| auto &MemBehaviorAA = |
| A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE); |
| if (MemBehaviorAA.isAssumedReadNone()) { |
| A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| const IRPosition &VIRP = IRPosition::value(getAssociatedValue()); |
| const auto &NoAliasAA = |
| A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE); |
| |
| AAResults *AAR = nullptr; |
| if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA, |
| NoAliasAA)) { |
| LLVM_DEBUG( |
| dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n"); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } |
| }; |
| |
| /// NoAlias attribute for function return value. |
| struct AANoAliasReturned final : AANoAliasImpl { |
| AANoAliasReturned(const IRPosition &IRP, Attributor &A) |
| : AANoAliasImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoAliasImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| virtual ChangeStatus updateImpl(Attributor &A) override { |
| |
| auto CheckReturnValue = [&](Value &RV) -> bool { |
| if (Constant *C = dyn_cast<Constant>(&RV)) |
| if (C->isNullValue() || isa<UndefValue>(C)) |
| return true; |
| |
| /// For now, we can only deduce noalias if we have call sites. |
| /// FIXME: add more support. |
| if (!isa<CallBase>(&RV)) |
| return false; |
| |
| const IRPosition &RVPos = IRPosition::value(RV); |
| const auto &NoAliasAA = |
| A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED); |
| if (!NoAliasAA.isAssumedNoAlias()) |
| return false; |
| |
| const auto &NoCaptureAA = |
| A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED); |
| return NoCaptureAA.isAssumedNoCaptureMaybeReturned(); |
| }; |
| |
| if (!A.checkForAllReturnedValues(CheckReturnValue, *this)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } |
| }; |
| |
| /// NoAlias attribute deduction for a call site return value. |
| struct AANoAliasCallSiteReturned final : AANoAliasImpl { |
| AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AANoAliasImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoAliasImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::returned(*F); |
| auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } |
| }; |
| |
| /// -------------------AAIsDead Function Attribute----------------------- |
| |
| struct AAIsDeadValueImpl : public AAIsDead { |
| AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} |
| |
| /// See AAIsDead::isAssumedDead(). |
| bool isAssumedDead() const override { return isAssumed(IS_DEAD); } |
| |
| /// See AAIsDead::isKnownDead(). |
| bool isKnownDead() const override { return isKnown(IS_DEAD); } |
| |
| /// See AAIsDead::isAssumedDead(BasicBlock *). |
| bool isAssumedDead(const BasicBlock *BB) const override { return false; } |
| |
| /// See AAIsDead::isKnownDead(BasicBlock *). |
| bool isKnownDead(const BasicBlock *BB) const override { return false; } |
| |
| /// See AAIsDead::isAssumedDead(Instruction *I). |
| bool isAssumedDead(const Instruction *I) const override { |
| return I == getCtxI() && isAssumedDead(); |
| } |
| |
| /// See AAIsDead::isKnownDead(Instruction *I). |
| bool isKnownDead(const Instruction *I) const override { |
| return isAssumedDead(I) && isKnownDead(); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return isAssumedDead() ? "assumed-dead" : "assumed-live"; |
| } |
| |
| /// Check if all uses are assumed dead. |
| bool areAllUsesAssumedDead(Attributor &A, Value &V) { |
| // Callers might not check the type, void has no uses. |
| if (V.getType()->isVoidTy()) |
| return true; |
| |
| // If we replace a value with a constant there are no uses left afterwards. |
| if (!isa<Constant>(V)) { |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> C = |
| A.getAssumedConstant(V, *this, UsedAssumedInformation); |
| if (!C.hasValue() || *C) |
| return true; |
| } |
| |
| auto UsePred = [&](const Use &U, bool &Follow) { return false; }; |
| // Explicitly set the dependence class to required because we want a long |
| // chain of N dependent instructions to be considered live as soon as one is |
| // without going through N update cycles. This is not required for |
| // correctness. |
| return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false, |
| DepClassTy::REQUIRED); |
| } |
| |
| /// Determine if \p I is assumed to be side-effect free. |
| bool isAssumedSideEffectFree(Attributor &A, Instruction *I) { |
| if (!I || wouldInstructionBeTriviallyDead(I)) |
| return true; |
| |
| auto *CB = dyn_cast<CallBase>(I); |
| if (!CB || isa<IntrinsicInst>(CB)) |
| return false; |
| |
| const IRPosition &CallIRP = IRPosition::callsite_function(*CB); |
| const auto &NoUnwindAA = |
| A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE); |
| if (!NoUnwindAA.isAssumedNoUnwind()) |
| return false; |
| if (!NoUnwindAA.isKnownNoUnwind()) |
| A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL); |
| |
| const auto &MemBehaviorAA = |
| A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE); |
| if (MemBehaviorAA.isAssumedReadOnly()) { |
| if (!MemBehaviorAA.isKnownReadOnly()) |
| A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| struct AAIsDeadFloating : public AAIsDeadValueImpl { |
| AAIsDeadFloating(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadValueImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (isa<UndefValue>(getAssociatedValue())) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); |
| if (!isAssumedSideEffectFree(A, I)) { |
| if (!isa_and_nonnull<StoreInst>(I)) |
| indicatePessimisticFixpoint(); |
| else |
| removeAssumedBits(HAS_NO_EFFECT); |
| } |
| } |
| |
| bool isDeadStore(Attributor &A, StoreInst &SI) { |
| bool UsedAssumedInformation = false; |
| SmallSetVector<Value *, 4> PotentialCopies; |
| if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this, |
| UsedAssumedInformation)) |
| return false; |
| return llvm::all_of(PotentialCopies, [&](Value *V) { |
| return A.isAssumedDead(IRPosition::value(*V), this, nullptr, |
| UsedAssumedInformation); |
| }); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); |
| if (auto *SI = dyn_cast_or_null<StoreInst>(I)) { |
| if (!isDeadStore(A, *SI)) |
| return indicatePessimisticFixpoint(); |
| } else { |
| if (!isAssumedSideEffectFree(A, I)) |
| return indicatePessimisticFixpoint(); |
| if (!areAllUsesAssumedDead(A, getAssociatedValue())) |
| return indicatePessimisticFixpoint(); |
| } |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| Value &V = getAssociatedValue(); |
| if (auto *I = dyn_cast<Instruction>(&V)) { |
| // If we get here we basically know the users are all dead. We check if |
| // isAssumedSideEffectFree returns true here again because it might not be |
| // the case and only the users are dead but the instruction (=call) is |
| // still needed. |
| if (isa<StoreInst>(I) || |
| (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) { |
| A.deleteAfterManifest(*I); |
| return ChangeStatus::CHANGED; |
| } |
| } |
| if (V.use_empty()) |
| return ChangeStatus::UNCHANGED; |
| |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> C = |
| A.getAssumedConstant(V, *this, UsedAssumedInformation); |
| if (C.hasValue() && C.getValue()) |
| return ChangeStatus::UNCHANGED; |
| |
| // Replace the value with undef as it is dead but keep droppable uses around |
| // as they provide information we don't want to give up on just yet. |
| UndefValue &UV = *UndefValue::get(V.getType()); |
| bool AnyChange = |
| A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false); |
| return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(IsDead) |
| } |
| }; |
| |
| struct AAIsDeadArgument : public AAIsDeadFloating { |
| AAIsDeadArgument(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (!A.isFunctionIPOAmendable(*getAnchorScope())) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Changed = AAIsDeadFloating::manifest(A); |
| Argument &Arg = *getAssociatedArgument(); |
| if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {})) |
| if (A.registerFunctionSignatureRewrite( |
| Arg, /* ReplacementTypes */ {}, |
| Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{}, |
| Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) { |
| Arg.dropDroppableUses(); |
| return ChangeStatus::CHANGED; |
| } |
| return Changed; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } |
| }; |
| |
| struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { |
| AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadValueImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (isa<UndefValue>(getAssociatedValue())) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg) |
| return indicatePessimisticFixpoint(); |
| const IRPosition &ArgPos = IRPosition::argument(*Arg); |
| auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), ArgAA.getState()); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| CallBase &CB = cast<CallBase>(getAnchorValue()); |
| Use &U = CB.getArgOperandUse(getCallSiteArgNo()); |
| assert(!isa<UndefValue>(U.get()) && |
| "Expected undef values to be filtered out!"); |
| UndefValue &UV = *UndefValue::get(U->getType()); |
| if (A.changeUseAfterManifest(U, UV)) |
| return ChangeStatus::CHANGED; |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } |
| }; |
| |
| struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { |
| AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {} |
| |
| /// See AAIsDead::isAssumedDead(). |
| bool isAssumedDead() const override { |
| return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree; |
| } |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (isa<UndefValue>(getAssociatedValue())) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| // We track this separately as a secondary state. |
| IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI()); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) { |
| IsAssumedSideEffectFree = false; |
| Changed = ChangeStatus::CHANGED; |
| } |
| if (!areAllUsesAssumedDead(A, getAssociatedValue())) |
| return indicatePessimisticFixpoint(); |
| return Changed; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (IsAssumedSideEffectFree) |
| STATS_DECLTRACK_CSRET_ATTR(IsDead) |
| else |
| STATS_DECLTRACK_CSRET_ATTR(UnusedResult) |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return isAssumedDead() |
| ? "assumed-dead" |
| : (getAssumed() ? "assumed-dead-users" : "assumed-live"); |
| } |
| |
| private: |
| bool IsAssumedSideEffectFree; |
| }; |
| |
| struct AAIsDeadReturned : public AAIsDeadValueImpl { |
| AAIsDeadReturned(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadValueImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| |
| bool UsedAssumedInformation = false; |
| A.checkForAllInstructions([](Instruction &) { return true; }, *this, |
| {Instruction::Ret}, UsedAssumedInformation); |
| |
| auto PredForCallSite = [&](AbstractCallSite ACS) { |
| if (ACS.isCallbackCall() || !ACS.getInstruction()) |
| return false; |
| return areAllUsesAssumedDead(A, *ACS.getInstruction()); |
| }; |
| |
| bool AllCallSitesKnown; |
| if (!A.checkForAllCallSites(PredForCallSite, *this, true, |
| AllCallSitesKnown)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| // TODO: Rewrite the signature to return void? |
| bool AnyChange = false; |
| UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType()); |
| auto RetInstPred = [&](Instruction &I) { |
| ReturnInst &RI = cast<ReturnInst>(I); |
| if (!isa<UndefValue>(RI.getReturnValue())) |
| AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV); |
| return true; |
| }; |
| bool UsedAssumedInformation = false; |
| A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret}, |
| UsedAssumedInformation); |
| return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } |
| }; |
| |
| struct AAIsDeadFunction : public AAIsDead { |
| AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| const Function *F = getAnchorScope(); |
| if (F && !F->isDeclaration()) { |
| // We only want to compute liveness once. If the function is not part of |
| // the SCC, skip it. |
| if (A.isRunOn(*const_cast<Function *>(F))) { |
| ToBeExploredFrom.insert(&F->getEntryBlock().front()); |
| assumeLive(A, F->getEntryBlock()); |
| } else { |
| indicatePessimisticFixpoint(); |
| } |
| } |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" + |
| std::to_string(getAnchorScope()->size()) + "][#TBEP " + |
| std::to_string(ToBeExploredFrom.size()) + "][#KDE " + |
| std::to_string(KnownDeadEnds.size()) + "]"; |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| assert(getState().isValidState() && |
| "Attempted to manifest an invalid state!"); |
| |
| ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| Function &F = *getAnchorScope(); |
| |
| if (AssumedLiveBlocks.empty()) { |
| A.deleteAfterManifest(F); |
| return ChangeStatus::CHANGED; |
| } |
| |
| // Flag to determine if we can change an invoke to a call assuming the |
| // callee is nounwind. This is not possible if the personality of the |
| // function allows to catch asynchronous exceptions. |
| bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); |
| |
| KnownDeadEnds.set_union(ToBeExploredFrom); |
| for (const Instruction *DeadEndI : KnownDeadEnds) { |
| auto *CB = dyn_cast<CallBase>(DeadEndI); |
| if (!CB) |
| continue; |
| const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>( |
| *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL); |
| bool MayReturn = !NoReturnAA.isAssumedNoReturn(); |
| if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB))) |
| continue; |
| |
| if (auto *II = dyn_cast<InvokeInst>(DeadEndI)) |
| A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II)); |
| else |
| A.changeToUnreachableAfterManifest( |
| const_cast<Instruction *>(DeadEndI->getNextNode())); |
| HasChanged = ChangeStatus::CHANGED; |
| } |
| |
| STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted."); |
| for (BasicBlock &BB : F) |
| if (!AssumedLiveBlocks.count(&BB)) { |
| A.deleteAfterManifest(BB); |
| ++BUILD_STAT_NAME(AAIsDead, BasicBlock); |
| } |
| |
| return HasChanged; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override { |
| return !AssumedLiveEdges.count(std::make_pair(From, To)); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| |
| /// Returns true if the function is assumed dead. |
| bool isAssumedDead() const override { return false; } |
| |
| /// See AAIsDead::isKnownDead(). |
| bool isKnownDead() const override { return false; } |
| |
| /// See AAIsDead::isAssumedDead(BasicBlock *). |
| bool isAssumedDead(const BasicBlock *BB) const override { |
| assert(BB->getParent() == getAnchorScope() && |
| "BB must be in the same anchor scope function."); |
| |
| if (!getAssumed()) |
| return false; |
| return !AssumedLiveBlocks.count(BB); |
| } |
| |
| /// See AAIsDead::isKnownDead(BasicBlock *). |
| bool isKnownDead(const BasicBlock *BB) const override { |
| return getKnown() && isAssumedDead(BB); |
| } |
| |
| /// See AAIsDead::isAssumed(Instruction *I). |
| bool isAssumedDead(const Instruction *I) const override { |
| assert(I->getParent()->getParent() == getAnchorScope() && |
| "Instruction must be in the same anchor scope function."); |
| |
| if (!getAssumed()) |
| return false; |
| |
| // If it is not in AssumedLiveBlocks then it for sure dead. |
| // Otherwise, it can still be after noreturn call in a live block. |
| if (!AssumedLiveBlocks.count(I->getParent())) |
| return true; |
| |
| // If it is not after a liveness barrier it is live. |
| const Instruction *PrevI = I->getPrevNode(); |
| while (PrevI) { |
| if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI)) |
| return true; |
| PrevI = PrevI->getPrevNode(); |
| } |
| return false; |
| } |
| |
| /// See AAIsDead::isKnownDead(Instruction *I). |
| bool isKnownDead(const Instruction *I) const override { |
| return getKnown() && isAssumedDead(I); |
| } |
| |
| /// Assume \p BB is (partially) live now and indicate to the Attributor \p A |
| /// that internal function called from \p BB should now be looked at. |
| bool assumeLive(Attributor &A, const BasicBlock &BB) { |
| if (!AssumedLiveBlocks.insert(&BB).second) |
| return false; |
| |
| // We assume that all of BB is (probably) live now and if there are calls to |
| // internal functions we will assume that those are now live as well. This |
| // is a performance optimization for blocks with calls to a lot of internal |
| // functions. It can however cause dead functions to be treated as live. |
| for (const Instruction &I : BB) |
| if (const auto *CB = dyn_cast<CallBase>(&I)) |
| if (const Function *F = CB->getCalledFunction()) |
| if (F->hasLocalLinkage()) |
| A.markLiveInternalFunction(*F); |
| return true; |
| } |
| |
| /// Collection of instructions that need to be explored again, e.g., we |
| /// did assume they do not transfer control to (one of their) successors. |
| SmallSetVector<const Instruction *, 8> ToBeExploredFrom; |
| |
| /// Collection of instructions that are known to not transfer control. |
| SmallSetVector<const Instruction *, 8> KnownDeadEnds; |
| |
| /// Collection of all assumed live edges |
| DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges; |
| |
| /// Collection of all assumed live BasicBlocks. |
| DenseSet<const BasicBlock *> AssumedLiveBlocks; |
| }; |
| |
| static bool |
| identifyAliveSuccessors(Attributor &A, const CallBase &CB, |
| AbstractAttribute &AA, |
| SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| const IRPosition &IPos = IRPosition::callsite_function(CB); |
| |
| const auto &NoReturnAA = |
| A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL); |
| if (NoReturnAA.isAssumedNoReturn()) |
| return !NoReturnAA.isKnownNoReturn(); |
| if (CB.isTerminator()) |
| AliveSuccessors.push_back(&CB.getSuccessor(0)->front()); |
| else |
| AliveSuccessors.push_back(CB.getNextNode()); |
| return false; |
| } |
| |
| static bool |
| identifyAliveSuccessors(Attributor &A, const InvokeInst &II, |
| AbstractAttribute &AA, |
| SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| bool UsedAssumedInformation = |
| identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors); |
| |
| // First, determine if we can change an invoke to a call assuming the |
| // callee is nounwind. This is not possible if the personality of the |
| // function allows to catch asynchronous exceptions. |
| if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) { |
| AliveSuccessors.push_back(&II.getUnwindDest()->front()); |
| } else { |
| const IRPosition &IPos = IRPosition::callsite_function(II); |
| const auto &AANoUnw = |
| A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL); |
| if (AANoUnw.isAssumedNoUnwind()) { |
| UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind(); |
| } else { |
| AliveSuccessors.push_back(&II.getUnwindDest()->front()); |
| } |
| } |
| return UsedAssumedInformation; |
| } |
| |
| static bool |
| identifyAliveSuccessors(Attributor &A, const BranchInst &BI, |
| AbstractAttribute &AA, |
| SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| bool UsedAssumedInformation = false; |
| if (BI.getNumSuccessors() == 1) { |
| AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); |
| } else { |
| Optional<Constant *> C = |
| A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation); |
| if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) { |
| // No value yet, assume both edges are dead. |
| } else if (isa_and_nonnull<ConstantInt>(*C)) { |
| const BasicBlock *SuccBB = |
| BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue()); |
| AliveSuccessors.push_back(&SuccBB->front()); |
| } else { |
| AliveSuccessors.push_back(&BI.getSuccessor(0)->front()); |
| AliveSuccessors.push_back(&BI.getSuccessor(1)->front()); |
| UsedAssumedInformation = false; |
| } |
| } |
| return UsedAssumedInformation; |
| } |
| |
| static bool |
| identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, |
| AbstractAttribute &AA, |
| SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> C = |
| A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation); |
| if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) { |
| // No value yet, assume all edges are dead. |
| } else if (isa_and_nonnull<ConstantInt>(C.getValue())) { |
| for (auto &CaseIt : SI.cases()) { |
| if (CaseIt.getCaseValue() == C.getValue()) { |
| AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front()); |
| return UsedAssumedInformation; |
| } |
| } |
| AliveSuccessors.push_back(&SI.getDefaultDest()->front()); |
| return UsedAssumedInformation; |
| } else { |
| for (const BasicBlock *SuccBB : successors(SI.getParent())) |
| AliveSuccessors.push_back(&SuccBB->front()); |
| } |
| return UsedAssumedInformation; |
| } |
| |
| ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { |
| ChangeStatus Change = ChangeStatus::UNCHANGED; |
| |
| LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" |
| << getAnchorScope()->size() << "] BBs and " |
| << ToBeExploredFrom.size() << " exploration points and " |
| << KnownDeadEnds.size() << " known dead ends\n"); |
| |
| // Copy and clear the list of instructions we need to explore from. It is |
| // refilled with instructions the next update has to look at. |
| SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), |
| ToBeExploredFrom.end()); |
| decltype(ToBeExploredFrom) NewToBeExploredFrom; |
| |
| SmallVector<const Instruction *, 8> AliveSuccessors; |
| while (!Worklist.empty()) { |
| const Instruction *I = Worklist.pop_back_val(); |
| LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n"); |
| |
| // Fast forward for uninteresting instructions. We could look for UB here |
| // though. |
| while (!I->isTerminator() && !isa<CallBase>(I)) |
| I = I->getNextNode(); |
| |
| AliveSuccessors.clear(); |
| |
| bool UsedAssumedInformation = false; |
| switch (I->getOpcode()) { |
| // TODO: look for (assumed) UB to backwards propagate "deadness". |
| default: |
| assert(I->isTerminator() && |
| "Expected non-terminators to be handled already!"); |
| for (const BasicBlock *SuccBB : successors(I->getParent())) |
| AliveSuccessors.push_back(&SuccBB->front()); |
| break; |
| case Instruction::Call: |
| UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I), |
| *this, AliveSuccessors); |
| break; |
| case Instruction::Invoke: |
| UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I), |
| *this, AliveSuccessors); |
| break; |
| case Instruction::Br: |
| UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I), |
| *this, AliveSuccessors); |
| break; |
| case Instruction::Switch: |
| UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I), |
| *this, AliveSuccessors); |
| break; |
| } |
| |
| if (UsedAssumedInformation) { |
| NewToBeExploredFrom.insert(I); |
| } else if (AliveSuccessors.empty() || |
| (I->isTerminator() && |
| AliveSuccessors.size() < I->getNumSuccessors())) { |
| if (KnownDeadEnds.insert(I)) |
| Change = ChangeStatus::CHANGED; |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " |
| << AliveSuccessors.size() << " UsedAssumedInformation: " |
| << UsedAssumedInformation << "\n"); |
| |
| for (const Instruction *AliveSuccessor : AliveSuccessors) { |
| if (!I->isTerminator()) { |
| assert(AliveSuccessors.size() == 1 && |
| "Non-terminator expected to have a single successor!"); |
| Worklist.push_back(AliveSuccessor); |
| } else { |
| // record the assumed live edge |
| auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent()); |
| if (AssumedLiveEdges.insert(Edge).second) |
| Change = ChangeStatus::CHANGED; |
| if (assumeLive(A, *AliveSuccessor->getParent())) |
| Worklist.push_back(AliveSuccessor); |
| } |
| } |
| } |
| |
| // Check if the content of ToBeExploredFrom changed, ignore the order. |
| if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() || |
| llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) { |
| return !ToBeExploredFrom.count(I); |
| })) { |
| Change = ChangeStatus::CHANGED; |
| ToBeExploredFrom = std::move(NewToBeExploredFrom); |
| } |
| |
| // If we know everything is live there is no need to query for liveness. |
| // Instead, indicating a pessimistic fixpoint will cause the state to be |
| // "invalid" and all queries to be answered conservatively without lookups. |
| // To be in this state we have to (1) finished the exploration and (3) not |
| // discovered any non-trivial dead end and (2) not ruled unreachable code |
| // dead. |
| if (ToBeExploredFrom.empty() && |
| getAnchorScope()->size() == AssumedLiveBlocks.size() && |
| llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) { |
| return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; |
| })) |
| return indicatePessimisticFixpoint(); |
| return Change; |
| } |
| |
| /// Liveness information for a call sites. |
| struct AAIsDeadCallSite final : AAIsDeadFunction { |
| AAIsDeadCallSite(const IRPosition &IRP, Attributor &A) |
| : AAIsDeadFunction(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites instead of |
| // redirecting requests to the callee. |
| llvm_unreachable("Abstract attributes for liveness are not " |
| "supported for call sites yet!"); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| }; |
| |
| /// -------------------- Dereferenceable Argument Attribute -------------------- |
| |
| struct AADereferenceableImpl : AADereferenceable { |
| AADereferenceableImpl(const IRPosition &IRP, Attributor &A) |
| : AADereferenceable(IRP, A) {} |
| using StateType = DerefState; |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| SmallVector<Attribute, 4> Attrs; |
| getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, |
| Attrs, /* IgnoreSubsumingPositions */ false, &A); |
| for (const Attribute &Attr : Attrs) |
| takeKnownDerefBytesMaximum(Attr.getValueAsInt()); |
| |
| const IRPosition &IRP = this->getIRPosition(); |
| NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE); |
| |
| bool CanBeNull, CanBeFreed; |
| takeKnownDerefBytesMaximum( |
| IRP.getAssociatedValue().getPointerDereferenceableBytes( |
| A.getDataLayout(), CanBeNull, CanBeFreed)); |
| |
| bool IsFnInterface = IRP.isFnInterfaceKind(); |
| Function *FnScope = IRP.getAnchorScope(); |
| if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| if (Instruction *CtxI = getCtxI()) |
| followUsesInMBEC(*this, A, getState(), *CtxI); |
| } |
| |
| /// See AbstractAttribute::getState() |
| /// { |
| StateType &getState() override { return *this; } |
| const StateType &getState() const override { return *this; } |
| /// } |
| |
| /// Helper function for collecting accessed bytes in must-be-executed-context |
| void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I, |
| DerefState &State) { |
| const Value *UseV = U->get(); |
| if (!UseV->getType()->isPointerTy()) |
| return; |
| |
| Type *PtrTy = UseV->getType(); |
| const DataLayout &DL = A.getDataLayout(); |
| int64_t Offset; |
| if (const Value *Base = getBasePointerOfAccessPointerOperand( |
| I, Offset, DL, /*AllowNonInbounds*/ true)) { |
| if (Base == &getAssociatedValue() && |
| getPointerOperand(I, /* AllowVolatile */ false) == UseV) { |
| uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType()); |
| State.addAccessedBytes(Offset, Size); |
| } |
| } |
| } |
| |
| /// See followUsesInMBEC |
| bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| AADereferenceable::StateType &State) { |
| bool IsNonNull = false; |
| bool TrackUse = false; |
| int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( |
| A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse); |
| LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes |
| << " for instruction " << *I << "\n"); |
| |
| addAccessedBytesForUse(A, U, I, State); |
| State.takeKnownDerefBytesMaximum(DerefBytes); |
| return TrackUse; |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Change = AADereferenceable::manifest(A); |
| if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) { |
| removeAttrs({Attribute::DereferenceableOrNull}); |
| return ChangeStatus::CHANGED; |
| } |
| return Change; |
| } |
| |
| void getDeducedAttributes(LLVMContext &Ctx, |
| SmallVectorImpl<Attribute> &Attrs) const override { |
| // TODO: Add *_globally support |
| if (isAssumedNonNull()) |
| Attrs.emplace_back(Attribute::getWithDereferenceableBytes( |
| Ctx, getAssumedDereferenceableBytes())); |
| else |
| Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes( |
| Ctx, getAssumedDereferenceableBytes())); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| if (!getAssumedDereferenceableBytes()) |
| return "unknown-dereferenceable"; |
| return std::string("dereferenceable") + |
| (isAssumedNonNull() ? "" : "_or_null") + |
| (isAssumedGlobal() ? "_globally" : "") + "<" + |
| std::to_string(getKnownDereferenceableBytes()) + "-" + |
| std::to_string(getAssumedDereferenceableBytes()) + ">"; |
| } |
| }; |
| |
| /// Dereferenceable attribute for a floating value. |
| struct AADereferenceableFloating : AADereferenceableImpl { |
| AADereferenceableFloating(const IRPosition &IRP, Attributor &A) |
| : AADereferenceableImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| const DataLayout &DL = A.getDataLayout(); |
| |
| auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T, |
| bool Stripped) -> bool { |
| unsigned IdxWidth = |
| DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace()); |
| APInt Offset(IdxWidth, 0); |
| const Value *Base = |
| stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false); |
| |
| const auto &AA = A.getAAFor<AADereferenceable>( |
| *this, IRPosition::value(*Base), DepClassTy::REQUIRED); |
| int64_t DerefBytes = 0; |
| if (!Stripped && this == &AA) { |
| // Use IR information if we did not strip anything. |
| // TODO: track globally. |
| bool CanBeNull, CanBeFreed; |
| DerefBytes = |
| Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
| T.GlobalState.indicatePessimisticFixpoint(); |
| } else { |
| const DerefState &DS = AA.getState(); |
| DerefBytes = DS.DerefBytesState.getAssumed(); |
| T.GlobalState &= DS.GlobalState; |
| } |
| |
| // For now we do not try to "increase" dereferenceability due to negative |
| // indices as we first have to come up with code to deal with loops and |
| // for overflows of the dereferenceable bytes. |
| int64_t OffsetSExt = Offset.getSExtValue(); |
| if (OffsetSExt < 0) |
| OffsetSExt = 0; |
| |
| T.takeAssumedDerefBytesMinimum( |
| std::max(int64_t(0), DerefBytes - OffsetSExt)); |
| |
| if (this == &AA) { |
| if (!Stripped) { |
| // If nothing was stripped IR information is all we got. |
| T.takeKnownDerefBytesMaximum( |
| std::max(int64_t(0), DerefBytes - OffsetSExt)); |
| T.indicatePessimisticFixpoint(); |
| } else if (OffsetSExt > 0) { |
| // If something was stripped but there is circular reasoning we look |
| // for the offset. If it is positive we basically decrease the |
| // dereferenceable bytes in a circluar loop now, which will simply |
| // drive them down to the known value in a very slow way which we |
| // can accelerate. |
| T.indicatePessimisticFixpoint(); |
| } |
| } |
| |
| return T.isValidState(); |
| }; |
| |
| DerefState T; |
| if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T, |
| VisitValueCB, getCtxI())) |
| return indicatePessimisticFixpoint(); |
| |
| return clampStateAndIndicateChange(getState(), T); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) |
| } |
| }; |
| |
| /// Dereferenceable attribute for a return value. |
| struct AADereferenceableReturned final |
| : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> { |
| AADereferenceableReturned(const IRPosition &IRP, Attributor &A) |
| : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>( |
| IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FNRET_ATTR(dereferenceable) |
| } |
| }; |
| |
| /// Dereferenceable attribute for an argument |
| struct AADereferenceableArgument final |
| : AAArgumentFromCallSiteArguments<AADereferenceable, |
| AADereferenceableImpl> { |
| using Base = |
| AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>; |
| AADereferenceableArgument(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_ARG_ATTR(dereferenceable) |
| } |
| }; |
| |
| /// Dereferenceable attribute for a call site argument. |
| struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { |
| AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AADereferenceableFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSARG_ATTR(dereferenceable) |
| } |
| }; |
| |
| /// Dereferenceable attribute deduction for a call site return value. |
| struct AADereferenceableCallSiteReturned final |
| : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> { |
| using Base = |
| AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>; |
| AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CS_ATTR(dereferenceable); |
| } |
| }; |
| |
| // ------------------------ Align Argument Attribute ------------------------ |
| |
| static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA, |
| Value &AssociatedValue, const Use *U, |
| const Instruction *I, bool &TrackUse) { |
| // We need to follow common pointer manipulation uses to the accesses they |
| // feed into. |
| if (isa<CastInst>(I)) { |
| // Follow all but ptr2int casts. |
| TrackUse = !isa<PtrToIntInst>(I); |
| return 0; |
| } |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| if (GEP->hasAllConstantIndices()) |
| TrackUse = true; |
| return 0; |
| } |
| |
| MaybeAlign MA; |
| if (const auto *CB = dyn_cast<CallBase>(I)) { |
| if (CB->isBundleOperand(U) || CB->isCallee(U)) |
| return 0; |
| |
| unsigned ArgNo = CB->getArgOperandNo(U); |
| IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo); |
| // As long as we only use known information there is no need to track |
| // dependences here. |
| auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE); |
| MA = MaybeAlign(AlignAA.getKnownAlign()); |
| } |
| |
| const DataLayout &DL = A.getDataLayout(); |
| const Value *UseV = U->get(); |
| if (auto *SI = dyn_cast<StoreInst>(I)) { |
| if (SI->getPointerOperand() == UseV) |
| MA = SI->getAlign(); |
| } else if (auto *LI = dyn_cast<LoadInst>(I)) { |
| if (LI->getPointerOperand() == UseV) |
| MA = LI->getAlign(); |
| } |
| |
| if (!MA || *MA <= QueryingAA.getKnownAlign()) |
| return 0; |
| |
| unsigned Alignment = MA->value(); |
| int64_t Offset; |
| |
| if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) { |
| if (Base == &AssociatedValue) { |
| // BasePointerAddr + Offset = Alignment * Q for some integer Q. |
| // So we can say that the maximum power of two which is a divisor of |
| // gcd(Offset, Alignment) is an alignment. |
| |
| uint32_t gcd = |
| greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment); |
| Alignment = llvm::PowerOf2Floor(gcd); |
| } |
| } |
| |
| return Alignment; |
| } |
| |
| struct AAAlignImpl : AAAlign { |
| AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| SmallVector<Attribute, 4> Attrs; |
| getAttrs({Attribute::Alignment}, Attrs); |
| for (const Attribute &Attr : Attrs) |
| takeKnownMaximum(Attr.getValueAsInt()); |
| |
| Value &V = getAssociatedValue(); |
| // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int |
| // use of the function pointer. This was caused by D73131. We want to |
| // avoid this for function pointers especially because we iterate |
| // their uses and int2ptr is not handled. It is not a correctness |
| // problem though! |
| if (!V.getType()->getPointerElementType()->isFunctionTy()) |
| takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value()); |
| |
| if (getIRPosition().isFnInterfaceKind() && |
| (!getAnchorScope() || |
| !A.isFunctionIPOAmendable(*getAssociatedFunction()))) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| if (Instruction *CtxI = getCtxI()) |
| followUsesInMBEC(*this, A, getState(), *CtxI); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED; |
| |
| // Check for users that allow alignment annotations. |
| Value &AssociatedValue = getAssociatedValue(); |
| for (const Use &U : AssociatedValue.uses()) { |
| if (auto *SI = dyn_cast<StoreInst>(U.getUser())) { |
| if (SI->getPointerOperand() == &AssociatedValue) |
| if (SI->getAlignment() < getAssumedAlign()) { |
| STATS_DECLTRACK(AAAlign, Store, |
| "Number of times alignment added to a store"); |
| SI->setAlignment(Align(getAssumedAlign())); |
| LoadStoreChanged = ChangeStatus::CHANGED; |
| } |
| } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) { |
| if (LI->getPointerOperand() == &AssociatedValue) |
| if (LI->getAlignment() < getAssumedAlign()) { |
| LI->setAlignment(Align(getAssumedAlign())); |
| STATS_DECLTRACK(AAAlign, Load, |
| "Number of times alignment added to a load"); |
| LoadStoreChanged = ChangeStatus::CHANGED; |
| } |
| } |
| } |
| |
| ChangeStatus Changed = AAAlign::manifest(A); |
| |
| Align InheritAlign = |
| getAssociatedValue().getPointerAlignment(A.getDataLayout()); |
| if (InheritAlign >= getAssumedAlign()) |
| return LoadStoreChanged; |
| return Changed | LoadStoreChanged; |
| } |
| |
| // TODO: Provide a helper to determine the implied ABI alignment and check in |
| // the existing manifest method and a new one for AAAlignImpl that value |
| // to avoid making the alignment explicit if it did not improve. |
| |
| /// See AbstractAttribute::getDeducedAttributes |
| virtual void |
| getDeducedAttributes(LLVMContext &Ctx, |
| SmallVectorImpl<Attribute> &Attrs) const override { |
| if (getAssumedAlign() > 1) |
| Attrs.emplace_back( |
| Attribute::getWithAlignment(Ctx, Align(getAssumedAlign()))); |
| } |
| |
| /// See followUsesInMBEC |
| bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| AAAlign::StateType &State) { |
| bool TrackUse = false; |
| |
| unsigned int KnownAlign = |
| getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse); |
| State.takeKnownMaximum(KnownAlign); |
| |
| return TrackUse; |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) + |
| "-" + std::to_string(getAssumedAlign()) + ">") |
| : "unknown-align"; |
| } |
| }; |
| |
| /// Align attribute for a floating value. |
| struct AAAlignFloating : AAAlignImpl { |
| AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| const DataLayout &DL = A.getDataLayout(); |
| |
| auto VisitValueCB = [&](Value &V, const Instruction *, |
| AAAlign::StateType &T, bool Stripped) -> bool { |
| const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V), |
| DepClassTy::REQUIRED); |
| if (!Stripped && this == &AA) { |
| int64_t Offset; |
| unsigned Alignment = 1; |
| if (const Value *Base = |
| GetPointerBaseWithConstantOffset(&V, Offset, DL)) { |
| Align PA = Base->getPointerAlignment(DL); |
| // BasePointerAddr + Offset = Alignment * Q for some integer Q. |
| // So we can say that the maximum power of two which is a divisor of |
| // gcd(Offset, Alignment) is an alignment. |
| |
| uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), |
| uint32_t(PA.value())); |
| Alignment = llvm::PowerOf2Floor(gcd); |
| } else { |
| Alignment = V.getPointerAlignment(DL).value(); |
| } |
| // Use only IR information if we did not strip anything. |
| T.takeKnownMaximum(Alignment); |
| T.indicatePessimisticFixpoint(); |
| } else { |
| // Use abstract attribute information. |
| const AAAlign::StateType &DS = AA.getState(); |
| T ^= DS; |
| } |
| return T.isValidState(); |
| }; |
| |
| StateType T; |
| if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T, |
| VisitValueCB, getCtxI())) |
| return indicatePessimisticFixpoint(); |
| |
| // TODO: If we know we visited all incoming values, thus no are assumed |
| // dead, we can take the known information from the state T. |
| return clampStateAndIndicateChange(getState(), T); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } |
| }; |
| |
| /// Align attribute for function return value. |
| struct AAAlignReturned final |
| : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { |
| using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>; |
| AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| Base::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } |
| }; |
| |
| /// Align attribute for function argument. |
| struct AAAlignArgument final |
| : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> { |
| using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>; |
| AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| // If the associated argument is involved in a must-tail call we give up |
| // because we would need to keep the argument alignments of caller and |
| // callee in-sync. Just does not seem worth the trouble right now. |
| if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument())) |
| return ChangeStatus::UNCHANGED; |
| return Base::manifest(A); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } |
| }; |
| |
| struct AAAlignCallSiteArgument final : AAAlignFloating { |
| AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAAlignFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| // If the associated argument is involved in a must-tail call we give up |
| // because we would need to keep the argument alignments of caller and |
| // callee in-sync. Just does not seem worth the trouble right now. |
| if (Argument *Arg = getAssociatedArgument()) |
| if (A.getInfoCache().isInvolvedInMustTailCall(*Arg)) |
| return ChangeStatus::UNCHANGED; |
| ChangeStatus Changed = AAAlignImpl::manifest(A); |
| Align InheritAlign = |
| getAssociatedValue().getPointerAlignment(A.getDataLayout()); |
| if (InheritAlign >= getAssumedAlign()) |
| Changed = ChangeStatus::UNCHANGED; |
| return Changed; |
| } |
| |
| /// See AbstractAttribute::updateImpl(Attributor &A). |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus Changed = AAAlignFloating::updateImpl(A); |
| if (Argument *Arg = getAssociatedArgument()) { |
| // We only take known information from the argument |
| // so we do not need to track a dependence. |
| const auto &ArgAlignAA = A.getAAFor<AAAlign>( |
| *this, IRPosition::argument(*Arg), DepClassTy::NONE); |
| takeKnownMaximum(ArgAlignAA.getKnownAlign()); |
| } |
| return Changed; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } |
| }; |
| |
| /// Align attribute deduction for a call site return value. |
| struct AAAlignCallSiteReturned final |
| : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> { |
| using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>; |
| AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| Base::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } |
| }; |
| |
| /// ------------------ Function No-Return Attribute ---------------------------- |
| struct AANoReturnImpl : public AANoReturn { |
| AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoReturn::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumed() ? "noreturn" : "may-return"; |
| } |
| |
| /// See AbstractAttribute::updateImpl(Attributor &A). |
| virtual ChangeStatus updateImpl(Attributor &A) override { |
| auto CheckForNoReturn = [](Instruction &) { return false; }; |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllInstructions(CheckForNoReturn, *this, |
| {(unsigned)Instruction::Ret}, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| return ChangeStatus::UNCHANGED; |
| } |
| }; |
| |
| struct AANoReturnFunction final : AANoReturnImpl { |
| AANoReturnFunction(const IRPosition &IRP, Attributor &A) |
| : AANoReturnImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } |
| }; |
| |
| /// NoReturn attribute deduction for a call sites. |
| struct AANoReturnCallSite final : AANoReturnImpl { |
| AANoReturnCallSite(const IRPosition &IRP, Attributor &A) |
| : AANoReturnImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoReturnImpl::initialize(A); |
| if (Function *F = getAssociatedFunction()) { |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED); |
| if (!FnAA.isAssumedNoReturn()) |
| indicatePessimisticFixpoint(); |
| } |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } |
| }; |
| |
| /// ----------------------- Variable Capturing --------------------------------- |
| |
| /// A class to hold the state of for no-capture attributes. |
| struct AANoCaptureImpl : public AANoCapture { |
| AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| Function *AnchorScope = getAnchorScope(); |
| if (isFnInterfaceKind() && |
| (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| // You cannot "capture" null in the default address space. |
| if (isa<ConstantPointerNull>(getAssociatedValue()) && |
| getAssociatedValue().getType()->getPointerAddressSpace() == 0) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| const Function *F = |
| isArgumentPosition() ? getAssociatedFunction() : AnchorScope; |
| |
| // Check what state the associated function can actually capture. |
| if (F) |
| determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); |
| else |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). |
| virtual void |
| getDeducedAttributes(LLVMContext &Ctx, |
| SmallVectorImpl<Attribute> &Attrs) const override { |
| if (!isAssumedNoCaptureMaybeReturned()) |
| return; |
| |
| if (isArgumentPosition()) { |
| if (isAssumedNoCapture()) |
| Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture)); |
| else if (ManifestInternal) |
| Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned")); |
| } |
| } |
| |
| /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known |
| /// depending on the ability of the function associated with \p IRP to capture |
| /// state in memory and through "returning/throwing", respectively. |
| static void determineFunctionCaptureCapabilities(const IRPosition &IRP, |
| const Function &F, |
| BitIntegerState &State) { |
| // TODO: Once we have memory behavior attributes we should use them here. |
| |
| // If we know we cannot communicate or write to memory, we do not care about |
| // ptr2int anymore. |
| if (F.onlyReadsMemory() && F.doesNotThrow() && |
| F.getReturnType()->isVoidTy()) { |
| State.addKnownBits(NO_CAPTURE); |
| return; |
| } |
| |
| // A function cannot capture state in memory if it only reads memory, it can |
| // however return/throw state and the state might be influenced by the |
| // pointer value, e.g., loading from a returned pointer might reveal a bit. |
| if (F.onlyReadsMemory()) |
| State.addKnownBits(NOT_CAPTURED_IN_MEM); |
| |
| // A function cannot communicate state back if it does not through |
| // exceptions and doesn not return values. |
| if (F.doesNotThrow() && F.getReturnType()->isVoidTy()) |
| State.addKnownBits(NOT_CAPTURED_IN_RET); |
| |
| // Check existing "returned" attributes. |
| int ArgNo = IRP.getCalleeArgNo(); |
| if (F.doesNotThrow() && ArgNo >= 0) { |
| for (unsigned u = 0, e = F.arg_size(); u < e; ++u) |
| if (F.hasParamAttribute(u, Attribute::Returned)) { |
| if (u == unsigned(ArgNo)) |
| State.removeAssumedBits(NOT_CAPTURED_IN_RET); |
| else if (F.onlyReadsMemory()) |
| State.addKnownBits(NO_CAPTURE); |
| else |
| State.addKnownBits(NOT_CAPTURED_IN_RET); |
| break; |
| } |
| } |
| } |
| |
| /// See AbstractState::getAsStr(). |
| const std::string getAsStr() const override { |
| if (isKnownNoCapture()) |
| return "known not-captured"; |
| if (isAssumedNoCapture()) |
| return "assumed not-captured"; |
| if (isKnownNoCaptureMaybeReturned()) |
| return "known not-captured-maybe-returned"; |
| if (isAssumedNoCaptureMaybeReturned()) |
| return "assumed not-captured-maybe-returned"; |
| return "assumed-captured"; |
| } |
| }; |
| |
| /// Attributor-aware capture tracker. |
| struct AACaptureUseTracker final : public CaptureTracker { |
| |
| /// Create a capture tracker that can lookup in-flight abstract attributes |
| /// through the Attributor \p A. |
| /// |
| /// If a use leads to a potential capture, \p CapturedInMemory is set and the |
| /// search is stopped. If a use leads to a return instruction, |
| /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed. |
| /// If a use leads to a ptr2int which may capture the value, |
| /// \p CapturedInInteger is set. If a use is found that is currently assumed |
| /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies |
| /// set. All values in \p PotentialCopies are later tracked as well. For every |
| /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0, |
| /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger |
| /// conservatively set to true. |
| AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA, |
| const AAIsDead &IsDeadAA, AANoCapture::StateType &State, |
| SmallSetVector<Value *, 4> &PotentialCopies, |
| unsigned &RemainingUsesToExplore) |
| : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State), |
| PotentialCopies(PotentialCopies), |
| RemainingUsesToExplore(RemainingUsesToExplore) {} |
| |
| /// Determine if \p V maybe captured. *Also updates the state!* |
| bool valueMayBeCaptured(const Value *V) { |
| if (V->getType()->isPointerTy()) { |
| PointerMayBeCaptured(V, this); |
| } else { |
| State.indicatePessimisticFixpoint(); |
| } |
| return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); |
| } |
| |
| /// See CaptureTracker::tooManyUses(). |
| void tooManyUses() override { |
| State.removeAssumedBits(AANoCapture::NO_CAPTURE); |
| } |
| |
| bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override { |
| if (CaptureTracker::isDereferenceableOrNull(O, DL)) |
| return true; |
| const auto &DerefAA = A.getAAFor<AADereferenceable>( |
| NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL); |
| return DerefAA.getAssumedDereferenceableBytes(); |
| } |
| |
| /// See CaptureTracker::captured(...). |
| bool captured(const Use *U) override { |
| Instruction *UInst = cast<Instruction>(U->getUser()); |
| LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst |
| << "\n"); |
| |
| // Because we may reuse the tracker multiple times we keep track of the |
| // number of explored uses ourselves as well. |
| if (RemainingUsesToExplore-- == 0) { |
| LLVM_DEBUG(dbgs() << " - too many uses to explore!\n"); |
| return isCapturedIn(/* Memory */ true, /* Integer */ true, |
| /* Return */ true); |
| } |
| |
| // Deal with ptr2int by following uses. |
| if (isa<PtrToIntInst>(UInst)) { |
| LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n"); |
| return valueMayBeCaptured(UInst); |
| } |
| |
| // For stores we check if we can follow the value through memory or not. |
| if (auto *SI = dyn_cast<StoreInst>(UInst)) { |
| if (SI->isVolatile()) |
| return isCapturedIn(/* Memory */ true, /* Integer */ false, |
| /* Return */ false); |
| bool UsedAssumedInformation = false; |
| if (!AA::getPotentialCopiesOfStoredValue( |
| A, *SI, PotentialCopies, NoCaptureAA, UsedAssumedInformation)) |
| return isCapturedIn(/* Memory */ true, /* Integer */ false, |
| /* Return */ false); |
| // Not captured directly, potential copies will be checked. |
| return isCapturedIn(/* Memory */ false, /* Integer */ false, |
| /* Return */ false); |
| } |
| |
| // Explicitly catch return instructions. |
| if (isa<ReturnInst>(UInst)) { |
| if (UInst->getFunction() == NoCaptureAA.getAnchorScope()) |
| return isCapturedIn(/* Memory */ false, /* Integer */ false, |
| /* Return */ true); |
| return isCapturedIn(/* Memory */ true, /* Integer */ true, |
| /* Return */ true); |
| } |
| |
| // For now we only use special logic for call sites. However, the tracker |
| // itself knows about a lot of other non-capturing cases already. |
| auto *CB = dyn_cast<CallBase>(UInst); |
| if (!CB || !CB->isArgOperand(U)) |
| return isCapturedIn(/* Memory */ true, /* Integer */ true, |
| /* Return */ true); |
| |
| unsigned ArgNo = CB->getArgOperandNo(U); |
| const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo); |
| // If we have a abstract no-capture attribute for the argument we can use |
| // it to justify a non-capture attribute here. This allows recursion! |
| auto &ArgNoCaptureAA = |
| A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED); |
| if (ArgNoCaptureAA.isAssumedNoCapture()) |
| return isCapturedIn(/* Memory */ false, /* Integer */ false, |
| /* Return */ false); |
| if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { |
| addPotentialCopy(*CB); |
| return isCapturedIn(/* Memory */ false, /* Integer */ false, |
| /* Return */ false); |
| } |
| |
| // Lastly, we could not find a reason no-capture can be assumed so we don't. |
| return isCapturedIn(/* Memory */ true, /* Integer */ true, |
| /* Return */ true); |
| } |
| |
| /// Register \p CS as potential copy of the value we are checking. |
| void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); } |
| |
| /// See CaptureTracker::shouldExplore(...). |
| bool shouldExplore(const Use *U) override { |
| // Check liveness and ignore droppable users. |
| bool UsedAssumedInformation = false; |
| return !U->getUser()->isDroppable() && |
| !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA, |
| UsedAssumedInformation); |
| } |
| |
| /// Update the state according to \p CapturedInMem, \p CapturedInInt, and |
| /// \p CapturedInRet, then return the appropriate value for use in the |
| /// CaptureTracker::captured() interface. |
| bool isCapturedIn(bool CapturedInMem, bool CapturedInInt, |
| bool CapturedInRet) { |
| LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " |
| << CapturedInInt << "|Ret " << CapturedInRet << "]\n"); |
| if (CapturedInMem) |
| State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM); |
| if (CapturedInInt) |
| State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT); |
| if (CapturedInRet) |
| State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET); |
| return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED); |
| } |
| |
| private: |
| /// The attributor providing in-flight abstract attributes. |
| Attributor &A; |
| |
| /// The abstract attribute currently updated. |
| AANoCapture &NoCaptureAA; |
| |
| /// The abstract liveness state. |
| const AAIsDead &IsDeadAA; |
| |
| /// The state currently updated. |
| AANoCapture::StateType &State; |
| |
| /// Set of potential copies of the tracked value. |
| SmallSetVector<Value *, 4> &PotentialCopies; |
| |
| /// Global counter to limit the number of explored uses. |
| unsigned &RemainingUsesToExplore; |
| }; |
| |
| ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { |
| const IRPosition &IRP = getIRPosition(); |
| Value *V = isArgumentPosition() ? IRP.getAssociatedArgument() |
| : &IRP.getAssociatedValue(); |
| if (!V) |
| return indicatePessimisticFixpoint(); |
| |
| const Function *F = |
| isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); |
| assert(F && "Expected a function!"); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE); |
| |
| AANoCapture::StateType T; |
| |
| // Readonly means we cannot capture through memory. |
| const auto &FnMemAA = |
| A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE); |
| if (FnMemAA.isAssumedReadOnly()) { |
| T.addKnownBits(NOT_CAPTURED_IN_MEM); |
| if (FnMemAA.isKnownReadOnly()) |
| addKnownBits(NOT_CAPTURED_IN_MEM); |
| else |
| A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL); |
| } |
| |
| // Make sure all returned values are different than the underlying value. |
| // TODO: we could do this in a more sophisticated way inside |
| // AAReturnedValues, e.g., track all values that escape through returns |
| // directly somehow. |
| auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) { |
| bool SeenConstant = false; |
| for (auto &It : RVAA.returned_values()) { |
| if (isa<Constant>(It.first)) { |
| if (SeenConstant) |
| return false; |
| SeenConstant = true; |
| } else if (!isa<Argument>(It.first) || |
| It.first == getAssociatedArgument()) |
| return false; |
| } |
| return true; |
| }; |
| |
| const auto &NoUnwindAA = |
| A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL); |
| if (NoUnwindAA.isAssumedNoUnwind()) { |
| bool IsVoidTy = F->getReturnType()->isVoidTy(); |
| const AAReturnedValues *RVAA = |
| IsVoidTy ? nullptr |
| : &A.getAAFor<AAReturnedValues>(*this, FnPos, |
| |
| DepClassTy::OPTIONAL); |
| if (IsVoidTy || CheckReturnedArgs(*RVAA)) { |
| T.addKnownBits(NOT_CAPTURED_IN_RET); |
| if (T.isKnown(NOT_CAPTURED_IN_MEM)) |
| return ChangeStatus::UNCHANGED; |
| if (NoUnwindAA.isKnownNoUnwind() && |
| (IsVoidTy || RVAA->getState().isAtFixpoint())) { |
| addKnownBits(NOT_CAPTURED_IN_RET); |
| if (isKnown(NOT_CAPTURED_IN_MEM)) |
| return indicateOptimisticFixpoint(); |
| } |
| } |
| } |
| |
| // Use the CaptureTracker interface and logic with the specialized tracker, |
| // defined in AACaptureUseTracker, that can look at in-flight abstract |
| // attributes and directly updates the assumed state. |
| SmallSetVector<Value *, 4> PotentialCopies; |
| unsigned RemainingUsesToExplore = |
| getDefaultMaxUsesToExploreForCaptureTracking(); |
| AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies, |
| RemainingUsesToExplore); |
| |
| // Check all potential copies of the associated value until we can assume |
| // none will be captured or we have to assume at least one might be. |
| unsigned Idx = 0; |
| PotentialCopies.insert(V); |
| while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size()) |
| Tracker.valueMayBeCaptured(PotentialCopies[Idx++]); |
| |
| AANoCapture::StateType &S = getState(); |
| auto Assumed = S.getAssumed(); |
| S.intersectAssumedBits(T.getAssumed()); |
| if (!isAssumedNoCaptureMaybeReturned()) |
| return indicatePessimisticFixpoint(); |
| return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| /// NoCapture attribute for function arguments. |
| struct AANoCaptureArgument final : AANoCaptureImpl { |
| AANoCaptureArgument(const IRPosition &IRP, Attributor &A) |
| : AANoCaptureImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } |
| }; |
| |
| /// NoCapture attribute for call site arguments. |
| struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { |
| AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AANoCaptureImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (Argument *Arg = getAssociatedArgument()) |
| if (Arg->hasByValAttr()) |
| indicateOptimisticFixpoint(); |
| AANoCaptureImpl::initialize(A); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg) |
| return indicatePessimisticFixpoint(); |
| const IRPosition &ArgPos = IRPosition::argument(*Arg); |
| auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), ArgAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)}; |
| }; |
| |
| /// NoCapture attribute for floating values. |
| struct AANoCaptureFloating final : AANoCaptureImpl { |
| AANoCaptureFloating(const IRPosition &IRP, Attributor &A) |
| : AANoCaptureImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(nocapture) |
| } |
| }; |
| |
| /// NoCapture attribute for function return value. |
| struct AANoCaptureReturned final : AANoCaptureImpl { |
| AANoCaptureReturned(const IRPosition &IRP, Attributor &A) |
| : AANoCaptureImpl(IRP, A) { |
| llvm_unreachable("NoCapture is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| llvm_unreachable("NoCapture is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable("NoCapture is not applicable to function returns!"); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| }; |
| |
| /// NoCapture attribute deduction for a call site return value. |
| struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { |
| AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AANoCaptureImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| const Function *F = getAnchorScope(); |
| // Check what state the associated function can actually capture. |
| determineFunctionCaptureCapabilities(getIRPosition(), *F, *this); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSRET_ATTR(nocapture) |
| } |
| }; |
| |
| /// ------------------ Value Simplify Attribute ---------------------------- |
| |
| bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) { |
| // FIXME: Add a typecast support. |
| SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| SimplifiedAssociatedValue, Other, Ty); |
| if (SimplifiedAssociatedValue == Optional<Value *>(nullptr)) |
| return false; |
| |
| LLVM_DEBUG({ |
| if (SimplifiedAssociatedValue.hasValue()) |
| dbgs() << "[ValueSimplify] is assumed to be " |
| << **SimplifiedAssociatedValue << "\n"; |
| else |
| dbgs() << "[ValueSimplify] is assumed to be <none>\n"; |
| }); |
| return true; |
| } |
| |
| struct AAValueSimplifyImpl : AAValueSimplify { |
| AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplify(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (getAssociatedValue().getType()->isVoidTy()) |
| indicatePessimisticFixpoint(); |
| if (A.hasSimplificationCallback(getIRPosition())) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| LLVM_DEBUG({ |
| errs() << "SAV: " << SimplifiedAssociatedValue << " "; |
| if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue) |
| errs() << "SAV: " << **SimplifiedAssociatedValue << " "; |
| }); |
| return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple") |
| : "not-simple"; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| |
| /// See AAValueSimplify::getAssumedSimplifiedValue() |
| Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { |
| return SimplifiedAssociatedValue; |
| } |
| |
| /// Return a value we can use as replacement for the associated one, or |
| /// nullptr if we don't have one that makes sense. |
| Value *getReplacementValue(Attributor &A) const { |
| Value *NewV; |
| NewV = SimplifiedAssociatedValue.hasValue() |
| ? SimplifiedAssociatedValue.getValue() |
| : UndefValue::get(getAssociatedType()); |
| if (!NewV) |
| return nullptr; |
| NewV = AA::getWithType(*NewV, *getAssociatedType()); |
| if (!NewV || NewV == &getAssociatedValue()) |
| return nullptr; |
| const Instruction *CtxI = getCtxI(); |
| if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache())) |
| return nullptr; |
| if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope())) |
| return nullptr; |
| return NewV; |
| } |
| |
| /// Helper function for querying AAValueSimplify and updating candicate. |
| /// \param IRP The value position we are trying to unify with SimplifiedValue |
| bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, |
| const IRPosition &IRP, bool Simplify = true) { |
| bool UsedAssumedInformation = false; |
| Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue(); |
| if (Simplify) |
| QueryingValueSimplified = |
| A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation); |
| return unionAssumed(QueryingValueSimplified); |
| } |
| |
| /// Returns a candidate is found or not |
| template <typename AAType> bool askSimplifiedValueFor(Attributor &A) { |
| if (!getAssociatedValue().getType()->isIntegerTy()) |
| return false; |
| |
| // This will also pass the call base context. |
| const auto &AA = |
| A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE); |
| |
| Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A); |
| |
| if (!COpt.hasValue()) { |
| SimplifiedAssociatedValue = llvm::None; |
| A.recordDependence(AA, *this, DepClassTy::OPTIONAL); |
| return true; |
| } |
| if (auto *C = COpt.getValue()) { |
| SimplifiedAssociatedValue = C; |
| A.recordDependence(AA, *this, DepClassTy::OPTIONAL); |
| return true; |
| } |
| return false; |
| } |
| |
| bool askSimplifiedValueForOtherAAs(Attributor &A) { |
| if (askSimplifiedValueFor<AAValueConstantRange>(A)) |
| return true; |
| if (askSimplifiedValueFor<AAPotentialValues>(A)) |
| return true; |
| return false; |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| if (getAssociatedValue().user_empty()) |
| return Changed; |
| |
| if (auto *NewV = getReplacementValue(A)) { |
| LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> " |
| << *NewV << " :: " << *this << "\n"); |
| if (A.changeValueAfterManifest(getAssociatedValue(), *NewV)) |
| Changed = ChangeStatus::CHANGED; |
| } |
| |
| return Changed | AAValueSimplify::manifest(A); |
| } |
| |
| /// See AbstractState::indicatePessimisticFixpoint(...). |
| ChangeStatus indicatePessimisticFixpoint() override { |
| SimplifiedAssociatedValue = &getAssociatedValue(); |
| return AAValueSimplify::indicatePessimisticFixpoint(); |
| } |
| |
| static bool handleLoad(Attributor &A, const AbstractAttribute &AA, |
| LoadInst &L, function_ref<bool(Value &)> Union) { |
| auto UnionWrapper = [&](Value &V, Value &Obj) { |
| if (isa<AllocaInst>(Obj)) |
| return Union(V); |
| if (!AA::isDynamicallyUnique(A, AA, V)) |
| return false; |
| if (!AA::isValidAtPosition(V, L, A.getInfoCache())) |
| return false; |
| return Union(V); |
| }; |
| |
| Value &Ptr = *L.getPointerOperand(); |
| SmallVector<Value *, 8> Objects; |
| if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L)) |
| return false; |
| |
| for (Value *Obj : Objects) { |
| LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n"); |
| if (isa<UndefValue>(Obj)) |
| continue; |
| if (isa<ConstantPointerNull>(Obj)) { |
| // A null pointer access can be undefined but any offset from null may |
| // be OK. We do not try to optimize the latter. |
| bool UsedAssumedInformation = false; |
| if (!NullPointerIsDefined(L.getFunction(), |
| Ptr.getType()->getPointerAddressSpace()) && |
| A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj) |
| continue; |
| return false; |
| } |
| if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj)) |
| return false; |
| Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType()); |
| if (!InitialVal || !Union(*InitialVal)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store " |
| "propagation, checking accesses next.\n"); |
| |
| auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) { |
| LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n"); |
| if (!Acc.isWrite()) |
| return true; |
| if (Acc.isWrittenValueYetUndetermined()) |
| return true; |
| Value *Content = Acc.getWrittenValue(); |
| if (!Content) |
| return false; |
| Value *CastedContent = |
| AA::getWithType(*Content, *AA.getAssociatedType()); |
| if (!CastedContent) |
| return false; |
| if (IsExact) |
| return UnionWrapper(*CastedContent, *Obj); |
| if (auto *C = dyn_cast<Constant>(CastedContent)) |
| if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C)) |
| return UnionWrapper(*CastedContent, *Obj); |
| return false; |
| }; |
| |
| auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj), |
| DepClassTy::REQUIRED); |
| if (!PI.forallInterferingAccesses(L, CheckAccess)) |
| return false; |
| } |
| return true; |
| } |
| }; |
| |
| struct AAValueSimplifyArgument final : AAValueSimplifyImpl { |
| AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyImpl(IRP, A) {} |
| |
| void initialize(Attributor &A) override { |
| AAValueSimplifyImpl::initialize(A); |
| if (!getAnchorScope() || getAnchorScope()->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| if (hasAttr({Attribute::InAlloca, Attribute::Preallocated, |
| Attribute::StructRet, Attribute::Nest, Attribute::ByVal}, |
| /* IgnoreSubsumingPositions */ true)) |
| indicatePessimisticFixpoint(); |
| |
| // FIXME: This is a hack to prevent us from propagating function poiner in |
| // the new pass manager CGSCC pass as it creates call edges the |
| // CallGraphUpdater cannot handle yet. |
| Value &V = getAssociatedValue(); |
| if (V.getType()->isPointerTy() && |
| V.getType()->getPointerElementType()->isFunctionTy() && |
| !A.isModulePass()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // Byval is only replacable if it is readonly otherwise we would write into |
| // the replaced value and not the copy that byval creates implicitly. |
| Argument *Arg = getAssociatedArgument(); |
| if (Arg->hasByValAttr()) { |
| // TODO: We probably need to verify synchronization is not an issue, e.g., |
| // there is no race by not copying a constant byval. |
| const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), |
| DepClassTy::REQUIRED); |
| if (!MemAA.isAssumedReadOnly()) |
| return indicatePessimisticFixpoint(); |
| } |
| |
| auto Before = SimplifiedAssociatedValue; |
| |
| auto PredForCallSite = [&](AbstractCallSite ACS) { |
| const IRPosition &ACSArgPos = |
| IRPosition::callsite_argument(ACS, getCallSiteArgNo()); |
| // Check if a coresponding argument was found or if it is on not |
| // associated (which can happen for callback calls). |
| if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| return false; |
| |
| // Simplify the argument operand explicitly and check if the result is |
| // valid in the current scope. This avoids refering to simplified values |
| // in other functions, e.g., we don't want to say a an argument in a |
| // static function is actually an argument in a different function. |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> SimpleArgOp = |
| A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation); |
| if (!SimpleArgOp.hasValue()) |
| return true; |
| if (!SimpleArgOp.getValue()) |
| return false; |
| if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp)) |
| return false; |
| return unionAssumed(*SimpleArgOp); |
| }; |
| |
| // Generate a answer specific to a call site context. |
| bool Success; |
| bool AllCallSitesKnown; |
| if (hasCallBaseContext() && |
| getCallBaseContext()->getCalledFunction() == Arg->getParent()) |
| Success = PredForCallSite( |
| AbstractCallSite(&getCallBaseContext()->getCalledOperandUse())); |
| else |
| Success = A.checkForAllCallSites(PredForCallSite, *this, true, |
| AllCallSitesKnown); |
| |
| if (!Success) |
| if (!askSimplifiedValueForOtherAAs(A)) |
| return indicatePessimisticFixpoint(); |
| |
| // If a candicate was found in this update, return CHANGED. |
| return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| : ChangeStatus ::CHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_ARG_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyReturned : AAValueSimplifyImpl { |
| AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyImpl(IRP, A) {} |
| |
| /// See AAValueSimplify::getAssumedSimplifiedValue() |
| Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override { |
| if (!isValidState()) |
| return nullptr; |
| return SimplifiedAssociatedValue; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto Before = SimplifiedAssociatedValue; |
| |
| auto PredForReturned = [&](Value &V) { |
| return checkAndUpdate(A, *this, |
| IRPosition::value(V, getCallBaseContext())); |
| }; |
| |
| if (!A.checkForAllReturnedValues(PredForReturned, *this)) |
| if (!askSimplifiedValueForOtherAAs(A)) |
| return indicatePessimisticFixpoint(); |
| |
| // If a candicate was found in this update, return CHANGED. |
| return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| : ChangeStatus ::CHANGED; |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| |
| if (auto *NewV = getReplacementValue(A)) { |
| auto PredForReturned = |
| [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) { |
| for (ReturnInst *RI : RetInsts) { |
| Value *ReturnedVal = RI->getReturnValue(); |
| if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal)) |
| return true; |
| assert(RI->getFunction() == getAnchorScope() && |
| "ReturnInst in wrong function!"); |
| LLVM_DEBUG(dbgs() |
| << "[ValueSimplify] " << *ReturnedVal << " -> " |
| << *NewV << " in " << *RI << " :: " << *this << "\n"); |
| if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV)) |
| Changed = ChangeStatus::CHANGED; |
| } |
| return true; |
| }; |
| A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this); |
| } |
| |
| return Changed | AAValueSimplify::manifest(A); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FNRET_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyFloating : AAValueSimplifyImpl { |
| AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAValueSimplifyImpl::initialize(A); |
| Value &V = getAnchorValue(); |
| |
| // TODO: add other stuffs |
| if (isa<Constant>(V)) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// Check if \p Cmp is a comparison we can simplify. |
| /// |
| /// We handle multiple cases, one in which at least one operand is an |
| /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other |
| /// operand. Return true if successful, in that case SimplifiedAssociatedValue |
| /// will be updated. |
| bool handleCmp(Attributor &A, CmpInst &Cmp) { |
| auto Union = [&](Value &V) { |
| SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| SimplifiedAssociatedValue, &V, V.getType()); |
| return SimplifiedAssociatedValue != Optional<Value *>(nullptr); |
| }; |
| |
| Value *LHS = Cmp.getOperand(0); |
| Value *RHS = Cmp.getOperand(1); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return true; |
| if (!SimplifiedLHS.getValue()) |
| return false; |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return true; |
| if (!SimplifiedRHS.getValue()) |
| return false; |
| RHS = *SimplifiedRHS; |
| |
| LLVMContext &Ctx = Cmp.getContext(); |
| // Handle the trivial case first in which we don't even need to think about |
| // null or non-null. |
| if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) { |
| Constant *NewVal = |
| ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual()); |
| if (!Union(*NewVal)) |
| return false; |
| if (!UsedAssumedInformation) |
| indicateOptimisticFixpoint(); |
| return true; |
| } |
| |
| // From now on we only handle equalities (==, !=). |
| ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp); |
| if (!ICmp || !ICmp->isEquality()) |
| return false; |
| |
| bool LHSIsNull = isa<ConstantPointerNull>(LHS); |
| bool RHSIsNull = isa<ConstantPointerNull>(RHS); |
| if (!LHSIsNull && !RHSIsNull) |
| return false; |
| |
| // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the |
| // non-nullptr operand and if we assume it's non-null we can conclude the |
| // result of the comparison. |
| assert((LHSIsNull || RHSIsNull) && |
| "Expected nullptr versus non-nullptr comparison at this point"); |
| |
| // The index is the operand that we assume is not null. |
| unsigned PtrIdx = LHSIsNull; |
| auto &PtrNonNullAA = A.getAAFor<AANonNull>( |
| *this, IRPosition::value(*ICmp->getOperand(PtrIdx)), |
| DepClassTy::REQUIRED); |
| if (!PtrNonNullAA.isAssumedNonNull()) |
| return false; |
| UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull(); |
| |
| // The new value depends on the predicate, true for != and false for ==. |
| Constant *NewVal = ConstantInt::get( |
| Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE); |
| if (!Union(*NewVal)) |
| return false; |
| |
| if (!UsedAssumedInformation) |
| indicateOptimisticFixpoint(); |
| |
| return true; |
| } |
| |
| bool updateWithLoad(Attributor &A, LoadInst &L) { |
| auto Union = [&](Value &V) { |
| SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| SimplifiedAssociatedValue, &V, L.getType()); |
| return SimplifiedAssociatedValue != Optional<Value *>(nullptr); |
| }; |
| return handleLoad(A, *this, L, Union); |
| } |
| |
| /// Use the generic, non-optimistic InstSimplfy functionality if we managed to |
| /// simplify any operand of the instruction \p I. Return true if successful, |
| /// in that case SimplifiedAssociatedValue will be updated. |
| bool handleGenericInst(Attributor &A, Instruction &I) { |
| bool SomeSimplified = false; |
| bool UsedAssumedInformation = false; |
| |
| SmallVector<Value *, 8> NewOps(I.getNumOperands()); |
| int Idx = 0; |
| for (Value *Op : I.operands()) { |
| const auto &SimplifiedOp = |
| A.getAssumedSimplified(IRPosition::value(*Op, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| // If we are not sure about any operand we are not sure about the entire |
| // instruction, we'll wait. |
| if (!SimplifiedOp.hasValue()) |
| return true; |
| |
| if (SimplifiedOp.getValue()) |
| NewOps[Idx] = SimplifiedOp.getValue(); |
| else |
| NewOps[Idx] = Op; |
| |
| SomeSimplified |= (NewOps[Idx] != Op); |
| ++Idx; |
| } |
| |
| // We won't bother with the InstSimplify interface if we didn't simplify any |
| // operand ourselves. |
| if (!SomeSimplified) |
| return false; |
| |
| InformationCache &InfoCache = A.getInfoCache(); |
| Function *F = I.getFunction(); |
| const auto *DT = |
| InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F); |
| const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); |
| auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F); |
| OptimizationRemarkEmitter *ORE = nullptr; |
| |
| const DataLayout &DL = I.getModule()->getDataLayout(); |
| SimplifyQuery Q(DL, TLI, DT, AC, &I); |
| if (Value *SimplifiedI = |
| SimplifyInstructionWithOperands(&I, NewOps, Q, ORE)) { |
| SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| SimplifiedAssociatedValue, SimplifiedI, I.getType()); |
| return SimplifiedAssociatedValue != Optional<Value *>(nullptr); |
| } |
| return false; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto Before = SimplifiedAssociatedValue; |
| |
| auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &, |
| bool Stripped) -> bool { |
| auto &AA = A.getAAFor<AAValueSimplify>( |
| *this, IRPosition::value(V, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| if (!Stripped && this == &AA) { |
| |
| if (auto *I = dyn_cast<Instruction>(&V)) { |
| if (auto *LI = dyn_cast<LoadInst>(&V)) |
| if (updateWithLoad(A, *LI)) |
| return true; |
| if (auto *Cmp = dyn_cast<CmpInst>(&V)) |
| if (handleCmp(A, *Cmp)) |
| return true; |
| if (handleGenericInst(A, *I)) |
| return true; |
| } |
| // TODO: Look the instruction and check recursively. |
| |
| LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V |
| << "\n"); |
| return false; |
| } |
| return checkAndUpdate(A, *this, |
| IRPosition::value(V, getCallBaseContext())); |
| }; |
| |
| bool Dummy = false; |
| if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy, |
| VisitValueCB, getCtxI(), |
| /* UseValueSimplify */ false)) |
| if (!askSimplifiedValueForOtherAAs(A)) |
| return indicatePessimisticFixpoint(); |
| |
| // If a candicate was found in this update, return CHANGED. |
| return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| : ChangeStatus ::CHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyFunction : AAValueSimplifyImpl { |
| AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| SimplifiedAssociatedValue = nullptr; |
| indicateOptimisticFixpoint(); |
| } |
| /// See AbstractAttribute::initialize(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable( |
| "AAValueSimplify(Function|CallSite)::updateImpl will not be called"); |
| } |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FN_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyCallSite : AAValueSimplifyFunction { |
| AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyFunction(IRP, A) {} |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CS_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl { |
| AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyImpl(IRP, A) {} |
| |
| void initialize(Attributor &A) override { |
| AAValueSimplifyImpl::initialize(A); |
| if (!getAssociatedFunction()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto Before = SimplifiedAssociatedValue; |
| auto &RetAA = A.getAAFor<AAReturnedValues>( |
| *this, IRPosition::function(*getAssociatedFunction()), |
| DepClassTy::REQUIRED); |
| auto PredForReturned = |
| [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) { |
| bool UsedAssumedInformation = false; |
| Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent( |
| &RetVal, *cast<CallBase>(getCtxI()), *this, |
| UsedAssumedInformation); |
| SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| SimplifiedAssociatedValue, CSRetVal, getAssociatedType()); |
| return SimplifiedAssociatedValue != Optional<Value *>(nullptr); |
| }; |
| if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned)) |
| if (!askSimplifiedValueForOtherAAs(A)) |
| return indicatePessimisticFixpoint(); |
| return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| : ChangeStatus ::CHANGED; |
| } |
| |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSRET_ATTR(value_simplify) |
| } |
| }; |
| |
| struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { |
| AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAValueSimplifyFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| |
| if (auto *NewV = getReplacementValue(A)) { |
| Use &U = cast<CallBase>(&getAnchorValue()) |
| ->getArgOperandUse(getCallSiteArgNo()); |
| if (A.changeUseAfterManifest(U, *NewV)) |
| Changed = ChangeStatus::CHANGED; |
| } |
| |
| return Changed | AAValueSimplify::manifest(A); |
| } |
| |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSARG_ATTR(value_simplify) |
| } |
| }; |
| |
| /// ----------------------- Heap-To-Stack Conversion --------------------------- |
| struct AAHeapToStackFunction final : public AAHeapToStack { |
| |
| struct AllocationInfo { |
| /// The call that allocates the memory. |
| CallBase *const CB; |
| |
| /// The kind of allocation. |
| const enum class AllocationKind { |
| MALLOC, |
| CALLOC, |
| ALIGNED_ALLOC, |
| } Kind; |
| |
| /// The library function id for the allocation. |
| LibFunc LibraryFunctionId = NotLibFunc; |
| |
| /// The status wrt. a rewrite. |
| enum { |
| STACK_DUE_TO_USE, |
| STACK_DUE_TO_FREE, |
| INVALID, |
| } Status = STACK_DUE_TO_USE; |
| |
| /// Flag to indicate if we encountered a use that might free this allocation |
| /// but which is not in the deallocation infos. |
| bool HasPotentiallyFreeingUnknownUses = false; |
| |
| /// The set of free calls that use this allocation. |
| SmallPtrSet<CallBase *, 1> PotentialFreeCalls{}; |
| }; |
| |
| struct DeallocationInfo { |
| /// The call that deallocates the memory. |
| CallBase *const CB; |
| |
| /// Flag to indicate if we don't know all objects this deallocation might |
| /// free. |
| bool MightFreeUnknownObjects = false; |
| |
| /// The set of allocation calls that are potentially freed. |
| SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{}; |
| }; |
| |
| AAHeapToStackFunction(const IRPosition &IRP, Attributor &A) |
| : AAHeapToStack(IRP, A) {} |
| |
| ~AAHeapToStackFunction() { |
| // Ensure we call the destructor so we release any memory allocated in the |
| // sets. |
| for (auto &It : AllocationInfos) |
| It.getSecond()->~AllocationInfo(); |
| for (auto &It : DeallocationInfos) |
| It.getSecond()->~DeallocationInfo(); |
| } |
| |
| void initialize(Attributor &A) override { |
| AAHeapToStack::initialize(A); |
| |
| const Function *F = getAnchorScope(); |
| const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); |
| |
| auto AllocationIdentifierCB = [&](Instruction &I) { |
| CallBase *CB = dyn_cast<CallBase>(&I); |
| if (!CB) |
| return true; |
| if (isFreeCall(CB, TLI)) { |
| DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB}; |
| return true; |
| } |
| bool IsMalloc = isMallocLikeFn(CB, TLI); |
| bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI); |
| bool IsCalloc = |
| !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI); |
| if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) |
| return true; |
| auto Kind = |
| IsMalloc ? AllocationInfo::AllocationKind::MALLOC |
| : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC |
| : AllocationInfo::AllocationKind::ALIGNED_ALLOC); |
| |
| AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind}; |
| AllocationInfos[CB] = AI; |
| TLI->getLibFunc(*CB, AI->LibraryFunctionId); |
| return true; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| bool Success = A.checkForAllCallLikeInstructions( |
| AllocationIdentifierCB, *this, UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ false, |
| /* CheckPotentiallyDead */ true); |
| (void)Success; |
| assert(Success && "Did not expect the call base visit callback to fail!"); |
| } |
| |
| const std::string getAsStr() const override { |
| unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0; |
| for (const auto &It : AllocationInfos) { |
| if (It.second->Status == AllocationInfo::INVALID) |
| ++NumInvalidMallocs; |
| else |
| ++NumH2SMallocs; |
| } |
| return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" + |
| std::to_string(NumInvalidMallocs); |
| } |
| |
| /// See AbstractAttribute::trackStatistics(). |
| void trackStatistics() const override { |
| STATS_DECL( |
| MallocCalls, Function, |
| "Number of malloc/calloc/aligned_alloc calls converted to allocas"); |
| for (auto &It : AllocationInfos) |
| if (It.second->Status != AllocationInfo::INVALID) |
| ++BUILD_STAT_NAME(MallocCalls, Function); |
| } |
| |
| bool isAssumedHeapToStack(const CallBase &CB) const override { |
| if (isValidState()) |
| if (AllocationInfo *AI = AllocationInfos.lookup(&CB)) |
| return AI->Status != AllocationInfo::INVALID; |
| return false; |
| } |
| |
| bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override { |
| if (!isValidState()) |
| return false; |
| |
| for (auto &It : AllocationInfos) { |
| AllocationInfo &AI = *It.second; |
| if (AI.Status == AllocationInfo::INVALID) |
| continue; |
| |
| if (AI.PotentialFreeCalls.count(&CB)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| assert(getState().isValidState() && |
| "Attempted to manifest an invalid state!"); |
| |
| ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| Function *F = getAnchorScope(); |
| const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F); |
| |
| for (auto &It : AllocationInfos) { |
| AllocationInfo &AI = *It.second; |
| if (AI.Status == AllocationInfo::INVALID) |
| continue; |
| |
| for (CallBase *FreeCall : AI.PotentialFreeCalls) { |
| LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n"); |
| A.deleteAfterManifest(*FreeCall); |
| HasChanged = ChangeStatus::CHANGED; |
| } |
| |
| LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB |
| << "\n"); |
| |
| auto Remark = [&](OptimizationRemark OR) { |
| LibFunc IsAllocShared; |
| if (TLI->getLibFunc(*AI.CB, IsAllocShared)) |
| if (IsAllocShared == LibFunc___kmpc_alloc_shared) |
| return OR << "Moving globalized variable to the stack."; |
| return OR << "Moving memory allocation from the heap to the stack."; |
| }; |
| if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared) |
| A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark); |
| else |
| A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark); |
| |
| Value *Size; |
| Optional<APInt> SizeAPI = getSize(A, *this, AI); |
| if (SizeAPI.hasValue()) { |
| Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI); |
| } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) { |
| auto *Num = AI.CB->getOperand(0); |
| auto *SizeT = AI.CB->getOperand(1); |
| IRBuilder<> B(AI.CB); |
| Size = B.CreateMul(Num, SizeT, "h2s.calloc.size"); |
| } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) { |
| Size = AI.CB->getOperand(1); |
| } else { |
| Size = AI.CB->getOperand(0); |
| } |
| |
| Align Alignment(1); |
| if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) { |
| Optional<APInt> AlignmentAPI = |
| getAPInt(A, *this, *AI.CB->getArgOperand(0)); |
| assert(AlignmentAPI.hasValue() && |
| "Expected an alignment during manifest!"); |
| Alignment = |
| max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue())); |
| } |
| |
| unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace(); |
| Instruction *Alloca = |
| new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment, |
| "", AI.CB->getNextNode()); |
| |
| if (Alloca->getType() != AI.CB->getType()) |
| Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc", |
| Alloca->getNextNode()); |
| |
| A.changeValueAfterManifest(*AI.CB, *Alloca); |
| |
| if (auto *II = dyn_cast<InvokeInst>(AI.CB)) { |
| auto *NBB = II->getNormalDest(); |
| BranchInst::Create(NBB, AI.CB->getParent()); |
| A.deleteAfterManifest(*AI.CB); |
| } else { |
| A.deleteAfterManifest(*AI.CB); |
| } |
| |
| // Zero out the allocated memory if it was a calloc. |
| if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) { |
| auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc", |
| Alloca->getNextNode()); |
| Value *Ops[] = { |
| BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size, |
| ConstantInt::get(Type::getInt1Ty(F->getContext()), false)}; |
| |
| Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()}; |
| Module *M = F->getParent(); |
| Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); |
| CallInst::Create(Fn, Ops, "", BI->getNextNode()); |
| } |
| HasChanged = ChangeStatus::CHANGED; |
| } |
| |
| return HasChanged; |
| } |
| |
| Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA, |
| Value &V) { |
| bool UsedAssumedInformation = false; |
| Optional<Constant *> SimpleV = |
| A.getAssumedConstant(V, AA, UsedAssumedInformation); |
| if (!SimpleV.hasValue()) |
| return APInt(64, 0); |
| if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue())) |
| return CI->getValue(); |
| return llvm::None; |
| } |
| |
| Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA, |
| AllocationInfo &AI) { |
| |
| if (AI.Kind == AllocationInfo::AllocationKind::MALLOC) |
| return getAPInt(A, AA, *AI.CB->getArgOperand(0)); |
| |
| if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) |
| // Only if the alignment is also constant we return a size. |
| return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue() |
| ? getAPInt(A, AA, *AI.CB->getArgOperand(1)) |
| : llvm::None; |
| |
| assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC && |
| "Expected only callocs are left"); |
| Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0)); |
| Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1)); |
| if (!Num.hasValue() || !Size.hasValue()) |
| return llvm::None; |
| bool Overflow = false; |
| Size = Size.getValue().umul_ov(Num.getValue(), Overflow); |
| return Overflow ? llvm::None : Size; |
| } |
| |
| /// Collection of all malloc-like calls in a function with associated |
| /// information. |
| DenseMap<CallBase *, AllocationInfo *> AllocationInfos; |
| |
| /// Collection of all free-like calls in a function with associated |
| /// information. |
| DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos; |
| |
| ChangeStatus updateImpl(Attributor &A) override; |
| }; |
| |
| ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| const Function *F = getAnchorScope(); |
| |
| const auto &LivenessAA = |
| A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE); |
| |
| MustBeExecutedContextExplorer &Explorer = |
| A.getInfoCache().getMustBeExecutedContextExplorer(); |
| |
| bool StackIsAccessibleByOtherThreads = |
| A.getInfoCache().stackIsAccessibleByOtherThreads(); |
| |
| // Flag to ensure we update our deallocation information at most once per |
| // updateImpl call and only if we use the free check reasoning. |
| bool HasUpdatedFrees = false; |
| |
| auto UpdateFrees = [&]() { |
| HasUpdatedFrees = true; |
| |
| for (auto &It : DeallocationInfos) { |
| DeallocationInfo &DI = *It.second; |
| // For now we cannot use deallocations that have unknown inputs, skip |
| // them. |
| if (DI.MightFreeUnknownObjects) |
| continue; |
| |
| // No need to analyze dead calls, ignore them instead. |
| bool UsedAssumedInformation = false; |
| if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation, |
| /* CheckBBLivenessOnly */ true)) |
| continue; |
| |
| // Use the optimistic version to get the freed objects, ignoring dead |
| // branches etc. |
| SmallVector<Value *, 8> Objects; |
| if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects, |
| *this, DI.CB)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n"); |
| DI.MightFreeUnknownObjects = true; |
| continue; |
| } |
| |
| // Check each object explicitly. |
| for (auto *Obj : Objects) { |
| // Free of null and undef can be ignored as no-ops (or UB in the latter |
| // case). |
| if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj)) |
| continue; |
| |
| CallBase *ObjCB = dyn_cast<CallBase>(Obj); |
| if (!ObjCB) { |
| LLVM_DEBUG(dbgs() |
| << "[H2S] Free of a non-call object: " << *Obj << "\n"); |
| DI.MightFreeUnknownObjects = true; |
| continue; |
| } |
| |
| AllocationInfo *AI = AllocationInfos.lookup(ObjCB); |
| if (!AI) { |
| LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj |
| << "\n"); |
| DI.MightFreeUnknownObjects = true; |
| continue; |
| } |
| |
| DI.PotentialAllocationCalls.insert(ObjCB); |
| } |
| } |
| }; |
| |
| auto FreeCheck = [&](AllocationInfo &AI) { |
| // If the stack is not accessible by other threads, the "must-free" logic |
| // doesn't apply as the pointer could be shared and needs to be places in |
| // "shareable" memory. |
| if (!StackIsAccessibleByOtherThreads) { |
| auto &NoSyncAA = |
| A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL); |
| if (!NoSyncAA.isAssumedNoSync()) { |
| LLVM_DEBUG( |
| dbgs() << "[H2S] found an escaping use, stack is not accessible by " |
| "other threads and function is not nosync:\n"); |
| return false; |
| } |
| } |
| if (!HasUpdatedFrees) |
| UpdateFrees(); |
| |
| // TODO: Allow multi exit functions that have different free calls. |
| if (AI.PotentialFreeCalls.size() != 1) { |
| LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but " |
| << AI.PotentialFreeCalls.size() << "\n"); |
| return false; |
| } |
| CallBase *UniqueFree = *AI.PotentialFreeCalls.begin(); |
| DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree); |
| if (!DI) { |
| LLVM_DEBUG( |
| dbgs() << "[H2S] unique free call was not known as deallocation call " |
| << *UniqueFree << "\n"); |
| return false; |
| } |
| if (DI->MightFreeUnknownObjects) { |
| LLVM_DEBUG( |
| dbgs() << "[H2S] unique free call might free unknown allocations\n"); |
| return false; |
| } |
| if (DI->PotentialAllocationCalls.size() > 1) { |
| LLVM_DEBUG(dbgs() << "[H2S] unique free call might free " |
| << DI->PotentialAllocationCalls.size() |
| << " different allocations\n"); |
| return false; |
| } |
| if (*DI->PotentialAllocationCalls.begin() != AI.CB) { |
| LLVM_DEBUG( |
| dbgs() |
| << "[H2S] unique free call not known to free this allocation but " |
| << **DI->PotentialAllocationCalls.begin() << "\n"); |
| return false; |
| } |
| Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode(); |
| if (!Explorer.findInContextOf(UniqueFree, CtxI)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "[H2S] unique free call might not be executed with the allocation " |
| << *UniqueFree << "\n"); |
| return false; |
| } |
| return true; |
| }; |
| |
| auto UsesCheck = [&](AllocationInfo &AI) { |
| bool ValidUsesOnly = true; |
| |
| auto Pred = [&](const Use &U, bool &Follow) -> bool { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| if (isa<LoadInst>(UserI)) |
| return true; |
| if (auto *SI = dyn_cast<StoreInst>(UserI)) { |
| if (SI->getValueOperand() == U.get()) { |
| LLVM_DEBUG(dbgs() |
| << "[H2S] escaping store to memory: " << *UserI << "\n"); |
| ValidUsesOnly = false; |
| } else { |
| // A store into the malloc'ed memory is fine. |
| } |
| return true; |
| } |
| if (auto *CB = dyn_cast<CallBase>(UserI)) { |
| if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd()) |
| return true; |
| if (DeallocationInfos.count(CB)) { |
| AI.PotentialFreeCalls.insert(CB); |
| return true; |
| } |
| |
| unsigned ArgNo = CB->getArgOperandNo(&U); |
| |
| const auto &NoCaptureAA = A.getAAFor<AANoCapture>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), |
| DepClassTy::OPTIONAL); |
| |
| // If a call site argument use is nofree, we are fine. |
| const auto &ArgNoFreeAA = A.getAAFor<AANoFree>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), |
| DepClassTy::OPTIONAL); |
| |
| bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture(); |
| bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree(); |
| if (MaybeCaptured || |
| (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared && |
| MaybeFreed)) { |
| AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed; |
| |
| // Emit a missed remark if this is missed OpenMP globalization. |
| auto Remark = [&](OptimizationRemarkMissed ORM) { |
| return ORM |
| << "Could not move globalized variable to the stack. " |
| "Variable is potentially captured in call. Mark " |
| "parameter as `__attribute__((noescape))` to override."; |
| }; |
| |
| if (ValidUsesOnly && |
| AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared) |
| A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark); |
| |
| LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n"); |
| ValidUsesOnly = false; |
| } |
| return true; |
| } |
| |
| if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) || |
| isa<PHINode>(UserI) || isa<SelectInst>(UserI)) { |
| Follow = true; |
| return true; |
| } |
| // Unknown user for which we can not track uses further (in a way that |
| // makes sense). |
| LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n"); |
| ValidUsesOnly = false; |
| return true; |
| }; |
| if (!A.checkForAllUses(Pred, *this, *AI.CB)) |
| return false; |
| return ValidUsesOnly; |
| }; |
| |
| // The actual update starts here. We look at all allocations and depending on |
| // their status perform the appropriate check(s). |
| for (auto &It : AllocationInfos) { |
| AllocationInfo &AI = *It.second; |
| if (AI.Status == AllocationInfo::INVALID) |
| continue; |
| |
| if (MaxHeapToStackSize == -1) { |
| if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) |
| if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) { |
| LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB |
| << "\n"); |
| AI.Status = AllocationInfo::INVALID; |
| Changed = ChangeStatus::CHANGED; |
| continue; |
| } |
| } else { |
| Optional<APInt> Size = getSize(A, *this, AI); |
| if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) { |
| LLVM_DEBUG({ |
| if (!Size.hasValue()) |
| dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB |
| << "\n"; |
| else |
| dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. " |
| << MaxHeapToStackSize << "\n"; |
| }); |
| |
| AI.Status = AllocationInfo::INVALID; |
| Changed = ChangeStatus::CHANGED; |
| continue; |
| } |
| } |
| |
| switch (AI.Status) { |
| case AllocationInfo::STACK_DUE_TO_USE: |
| if (UsesCheck(AI)) |
| continue; |
| AI.Status = AllocationInfo::STACK_DUE_TO_FREE; |
| LLVM_FALLTHROUGH; |
| case AllocationInfo::STACK_DUE_TO_FREE: |
| if (FreeCheck(AI)) |
| continue; |
| AI.Status = AllocationInfo::INVALID; |
| Changed = ChangeStatus::CHANGED; |
| continue; |
| case AllocationInfo::INVALID: |
| llvm_unreachable("Invalid allocations should never reach this point!"); |
| }; |
| } |
| |
| return Changed; |
| } |
| |
| /// ----------------------- Privatizable Pointers ------------------------------ |
| struct AAPrivatizablePtrImpl : public AAPrivatizablePtr { |
| AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {} |
| |
| ChangeStatus indicatePessimisticFixpoint() override { |
| AAPrivatizablePtr::indicatePessimisticFixpoint(); |
| PrivatizableType = nullptr; |
| return ChangeStatus::CHANGED; |
| } |
| |
| /// Identify the type we can chose for a private copy of the underlying |
| /// argument. None means it is not clear yet, nullptr means there is none. |
| virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0; |
| |
| /// Return a privatizable type that encloses both T0 and T1. |
| /// TODO: This is merely a stub for now as we should manage a mapping as well. |
| Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) { |
| if (!T0.hasValue()) |
| return T1; |
| if (!T1.hasValue()) |
| return T0; |
| if (T0 == T1) |
| return T0; |
| return nullptr; |
| } |
| |
| Optional<Type *> getPrivatizableType() const override { |
| return PrivatizableType; |
| } |
| |
| const std::string getAsStr() const override { |
| return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]"; |
| } |
| |
| protected: |
| Optional<Type *> PrivatizableType; |
| }; |
| |
| // TODO: Do this for call site arguments (probably also other values) as well. |
| |
| struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl { |
| AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtrImpl(IRP, A) {} |
| |
| /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) |
| Optional<Type *> identifyPrivatizableType(Attributor &A) override { |
| // If this is a byval argument and we know all the call sites (so we can |
| // rewrite them), there is no need to check them explicitly. |
| bool AllCallSitesKnown; |
| if (getIRPosition().hasAttr(Attribute::ByVal) && |
| A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this, |
| true, AllCallSitesKnown)) |
| return getAssociatedValue().getType()->getPointerElementType(); |
| |
| Optional<Type *> Ty; |
| unsigned ArgNo = getIRPosition().getCallSiteArgNo(); |
| |
| // Make sure the associated call site argument has the same type at all call |
| // sites and it is an allocation we know is safe to privatize, for now that |
| // means we only allow alloca instructions. |
| // TODO: We can additionally analyze the accesses in the callee to create |
| // the type from that information instead. That is a little more |
| // involved and will be done in a follow up patch. |
| auto CallSiteCheck = [&](AbstractCallSite ACS) { |
| IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); |
| // Check if a coresponding argument was found or if it is one not |
| // associated (which can happen for callback calls). |
| if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| return false; |
| |
| // Check that all call sites agree on a type. |
| auto &PrivCSArgAA = |
| A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED); |
| Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType(); |
| |
| LLVM_DEBUG({ |
| dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: "; |
| if (CSTy.hasValue() && CSTy.getValue()) |
| CSTy.getValue()->print(dbgs()); |
| else if (CSTy.hasValue()) |
| dbgs() << "<nullptr>"; |
| else |
| dbgs() << "<none>"; |
| }); |
| |
| Ty = combineTypes(Ty, CSTy); |
| |
| LLVM_DEBUG({ |
| dbgs() << " : New Type: "; |
| if (Ty.hasValue() && Ty.getValue()) |
| Ty.getValue()->print(dbgs()); |
| else if (Ty.hasValue()) |
| dbgs() << "<nullptr>"; |
| else |
| dbgs() << "<none>"; |
| dbgs() << "\n"; |
| }); |
| |
| return !Ty.hasValue() || Ty.getValue(); |
| }; |
| |
| if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown)) |
| return nullptr; |
| return Ty; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| PrivatizableType = identifyPrivatizableType(A); |
| if (!PrivatizableType.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!PrivatizableType.getValue()) |
| return indicatePessimisticFixpoint(); |
| |
| // The dependence is optional so we don't give up once we give up on the |
| // alignment. |
| A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()), |
| DepClassTy::OPTIONAL); |
| |
| // Avoid arguments with padding for now. |
| if (!getIRPosition().hasAttr(Attribute::ByVal) && |
| !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(), |
| A.getInfoCache().getDL())) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| // Verify callee and caller agree on how the promoted argument would be |
| // passed. |
| // TODO: The use of the ArgumentPromotion interface here is ugly, we need a |
| // specialized form of TargetTransformInfo::areFunctionArgsABICompatible |
| // which doesn't require the arguments ArgumentPromotion wanted to pass. |
| Function &Fn = *getIRPosition().getAnchorScope(); |
| SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy; |
| ArgsToPromote.insert(getAssociatedArgument()); |
| const auto *TTI = |
| A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn); |
| if (!TTI || |
| !ArgumentPromotionPass::areFunctionArgsABICompatible( |
| Fn, *TTI, ArgsToPromote, Dummy) || |
| ArgsToPromote.empty()) { |
| LLVM_DEBUG( |
| dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for " |
| << Fn.getName() << "\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| // Collect the types that will replace the privatizable type in the function |
| // signature. |
| SmallVector<Type *, 16> ReplacementTypes; |
| identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); |
| |
| // Register a rewrite of the argument. |
| Argument *Arg = getAssociatedArgument(); |
| if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| unsigned ArgNo = Arg->getArgNo(); |
| |
| // Helper to check if for the given call site the associated argument is |
| // passed to a callback where the privatization would be different. |
| auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) { |
| SmallVector<const Use *, 4> CallbackUses; |
| AbstractCallSite::getCallbackUses(CB, CallbackUses); |
| for (const Use *U : CallbackUses) { |
| AbstractCallSite CBACS(U); |
| assert(CBACS && CBACS.isCallbackCall()); |
| for (Argument &CBArg : CBACS.getCalledFunction()->args()) { |
| int CBArgNo = CBACS.getCallArgOperandNo(CBArg); |
| |
| LLVM_DEBUG({ |
| dbgs() |
| << "[AAPrivatizablePtr] Argument " << *Arg |
| << "check if can be privatized in the context of its parent (" |
| << Arg->getParent()->getName() |
| << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| "callback (" |
| << CBArgNo << "@" << CBACS.getCalledFunction()->getName() |
| << ")\n[AAPrivatizablePtr] " << CBArg << " : " |
| << CBACS.getCallArgOperand(CBArg) << " vs " |
| << CB.getArgOperand(ArgNo) << "\n" |
| << "[AAPrivatizablePtr] " << CBArg << " : " |
| << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n"; |
| }); |
| |
| if (CBArgNo != int(ArgNo)) |
| continue; |
| const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>( |
| *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED); |
| if (CBArgPrivAA.isValidState()) { |
| auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType(); |
| if (!CBArgPrivTy.hasValue()) |
| continue; |
| if (CBArgPrivTy.getValue() == PrivatizableType) |
| continue; |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| << " cannot be privatized in the context of its parent (" |
| << Arg->getParent()->getName() |
| << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| "callback (" |
| << CBArgNo << "@" << CBACS.getCalledFunction()->getName() |
| << ").\n[AAPrivatizablePtr] for which the argument " |
| "privatization is not compatible.\n"; |
| }); |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| // Helper to check if for the given call site the associated argument is |
| // passed to a direct call where the privatization would be different. |
| auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) { |
| CallBase *DC = cast<CallBase>(ACS.getInstruction()); |
| int DCArgNo = ACS.getCallArgOperandNo(ArgNo); |
| assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() && |
| "Expected a direct call operand for callback call operand"); |
| |
| LLVM_DEBUG({ |
| dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| << " check if be privatized in the context of its parent (" |
| << Arg->getParent()->getName() |
| << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| "direct call of (" |
| << DCArgNo << "@" << DC->getCalledFunction()->getName() |
| << ").\n"; |
| }); |
| |
| Function *DCCallee = DC->getCalledFunction(); |
| if (unsigned(DCArgNo) < DCCallee->arg_size()) { |
| const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>( |
| *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)), |
| DepClassTy::REQUIRED); |
| if (DCArgPrivAA.isValidState()) { |
| auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType(); |
| if (!DCArgPrivTy.hasValue()) |
| return true; |
| if (DCArgPrivTy.getValue() == PrivatizableType) |
| return true; |
| } |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| << " cannot be privatized in the context of its parent (" |
| << Arg->getParent()->getName() |
| << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| "direct call of (" |
| << ACS.getInstruction()->getCalledFunction()->getName() |
| << ").\n[AAPrivatizablePtr] for which the argument " |
| "privatization is not compatible.\n"; |
| }); |
| return false; |
| }; |
| |
| // Helper to check if the associated argument is used at the given abstract |
| // call site in a way that is incompatible with the privatization assumed |
| // here. |
| auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) { |
| if (ACS.isDirectCall()) |
| return IsCompatiblePrivArgOfCallback(*ACS.getInstruction()); |
| if (ACS.isCallbackCall()) |
| return IsCompatiblePrivArgOfDirectCS(ACS); |
| return false; |
| }; |
| |
| bool AllCallSitesKnown; |
| if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true, |
| AllCallSitesKnown)) |
| return indicatePessimisticFixpoint(); |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// Given a type to private \p PrivType, collect the constituates (which are |
| /// used) in \p ReplacementTypes. |
| static void |
| identifyReplacementTypes(Type *PrivType, |
| SmallVectorImpl<Type *> &ReplacementTypes) { |
| // TODO: For now we expand the privatization type to the fullest which can |
| // lead to dead arguments that need to be removed later. |
| assert(PrivType && "Expected privatizable type!"); |
| |
| // Traverse the type, extract constituate types on the outermost level. |
| if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { |
| for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) |
| ReplacementTypes.push_back(PrivStructType->getElementType(u)); |
| } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { |
| ReplacementTypes.append(PrivArrayType->getNumElements(), |
| PrivArrayType->getElementType()); |
| } else { |
| ReplacementTypes.push_back(PrivType); |
| } |
| } |
| |
| /// Initialize \p Base according to the type \p PrivType at position \p IP. |
| /// The values needed are taken from the arguments of \p F starting at |
| /// position \p ArgNo. |
| static void createInitialization(Type *PrivType, Value &Base, Function &F, |
| unsigned ArgNo, Instruction &IP) { |
| assert(PrivType && "Expected privatizable type!"); |
| |
| IRBuilder<NoFolder> IRB(&IP); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| |
| // Traverse the type, build GEPs and stores. |
| if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { |
| const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); |
| for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { |
| Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo(); |
| Value *Ptr = |
| constructPointer(PointeeTy, PrivType, &Base, |
| PrivStructLayout->getElementOffset(u), IRB, DL); |
| new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); |
| } |
| } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { |
| Type *PointeeTy = PrivArrayType->getElementType(); |
| Type *PointeePtrTy = PointeeTy->getPointerTo(); |
| uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy); |
| for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { |
| Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base, |
| u * PointeeTySize, IRB, DL); |
| new StoreInst(F.getArg(ArgNo + u), Ptr, &IP); |
| } |
| } else { |
| new StoreInst(F.getArg(ArgNo), &Base, &IP); |
| } |
| } |
| |
| /// Extract values from \p Base according to the type \p PrivType at the |
| /// call position \p ACS. The values are appended to \p ReplacementValues. |
| void createReplacementValues(Align Alignment, Type *PrivType, |
| AbstractCallSite ACS, Value *Base, |
| SmallVectorImpl<Value *> &ReplacementValues) { |
| assert(Base && "Expected base value!"); |
| assert(PrivType && "Expected privatizable type!"); |
| Instruction *IP = ACS.getInstruction(); |
| |
| IRBuilder<NoFolder> IRB(IP); |
| const DataLayout &DL = IP->getModule()->getDataLayout(); |
| |
| if (Base->getType()->getPointerElementType() != PrivType) |
| Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(), |
| "", ACS.getInstruction()); |
| |
| // Traverse the type, build GEPs and loads. |
| if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) { |
| const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType); |
| for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { |
| Type *PointeeTy = PrivStructType->getElementType(u); |
| Value *Ptr = |
| constructPointer(PointeeTy->getPointerTo(), PrivType, Base, |
| PrivStructLayout->getElementOffset(u), IRB, DL); |
| LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP); |
| L->setAlignment(Alignment); |
| ReplacementValues.push_back(L); |
| } |
| } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) { |
| Type *PointeeTy = PrivArrayType->getElementType(); |
| uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy); |
| Type *PointeePtrTy = PointeeTy->getPointerTo(); |
| for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { |
| Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base, |
| u * PointeeTySize, IRB, DL); |
| LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP); |
| L->setAlignment(Alignment); |
| ReplacementValues.push_back(L); |
| } |
| } else { |
| LoadInst *L = new LoadInst(PrivType, Base, "", IP); |
| L->setAlignment(Alignment); |
| ReplacementValues.push_back(L); |
| } |
| } |
| |
| /// See AbstractAttribute::manifest(...) |
| ChangeStatus manifest(Attributor &A) override { |
| if (!PrivatizableType.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| assert(PrivatizableType.getValue() && "Expected privatizable type!"); |
| |
| // Collect all tail calls in the function as we cannot allow new allocas to |
| // escape into tail recursion. |
| // TODO: Be smarter about new allocas escaping into tail calls. |
| SmallVector<CallInst *, 16> TailCalls; |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllInstructions( |
| [&](Instruction &I) { |
| CallInst &CI = cast<CallInst>(I); |
| if (CI.isTailCall()) |
| TailCalls.push_back(&CI); |
| return true; |
| }, |
| *this, {Instruction::Call}, UsedAssumedInformation)) |
| return ChangeStatus::UNCHANGED; |
| |
| Argument *Arg = getAssociatedArgument(); |
| // Query AAAlign attribute for alignment of associated argument to |
| // determine the best alignment of loads. |
| const auto &AlignAA = |
| A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE); |
| |
| // Callback to repair the associated function. A new alloca is placed at the |
| // beginning and initialized with the values passed through arguments. The |
| // new alloca replaces the use of the old pointer argument. |
| Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB = |
| [=](const Attributor::ArgumentReplacementInfo &ARI, |
| Function &ReplacementFn, Function::arg_iterator ArgIt) { |
| BasicBlock &EntryBB = ReplacementFn.getEntryBlock(); |
| Instruction *IP = &*EntryBB.getFirstInsertionPt(); |
| Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0, |
| Arg->getName() + ".priv", IP); |
| createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn, |
| ArgIt->getArgNo(), *IP); |
| |
| if (AI->getType() != Arg->getType()) |
| AI = |
| BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP); |
| Arg->replaceAllUsesWith(AI); |
| |
| for (CallInst *CI : TailCalls) |
| CI->setTailCall(false); |
| }; |
| |
| // Callback to repair a call site of the associated function. The elements |
| // of the privatizable type are loaded prior to the call and passed to the |
| // new function version. |
| Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB = |
| [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI, |
| AbstractCallSite ACS, |
| SmallVectorImpl<Value *> &NewArgOperands) { |
| // When no alignment is specified for the load instruction, |
| // natural alignment is assumed. |
| createReplacementValues( |
| assumeAligned(AlignAA.getAssumedAlign()), |
| PrivatizableType.getValue(), ACS, |
| ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()), |
| NewArgOperands); |
| }; |
| |
| // Collect the types that will replace the privatizable type in the function |
| // signature. |
| SmallVector<Type *, 16> ReplacementTypes; |
| identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes); |
| |
| // Register a rewrite of the argument. |
| if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes, |
| std::move(FnRepairCB), |
| std::move(ACSRepairCB))) |
| return ChangeStatus::CHANGED; |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_ARG_ATTR(privatizable_ptr); |
| } |
| }; |
| |
| struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl { |
| AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtrImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| virtual void initialize(Attributor &A) override { |
| // TODO: We can privatize more than arguments. |
| indicatePessimisticFixpoint(); |
| } |
| |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::" |
| "updateImpl will not be called"); |
| } |
| |
| /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) |
| Optional<Type *> identifyPrivatizableType(Attributor &A) override { |
| Value *Obj = getUnderlyingObject(&getAssociatedValue()); |
| if (!Obj) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n"); |
| return nullptr; |
| } |
| |
| if (auto *AI = dyn_cast<AllocaInst>(Obj)) |
| if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) |
| if (CI->isOne()) |
| return Obj->getType()->getPointerElementType(); |
| if (auto *Arg = dyn_cast<Argument>(Obj)) { |
| auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>( |
| *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED); |
| if (PrivArgAA.isAssumedPrivatizablePtr()) |
| return Obj->getType()->getPointerElementType(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid " |
| "alloca nor privatizable argument: " |
| << *Obj << "!\n"); |
| return nullptr; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr); |
| } |
| }; |
| |
| struct AAPrivatizablePtrCallSiteArgument final |
| : public AAPrivatizablePtrFloating { |
| AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtrFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (getIRPosition().hasAttr(Attribute::ByVal)) |
| indicateOptimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| PrivatizableType = identifyPrivatizableType(A); |
| if (!PrivatizableType.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!PrivatizableType.getValue()) |
| return indicatePessimisticFixpoint(); |
| |
| const IRPosition &IRP = getIRPosition(); |
| auto &NoCaptureAA = |
| A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED); |
| if (!NoCaptureAA.isAssumedNoCapture()) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED); |
| if (!NoAliasAA.isAssumedNoAlias()) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| const auto &MemBehaviorAA = |
| A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED); |
| if (!MemBehaviorAA.isAssumedReadOnly()) { |
| LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n"); |
| return indicatePessimisticFixpoint(); |
| } |
| |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr); |
| } |
| }; |
| |
| struct AAPrivatizablePtrCallSiteReturned final |
| : public AAPrivatizablePtrFloating { |
| AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtrFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // TODO: We can privatize more than arguments. |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr); |
| } |
| }; |
| |
| struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating { |
| AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A) |
| : AAPrivatizablePtrFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // TODO: We can privatize more than arguments. |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr); |
| } |
| }; |
| |
| /// -------------------- Memory Behavior Attributes ---------------------------- |
| /// Includes read-none, read-only, and write-only. |
| /// ---------------------------------------------------------------------------- |
| struct AAMemoryBehaviorImpl : public AAMemoryBehavior { |
| AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehavior(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| intersectAssumedBits(BEST_STATE); |
| getKnownStateFromValue(getIRPosition(), getState()); |
| AAMemoryBehavior::initialize(A); |
| } |
| |
| /// Return the memory behavior information encoded in the IR for \p IRP. |
| static void getKnownStateFromValue(const IRPosition &IRP, |
| BitIntegerState &State, |
| bool IgnoreSubsumingPositions = false) { |
| SmallVector<Attribute, 2> Attrs; |
| IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); |
| for (const Attribute &Attr : Attrs) { |
| switch (Attr.getKindAsEnum()) { |
| case Attribute::ReadNone: |
| State.addKnownBits(NO_ACCESSES); |
| break; |
| case Attribute::ReadOnly: |
| State.addKnownBits(NO_WRITES); |
| break; |
| case Attribute::WriteOnly: |
| State.addKnownBits(NO_READS); |
| break; |
| default: |
| llvm_unreachable("Unexpected attribute!"); |
| } |
| } |
| |
| if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) { |
| if (!I->mayReadFromMemory()) |
| State.addKnownBits(NO_READS); |
| if (!I->mayWriteToMemory()) |
| State.addKnownBits(NO_WRITES); |
| } |
| } |
| |
| /// See AbstractAttribute::getDeducedAttributes(...). |
| void getDeducedAttributes(LLVMContext &Ctx, |
| SmallVectorImpl<Attribute> &Attrs) const override { |
| assert(Attrs.size() == 0); |
| if (isAssumedReadNone()) |
| Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); |
| else if (isAssumedReadOnly()) |
| Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly)); |
| else if (isAssumedWriteOnly()) |
| Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly)); |
| assert(Attrs.size() <= 1); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true)) |
| return ChangeStatus::UNCHANGED; |
| |
| const IRPosition &IRP = getIRPosition(); |
| |
| // Check if we would improve the existing attributes first. |
| SmallVector<Attribute, 4> DeducedAttrs; |
| getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); |
| if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { |
| return IRP.hasAttr(Attr.getKindAsEnum(), |
| /* IgnoreSubsumingPositions */ true); |
| })) |
| return ChangeStatus::UNCHANGED; |
| |
| // Clear existing attributes. |
| IRP.removeAttrs(AttrKinds); |
| |
| // Use the generic manifest method. |
| return IRAttribute::manifest(A); |
| } |
| |
| /// See AbstractState::getAsStr(). |
| const std::string getAsStr() const override { |
| if (isAssumedReadNone()) |
| return "readnone"; |
| if (isAssumedReadOnly()) |
| return "readonly"; |
| if (isAssumedWriteOnly()) |
| return "writeonly"; |
| return "may-read/write"; |
| } |
| |
| /// The set of IR attributes AAMemoryBehavior deals with. |
| static const Attribute::AttrKind AttrKinds[3]; |
| }; |
| |
| const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { |
| Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; |
| |
| /// Memory behavior attribute for a floating value. |
| struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { |
| AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override; |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_FLOATING_ATTR(readnone) |
| else if (isAssumedReadOnly()) |
| STATS_DECLTRACK_FLOATING_ATTR(readonly) |
| else if (isAssumedWriteOnly()) |
| STATS_DECLTRACK_FLOATING_ATTR(writeonly) |
| } |
| |
| private: |
| /// Return true if users of \p UserI might access the underlying |
| /// variable/location described by \p U and should therefore be analyzed. |
| bool followUsersOfUseIn(Attributor &A, const Use &U, |
| const Instruction *UserI); |
| |
| /// Update the state according to the effect of use \p U in \p UserI. |
| void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI); |
| }; |
| |
| /// Memory behavior attribute for function argument. |
| struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { |
| AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| intersectAssumedBits(BEST_STATE); |
| const IRPosition &IRP = getIRPosition(); |
| // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we |
| // can query it when we use has/getAttr. That would allow us to reuse the |
| // initialize of the base class here. |
| bool HasByVal = |
| IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true); |
| getKnownStateFromValue(IRP, getState(), |
| /* IgnoreSubsumingPositions */ HasByVal); |
| |
| // Initialize the use vector with all direct uses of the associated value. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) |
| indicatePessimisticFixpoint(); |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| // TODO: Pointer arguments are not supported on vectors of pointers yet. |
| if (!getAssociatedValue().getType()->isPointerTy()) |
| return ChangeStatus::UNCHANGED; |
| |
| // TODO: From readattrs.ll: "inalloca parameters are always |
| // considered written" |
| if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) { |
| removeKnownBits(NO_WRITES); |
| removeAssumedBits(NO_WRITES); |
| } |
| return AAMemoryBehaviorFloating::manifest(A); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_ARG_ATTR(readnone) |
| else if (isAssumedReadOnly()) |
| STATS_DECLTRACK_ARG_ATTR(readonly) |
| else if (isAssumedWriteOnly()) |
| STATS_DECLTRACK_ARG_ATTR(writeonly) |
| } |
| }; |
| |
| struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { |
| AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorArgument(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // If we don't have an associated attribute this is either a variadic call |
| // or an indirect call, either way, nothing to do here. |
| Argument *Arg = getAssociatedArgument(); |
| if (!Arg) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| if (Arg->hasByValAttr()) { |
| addKnownBits(NO_WRITES); |
| removeKnownBits(NO_READS); |
| removeAssumedBits(NO_READS); |
| } |
| AAMemoryBehaviorArgument::initialize(A); |
| if (getAssociatedFunction()->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Argument *Arg = getAssociatedArgument(); |
| const IRPosition &ArgPos = IRPosition::argument(*Arg); |
| auto &ArgAA = |
| A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), ArgAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_CSARG_ATTR(readnone) |
| else if (isAssumedReadOnly()) |
| STATS_DECLTRACK_CSARG_ATTR(readonly) |
| else if (isAssumedWriteOnly()) |
| STATS_DECLTRACK_CSARG_ATTR(writeonly) |
| } |
| }; |
| |
| /// Memory behavior attribute for a call site return position. |
| struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { |
| AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAMemoryBehaviorImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| // We do not annotate returned values. |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override {} |
| }; |
| |
| /// An AA to represent the memory behavior function attributes. |
| struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { |
| AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(Attributor &A). |
| virtual ChangeStatus updateImpl(Attributor &A) override; |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| Function &F = cast<Function>(getAnchorValue()); |
| if (isAssumedReadNone()) { |
| F.removeFnAttr(Attribute::ArgMemOnly); |
| F.removeFnAttr(Attribute::InaccessibleMemOnly); |
| F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); |
| } |
| return AAMemoryBehaviorImpl::manifest(A); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_FN_ATTR(readnone) |
| else if (isAssumedReadOnly()) |
| STATS_DECLTRACK_FN_ATTR(readonly) |
| else if (isAssumedWriteOnly()) |
| STATS_DECLTRACK_FN_ATTR(writeonly) |
| } |
| }; |
| |
| /// AAMemoryBehavior attribute for call sites. |
| struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl { |
| AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A) |
| : AAMemoryBehaviorImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAMemoryBehaviorImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = |
| A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED); |
| return clampStateAndIndicateChange(getState(), FnAA.getState()); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_CS_ATTR(readnone) |
| else if (isAssumedReadOnly()) |
| STATS_DECLTRACK_CS_ATTR(readonly) |
| else if (isAssumedWriteOnly()) |
| STATS_DECLTRACK_CS_ATTR(writeonly) |
| } |
| }; |
| |
| ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { |
| |
| // The current assumed state used to determine a change. |
| auto AssumedState = getAssumed(); |
| |
| auto CheckRWInst = [&](Instruction &I) { |
| // If the instruction has an own memory behavior state, use it to restrict |
| // the local state. No further analysis is required as the other memory |
| // state is as optimistic as it gets. |
| if (const auto *CB = dyn_cast<CallBase>(&I)) { |
| const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( |
| *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED); |
| intersectAssumedBits(MemBehaviorAA.getAssumed()); |
| return !isAtFixpoint(); |
| } |
| |
| // Remove access kind modifiers if necessary. |
| if (I.mayReadFromMemory()) |
| removeAssumedBits(NO_READS); |
| if (I.mayWriteToMemory()) |
| removeAssumedBits(NO_WRITES); |
| return !isAtFixpoint(); |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| |
| return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| : ChangeStatus::UNCHANGED; |
| } |
| |
| ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { |
| |
| const IRPosition &IRP = getIRPosition(); |
| const IRPosition &FnPos = IRPosition::function_scope(IRP); |
| AAMemoryBehavior::StateType &S = getState(); |
| |
| // First, check the function scope. We take the known information and we avoid |
| // work if the assumed information implies the current assumed information for |
| // this attribute. This is a valid for all but byval arguments. |
| Argument *Arg = IRP.getAssociatedArgument(); |
| AAMemoryBehavior::base_t FnMemAssumedState = |
| AAMemoryBehavior::StateType::getWorstState(); |
| if (!Arg || !Arg->hasByValAttr()) { |
| const auto &FnMemAA = |
| A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL); |
| FnMemAssumedState = FnMemAA.getAssumed(); |
| S.addKnownBits(FnMemAA.getKnown()); |
| if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed()) |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // The current assumed state used to determine a change. |
| auto AssumedState = S.getAssumed(); |
| |
| // Make sure the value is not captured (except through "return"), if |
| // it is, any information derived would be irrelevant anyway as we cannot |
| // check the potential aliases introduced by the capture. However, no need |
| // to fall back to anythign less optimistic than the function state. |
| const auto &ArgNoCaptureAA = |
| A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL); |
| if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) { |
| S.intersectAssumedBits(FnMemAssumedState); |
| return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| : ChangeStatus::UNCHANGED; |
| } |
| |
| // Visit and expand uses until all are analyzed or a fixpoint is reached. |
| auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI |
| << " \n"); |
| |
| // Droppable users, e.g., llvm::assume does not actually perform any action. |
| if (UserI->isDroppable()) |
| return true; |
| |
| // Check if the users of UserI should also be visited. |
| Follow = followUsersOfUseIn(A, U, UserI); |
| |
| // If UserI might touch memory we analyze the use in detail. |
| if (UserI->mayReadOrWriteMemory()) |
| analyzeUseIn(A, U, UserI); |
| |
| return !isAtFixpoint(); |
| }; |
| |
| if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) |
| return indicatePessimisticFixpoint(); |
| |
| return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| : ChangeStatus::UNCHANGED; |
| } |
| |
| bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U, |
| const Instruction *UserI) { |
| // The loaded value is unrelated to the pointer argument, no need to |
| // follow the users of the load. |
| if (isa<LoadInst>(UserI)) |
| return false; |
| |
| // By default we follow all uses assuming UserI might leak information on U, |
| // we have special handling for call sites operands though. |
| const auto *CB = dyn_cast<CallBase>(UserI); |
| if (!CB || !CB->isArgOperand(&U)) |
| return true; |
| |
| // If the use is a call argument known not to be captured, the users of |
| // the call do not need to be visited because they have to be unrelated to |
| // the input. Note that this check is not trivial even though we disallow |
| // general capturing of the underlying argument. The reason is that the |
| // call might the argument "through return", which we allow and for which we |
| // need to check call users. |
| if (U.get()->getType()->isPointerTy()) { |
| unsigned ArgNo = CB->getArgOperandNo(&U); |
| const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>( |
| *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL); |
| return !ArgNoCaptureAA.isAssumedNoCapture(); |
| } |
| |
| return true; |
| } |
| |
| void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U, |
| const Instruction *UserI) { |
| assert(UserI->mayReadOrWriteMemory()); |
| |
| switch (UserI->getOpcode()) { |
| default: |
| // TODO: Handle all atomics and other side-effect operations we know of. |
| break; |
| case Instruction::Load: |
| // Loads cause the NO_READS property to disappear. |
| removeAssumedBits(NO_READS); |
| return; |
| |
| case Instruction::Store: |
| // Stores cause the NO_WRITES property to disappear if the use is the |
| // pointer operand. Note that we do assume that capturing was taken care of |
| // somewhere else. |
| if (cast<StoreInst>(UserI)->getPointerOperand() == U.get()) |
| removeAssumedBits(NO_WRITES); |
| return; |
| |
| case Instruction::Call: |
| case Instruction::CallBr: |
| case Instruction::Invoke: { |
| // For call sites we look at the argument memory behavior attribute (this |
| // could be recursive!) in order to restrict our own state. |
| const auto *CB = cast<CallBase>(UserI); |
| |
| // Give up on operand bundles. |
| if (CB->isBundleOperand(&U)) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| // Calling a function does read the function pointer, maybe write it if the |
| // function is self-modifying. |
| if (CB->isCallee(&U)) { |
| removeAssumedBits(NO_READS); |
| break; |
| } |
| |
| // Adjust the possible access behavior based on the information on the |
| // argument. |
| IRPosition Pos; |
| if (U.get()->getType()->isPointerTy()) |
| Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)); |
| else |
| Pos = IRPosition::callsite_function(*CB); |
| const auto &MemBehaviorAA = |
| A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL); |
| // "assumed" has at most the same bits as the MemBehaviorAA assumed |
| // and at least "known". |
| intersectAssumedBits(MemBehaviorAA.getAssumed()); |
| return; |
| } |
| }; |
| |
| // Generally, look at the "may-properties" and adjust the assumed state if we |
| // did not trigger special handling before. |
| if (UserI->mayReadFromMemory()) |
| removeAssumedBits(NO_READS); |
| if (UserI->mayWriteToMemory()) |
| removeAssumedBits(NO_WRITES); |
| } |
| |
| /// -------------------- Memory Locations Attributes --------------------------- |
| /// Includes read-none, argmemonly, inaccessiblememonly, |
| /// inaccessiblememorargmemonly |
| /// ---------------------------------------------------------------------------- |
| |
| std::string AAMemoryLocation::getMemoryLocationsAsStr( |
| AAMemoryLocation::MemoryLocationsKind MLK) { |
| if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS)) |
| return "all memory"; |
| if (MLK == AAMemoryLocation::NO_LOCATIONS) |
| return "no memory"; |
| std::string S = "memory:"; |
| if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM)) |
| S += "stack,"; |
| if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM)) |
| S += "constant,"; |
| if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM)) |
| S += "internal global,"; |
| if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM)) |
| S += "external global,"; |
| if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM)) |
| S += "argument,"; |
| if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM)) |
| S += "inaccessible,"; |
| if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM)) |
| S += "malloced,"; |
| if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM)) |
| S += "unknown,"; |
| S.pop_back(); |
| return S; |
| } |
| |
| namespace { |
| struct AAMemoryLocationImpl : public AAMemoryLocation { |
| |
| AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A) |
| : AAMemoryLocation(IRP, A), Allocator(A.Allocator) { |
| for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) |
| AccessKind2Accesses[u] = nullptr; |
| } |
| |
| ~AAMemoryLocationImpl() { |
| // The AccessSets are allocated via a BumpPtrAllocator, we call |
| // the destructor manually. |
| for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u) |
| if (AccessKind2Accesses[u]) |
| AccessKind2Accesses[u]->~AccessSet(); |
| } |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| intersectAssumedBits(BEST_STATE); |
| getKnownStateFromValue(A, getIRPosition(), getState()); |
| AAMemoryLocation::initialize(A); |
| } |
| |
| /// Return the memory behavior information encoded in the IR for \p IRP. |
| static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP, |
| BitIntegerState &State, |
| bool IgnoreSubsumingPositions = false) { |
| // For internal functions we ignore `argmemonly` and |
| // `inaccessiblememorargmemonly` as we might break it via interprocedural |
| // constant propagation. It is unclear if this is the best way but it is |
| // unlikely this will cause real performance problems. If we are deriving |
| // attributes for the anchor function we even remove the attribute in |
| // addition to ignoring it. |
| bool UseArgMemOnly = true; |
| Function *AnchorFn = IRP.getAnchorScope(); |
| if (AnchorFn && A.isRunOn(*AnchorFn)) |
| UseArgMemOnly = !AnchorFn->hasLocalLinkage(); |
| |
| SmallVector<Attribute, 2> Attrs; |
| IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions); |
| for (const Attribute &Attr : Attrs) { |
| switch (Attr.getKindAsEnum()) { |
| case Attribute::ReadNone: |
| State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM); |
| break; |
| case Attribute::InaccessibleMemOnly: |
| State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); |
| break; |
| case Attribute::ArgMemOnly: |
| if (UseArgMemOnly) |
| State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true)); |
| else |
| IRP.removeAttrs({Attribute::ArgMemOnly}); |
| break; |
| case Attribute::InaccessibleMemOrArgMemOnly: |
| if (UseArgMemOnly) |
| State.addKnownBits(inverseLocation( |
| NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); |
| else |
| IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly}); |
| break; |
| default: |
| llvm_unreachable("Unexpected attribute!"); |
| } |
| } |
| } |
| |
| /// See AbstractAttribute::getDeducedAttributes(...). |
| void getDeducedAttributes(LLVMContext &Ctx, |
| SmallVectorImpl<Attribute> &Attrs) const override { |
| assert(Attrs.size() == 0); |
| if (isAssumedReadNone()) { |
| Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone)); |
| } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) { |
| if (isAssumedInaccessibleMemOnly()) |
| Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly)); |
| else if (isAssumedArgMemOnly()) |
| Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly)); |
| else if (isAssumedInaccessibleOrArgMemOnly()) |
| Attrs.push_back( |
| Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly)); |
| } |
| assert(Attrs.size() <= 1); |
| } |
| |
| /// See AbstractAttribute::manifest(...). |
| ChangeStatus manifest(Attributor &A) override { |
| const IRPosition &IRP = getIRPosition(); |
| |
| // Check if we would improve the existing attributes first. |
| SmallVector<Attribute, 4> DeducedAttrs; |
| getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs); |
| if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) { |
| return IRP.hasAttr(Attr.getKindAsEnum(), |
| /* IgnoreSubsumingPositions */ true); |
| })) |
| return ChangeStatus::UNCHANGED; |
| |
| // Clear existing attributes. |
| IRP.removeAttrs(AttrKinds); |
| if (isAssumedReadNone()) |
| IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds); |
| |
| // Use the generic manifest method. |
| return IRAttribute::manifest(A); |
| } |
| |
| /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...). |
| bool checkForAllAccessesToMemoryKind( |
| function_ref<bool(const Instruction *, const Value *, AccessKind, |
| MemoryLocationsKind)> |
| Pred, |
| MemoryLocationsKind RequestedMLK) const override { |
| if (!isValidState()) |
| return false; |
| |
| MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation(); |
| if (AssumedMLK == NO_LOCATIONS) |
| return true; |
| |
| unsigned Idx = 0; |
| for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; |
| CurMLK *= 2, ++Idx) { |
| if (CurMLK & RequestedMLK) |
| continue; |
| |
| if (const AccessSet *Accesses = AccessKind2Accesses[Idx]) |
| for (const AccessInfo &AI : *Accesses) |
| if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ChangeStatus indicatePessimisticFixpoint() override { |
| // If we give up and indicate a pessimistic fixpoint this instruction will |
| // become an access for all potential access kinds: |
| // TODO: Add pointers for argmemonly and globals to improve the results of |
| // checkForAllAccessesToMemoryKind. |
| bool Changed = false; |
| MemoryLocationsKind KnownMLK = getKnown(); |
| Instruction *I = dyn_cast<Instruction>(&getAssociatedValue()); |
| for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) |
| if (!(CurMLK & KnownMLK)) |
| updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed, |
| getAccessKindFromInst(I)); |
| return AAMemoryLocation::indicatePessimisticFixpoint(); |
| } |
| |
| protected: |
| /// Helper struct to tie together an instruction that has a read or write |
| /// effect with the pointer it accesses (if any). |
| struct AccessInfo { |
| |
| /// The instruction that caused the access. |
| const Instruction *I; |
| |
| /// The base pointer that is accessed, or null if unknown. |
| const Value *Ptr; |
| |
| /// The kind of access (read/write/read+write). |
| AccessKind Kind; |
| |
| bool operator==(const AccessInfo &RHS) const { |
| return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind; |
| } |
| bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const { |
| if (LHS.I != RHS.I) |
| return LHS.I < RHS.I; |
| if (LHS.Ptr != RHS.Ptr) |
| return LHS.Ptr < RHS.Ptr; |
| if (LHS.Kind != RHS.Kind) |
| return LHS.Kind < RHS.Kind; |
| return false; |
| } |
| }; |
| |
| /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the |
| /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind. |
| using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>; |
| AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()]; |
| |
| /// Categorize the pointer arguments of CB that might access memory in |
| /// AccessedLoc and update the state and access map accordingly. |
| void |
| categorizeArgumentPointerLocations(Attributor &A, CallBase &CB, |
| AAMemoryLocation::StateType &AccessedLocs, |
| bool &Changed); |
| |
| /// Return the kind(s) of location that may be accessed by \p V. |
| AAMemoryLocation::MemoryLocationsKind |
| categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed); |
| |
| /// Return the access kind as determined by \p I. |
| AccessKind getAccessKindFromInst(const Instruction *I) { |
| AccessKind AK = READ_WRITE; |
| if (I) { |
| AK = I->mayReadFromMemory() ? READ : NONE; |
| AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE)); |
| } |
| return AK; |
| } |
| |
| /// Update the state \p State and the AccessKind2Accesses given that \p I is |
| /// an access of kind \p AK to a \p MLK memory location with the access |
| /// pointer \p Ptr. |
| void updateStateAndAccessesMap(AAMemoryLocation::StateType &State, |
| MemoryLocationsKind MLK, const Instruction *I, |
| const Value *Ptr, bool &Changed, |
| AccessKind AK = READ_WRITE) { |
| |
| assert(isPowerOf2_32(MLK) && "Expected a single location set!"); |
| auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)]; |
| if (!Accesses) |
| Accesses = new (Allocator) AccessSet(); |
| Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second; |
| State.removeAssumedBits(MLK); |
| } |
| |
| /// Determine the underlying locations kinds for \p Ptr, e.g., globals or |
| /// arguments, and update the state and access map accordingly. |
| void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr, |
| AAMemoryLocation::StateType &State, bool &Changed); |
| |
| /// Used to allocate access sets. |
| BumpPtrAllocator &Allocator; |
| |
| /// The set of IR attributes AAMemoryLocation deals with. |
| static const Attribute::AttrKind AttrKinds[4]; |
| }; |
| |
| const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = { |
| Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly, |
| Attribute::InaccessibleMemOrArgMemOnly}; |
| |
| void AAMemoryLocationImpl::categorizePtrValue( |
| Attributor &A, const Instruction &I, const Value &Ptr, |
| AAMemoryLocation::StateType &State, bool &Changed) { |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for " |
| << Ptr << " [" |
| << getMemoryLocationsAsStr(State.getAssumed()) << "]\n"); |
| |
| SmallVector<Value *, 8> Objects; |
| if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) { |
| LLVM_DEBUG( |
| dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n"); |
| updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed, |
| getAccessKindFromInst(&I)); |
| return; |
| } |
| |
| for (Value *Obj : Objects) { |
| // TODO: recognize the TBAA used for constant accesses. |
| MemoryLocationsKind MLK = NO_LOCATIONS; |
| assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped."); |
| if (isa<UndefValue>(Obj)) |
| continue; |
| if (auto *Arg = dyn_cast<Argument>(Obj)) { |
| if (Arg->hasByValAttr()) |
| MLK = NO_LOCAL_MEM; |
| else |
| MLK = NO_ARGUMENT_MEM; |
| } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) { |
| // Reading constant memory is not treated as a read "effect" by the |
| // function attr pass so we won't neither. Constants defined by TBAA are |
| // similar. (We know we do not write it because it is constant.) |
| if (auto *GVar = dyn_cast<GlobalVariable>(GV)) |
| if (GVar->isConstant()) |
| continue; |
| |
| if (GV->hasLocalLinkage()) |
| MLK = NO_GLOBAL_INTERNAL_MEM; |
| else |
| MLK = NO_GLOBAL_EXTERNAL_MEM; |
| } else if (isa<ConstantPointerNull>(Obj) && |
| !NullPointerIsDefined(getAssociatedFunction(), |
| Ptr.getType()->getPointerAddressSpace())) { |
| continue; |
| } else if (isa<AllocaInst>(Obj)) { |
| MLK = NO_LOCAL_MEM; |
| } else if (const auto *CB = dyn_cast<CallBase>(Obj)) { |
| const auto &NoAliasAA = A.getAAFor<AANoAlias>( |
| *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL); |
| if (NoAliasAA.isAssumedNoAlias()) |
| MLK = NO_MALLOCED_MEM; |
| else |
| MLK = NO_UNKOWN_MEM; |
| } else { |
| MLK = NO_UNKOWN_MEM; |
| } |
| |
| assert(MLK != NO_LOCATIONS && "No location specified!"); |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: " |
| << *Obj << " -> " << getMemoryLocationsAsStr(MLK) |
| << "\n"); |
| updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed, |
| getAccessKindFromInst(&I)); |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: " |
| << getMemoryLocationsAsStr(State.getAssumed()) << "\n"); |
| } |
| |
| void AAMemoryLocationImpl::categorizeArgumentPointerLocations( |
| Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs, |
| bool &Changed) { |
| for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) { |
| |
| // Skip non-pointer arguments. |
| const Value *ArgOp = CB.getArgOperand(ArgNo); |
| if (!ArgOp->getType()->isPtrOrPtrVectorTy()) |
| continue; |
| |
| // Skip readnone arguments. |
| const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo); |
| const auto &ArgOpMemLocationAA = |
| A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL); |
| |
| if (ArgOpMemLocationAA.isAssumedReadNone()) |
| continue; |
| |
| // Categorize potentially accessed pointer arguments as if there was an |
| // access instruction with them as pointer. |
| categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed); |
| } |
| } |
| |
| AAMemoryLocation::MemoryLocationsKind |
| AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I, |
| bool &Changed) { |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for " |
| << I << "\n"); |
| |
| AAMemoryLocation::StateType AccessedLocs; |
| AccessedLocs.intersectAssumedBits(NO_LOCATIONS); |
| |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| |
| // First check if we assume any memory is access is visible. |
| const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>( |
| *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL); |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I |
| << " [" << CBMemLocationAA << "]\n"); |
| |
| if (CBMemLocationAA.isAssumedReadNone()) |
| return NO_LOCATIONS; |
| |
| if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) { |
| updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr, |
| Changed, getAccessKindFromInst(&I)); |
| return AccessedLocs.getAssumed(); |
| } |
| |
| uint32_t CBAssumedNotAccessedLocs = |
| CBMemLocationAA.getAssumedNotAccessedLocation(); |
| |
| // Set the argmemonly and global bit as we handle them separately below. |
| uint32_t CBAssumedNotAccessedLocsNoArgMem = |
| CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM; |
| |
| for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { |
| if (CBAssumedNotAccessedLocsNoArgMem & CurMLK) |
| continue; |
| updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed, |
| getAccessKindFromInst(&I)); |
| } |
| |
| // Now handle global memory if it might be accessed. This is slightly tricky |
| // as NO_GLOBAL_MEM has multiple bits set. |
| bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM); |
| if (HasGlobalAccesses) { |
| auto AccessPred = [&](const Instruction *, const Value *Ptr, |
| AccessKind Kind, MemoryLocationsKind MLK) { |
| updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed, |
| getAccessKindFromInst(&I)); |
| return true; |
| }; |
| if (!CBMemLocationAA.checkForAllAccessesToMemoryKind( |
| AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false))) |
| return AccessedLocs.getWorstState(); |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "[AAMemoryLocation] Accessed state before argument handling: " |
| << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); |
| |
| // Now handle argument memory if it might be accessed. |
| bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM); |
| if (HasArgAccesses) |
| categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed); |
| |
| LLVM_DEBUG( |
| dbgs() << "[AAMemoryLocation] Accessed state after argument handling: " |
| << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n"); |
| |
| return AccessedLocs.getAssumed(); |
| } |
| |
| if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) { |
| LLVM_DEBUG( |
| dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: " |
| << I << " [" << *Ptr << "]\n"); |
| categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed); |
| return AccessedLocs.getAssumed(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: " |
| << I << "\n"); |
| updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed, |
| getAccessKindFromInst(&I)); |
| return AccessedLocs.getAssumed(); |
| } |
| |
| /// An AA to represent the memory behavior function attributes. |
| struct AAMemoryLocationFunction final : public AAMemoryLocationImpl { |
| AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A) |
| : AAMemoryLocationImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(Attributor &A). |
| virtual ChangeStatus updateImpl(Attributor &A) override { |
| |
| const auto &MemBehaviorAA = |
| A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE); |
| if (MemBehaviorAA.isAssumedReadNone()) { |
| if (MemBehaviorAA.isKnownReadNone()) |
| return indicateOptimisticFixpoint(); |
| assert(isAssumedReadNone() && |
| "AAMemoryLocation was not read-none but AAMemoryBehavior was!"); |
| A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL); |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| // The current assumed state used to determine a change. |
| auto AssumedState = getAssumed(); |
| bool Changed = false; |
| |
| auto CheckRWInst = [&](Instruction &I) { |
| MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed); |
| LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I |
| << ": " << getMemoryLocationsAsStr(MLK) << "\n"); |
| removeAssumedBits(inverseLocation(MLK, false, false)); |
| // Stop once only the valid bit set in the *not assumed location*, thus |
| // once we don't actually exclude any memory locations in the state. |
| return getAssumedNotAccessedLocation() != VALID_STATE; |
| }; |
| |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this, |
| UsedAssumedInformation)) |
| return indicatePessimisticFixpoint(); |
| |
| Changed |= AssumedState != getAssumed(); |
| return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_FN_ATTR(readnone) |
| else if (isAssumedArgMemOnly()) |
| STATS_DECLTRACK_FN_ATTR(argmemonly) |
| else if (isAssumedInaccessibleMemOnly()) |
| STATS_DECLTRACK_FN_ATTR(inaccessiblememonly) |
| else if (isAssumedInaccessibleOrArgMemOnly()) |
| STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly) |
| } |
| }; |
| |
| /// AAMemoryLocation attribute for call sites. |
| struct AAMemoryLocationCallSite final : AAMemoryLocationImpl { |
| AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A) |
| : AAMemoryLocationImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAMemoryLocationImpl::initialize(A); |
| Function *F = getAssociatedFunction(); |
| if (!F || F->isDeclaration()) |
| indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| // TODO: Once we have call site specific value information we can provide |
| // call site specific liveness liveness information and then it makes |
| // sense to specialize attributes for call sites arguments instead of |
| // redirecting requests to the callee argument. |
| Function *F = getAssociatedFunction(); |
| const IRPosition &FnPos = IRPosition::function(*F); |
| auto &FnAA = |
| A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED); |
| bool Changed = false; |
| auto AccessPred = [&](const Instruction *I, const Value *Ptr, |
| AccessKind Kind, MemoryLocationsKind MLK) { |
| updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed, |
| getAccessKindFromInst(I)); |
| return true; |
| }; |
| if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS)) |
| return indicatePessimisticFixpoint(); |
| return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| if (isAssumedReadNone()) |
| STATS_DECLTRACK_CS_ATTR(readnone) |
| } |
| }; |
| |
| /// ------------------ Value Constant Range Attribute ------------------------- |
| |
| struct AAValueConstantRangeImpl : AAValueConstantRange { |
| using StateType = IntegerRangeState; |
| AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A) |
| : AAValueConstantRange(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| if (A.hasSimplificationCallback(getIRPosition())) { |
| indicatePessimisticFixpoint(); |
| return; |
| } |
| |
| // Intersect a range given by SCEV. |
| intersectKnown(getConstantRangeFromSCEV(A, getCtxI())); |
| |
| // Intersect a range given by LVI. |
| intersectKnown(getConstantRangeFromLVI(A, getCtxI())); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| std::string Str; |
| llvm::raw_string_ostream OS(Str); |
| OS << "range(" << getBitWidth() << ")<"; |
| getKnown().print(OS); |
| OS << " / "; |
| getAssumed().print(OS); |
| OS << ">"; |
| return OS.str(); |
| } |
| |
| /// Helper function to get a SCEV expr for the associated value at program |
| /// point \p I. |
| const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const { |
| if (!getAnchorScope()) |
| return nullptr; |
| |
| ScalarEvolution *SE = |
| A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( |
| *getAnchorScope()); |
| |
| LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>( |
| *getAnchorScope()); |
| |
| if (!SE || !LI) |
| return nullptr; |
| |
| const SCEV *S = SE->getSCEV(&getAssociatedValue()); |
| if (!I) |
| return S; |
| |
| return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent())); |
| } |
| |
| /// Helper function to get a range from SCEV for the associated value at |
| /// program point \p I. |
| ConstantRange getConstantRangeFromSCEV(Attributor &A, |
| const Instruction *I = nullptr) const { |
| if (!getAnchorScope()) |
| return getWorstState(getBitWidth()); |
| |
| ScalarEvolution *SE = |
| A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( |
| *getAnchorScope()); |
| |
| const SCEV *S = getSCEV(A, I); |
| if (!SE || !S) |
| return getWorstState(getBitWidth()); |
| |
| return SE->getUnsignedRange(S); |
| } |
| |
| /// Helper function to get a range from LVI for the associated value at |
| /// program point \p I. |
| ConstantRange |
| getConstantRangeFromLVI(Attributor &A, |
| const Instruction *CtxI = nullptr) const { |
| if (!getAnchorScope()) |
| return getWorstState(getBitWidth()); |
| |
| LazyValueInfo *LVI = |
| A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>( |
| *getAnchorScope()); |
| |
| if (!LVI || !CtxI) |
| return getWorstState(getBitWidth()); |
| return LVI->getConstantRange(&getAssociatedValue(), |
| const_cast<Instruction *>(CtxI)); |
| } |
| |
| /// Return true if \p CtxI is valid for querying outside analyses. |
| /// This basically makes sure we do not ask intra-procedural analysis |
| /// about a context in the wrong function or a context that violates |
| /// dominance assumptions they might have. The \p AllowAACtxI flag indicates |
| /// if the original context of this AA is OK or should be considered invalid. |
| bool isValidCtxInstructionForOutsideAnalysis(Attributor &A, |
| const Instruction *CtxI, |
| bool AllowAACtxI) const { |
| if (!CtxI || (!AllowAACtxI && CtxI == getCtxI())) |
| return false; |
| |
| // Our context might be in a different function, neither intra-procedural |
| // analysis (ScalarEvolution nor LazyValueInfo) can handle that. |
| if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction())) |
| return false; |
| |
| // If the context is not dominated by the value there are paths to the |
| // context that do not define the value. This cannot be handled by |
| // LazyValueInfo so we need to bail. |
| if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) { |
| InformationCache &InfoCache = A.getInfoCache(); |
| const DominatorTree *DT = |
| InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>( |
| *I->getFunction()); |
| return DT && DT->dominates(I, CtxI); |
| } |
| |
| return true; |
| } |
| |
| /// See AAValueConstantRange::getKnownConstantRange(..). |
| ConstantRange |
| getKnownConstantRange(Attributor &A, |
| const Instruction *CtxI = nullptr) const override { |
| if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI, |
| /* AllowAACtxI */ false)) |
| return getKnown(); |
| |
| ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); |
| ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); |
| return getKnown().intersectWith(SCEVR).intersectWith(LVIR); |
| } |
| |
| /// See AAValueConstantRange::getAssumedConstantRange(..). |
| ConstantRange |
| getAssumedConstantRange(Attributor &A, |
| const Instruction *CtxI = nullptr) const override { |
| // TODO: Make SCEV use Attributor assumption. |
| // We may be able to bound a variable range via assumptions in |
| // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to |
| // evolve to x^2 + x, then we can say that y is in [2, 12]. |
| if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI, |
| /* AllowAACtxI */ false)) |
| return getAssumed(); |
| |
| ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); |
| ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI); |
| return getAssumed().intersectWith(SCEVR).intersectWith(LVIR); |
| } |
| |
| /// Helper function to create MDNode for range metadata. |
| static MDNode * |
| getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx, |
| const ConstantRange &AssumedConstantRange) { |
| Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get( |
| Ty, AssumedConstantRange.getLower())), |
| ConstantAsMetadata::get(ConstantInt::get( |
| Ty, AssumedConstantRange.getUpper()))}; |
| return MDNode::get(Ctx, LowAndHigh); |
| } |
| |
| /// Return true if \p Assumed is included in \p KnownRanges. |
| static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) { |
| |
| if (Assumed.isFullSet()) |
| return false; |
| |
| if (!KnownRanges) |
| return true; |
| |
| // If multiple ranges are annotated in IR, we give up to annotate assumed |
| // range for now. |
| |
| // TODO: If there exists a known range which containts assumed range, we |
| // can say assumed range is better. |
| if (KnownRanges->getNumOperands() > 2) |
| return false; |
| |
| ConstantInt *Lower = |
| mdconst::extract<ConstantInt>(KnownRanges->getOperand(0)); |
| ConstantInt *Upper = |
| mdconst::extract<ConstantInt>(KnownRanges->getOperand(1)); |
| |
| ConstantRange Known(Lower->getValue(), Upper->getValue()); |
| return Known.contains(Assumed) && Known != Assumed; |
| } |
| |
| /// Helper function to set range metadata. |
| static bool |
| setRangeMetadataIfisBetterRange(Instruction *I, |
| const ConstantRange &AssumedConstantRange) { |
| auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range); |
| if (isBetterRange(AssumedConstantRange, OldRangeMD)) { |
| if (!AssumedConstantRange.isEmptySet()) { |
| I->setMetadata(LLVMContext::MD_range, |
| getMDNodeForConstantRange(I->getType(), I->getContext(), |
| AssumedConstantRange)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// See AbstractAttribute::manifest() |
| ChangeStatus manifest(Attributor &A) override { |
| ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| ConstantRange AssumedConstantRange = getAssumedConstantRange(A); |
| assert(!AssumedConstantRange.isFullSet() && "Invalid state"); |
| |
| auto &V = getAssociatedValue(); |
| if (!AssumedConstantRange.isEmptySet() && |
| !AssumedConstantRange.isSingleElement()) { |
| if (Instruction *I = dyn_cast<Instruction>(&V)) { |
| assert(I == getCtxI() && "Should not annotate an instruction which is " |
| "not the context instruction"); |
| if (isa<CallInst>(I) || isa<LoadInst>(I)) |
| if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange)) |
| Changed = ChangeStatus::CHANGED; |
| } |
| } |
| |
| return Changed; |
| } |
| }; |
| |
| struct AAValueConstantRangeArgument final |
| : AAArgumentFromCallSiteArguments< |
| AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState, |
| true /* BridgeCallBaseContext */> { |
| using Base = AAArgumentFromCallSiteArguments< |
| AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState, |
| true /* BridgeCallBaseContext */>; |
| AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { |
| indicatePessimisticFixpoint(); |
| } else { |
| Base::initialize(A); |
| } |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_ARG_ATTR(value_range) |
| } |
| }; |
| |
| struct AAValueConstantRangeReturned |
| : AAReturnedFromReturnedValues<AAValueConstantRange, |
| AAValueConstantRangeImpl, |
| AAValueConstantRangeImpl::StateType, |
| /* PropogateCallBaseContext */ true> { |
| using Base = |
| AAReturnedFromReturnedValues<AAValueConstantRange, |
| AAValueConstantRangeImpl, |
| AAValueConstantRangeImpl::StateType, |
| /* PropogateCallBaseContext */ true>; |
| AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FNRET_ATTR(value_range) |
| } |
| }; |
| |
| struct AAValueConstantRangeFloating : AAValueConstantRangeImpl { |
| AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A) |
| : AAValueConstantRangeImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AAValueConstantRangeImpl::initialize(A); |
| if (isAtFixpoint()) |
| return; |
| |
| Value &V = getAssociatedValue(); |
| |
| if (auto *C = dyn_cast<ConstantInt>(&V)) { |
| unionAssumed(ConstantRange(C->getValue())); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<UndefValue>(&V)) { |
| // Collapse the undef state to 0. |
| unionAssumed(ConstantRange(APInt(getBitWidth(), 0))); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<CallBase>(&V)) |
| return; |
| |
| if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V)) |
| return; |
| |
| // If it is a load instruction with range metadata, use it. |
| if (LoadInst *LI = dyn_cast<LoadInst>(&V)) |
| if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) { |
| intersectKnown(getConstantRangeFromMetadata(*RangeMD)); |
| return; |
| } |
| |
| // We can work with PHI and select instruction as we traverse their operands |
| // during update. |
| if (isa<SelectInst>(V) || isa<PHINode>(V)) |
| return; |
| |
| // Otherwise we give up. |
| indicatePessimisticFixpoint(); |
| |
| LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: " |
| << getAssociatedValue() << "\n"); |
| } |
| |
| bool calculateBinaryOperator( |
| Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T, |
| const Instruction *CtxI, |
| SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| Value *LHS = BinOp->getOperand(0); |
| Value *RHS = BinOp->getOperand(1); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return true; |
| if (!SimplifiedLHS.getValue()) |
| return false; |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return true; |
| if (!SimplifiedRHS.getValue()) |
| return false; |
| RHS = *SimplifiedRHS; |
| |
| // TODO: Allow non integers as well. |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return false; |
| |
| auto &LHSAA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*LHS, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| QuerriedAAs.push_back(&LHSAA); |
| auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); |
| |
| auto &RHSAA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*RHS, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| QuerriedAAs.push_back(&RHSAA); |
| auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); |
| |
| auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange); |
| |
| T.unionAssumed(AssumedRange); |
| |
| // TODO: Track a known state too. |
| |
| return T.isValidState(); |
| } |
| |
| bool calculateCastInst( |
| Attributor &A, CastInst *CastI, IntegerRangeState &T, |
| const Instruction *CtxI, |
| SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!"); |
| // TODO: Allow non integers as well. |
| Value *OpV = CastI->getOperand(0); |
| |
| // Simplify the operand first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedOpV = |
| A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedOpV.hasValue()) |
| return true; |
| if (!SimplifiedOpV.getValue()) |
| return false; |
| OpV = *SimplifiedOpV; |
| |
| if (!OpV->getType()->isIntegerTy()) |
| return false; |
| |
| auto &OpAA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*OpV, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| QuerriedAAs.push_back(&OpAA); |
| T.unionAssumed( |
| OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth())); |
| return T.isValidState(); |
| } |
| |
| bool |
| calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T, |
| const Instruction *CtxI, |
| SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| Value *LHS = CmpI->getOperand(0); |
| Value *RHS = CmpI->getOperand(1); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return true; |
| if (!SimplifiedLHS.getValue()) |
| return false; |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return true; |
| if (!SimplifiedRHS.getValue()) |
| return false; |
| RHS = *SimplifiedRHS; |
| |
| // TODO: Allow non integers as well. |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return false; |
| |
| auto &LHSAA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*LHS, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| QuerriedAAs.push_back(&LHSAA); |
| auto &RHSAA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*RHS, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| QuerriedAAs.push_back(&RHSAA); |
| auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI); |
| auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI); |
| |
| // If one of them is empty set, we can't decide. |
| if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet()) |
| return true; |
| |
| bool MustTrue = false, MustFalse = false; |
| |
| auto AllowedRegion = |
| ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange); |
| |
| if (AllowedRegion.intersectWith(LHSAARange).isEmptySet()) |
| MustFalse = true; |
| |
| if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange)) |
| MustTrue = true; |
| |
| assert((!MustTrue || !MustFalse) && |
| "Either MustTrue or MustFalse should be false!"); |
| |
| if (MustTrue) |
| T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1))); |
| else if (MustFalse) |
| T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0))); |
| else |
| T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true)); |
| |
| LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA |
| << " " << RHSAA << "\n"); |
| |
| // TODO: Track a known state too. |
| return T.isValidState(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto VisitValueCB = [&](Value &V, const Instruction *CtxI, |
| IntegerRangeState &T, bool Stripped) -> bool { |
| Instruction *I = dyn_cast<Instruction>(&V); |
| if (!I || isa<CallBase>(I)) { |
| |
| // Simplify the operand first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedOpV = |
| A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedOpV.hasValue()) |
| return true; |
| if (!SimplifiedOpV.getValue()) |
| return false; |
| Value *VPtr = *SimplifiedOpV; |
| |
| // If the value is not instruction, we query AA to Attributor. |
| const auto &AA = A.getAAFor<AAValueConstantRange>( |
| *this, IRPosition::value(*VPtr, getCallBaseContext()), |
| DepClassTy::REQUIRED); |
| |
| // Clamp operator is not used to utilize a program point CtxI. |
| T.unionAssumed(AA.getAssumedConstantRange(A, CtxI)); |
| |
| return T.isValidState(); |
| } |
| |
| SmallVector<const AAValueConstantRange *, 4> QuerriedAAs; |
| if (auto *BinOp = dyn_cast<BinaryOperator>(I)) { |
| if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs)) |
| return false; |
| } else if (auto *CmpI = dyn_cast<CmpInst>(I)) { |
| if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs)) |
| return false; |
| } else if (auto *CastI = dyn_cast<CastInst>(I)) { |
| if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs)) |
| return false; |
| } else { |
| // Give up with other instructions. |
| // TODO: Add other instructions |
| |
| T.indicatePessimisticFixpoint(); |
| return false; |
| } |
| |
| // Catch circular reasoning in a pessimistic way for now. |
| // TODO: Check how the range evolves and if we stripped anything, see also |
| // AADereferenceable or AAAlign for similar situations. |
| for (const AAValueConstantRange *QueriedAA : QuerriedAAs) { |
| if (QueriedAA != this) |
| continue; |
| // If we are in a stady state we do not need to worry. |
| if (T.getAssumed() == getState().getAssumed()) |
| continue; |
| T.indicatePessimisticFixpoint(); |
| } |
| |
| return T.isValidState(); |
| }; |
| |
| IntegerRangeState T(getBitWidth()); |
| |
| if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T, |
| VisitValueCB, getCtxI(), |
| /* UseValueSimplify */ false)) |
| return indicatePessimisticFixpoint(); |
| |
| return clampStateAndIndicateChange(getState(), T); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(value_range) |
| } |
| }; |
| |
| struct AAValueConstantRangeFunction : AAValueConstantRangeImpl { |
| AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A) |
| : AAValueConstantRangeImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will " |
| "not be called"); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) } |
| }; |
| |
| struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction { |
| AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A) |
| : AAValueConstantRangeFunction(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) } |
| }; |
| |
| struct AAValueConstantRangeCallSiteReturned |
| : AACallSiteReturnedFromReturned<AAValueConstantRange, |
| AAValueConstantRangeImpl, |
| AAValueConstantRangeImpl::StateType, |
| /* IntroduceCallBaseContext */ true> { |
| AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AACallSiteReturnedFromReturned<AAValueConstantRange, |
| AAValueConstantRangeImpl, |
| AAValueConstantRangeImpl::StateType, |
| /* IntroduceCallBaseContext */ true>(IRP, |
| A) { |
| } |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| // If it is a load instruction with range metadata, use the metadata. |
| if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue())) |
| if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range)) |
| intersectKnown(getConstantRangeFromMetadata(*RangeMD)); |
| |
| AAValueConstantRangeImpl::initialize(A); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSRET_ATTR(value_range) |
| } |
| }; |
| struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating { |
| AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAValueConstantRangeFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::manifest() |
| ChangeStatus manifest(Attributor &A) override { |
| return ChangeStatus::UNCHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSARG_ATTR(value_range) |
| } |
| }; |
| |
| /// ------------------ Potential Values Attribute ------------------------- |
| |
| struct AAPotentialValuesImpl : AAPotentialValues { |
| using StateType = PotentialConstantIntValuesState; |
| |
| AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A) |
| : AAPotentialValues(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| if (A.hasSimplificationCallback(getIRPosition())) |
| indicatePessimisticFixpoint(); |
| else |
| AAPotentialValues::initialize(A); |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| std::string Str; |
| llvm::raw_string_ostream OS(Str); |
| OS << getState(); |
| return OS.str(); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| return indicatePessimisticFixpoint(); |
| } |
| }; |
| |
| struct AAPotentialValuesArgument final |
| : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, |
| PotentialConstantIntValuesState> { |
| using Base = |
| AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl, |
| PotentialConstantIntValuesState>; |
| AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| if (!getAnchorScope() || getAnchorScope()->isDeclaration()) { |
| indicatePessimisticFixpoint(); |
| } else { |
| Base::initialize(A); |
| } |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_ARG_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesReturned |
| : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> { |
| using Base = |
| AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>; |
| AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A) |
| : Base(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FNRET_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesFloating : AAPotentialValuesImpl { |
| AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A) |
| : AAPotentialValuesImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| AAPotentialValuesImpl::initialize(A); |
| if (isAtFixpoint()) |
| return; |
| |
| Value &V = getAssociatedValue(); |
| |
| if (auto *C = dyn_cast<ConstantInt>(&V)) { |
| unionAssumed(C->getValue()); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<UndefValue>(&V)) { |
| unionAssumedWithUndef(); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V)) |
| return; |
| |
| if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V)) |
| return; |
| |
| indicatePessimisticFixpoint(); |
| |
| LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: " |
| << getAssociatedValue() << "\n"); |
| } |
| |
| static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS, |
| const APInt &RHS) { |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| switch (Pred) { |
| case ICmpInst::ICMP_UGT: |
| return LHS.ugt(RHS); |
| case ICmpInst::ICMP_SGT: |
| return LHS.sgt(RHS); |
| case ICmpInst::ICMP_EQ: |
| return LHS.eq(RHS); |
| case ICmpInst::ICMP_UGE: |
| return LHS.uge(RHS); |
| case ICmpInst::ICMP_SGE: |
| return LHS.sge(RHS); |
| case ICmpInst::ICMP_ULT: |
| return LHS.ult(RHS); |
| case ICmpInst::ICMP_SLT: |
| return LHS.slt(RHS); |
| case ICmpInst::ICMP_NE: |
| return LHS.ne(RHS); |
| case ICmpInst::ICMP_ULE: |
| return LHS.ule(RHS); |
| case ICmpInst::ICMP_SLE: |
| return LHS.sle(RHS); |
| default: |
| llvm_unreachable("Invalid ICmp predicate!"); |
| } |
| } |
| |
| static APInt calculateCastInst(const CastInst *CI, const APInt &Src, |
| uint32_t ResultBitWidth) { |
| Instruction::CastOps CastOp = CI->getOpcode(); |
| switch (CastOp) { |
| default: |
| llvm_unreachable("unsupported or not integer cast"); |
| case Instruction::Trunc: |
| return Src.trunc(ResultBitWidth); |
| case Instruction::SExt: |
| return Src.sext(ResultBitWidth); |
| case Instruction::ZExt: |
| return Src.zext(ResultBitWidth); |
| case Instruction::BitCast: |
| return Src; |
| } |
| } |
| |
| static APInt calculateBinaryOperator(const BinaryOperator *BinOp, |
| const APInt &LHS, const APInt &RHS, |
| bool &SkipOperation, bool &Unsupported) { |
| Instruction::BinaryOps BinOpcode = BinOp->getOpcode(); |
| // Unsupported is set to true when the binary operator is not supported. |
| // SkipOperation is set to true when UB occur with the given operand pair |
| // (LHS, RHS). |
| // TODO: we should look at nsw and nuw keywords to handle operations |
| // that create poison or undef value. |
| switch (BinOpcode) { |
| default: |
| Unsupported = true; |
| return LHS; |
| case Instruction::Add: |
| return LHS + RHS; |
| case Instruction::Sub: |
| return LHS - RHS; |
| case Instruction::Mul: |
| return LHS * RHS; |
| case Instruction::UDiv: |
| if (RHS.isNullValue()) { |
| SkipOperation = true; |
| return LHS; |
| } |
| return LHS.udiv(RHS); |
| case Instruction::SDiv: |
| if (RHS.isNullValue()) { |
| SkipOperation = true; |
| return LHS; |
| } |
| return LHS.sdiv(RHS); |
| case Instruction::URem: |
| if (RHS.isNullValue()) { |
| SkipOperation = true; |
| return LHS; |
| } |
| return LHS.urem(RHS); |
| case Instruction::SRem: |
| if (RHS.isNullValue()) { |
| SkipOperation = true; |
| return LHS; |
| } |
| return LHS.srem(RHS); |
| case Instruction::Shl: |
| return LHS.shl(RHS); |
| case Instruction::LShr: |
| return LHS.lshr(RHS); |
| case Instruction::AShr: |
| return LHS.ashr(RHS); |
| case Instruction::And: |
| return LHS & RHS; |
| case Instruction::Or: |
| return LHS | RHS; |
| case Instruction::Xor: |
| return LHS ^ RHS; |
| } |
| } |
| |
| bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp, |
| const APInt &LHS, const APInt &RHS) { |
| bool SkipOperation = false; |
| bool Unsupported = false; |
| APInt Result = |
| calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported); |
| if (Unsupported) |
| return false; |
| // If SkipOperation is true, we can ignore this operand pair (L, R). |
| if (!SkipOperation) |
| unionAssumed(Result); |
| return isValidState(); |
| } |
| |
| ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) { |
| auto AssumedBefore = getAssumed(); |
| Value *LHS = ICI->getOperand(0); |
| Value *RHS = ICI->getOperand(1); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedLHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedRHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| RHS = *SimplifiedRHS; |
| |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return indicatePessimisticFixpoint(); |
| |
| auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS), |
| DepClassTy::REQUIRED); |
| if (!LHSAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| |
| auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS), |
| DepClassTy::REQUIRED); |
| if (!RHSAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| |
| const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); |
| const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); |
| |
| // TODO: make use of undef flag to limit potential values aggressively. |
| bool MaybeTrue = false, MaybeFalse = false; |
| const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0); |
| if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) { |
| // The result of any comparison between undefs can be soundly replaced |
| // with undef. |
| unionAssumedWithUndef(); |
| } else if (LHSAA.undefIsContained()) { |
| for (const APInt &R : RHSAAPVS) { |
| bool CmpResult = calculateICmpInst(ICI, Zero, R); |
| MaybeTrue |= CmpResult; |
| MaybeFalse |= !CmpResult; |
| if (MaybeTrue & MaybeFalse) |
| return indicatePessimisticFixpoint(); |
| } |
| } else if (RHSAA.undefIsContained()) { |
| for (const APInt &L : LHSAAPVS) { |
| bool CmpResult = calculateICmpInst(ICI, L, Zero); |
| MaybeTrue |= CmpResult; |
| MaybeFalse |= !CmpResult; |
| if (MaybeTrue & MaybeFalse) |
| return indicatePessimisticFixpoint(); |
| } |
| } else { |
| for (const APInt &L : LHSAAPVS) { |
| for (const APInt &R : RHSAAPVS) { |
| bool CmpResult = calculateICmpInst(ICI, L, R); |
| MaybeTrue |= CmpResult; |
| MaybeFalse |= !CmpResult; |
| if (MaybeTrue & MaybeFalse) |
| return indicatePessimisticFixpoint(); |
| } |
| } |
| } |
| if (MaybeTrue) |
| unionAssumed(APInt(/* numBits */ 1, /* val */ 1)); |
| if (MaybeFalse) |
| unionAssumed(APInt(/* numBits */ 1, /* val */ 0)); |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) { |
| auto AssumedBefore = getAssumed(); |
| Value *LHS = SI->getTrueValue(); |
| Value *RHS = SI->getFalseValue(); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedLHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedRHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| RHS = *SimplifiedRHS; |
| |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return indicatePessimisticFixpoint(); |
| |
| Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this, |
| UsedAssumedInformation); |
| |
| // Check if we only need one operand. |
| bool OnlyLeft = false, OnlyRight = false; |
| if (C.hasValue() && *C && (*C)->isOneValue()) |
| OnlyLeft = true; |
| else if (C.hasValue() && *C && (*C)->isZeroValue()) |
| OnlyRight = true; |
| |
| const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr; |
| if (!OnlyRight) { |
| LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS), |
| DepClassTy::REQUIRED); |
| if (!LHSAA->isValidState()) |
| return indicatePessimisticFixpoint(); |
| } |
| if (!OnlyLeft) { |
| RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS), |
| DepClassTy::REQUIRED); |
| if (!RHSAA->isValidState()) |
| return indicatePessimisticFixpoint(); |
| } |
| |
| if (!LHSAA || !RHSAA) { |
| // select (true/false), lhs, rhs |
| auto *OpAA = LHSAA ? LHSAA : RHSAA; |
| |
| if (OpAA->undefIsContained()) |
| unionAssumedWithUndef(); |
| else |
| unionAssumed(*OpAA); |
| |
| } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) { |
| // select i1 *, undef , undef => undef |
| unionAssumedWithUndef(); |
| } else { |
| unionAssumed(*LHSAA); |
| unionAssumed(*RHSAA); |
| } |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) { |
| auto AssumedBefore = getAssumed(); |
| if (!CI->isIntegerCast()) |
| return indicatePessimisticFixpoint(); |
| assert(CI->getNumOperands() == 1 && "Expected cast to be unary!"); |
| uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth(); |
| Value *Src = CI->getOperand(0); |
| |
| // Simplify the operand first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedSrc = |
| A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedSrc.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedSrc.getValue()) |
| return indicatePessimisticFixpoint(); |
| Src = *SimplifiedSrc; |
| |
| auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src), |
| DepClassTy::REQUIRED); |
| if (!SrcAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet(); |
| if (SrcAA.undefIsContained()) |
| unionAssumedWithUndef(); |
| else { |
| for (const APInt &S : SrcAAPVS) { |
| APInt T = calculateCastInst(CI, S, ResultBitWidth); |
| unionAssumed(T); |
| } |
| } |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) { |
| auto AssumedBefore = getAssumed(); |
| Value *LHS = BinOp->getOperand(0); |
| Value *RHS = BinOp->getOperand(1); |
| |
| // Simplify the operands first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedLHS = |
| A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedLHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedLHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| LHS = *SimplifiedLHS; |
| |
| const auto &SimplifiedRHS = |
| A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()), |
| *this, UsedAssumedInformation); |
| if (!SimplifiedRHS.hasValue()) |
| return ChangeStatus::UNCHANGED; |
| if (!SimplifiedRHS.getValue()) |
| return indicatePessimisticFixpoint(); |
| RHS = *SimplifiedRHS; |
| |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return indicatePessimisticFixpoint(); |
| |
| auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS), |
| DepClassTy::REQUIRED); |
| if (!LHSAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| |
| auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS), |
| DepClassTy::REQUIRED); |
| if (!RHSAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| |
| const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet(); |
| const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet(); |
| const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0); |
| |
| // TODO: make use of undef flag to limit potential values aggressively. |
| if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) { |
| if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero)) |
| return indicatePessimisticFixpoint(); |
| } else if (LHSAA.undefIsContained()) { |
| for (const APInt &R : RHSAAPVS) { |
| if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R)) |
| return indicatePessimisticFixpoint(); |
| } |
| } else if (RHSAA.undefIsContained()) { |
| for (const APInt &L : LHSAAPVS) { |
| if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero)) |
| return indicatePessimisticFixpoint(); |
| } |
| } else { |
| for (const APInt &L : LHSAAPVS) { |
| for (const APInt &R : RHSAAPVS) { |
| if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R)) |
| return indicatePessimisticFixpoint(); |
| } |
| } |
| } |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) { |
| auto AssumedBefore = getAssumed(); |
| for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { |
| Value *IncomingValue = PHI->getIncomingValue(u); |
| |
| // Simplify the operand first. |
| bool UsedAssumedInformation = false; |
| const auto &SimplifiedIncomingValue = A.getAssumedSimplified( |
| IRPosition::value(*IncomingValue, getCallBaseContext()), *this, |
| UsedAssumedInformation); |
| if (!SimplifiedIncomingValue.hasValue()) |
| continue; |
| if (!SimplifiedIncomingValue.getValue()) |
| return indicatePessimisticFixpoint(); |
| IncomingValue = *SimplifiedIncomingValue; |
| |
| auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>( |
| *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED); |
| if (!PotentialValuesAA.isValidState()) |
| return indicatePessimisticFixpoint(); |
| if (PotentialValuesAA.undefIsContained()) |
| unionAssumedWithUndef(); |
| else |
| unionAssumed(PotentialValuesAA.getAssumed()); |
| } |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) { |
| if (!L.getType()->isIntegerTy()) |
| return indicatePessimisticFixpoint(); |
| |
| auto Union = [&](Value &V) { |
| if (isa<UndefValue>(V)) { |
| unionAssumedWithUndef(); |
| return true; |
| } |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) { |
| unionAssumed(CI->getValue()); |
| return true; |
| } |
| return false; |
| }; |
| auto AssumedBefore = getAssumed(); |
| |
| if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union)) |
| return indicatePessimisticFixpoint(); |
| |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| Value &V = getAssociatedValue(); |
| Instruction *I = dyn_cast<Instruction>(&V); |
| |
| if (auto *ICI = dyn_cast<ICmpInst>(I)) |
| return updateWithICmpInst(A, ICI); |
| |
| if (auto *SI = dyn_cast<SelectInst>(I)) |
| return updateWithSelectInst(A, SI); |
| |
| if (auto *CI = dyn_cast<CastInst>(I)) |
| return updateWithCastInst(A, CI); |
| |
| if (auto *BinOp = dyn_cast<BinaryOperator>(I)) |
| return updateWithBinaryOperator(A, BinOp); |
| |
| if (auto *PHI = dyn_cast<PHINode>(I)) |
| return updateWithPHINode(A, PHI); |
| |
| if (auto *L = dyn_cast<LoadInst>(I)) |
| return updateWithLoad(A, *L); |
| |
| return indicatePessimisticFixpoint(); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FLOATING_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesFunction : AAPotentialValuesImpl { |
| AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A) |
| : AAPotentialValuesImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will " |
| "not be called"); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_FN_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesCallSite : AAPotentialValuesFunction { |
| AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A) |
| : AAPotentialValuesFunction(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CS_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesCallSiteReturned |
| : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> { |
| AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AACallSiteReturnedFromReturned<AAPotentialValues, |
| AAPotentialValuesImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSRET_ATTR(potential_values) |
| } |
| }; |
| |
| struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating { |
| AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AAPotentialValuesFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(..). |
| void initialize(Attributor &A) override { |
| AAPotentialValuesImpl::initialize(A); |
| if (isAtFixpoint()) |
| return; |
| |
| Value &V = getAssociatedValue(); |
| |
| if (auto *C = dyn_cast<ConstantInt>(&V)) { |
| unionAssumed(C->getValue()); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| |
| if (isa<UndefValue>(&V)) { |
| unionAssumedWithUndef(); |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| Value &V = getAssociatedValue(); |
| auto AssumedBefore = getAssumed(); |
| auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V), |
| DepClassTy::REQUIRED); |
| const auto &S = AA.getAssumed(); |
| unionAssumed(S); |
| return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { |
| STATS_DECLTRACK_CSARG_ATTR(potential_values) |
| } |
| }; |
| |
| /// ------------------------ NoUndef Attribute --------------------------------- |
| struct AANoUndefImpl : AANoUndef { |
| AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| if (getIRPosition().hasAttr({Attribute::NoUndef})) { |
| indicateOptimisticFixpoint(); |
| return; |
| } |
| Value &V = getAssociatedValue(); |
| if (isa<UndefValue>(V)) |
| indicatePessimisticFixpoint(); |
| else if (isa<FreezeInst>(V)) |
| indicateOptimisticFixpoint(); |
| else if (getPositionKind() != IRPosition::IRP_RETURNED && |
| isGuaranteedNotToBeUndefOrPoison(&V)) |
| indicateOptimisticFixpoint(); |
| else |
| AANoUndef::initialize(A); |
| } |
| |
| /// See followUsesInMBEC |
| bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| AANoUndef::StateType &State) { |
| const Value *UseV = U->get(); |
| const DominatorTree *DT = nullptr; |
| AssumptionCache *AC = nullptr; |
| InformationCache &InfoCache = A.getInfoCache(); |
| if (Function *F = getAnchorScope()) { |
| DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F); |
| AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F); |
| } |
| State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT)); |
| bool TrackUse = false; |
| // Track use for instructions which must produce undef or poison bits when |
| // at least one operand contains such bits. |
| if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I)) |
| TrackUse = true; |
| return TrackUse; |
| } |
| |
| /// See AbstractAttribute::getAsStr(). |
| const std::string getAsStr() const override { |
| return getAssumed() ? "noundef" : "may-undef-or-poison"; |
| } |
| |
| ChangeStatus manifest(Attributor &A) override { |
| // We don't manifest noundef attribute for dead positions because the |
| // associated values with dead positions would be replaced with undef |
| // values. |
| bool UsedAssumedInformation = false; |
| if (A.isAssumedDead(getIRPosition(), nullptr, nullptr, |
| UsedAssumedInformation)) |
| return ChangeStatus::UNCHANGED; |
| // A position whose simplified value does not have any value is |
| // considered to be dead. We don't manifest noundef in such positions for |
| // the same reason above. |
| if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation) |
| .hasValue()) |
| return ChangeStatus::UNCHANGED; |
| return AANoUndef::manifest(A); |
| } |
| }; |
| |
| struct AANoUndefFloating : public AANoUndefImpl { |
| AANoUndefFloating(const IRPosition &IRP, Attributor &A) |
| : AANoUndefImpl(IRP, A) {} |
| |
| /// See AbstractAttribute::initialize(...). |
| void initialize(Attributor &A) override { |
| AANoUndefImpl::initialize(A); |
| if (!getState().isAtFixpoint()) |
| if (Instruction *CtxI = getCtxI()) |
| followUsesInMBEC(*this, A, getState(), *CtxI); |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| auto VisitValueCB = [&](Value &V, const Instruction *CtxI, |
| AANoUndef::StateType &T, bool Stripped) -> bool { |
| const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V), |
| DepClassTy::REQUIRED); |
| if (!Stripped && this == &AA) { |
| T.indicatePessimisticFixpoint(); |
| } else { |
| const AANoUndef::StateType &S = |
| static_cast<const AANoUndef::StateType &>(AA.getState()); |
| T ^= S; |
| } |
| return T.isValidState(); |
| }; |
| |
| StateType T; |
| if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T, |
| VisitValueCB, getCtxI())) |
| return indicatePessimisticFixpoint(); |
| |
| return clampStateAndIndicateChange(getState(), T); |
| } |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } |
| }; |
| |
| struct AANoUndefReturned final |
| : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> { |
| AANoUndefReturned(const IRPosition &IRP, Attributor &A) |
| : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } |
| }; |
| |
| struct AANoUndefArgument final |
| : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> { |
| AANoUndefArgument(const IRPosition &IRP, Attributor &A) |
| : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) } |
| }; |
| |
| struct AANoUndefCallSiteArgument final : AANoUndefFloating { |
| AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| : AANoUndefFloating(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) } |
| }; |
| |
| struct AANoUndefCallSiteReturned final |
| : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> { |
| AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| |
| /// See AbstractAttribute::trackStatistics() |
| void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) } |
| }; |
| |
| struct AACallEdgesFunction : public AACallEdges { |
| AACallEdgesFunction(const IRPosition &IRP, Attributor &A) |
| : AACallEdges(IRP, A) {} |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| ChangeStatus Change = ChangeStatus::UNCHANGED; |
| bool OldHasUnknownCallee = HasUnknownCallee; |
| bool OldHasUnknownCalleeNonAsm = HasUnknownCalleeNonAsm; |
| |
| auto AddCalledFunction = [&](Function *Fn) { |
| if (CalledFunctions.insert(Fn)) { |
| Change = ChangeStatus::CHANGED; |
| LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName() |
| << "\n"); |
| } |
| }; |
| |
| auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown, |
| bool Stripped) -> bool { |
| if (Function *Fn = dyn_cast<Function>(&V)) { |
| AddCalledFunction(Fn); |
| } else { |
| LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n"); |
| HasUnknown = true; |
| HasUnknownCalleeNonAsm = true; |
| } |
| |
| // Explore all values. |
| return true; |
| }; |
| |
| // Process any value that we might call. |
| auto ProcessCalledOperand = [&](Value *V, Instruction *Ctx) { |
| if (!genericValueTraversal<bool>(A, IRPosition::value(*V), *this, |
| HasUnknownCallee, VisitValue, nullptr, |
| false)) { |
| // If we haven't gone through all values, assume that there are unknown |
| // callees. |
| HasUnknownCallee = true; |
| HasUnknownCalleeNonAsm = true; |
| } |
| }; |
| |
| auto ProcessCallInst = [&](Instruction &Inst) { |
| CallBase &CB = static_cast<CallBase &>(Inst); |
| if (CB.isInlineAsm()) { |
| HasUnknownCallee = true; |
| return true; |
| } |
| |
| // Process callee metadata if available. |
| if (auto *MD = Inst.getMetadata(LLVMContext::MD_callees)) { |
| for (auto &Op : MD->operands()) { |
| Function *Callee = mdconst::extract_or_null<Function>(Op); |
| if (Callee) |
| AddCalledFunction(Callee); |
| } |
| // Callees metadata grantees that the called function is one of its |
| // operands, So we are done. |
| return true; |
| } |
| |
| // The most simple case. |
| ProcessCalledOperand(CB.getCalledOperand(), &Inst); |
| |
| // Process callback functions. |
| SmallVector<const Use *, 4u> CallbackUses; |
| AbstractCallSite::getCallbackUses(CB, CallbackUses); |
| for (const Use *U : CallbackUses) |
| ProcessCalledOperand(U->get(), &Inst); |
| |
| return true; |
| }; |
| |
| // Visit all callable instructions. |
| bool UsedAssumedInformation = false; |
| if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this, |
| UsedAssumedInformation)) { |
| // If we haven't looked at all call like instructions, assume that there |
| // are unknown callees. |
| HasUnknownCallee = true; |
| HasUnknownCalleeNonAsm = true; |
| } |
| |
| // Track changes. |
| if (OldHasUnknownCallee != HasUnknownCallee || |
| OldHasUnknownCalleeNonAsm != HasUnknownCalleeNonAsm) |
| Change = ChangeStatus::CHANGED; |
| |
| return Change; |
| } |
| |
| virtual const SetVector<Function *> &getOptimisticEdges() const override { |
| return CalledFunctions; |
| }; |
| |
| virtual bool hasUnknownCallee() const override { return HasUnknownCallee; } |
| |
| virtual bool hasNonAsmUnknownCallee() const override { |
| return HasUnknownCalleeNonAsm; |
| } |
| |
| const std::string getAsStr() const override { |
| return "CallEdges[" + std::to_string(HasUnknownCallee) + "," + |
| std::to_string(CalledFunctions.size()) + "]"; |
| } |
| |
| void trackStatistics() const override {} |
| |
| /// Optimistic set of functions that might be called by this function. |
| SetVector<Function *> CalledFunctions; |
| |
| /// Is there any call with a unknown callee. |
| bool HasUnknownCallee = false; |
| |
| /// Is there any call with a unknown callee, excluding any inline asm. |
| bool HasUnknownCalleeNonAsm = false; |
| }; |
| |
| struct AAFunctionReachabilityFunction : public AAFunctionReachability { |
| AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A) |
| : AAFunctionReachability(IRP, A) {} |
| |
| bool canReach(Attributor &A, Function *Fn) const override { |
| // Assume that we can reach any function if we can reach a call with |
| // unknown callee. |
| if (CanReachUnknownCallee) |
| return true; |
| |
| if (ReachableQueries.count(Fn)) |
| return true; |
| |
| if (UnreachableQueries.count(Fn)) |
| return false; |
| |
| const AACallEdges &AAEdges = |
| A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED); |
| |
| const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges(); |
| bool Result = checkIfReachable(A, Edges, Fn); |
| |
| // Attributor returns attributes as const, so this function has to be |
| // const for users of this attribute to use it without having to do |
| // a const_cast. |
| // This is a hack for us to be able to cache queries. |
| auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this); |
| |
| if (Result) |
| NonConstThis->ReachableQueries.insert(Fn); |
| else |
| NonConstThis->UnreachableQueries.insert(Fn); |
| |
| return Result; |
| } |
| |
| /// See AbstractAttribute::updateImpl(...). |
| ChangeStatus updateImpl(Attributor &A) override { |
| if (CanReachUnknownCallee) |
| return ChangeStatus::UNCHANGED; |
| |
| const AACallEdges &AAEdges = |
| A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED); |
| const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges(); |
| ChangeStatus Change = ChangeStatus::UNCHANGED; |
| |
| if (AAEdges.hasUnknownCallee()) { |
| bool OldCanReachUnknown = CanReachUnknownCallee; |
| CanReachUnknownCallee = true; |
| return OldCanReachUnknown ? ChangeStatus::UNCHANGED |
| : ChangeStatus::CHANGED; |
| } |
| |
| // Check if any of the unreachable functions become reachable. |
| for (auto Current = UnreachableQueries.begin(); |
| Current != UnreachableQueries.end();) { |
| if (!checkIfReachable(A, Edges, *Current)) { |
| Current++; |
| continue; |
| } |
| ReachableQueries.insert(*Current); |
| UnreachableQueries.erase(*Current++); |
| Change = ChangeStatus::CHANGED; |
| } |
| |
| return Change; |
| } |
| |
| const std::string getAsStr() const override { |
| size_t QueryCount = ReachableQueries.size() + UnreachableQueries.size(); |
| |
| return "FunctionReachability [" + std::to_string(ReachableQueries.size()) + |
| "," + std::to_string(QueryCount) + "]"; |
| } |
| |
| void trackStatistics() const override {} |
| |
| private: |
| bool canReachUnknownCallee() const override { return CanReachUnknownCallee; } |
| |
| bool checkIfReachable(Attributor &A, const SetVector<Function *> &Edges, |
| Function *Fn) const { |
| if (Edges.count(Fn)) |
| return true; |
| |
| for (Function *Edge : Edges) { |
| // We don't need a dependency if the result is reachable. |
| const AAFunctionReachability &EdgeReachability = |
| A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Edge), |
| DepClassTy::NONE); |
| |
| if (EdgeReachability.canReach(A, Fn)) |
| return true; |
| } |
| for (Function *Fn : Edges) |
| A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Fn), |
| DepClassTy::REQUIRED); |
| |
| return false; |
| } |
| |
| /// Set of functions that we know for sure is reachable. |
| SmallPtrSet<Function *, 8> ReachableQueries; |
| |
| /// Set of functions that are unreachable, but might become reachable. |
| SmallPtrSet<Function *, 8> UnreachableQueries; |
| |
| /// If we can reach a function with a call to a unknown function we assume |
| /// that we can reach any function. |
| bool CanReachUnknownCallee = false; |
| }; |
| |
| } // namespace |
| |
| AACallGraphNode *AACallEdgeIterator::operator*() const { |
| return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>( |
| &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I)))); |
| } |
| |
| void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); } |
| |
| const char AAReturnedValues::ID = 0; |
| const char AANoUnwind::ID = 0; |
| const char AANoSync::ID = 0; |
| const char AANoFree::ID = 0; |
| const char AANonNull::ID = 0; |
| const char AANoRecurse::ID = 0; |
| const char AAWillReturn::ID = 0; |
| const char AAUndefinedBehavior::ID = 0; |
| const char AANoAlias::ID = 0; |
| const char AAReachability::ID = 0; |
| const char AANoReturn::ID = 0; |
| const char AAIsDead::ID = 0; |
| const char AADereferenceable::ID = 0; |
| const char AAAlign::ID = 0; |
| const char AANoCapture::ID = 0; |
| const char AAValueSimplify::ID = 0; |
| const char AAHeapToStack::ID = 0; |
| const char AAPrivatizablePtr::ID = 0; |
| const char AAMemoryBehavior::ID = 0; |
| const char AAMemoryLocation::ID = 0; |
| const char AAValueConstantRange::ID = 0; |
| const char AAPotentialValues::ID = 0; |
| const char AANoUndef::ID = 0; |
| const char AACallEdges::ID = 0; |
| const char AAFunctionReachability::ID = 0; |
| const char AAPointerInfo::ID = 0; |
| |
| // Macro magic to create the static generator function for attributes that |
| // follow the naming scheme. |
| |
| #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \ |
| case IRPosition::PK: \ |
| llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); |
| |
| #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \ |
| case IRPosition::PK: \ |
| AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \ |
| ++NumAAs; \ |
| break; |
| |
| #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| CLASS *AA = nullptr; \ |
| switch (IRP.getPositionKind()) { \ |
| SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ |
| SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ |
| SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| } \ |
| return *AA; \ |
| } |
| |
| #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| CLASS *AA = nullptr; \ |
| switch (IRP.getPositionKind()) { \ |
| SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| } \ |
| return *AA; \ |
| } |
| |
| #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| CLASS *AA = nullptr; \ |
| switch (IRP.getPositionKind()) { \ |
| SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| } \ |
| return *AA; \ |
| } |
| |
| #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| CLASS *AA = nullptr; \ |
| switch (IRP.getPositionKind()) { \ |
| SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ |
| SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ |
| SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ |
| SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| } \ |
| return *AA; \ |
| } |
| |
| #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| CLASS *AA = nullptr; \ |
| switch (IRP.getPositionKind()) { \ |
| SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| } \ |
| return *AA; \ |
| } |
| |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues) |
| CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation) |
| |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef) |
| CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo) |
| |
| CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) |
| CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) |
| CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) |
| |
| CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) |
| CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability) |
| CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior) |
| CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges) |
| CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability) |
| |
| CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) |
| |
| #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| #undef SWITCH_PK_CREATE |
| #undef SWITCH_PK_INV |