| //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass converts vector operations into scalar operations, in order |
| // to expose optimization opportunities on the individual scalar operations. |
| // It is mainly intended for targets that do not have vector units, but it |
| // may also be useful for revectorizing code to different vector widths. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/Scalarizer.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "scalarizer" |
| |
| static cl::opt<bool> ScalarizeVariableInsertExtract( |
| "scalarize-variable-insert-extract", cl::init(true), cl::Hidden, |
| cl::desc("Allow the scalarizer pass to scalarize " |
| "insertelement/extractelement with variable index")); |
| |
| // This is disabled by default because having separate loads and stores |
| // makes it more likely that the -combiner-alias-analysis limits will be |
| // reached. |
| static cl::opt<bool> |
| ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden, |
| cl::desc("Allow the scalarizer pass to scalarize loads and store")); |
| |
| namespace { |
| |
| // Used to store the scattered form of a vector. |
| using ValueVector = SmallVector<Value *, 8>; |
| |
| // Used to map a vector Value to its scattered form. We use std::map |
| // because we want iterators to persist across insertion and because the |
| // values are relatively large. |
| using ScatterMap = std::map<Value *, ValueVector>; |
| |
| // Lists Instructions that have been replaced with scalar implementations, |
| // along with a pointer to their scattered forms. |
| using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; |
| |
| // Provides a very limited vector-like interface for lazily accessing one |
| // component of a scattered vector or vector pointer. |
| class Scatterer { |
| public: |
| Scatterer() = default; |
| |
| // Scatter V into Size components. If new instructions are needed, |
| // insert them before BBI in BB. If Cache is nonnull, use it to cache |
| // the results. |
| Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| ValueVector *cachePtr = nullptr); |
| |
| // Return component I, creating a new Value for it if necessary. |
| Value *operator[](unsigned I); |
| |
| // Return the number of components. |
| unsigned size() const { return Size; } |
| |
| private: |
| BasicBlock *BB; |
| BasicBlock::iterator BBI; |
| Value *V; |
| ValueVector *CachePtr; |
| PointerType *PtrTy; |
| ValueVector Tmp; |
| unsigned Size; |
| }; |
| |
| // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp |
| // called Name that compares X and Y in the same way as FCI. |
| struct FCmpSplitter { |
| FCmpSplitter(FCmpInst &fci) : FCI(fci) {} |
| |
| Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| const Twine &Name) const { |
| return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); |
| } |
| |
| FCmpInst &FCI; |
| }; |
| |
| // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp |
| // called Name that compares X and Y in the same way as ICI. |
| struct ICmpSplitter { |
| ICmpSplitter(ICmpInst &ici) : ICI(ici) {} |
| |
| Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| const Twine &Name) const { |
| return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); |
| } |
| |
| ICmpInst &ICI; |
| }; |
| |
| // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create |
| // a unary operator like UO called Name with operand X. |
| struct UnarySplitter { |
| UnarySplitter(UnaryOperator &uo) : UO(uo) {} |
| |
| Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { |
| return Builder.CreateUnOp(UO.getOpcode(), Op, Name); |
| } |
| |
| UnaryOperator &UO; |
| }; |
| |
| // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create |
| // a binary operator like BO called Name with operands X and Y. |
| struct BinarySplitter { |
| BinarySplitter(BinaryOperator &bo) : BO(bo) {} |
| |
| Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, |
| const Twine &Name) const { |
| return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); |
| } |
| |
| BinaryOperator &BO; |
| }; |
| |
| // Information about a load or store that we're scalarizing. |
| struct VectorLayout { |
| VectorLayout() = default; |
| |
| // Return the alignment of element I. |
| Align getElemAlign(unsigned I) { |
| return commonAlignment(VecAlign, I * ElemSize); |
| } |
| |
| // The type of the vector. |
| VectorType *VecTy = nullptr; |
| |
| // The type of each element. |
| Type *ElemTy = nullptr; |
| |
| // The alignment of the vector. |
| Align VecAlign; |
| |
| // The size of each element. |
| uint64_t ElemSize = 0; |
| }; |
| |
| class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { |
| public: |
| ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT) |
| : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) { |
| } |
| |
| bool visit(Function &F); |
| |
| // InstVisitor methods. They return true if the instruction was scalarized, |
| // false if nothing changed. |
| bool visitInstruction(Instruction &I) { return false; } |
| bool visitSelectInst(SelectInst &SI); |
| bool visitICmpInst(ICmpInst &ICI); |
| bool visitFCmpInst(FCmpInst &FCI); |
| bool visitUnaryOperator(UnaryOperator &UO); |
| bool visitBinaryOperator(BinaryOperator &BO); |
| bool visitGetElementPtrInst(GetElementPtrInst &GEPI); |
| bool visitCastInst(CastInst &CI); |
| bool visitBitCastInst(BitCastInst &BCI); |
| bool visitInsertElementInst(InsertElementInst &IEI); |
| bool visitExtractElementInst(ExtractElementInst &EEI); |
| bool visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| bool visitPHINode(PHINode &PHI); |
| bool visitLoadInst(LoadInst &LI); |
| bool visitStoreInst(StoreInst &SI); |
| bool visitCallInst(CallInst &ICI); |
| |
| private: |
| Scatterer scatter(Instruction *Point, Value *V); |
| void gather(Instruction *Op, const ValueVector &CV); |
| bool canTransferMetadata(unsigned Kind); |
| void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); |
| Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment, |
| const DataLayout &DL); |
| bool finish(); |
| |
| template<typename T> bool splitUnary(Instruction &, const T &); |
| template<typename T> bool splitBinary(Instruction &, const T &); |
| |
| bool splitCall(CallInst &CI); |
| |
| ScatterMap Scattered; |
| GatherList Gathered; |
| |
| SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs; |
| |
| unsigned ParallelLoopAccessMDKind; |
| |
| DominatorTree *DT; |
| }; |
| |
| class ScalarizerLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| ScalarizerLegacyPass() : FunctionPass(ID) { |
| initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage& AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char ScalarizerLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", |
| "Scalarize vector operations", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", |
| "Scalarize vector operations", false, false) |
| |
| Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, |
| ValueVector *cachePtr) |
| : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { |
| Type *Ty = V->getType(); |
| PtrTy = dyn_cast<PointerType>(Ty); |
| if (PtrTy) |
| Ty = PtrTy->getElementType(); |
| Size = cast<FixedVectorType>(Ty)->getNumElements(); |
| if (!CachePtr) |
| Tmp.resize(Size, nullptr); |
| else if (CachePtr->empty()) |
| CachePtr->resize(Size, nullptr); |
| else |
| assert(Size == CachePtr->size() && "Inconsistent vector sizes"); |
| } |
| |
| // Return component I, creating a new Value for it if necessary. |
| Value *Scatterer::operator[](unsigned I) { |
| ValueVector &CV = (CachePtr ? *CachePtr : Tmp); |
| // Try to reuse a previous value. |
| if (CV[I]) |
| return CV[I]; |
| IRBuilder<> Builder(BB, BBI); |
| if (PtrTy) { |
| Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType(); |
| if (!CV[0]) { |
| Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace()); |
| CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); |
| } |
| if (I != 0) |
| CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I, |
| V->getName() + ".i" + Twine(I)); |
| } else { |
| // Search through a chain of InsertElementInsts looking for element I. |
| // Record other elements in the cache. The new V is still suitable |
| // for all uncached indices. |
| while (true) { |
| InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); |
| if (!Insert) |
| break; |
| ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); |
| if (!Idx) |
| break; |
| unsigned J = Idx->getZExtValue(); |
| V = Insert->getOperand(0); |
| if (I == J) { |
| CV[J] = Insert->getOperand(1); |
| return CV[J]; |
| } else if (!CV[J]) { |
| // Only cache the first entry we find for each index we're not actively |
| // searching for. This prevents us from going too far up the chain and |
| // caching incorrect entries. |
| CV[J] = Insert->getOperand(1); |
| } |
| } |
| CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), |
| V->getName() + ".i" + Twine(I)); |
| } |
| return CV[I]; |
| } |
| |
| bool ScalarizerLegacyPass::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| Module &M = *F.getParent(); |
| unsigned ParallelLoopAccessMDKind = |
| M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); |
| DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); |
| return Impl.visit(F); |
| } |
| |
| FunctionPass *llvm::createScalarizerPass() { |
| return new ScalarizerLegacyPass(); |
| } |
| |
| bool ScalarizerVisitor::visit(Function &F) { |
| assert(Gathered.empty() && Scattered.empty()); |
| |
| // To ensure we replace gathered components correctly we need to do an ordered |
| // traversal of the basic blocks in the function. |
| ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); |
| for (BasicBlock *BB : RPOT) { |
| for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| Instruction *I = &*II; |
| bool Done = InstVisitor::visit(I); |
| ++II; |
| if (Done && I->getType()->isVoidTy()) |
| I->eraseFromParent(); |
| } |
| } |
| return finish(); |
| } |
| |
| // Return a scattered form of V that can be accessed by Point. V must be a |
| // vector or a pointer to a vector. |
| Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) { |
| if (Argument *VArg = dyn_cast<Argument>(V)) { |
| // Put the scattered form of arguments in the entry block, |
| // so that it can be used everywhere. |
| Function *F = VArg->getParent(); |
| BasicBlock *BB = &F->getEntryBlock(); |
| return Scatterer(BB, BB->begin(), V, &Scattered[V]); |
| } |
| if (Instruction *VOp = dyn_cast<Instruction>(V)) { |
| // When scalarizing PHI nodes we might try to examine/rewrite InsertElement |
| // nodes in predecessors. If those predecessors are unreachable from entry, |
| // then the IR in those blocks could have unexpected properties resulting in |
| // infinite loops in Scatterer::operator[]. By simply treating values |
| // originating from instructions in unreachable blocks as undef we do not |
| // need to analyse them further. |
| if (!DT->isReachableFromEntry(VOp->getParent())) |
| return Scatterer(Point->getParent(), Point->getIterator(), |
| UndefValue::get(V->getType())); |
| // Put the scattered form of an instruction directly after the |
| // instruction. |
| BasicBlock *BB = VOp->getParent(); |
| return Scatterer(BB, std::next(BasicBlock::iterator(VOp)), |
| V, &Scattered[V]); |
| } |
| // In the fallback case, just put the scattered before Point and |
| // keep the result local to Point. |
| return Scatterer(Point->getParent(), Point->getIterator(), V); |
| } |
| |
| // Replace Op with the gathered form of the components in CV. Defer the |
| // deletion of Op and creation of the gathered form to the end of the pass, |
| // so that we can avoid creating the gathered form if all uses of Op are |
| // replaced with uses of CV. |
| void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { |
| transferMetadataAndIRFlags(Op, CV); |
| |
| // If we already have a scattered form of Op (created from ExtractElements |
| // of Op itself), replace them with the new form. |
| ValueVector &SV = Scattered[Op]; |
| if (!SV.empty()) { |
| for (unsigned I = 0, E = SV.size(); I != E; ++I) { |
| Value *V = SV[I]; |
| if (V == nullptr || SV[I] == CV[I]) |
| continue; |
| |
| Instruction *Old = cast<Instruction>(V); |
| if (isa<Instruction>(CV[I])) |
| CV[I]->takeName(Old); |
| Old->replaceAllUsesWith(CV[I]); |
| PotentiallyDeadInstrs.emplace_back(Old); |
| } |
| } |
| SV = CV; |
| Gathered.push_back(GatherList::value_type(Op, &SV)); |
| } |
| |
| // Return true if it is safe to transfer the given metadata tag from |
| // vector to scalar instructions. |
| bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { |
| return (Tag == LLVMContext::MD_tbaa |
| || Tag == LLVMContext::MD_fpmath |
| || Tag == LLVMContext::MD_tbaa_struct |
| || Tag == LLVMContext::MD_invariant_load |
| || Tag == LLVMContext::MD_alias_scope |
| || Tag == LLVMContext::MD_noalias |
| || Tag == ParallelLoopAccessMDKind |
| || Tag == LLVMContext::MD_access_group); |
| } |
| |
| // Transfer metadata from Op to the instructions in CV if it is known |
| // to be safe to do so. |
| void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, |
| const ValueVector &CV) { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| Op->getAllMetadataOtherThanDebugLoc(MDs); |
| for (unsigned I = 0, E = CV.size(); I != E; ++I) { |
| if (Instruction *New = dyn_cast<Instruction>(CV[I])) { |
| for (const auto &MD : MDs) |
| if (canTransferMetadata(MD.first)) |
| New->setMetadata(MD.first, MD.second); |
| New->copyIRFlags(Op); |
| if (Op->getDebugLoc() && !New->getDebugLoc()) |
| New->setDebugLoc(Op->getDebugLoc()); |
| } |
| } |
| } |
| |
| // Try to fill in Layout from Ty, returning true on success. Alignment is |
| // the alignment of the vector, or None if the ABI default should be used. |
| Optional<VectorLayout> |
| ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, |
| const DataLayout &DL) { |
| VectorLayout Layout; |
| // Make sure we're dealing with a vector. |
| Layout.VecTy = dyn_cast<VectorType>(Ty); |
| if (!Layout.VecTy) |
| return None; |
| // Check that we're dealing with full-byte elements. |
| Layout.ElemTy = Layout.VecTy->getElementType(); |
| if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) |
| return None; |
| Layout.VecAlign = Alignment; |
| Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); |
| return Layout; |
| } |
| |
| // Scalarize one-operand instruction I, using Split(Builder, X, Name) |
| // to create an instruction like I with operand X and name Name. |
| template<typename Splitter> |
| bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { |
| VectorType *VT = dyn_cast<VectorType>(I.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&I); |
| Scatterer Op = scatter(&I, I.getOperand(0)); |
| assert(Op.size() == NumElems && "Mismatched unary operation"); |
| ValueVector Res; |
| Res.resize(NumElems); |
| for (unsigned Elem = 0; Elem < NumElems; ++Elem) |
| Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); |
| gather(&I, Res); |
| return true; |
| } |
| |
| // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) |
| // to create an instruction like I with operands X and Y and name Name. |
| template<typename Splitter> |
| bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { |
| VectorType *VT = dyn_cast<VectorType>(I.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&I); |
| Scatterer VOp0 = scatter(&I, I.getOperand(0)); |
| Scatterer VOp1 = scatter(&I, I.getOperand(1)); |
| assert(VOp0.size() == NumElems && "Mismatched binary operation"); |
| assert(VOp1.size() == NumElems && "Mismatched binary operation"); |
| ValueVector Res; |
| Res.resize(NumElems); |
| for (unsigned Elem = 0; Elem < NumElems; ++Elem) { |
| Value *Op0 = VOp0[Elem]; |
| Value *Op1 = VOp1[Elem]; |
| Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem)); |
| } |
| gather(&I, Res); |
| return true; |
| } |
| |
| static bool isTriviallyScalariable(Intrinsic::ID ID) { |
| return isTriviallyVectorizable(ID); |
| } |
| |
| // All of the current scalarizable intrinsics only have one mangled type. |
| static Function *getScalarIntrinsicDeclaration(Module *M, |
| Intrinsic::ID ID, |
| ArrayRef<Type*> Tys) { |
| return Intrinsic::getDeclaration(M, ID, Tys); |
| } |
| |
| /// If a call to a vector typed intrinsic function, split into a scalar call per |
| /// element if possible for the intrinsic. |
| bool ScalarizerVisitor::splitCall(CallInst &CI) { |
| VectorType *VT = dyn_cast<VectorType>(CI.getType()); |
| if (!VT) |
| return false; |
| |
| Function *F = CI.getCalledFunction(); |
| if (!F) |
| return false; |
| |
| Intrinsic::ID ID = F->getIntrinsicID(); |
| if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| unsigned NumArgs = CI.getNumArgOperands(); |
| |
| ValueVector ScalarOperands(NumArgs); |
| SmallVector<Scatterer, 8> Scattered(NumArgs); |
| |
| Scattered.resize(NumArgs); |
| |
| SmallVector<llvm::Type *, 3> Tys; |
| Tys.push_back(VT->getScalarType()); |
| |
| // Assumes that any vector type has the same number of elements as the return |
| // vector type, which is true for all current intrinsics. |
| for (unsigned I = 0; I != NumArgs; ++I) { |
| Value *OpI = CI.getOperand(I); |
| if (OpI->getType()->isVectorTy()) { |
| Scattered[I] = scatter(&CI, OpI); |
| assert(Scattered[I].size() == NumElems && "mismatched call operands"); |
| } else { |
| ScalarOperands[I] = OpI; |
| if (hasVectorInstrinsicOverloadedScalarOpd(ID, I)) |
| Tys.push_back(OpI->getType()); |
| } |
| } |
| |
| ValueVector Res(NumElems); |
| ValueVector ScalarCallOps(NumArgs); |
| |
| Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys); |
| IRBuilder<> Builder(&CI); |
| |
| // Perform actual scalarization, taking care to preserve any scalar operands. |
| for (unsigned Elem = 0; Elem < NumElems; ++Elem) { |
| ScalarCallOps.clear(); |
| |
| for (unsigned J = 0; J != NumArgs; ++J) { |
| if (hasVectorInstrinsicScalarOpd(ID, J)) |
| ScalarCallOps.push_back(ScalarOperands[J]); |
| else |
| ScalarCallOps.push_back(Scattered[J][Elem]); |
| } |
| |
| Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, |
| CI.getName() + ".i" + Twine(Elem)); |
| } |
| |
| gather(&CI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { |
| VectorType *VT = dyn_cast<VectorType>(SI.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&SI); |
| Scatterer VOp1 = scatter(&SI, SI.getOperand(1)); |
| Scatterer VOp2 = scatter(&SI, SI.getOperand(2)); |
| assert(VOp1.size() == NumElems && "Mismatched select"); |
| assert(VOp2.size() == NumElems && "Mismatched select"); |
| ValueVector Res; |
| Res.resize(NumElems); |
| |
| if (SI.getOperand(0)->getType()->isVectorTy()) { |
| Scatterer VOp0 = scatter(&SI, SI.getOperand(0)); |
| assert(VOp0.size() == NumElems && "Mismatched select"); |
| for (unsigned I = 0; I < NumElems; ++I) { |
| Value *Op0 = VOp0[I]; |
| Value *Op1 = VOp1[I]; |
| Value *Op2 = VOp2[I]; |
| Res[I] = Builder.CreateSelect(Op0, Op1, Op2, |
| SI.getName() + ".i" + Twine(I)); |
| } |
| } else { |
| Value *Op0 = SI.getOperand(0); |
| for (unsigned I = 0; I < NumElems; ++I) { |
| Value *Op1 = VOp1[I]; |
| Value *Op2 = VOp2[I]; |
| Res[I] = Builder.CreateSelect(Op0, Op1, Op2, |
| SI.getName() + ".i" + Twine(I)); |
| } |
| } |
| gather(&SI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { |
| return splitBinary(ICI, ICmpSplitter(ICI)); |
| } |
| |
| bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { |
| return splitBinary(FCI, FCmpSplitter(FCI)); |
| } |
| |
| bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { |
| return splitUnary(UO, UnarySplitter(UO)); |
| } |
| |
| bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { |
| return splitBinary(BO, BinarySplitter(BO)); |
| } |
| |
| bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| VectorType *VT = dyn_cast<VectorType>(GEPI.getType()); |
| if (!VT) |
| return false; |
| |
| IRBuilder<> Builder(&GEPI); |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| unsigned NumIndices = GEPI.getNumIndices(); |
| |
| // The base pointer might be scalar even if it's a vector GEP. In those cases, |
| // splat the pointer into a vector value, and scatter that vector. |
| Value *Op0 = GEPI.getOperand(0); |
| if (!Op0->getType()->isVectorTy()) |
| Op0 = Builder.CreateVectorSplat(NumElems, Op0); |
| Scatterer Base = scatter(&GEPI, Op0); |
| |
| SmallVector<Scatterer, 8> Ops; |
| Ops.resize(NumIndices); |
| for (unsigned I = 0; I < NumIndices; ++I) { |
| Value *Op = GEPI.getOperand(I + 1); |
| |
| // The indices might be scalars even if it's a vector GEP. In those cases, |
| // splat the scalar into a vector value, and scatter that vector. |
| if (!Op->getType()->isVectorTy()) |
| Op = Builder.CreateVectorSplat(NumElems, Op); |
| |
| Ops[I] = scatter(&GEPI, Op); |
| } |
| |
| ValueVector Res; |
| Res.resize(NumElems); |
| for (unsigned I = 0; I < NumElems; ++I) { |
| SmallVector<Value *, 8> Indices; |
| Indices.resize(NumIndices); |
| for (unsigned J = 0; J < NumIndices; ++J) |
| Indices[J] = Ops[J][I]; |
| Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, |
| GEPI.getName() + ".i" + Twine(I)); |
| if (GEPI.isInBounds()) |
| if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I])) |
| NewGEPI->setIsInBounds(); |
| } |
| gather(&GEPI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitCastInst(CastInst &CI) { |
| VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&CI); |
| Scatterer Op0 = scatter(&CI, CI.getOperand(0)); |
| assert(Op0.size() == NumElems && "Mismatched cast"); |
| ValueVector Res; |
| Res.resize(NumElems); |
| for (unsigned I = 0; I < NumElems; ++I) |
| Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), |
| CI.getName() + ".i" + Twine(I)); |
| gather(&CI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { |
| VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); |
| VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); |
| if (!DstVT || !SrcVT) |
| return false; |
| |
| unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements(); |
| unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements(); |
| IRBuilder<> Builder(&BCI); |
| Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); |
| ValueVector Res; |
| Res.resize(DstNumElems); |
| |
| if (DstNumElems == SrcNumElems) { |
| for (unsigned I = 0; I < DstNumElems; ++I) |
| Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), |
| BCI.getName() + ".i" + Twine(I)); |
| } else if (DstNumElems > SrcNumElems) { |
| // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the |
| // individual elements to the destination. |
| unsigned FanOut = DstNumElems / SrcNumElems; |
| auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut); |
| unsigned ResI = 0; |
| for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { |
| Value *V = Op0[Op0I]; |
| Instruction *VI; |
| // Look through any existing bitcasts before converting to <N x t2>. |
| // In the best case, the resulting conversion might be a no-op. |
| while ((VI = dyn_cast<Instruction>(V)) && |
| VI->getOpcode() == Instruction::BitCast) |
| V = VI->getOperand(0); |
| V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); |
| Scatterer Mid = scatter(&BCI, V); |
| for (unsigned MidI = 0; MidI < FanOut; ++MidI) |
| Res[ResI++] = Mid[MidI]; |
| } |
| } else { |
| // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. |
| unsigned FanIn = SrcNumElems / DstNumElems; |
| auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn); |
| unsigned Op0I = 0; |
| for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { |
| Value *V = PoisonValue::get(MidTy); |
| for (unsigned MidI = 0; MidI < FanIn; ++MidI) |
| V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), |
| BCI.getName() + ".i" + Twine(ResI) |
| + ".upto" + Twine(MidI)); |
| Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), |
| BCI.getName() + ".i" + Twine(ResI)); |
| } |
| } |
| gather(&BCI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { |
| VectorType *VT = dyn_cast<VectorType>(IEI.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&IEI); |
| Scatterer Op0 = scatter(&IEI, IEI.getOperand(0)); |
| Value *NewElt = IEI.getOperand(1); |
| Value *InsIdx = IEI.getOperand(2); |
| |
| ValueVector Res; |
| Res.resize(NumElems); |
| |
| if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) { |
| for (unsigned I = 0; I < NumElems; ++I) |
| Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I]; |
| } else { |
| if (!ScalarizeVariableInsertExtract) |
| return false; |
| |
| for (unsigned I = 0; I < NumElems; ++I) { |
| Value *ShouldReplace = |
| Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I), |
| InsIdx->getName() + ".is." + Twine(I)); |
| Value *OldElt = Op0[I]; |
| Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt, |
| IEI.getName() + ".i" + Twine(I)); |
| } |
| } |
| |
| gather(&IEI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) { |
| VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&EEI); |
| Scatterer Op0 = scatter(&EEI, EEI.getOperand(0)); |
| Value *ExtIdx = EEI.getOperand(1); |
| |
| if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) { |
| Value *Res = Op0[CI->getValue().getZExtValue()]; |
| gather(&EEI, {Res}); |
| return true; |
| } |
| |
| if (!ScalarizeVariableInsertExtract) |
| return false; |
| |
| Value *Res = UndefValue::get(VT->getElementType()); |
| for (unsigned I = 0; I < NumSrcElems; ++I) { |
| Value *ShouldExtract = |
| Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I), |
| ExtIdx->getName() + ".is." + Twine(I)); |
| Value *Elt = Op0[I]; |
| Res = Builder.CreateSelect(ShouldExtract, Elt, Res, |
| EEI.getName() + ".upto" + Twine(I)); |
| } |
| gather(&EEI, {Res}); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { |
| VectorType *VT = dyn_cast<VectorType>(SVI.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); |
| Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); |
| ValueVector Res; |
| Res.resize(NumElems); |
| |
| for (unsigned I = 0; I < NumElems; ++I) { |
| int Selector = SVI.getMaskValue(I); |
| if (Selector < 0) |
| Res[I] = UndefValue::get(VT->getElementType()); |
| else if (unsigned(Selector) < Op0.size()) |
| Res[I] = Op0[Selector]; |
| else |
| Res[I] = Op1[Selector - Op0.size()]; |
| } |
| gather(&SVI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { |
| VectorType *VT = dyn_cast<VectorType>(PHI.getType()); |
| if (!VT) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); |
| IRBuilder<> Builder(&PHI); |
| ValueVector Res; |
| Res.resize(NumElems); |
| |
| unsigned NumOps = PHI.getNumOperands(); |
| for (unsigned I = 0; I < NumElems; ++I) |
| Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, |
| PHI.getName() + ".i" + Twine(I)); |
| |
| for (unsigned I = 0; I < NumOps; ++I) { |
| Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); |
| BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); |
| for (unsigned J = 0; J < NumElems; ++J) |
| cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); |
| } |
| gather(&PHI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { |
| if (!ScalarizeLoadStore) |
| return false; |
| if (!LI.isSimple()) |
| return false; |
| |
| Optional<VectorLayout> Layout = getVectorLayout( |
| LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout()); |
| if (!Layout) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); |
| IRBuilder<> Builder(&LI); |
| Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); |
| ValueVector Res; |
| Res.resize(NumElems); |
| |
| for (unsigned I = 0; I < NumElems; ++I) |
| Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I], |
| Align(Layout->getElemAlign(I)), |
| LI.getName() + ".i" + Twine(I)); |
| gather(&LI, Res); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { |
| if (!ScalarizeLoadStore) |
| return false; |
| if (!SI.isSimple()) |
| return false; |
| |
| Value *FullValue = SI.getValueOperand(); |
| Optional<VectorLayout> Layout = getVectorLayout( |
| FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout()); |
| if (!Layout) |
| return false; |
| |
| unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); |
| IRBuilder<> Builder(&SI); |
| Scatterer VPtr = scatter(&SI, SI.getPointerOperand()); |
| Scatterer VVal = scatter(&SI, FullValue); |
| |
| ValueVector Stores; |
| Stores.resize(NumElems); |
| for (unsigned I = 0; I < NumElems; ++I) { |
| Value *Val = VVal[I]; |
| Value *Ptr = VPtr[I]; |
| Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I)); |
| } |
| transferMetadataAndIRFlags(&SI, Stores); |
| return true; |
| } |
| |
| bool ScalarizerVisitor::visitCallInst(CallInst &CI) { |
| return splitCall(CI); |
| } |
| |
| // Delete the instructions that we scalarized. If a full vector result |
| // is still needed, recreate it using InsertElements. |
| bool ScalarizerVisitor::finish() { |
| // The presence of data in Gathered or Scattered indicates changes |
| // made to the Function. |
| if (Gathered.empty() && Scattered.empty()) |
| return false; |
| for (const auto &GMI : Gathered) { |
| Instruction *Op = GMI.first; |
| ValueVector &CV = *GMI.second; |
| if (!Op->use_empty()) { |
| // The value is still needed, so recreate it using a series of |
| // InsertElements. |
| Value *Res = PoisonValue::get(Op->getType()); |
| if (auto *Ty = dyn_cast<VectorType>(Op->getType())) { |
| BasicBlock *BB = Op->getParent(); |
| unsigned Count = cast<FixedVectorType>(Ty)->getNumElements(); |
| IRBuilder<> Builder(Op); |
| if (isa<PHINode>(Op)) |
| Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); |
| for (unsigned I = 0; I < Count; ++I) |
| Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), |
| Op->getName() + ".upto" + Twine(I)); |
| Res->takeName(Op); |
| } else { |
| assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); |
| Res = CV[0]; |
| if (Op == Res) |
| continue; |
| } |
| Op->replaceAllUsesWith(Res); |
| } |
| PotentiallyDeadInstrs.emplace_back(Op); |
| } |
| Gathered.clear(); |
| Scattered.clear(); |
| |
| RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs); |
| |
| return true; |
| } |
| |
| PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { |
| Module &M = *F.getParent(); |
| unsigned ParallelLoopAccessMDKind = |
| M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); |
| DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); |
| bool Changed = Impl.visit(F); |
| PreservedAnalyses PA; |
| PA.preserve<DominatorTreeAnalysis>(); |
| return Changed ? PA : PreservedAnalyses::all(); |
| } |