| //===- Local.cpp - Functions to perform local transformations -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform various local transformations to the |
| // program. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AssumeBundleQueries.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/PseudoProbe.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "local" |
| |
| STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); |
| STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); |
| |
| static cl::opt<bool> PHICSEDebugHash( |
| "phicse-debug-hash", |
| #ifdef EXPENSIVE_CHECKS |
| cl::init(true), |
| #else |
| cl::init(false), |
| #endif |
| cl::Hidden, |
| cl::desc("Perform extra assertion checking to verify that PHINodes's hash " |
| "function is well-behaved w.r.t. its isEqual predicate")); |
| |
| static cl::opt<unsigned> PHICSENumPHISmallSize( |
| "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, |
| cl::desc( |
| "When the basic block contains not more than this number of PHI nodes, " |
| "perform a (faster!) exhaustive search instead of set-driven one.")); |
| |
| // Max recursion depth for collectBitParts used when detecting bswap and |
| // bitreverse idioms. |
| static const unsigned BitPartRecursionMaxDepth = 48; |
| |
| //===----------------------------------------------------------------------===// |
| // Local constant propagation. |
| // |
| |
| /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
| /// constant value, convert it into an unconditional branch to the constant |
| /// destination. This is a nontrivial operation because the successors of this |
| /// basic block must have their PHI nodes updated. |
| /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
| /// conditions and indirectbr addresses this might make dead if |
| /// DeleteDeadConditions is true. |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, |
| const TargetLibraryInfo *TLI, |
| DomTreeUpdater *DTU) { |
| Instruction *T = BB->getTerminator(); |
| IRBuilder<> Builder(T); |
| |
| // Branch - See if we are conditional jumping on constant |
| if (auto *BI = dyn_cast<BranchInst>(T)) { |
| if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| |
| BasicBlock *Dest1 = BI->getSuccessor(0); |
| BasicBlock *Dest2 = BI->getSuccessor(1); |
| |
| if (Dest2 == Dest1) { // Conditional branch to same location? |
| // This branch matches something like this: |
| // br bool %cond, label %Dest, label %Dest |
| // and changes it into: br label %Dest |
| |
| // Let the basic block know that we are letting go of one copy of it. |
| assert(BI->getParent() && "Terminator not inserted in block!"); |
| Dest1->removePredecessor(BI->getParent()); |
| |
| // Replace the conditional branch with an unconditional one. |
| BranchInst *NewBI = Builder.CreateBr(Dest1); |
| |
| // Transfer the metadata to the new branch instruction. |
| NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
| LLVMContext::MD_annotation}); |
| |
| Value *Cond = BI->getCondition(); |
| BI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); |
| return true; |
| } |
| |
| if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { |
| // Are we branching on constant? |
| // YES. Change to unconditional branch... |
| BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
| BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
| |
| // Let the basic block know that we are letting go of it. Based on this, |
| // it will adjust it's PHI nodes. |
| OldDest->removePredecessor(BB); |
| |
| // Replace the conditional branch with an unconditional one. |
| BranchInst *NewBI = Builder.CreateBr(Destination); |
| |
| // Transfer the metadata to the new branch instruction. |
| NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, |
| LLVMContext::MD_annotation}); |
| |
| BI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (auto *SI = dyn_cast<SwitchInst>(T)) { |
| // If we are switching on a constant, we can convert the switch to an |
| // unconditional branch. |
| auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); |
| BasicBlock *DefaultDest = SI->getDefaultDest(); |
| BasicBlock *TheOnlyDest = DefaultDest; |
| |
| // If the default is unreachable, ignore it when searching for TheOnlyDest. |
| if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && |
| SI->getNumCases() > 0) { |
| TheOnlyDest = SI->case_begin()->getCaseSuccessor(); |
| } |
| |
| bool Changed = false; |
| |
| // Figure out which case it goes to. |
| for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { |
| // Found case matching a constant operand? |
| if (i->getCaseValue() == CI) { |
| TheOnlyDest = i->getCaseSuccessor(); |
| break; |
| } |
| |
| // Check to see if this branch is going to the same place as the default |
| // dest. If so, eliminate it as an explicit compare. |
| if (i->getCaseSuccessor() == DefaultDest) { |
| MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); |
| unsigned NCases = SI->getNumCases(); |
| // Fold the case metadata into the default if there will be any branches |
| // left, unless the metadata doesn't match the switch. |
| if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { |
| // Collect branch weights into a vector. |
| SmallVector<uint32_t, 8> Weights; |
| for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; |
| ++MD_i) { |
| auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); |
| Weights.push_back(CI->getValue().getZExtValue()); |
| } |
| // Merge weight of this case to the default weight. |
| unsigned idx = i->getCaseIndex(); |
| Weights[0] += Weights[idx+1]; |
| // Remove weight for this case. |
| std::swap(Weights[idx+1], Weights.back()); |
| Weights.pop_back(); |
| SI->setMetadata(LLVMContext::MD_prof, |
| MDBuilder(BB->getContext()). |
| createBranchWeights(Weights)); |
| } |
| // Remove this entry. |
| BasicBlock *ParentBB = SI->getParent(); |
| DefaultDest->removePredecessor(ParentBB); |
| i = SI->removeCase(i); |
| e = SI->case_end(); |
| Changed = true; |
| continue; |
| } |
| |
| // Otherwise, check to see if the switch only branches to one destination. |
| // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| // destinations. |
| if (i->getCaseSuccessor() != TheOnlyDest) |
| TheOnlyDest = nullptr; |
| |
| // Increment this iterator as we haven't removed the case. |
| ++i; |
| } |
| |
| if (CI && !TheOnlyDest) { |
| // Branching on a constant, but not any of the cases, go to the default |
| // successor. |
| TheOnlyDest = SI->getDefaultDest(); |
| } |
| |
| // If we found a single destination that we can fold the switch into, do so |
| // now. |
| if (TheOnlyDest) { |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| BasicBlock *BB = SI->getParent(); |
| |
| SmallSet<BasicBlock *, 8> RemovedSuccessors; |
| |
| // Remove entries from PHI nodes which we no longer branch to... |
| BasicBlock *SuccToKeep = TheOnlyDest; |
| for (BasicBlock *Succ : successors(SI)) { |
| if (DTU && Succ != TheOnlyDest) |
| RemovedSuccessors.insert(Succ); |
| // Found case matching a constant operand? |
| if (Succ == SuccToKeep) { |
| SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest |
| } else { |
| Succ->removePredecessor(BB); |
| } |
| } |
| |
| // Delete the old switch. |
| Value *Cond = SI->getCondition(); |
| SI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| Updates.reserve(RemovedSuccessors.size()); |
| for (auto *RemovedSuccessor : RemovedSuccessors) |
| Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); |
| DTU->applyUpdates(Updates); |
| } |
| return true; |
| } |
| |
| if (SI->getNumCases() == 1) { |
| // Otherwise, we can fold this switch into a conditional branch |
| // instruction if it has only one non-default destination. |
| auto FirstCase = *SI->case_begin(); |
| Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), |
| FirstCase.getCaseValue(), "cond"); |
| |
| // Insert the new branch. |
| BranchInst *NewBr = Builder.CreateCondBr(Cond, |
| FirstCase.getCaseSuccessor(), |
| SI->getDefaultDest()); |
| MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); |
| if (MD && MD->getNumOperands() == 3) { |
| ConstantInt *SICase = |
| mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); |
| ConstantInt *SIDef = |
| mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); |
| assert(SICase && SIDef); |
| // The TrueWeight should be the weight for the single case of SI. |
| NewBr->setMetadata(LLVMContext::MD_prof, |
| MDBuilder(BB->getContext()). |
| createBranchWeights(SICase->getValue().getZExtValue(), |
| SIDef->getValue().getZExtValue())); |
| } |
| |
| // Update make.implicit metadata to the newly-created conditional branch. |
| MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); |
| if (MakeImplicitMD) |
| NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); |
| |
| // Delete the old switch. |
| SI->eraseFromParent(); |
| return true; |
| } |
| return Changed; |
| } |
| |
| if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { |
| // indirectbr blockaddress(@F, @BB) -> br label @BB |
| if (auto *BA = |
| dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { |
| BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
| SmallSet<BasicBlock *, 8> RemovedSuccessors; |
| |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| |
| BasicBlock *SuccToKeep = TheOnlyDest; |
| for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| BasicBlock *DestBB = IBI->getDestination(i); |
| if (DTU && DestBB != TheOnlyDest) |
| RemovedSuccessors.insert(DestBB); |
| if (IBI->getDestination(i) == SuccToKeep) { |
| SuccToKeep = nullptr; |
| } else { |
| DestBB->removePredecessor(BB); |
| } |
| } |
| Value *Address = IBI->getAddress(); |
| IBI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| // Delete pointer cast instructions. |
| RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); |
| |
| // Also zap the blockaddress constant if there are no users remaining, |
| // otherwise the destination is still marked as having its address taken. |
| if (BA->use_empty()) |
| BA->destroyConstant(); |
| |
| // If we didn't find our destination in the IBI successor list, then we |
| // have undefined behavior. Replace the unconditional branch with an |
| // 'unreachable' instruction. |
| if (SuccToKeep) { |
| BB->getTerminator()->eraseFromParent(); |
| new UnreachableInst(BB->getContext(), BB); |
| } |
| |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| Updates.reserve(RemovedSuccessors.size()); |
| for (auto *RemovedSuccessor : RemovedSuccessors) |
| Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); |
| DTU->applyUpdates(Updates); |
| } |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Local dead code elimination. |
| // |
| |
| /// isInstructionTriviallyDead - Return true if the result produced by the |
| /// instruction is not used, and the instruction has no side effects. |
| /// |
| bool llvm::isInstructionTriviallyDead(Instruction *I, |
| const TargetLibraryInfo *TLI) { |
| if (!I->use_empty()) |
| return false; |
| return wouldInstructionBeTriviallyDead(I, TLI); |
| } |
| |
| bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, |
| const TargetLibraryInfo *TLI) { |
| if (I->isTerminator()) |
| return false; |
| |
| // We don't want the landingpad-like instructions removed by anything this |
| // general. |
| if (I->isEHPad()) |
| return false; |
| |
| // We don't want debug info removed by anything this general, unless |
| // debug info is empty. |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { |
| if (DDI->getAddress()) |
| return false; |
| return true; |
| } |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { |
| if (DVI->hasArgList() || DVI->getValue(0)) |
| return false; |
| return true; |
| } |
| if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { |
| if (DLI->getLabel()) |
| return false; |
| return true; |
| } |
| |
| if (!I->willReturn()) |
| return false; |
| |
| if (!I->mayHaveSideEffects()) |
| return true; |
| |
| // Special case intrinsics that "may have side effects" but can be deleted |
| // when dead. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| // Safe to delete llvm.stacksave and launder.invariant.group if dead. |
| if (II->getIntrinsicID() == Intrinsic::stacksave || |
| II->getIntrinsicID() == Intrinsic::launder_invariant_group) |
| return true; |
| |
| if (II->isLifetimeStartOrEnd()) { |
| auto *Arg = II->getArgOperand(1); |
| // Lifetime intrinsics are dead when their right-hand is undef. |
| if (isa<UndefValue>(Arg)) |
| return true; |
| // If the right-hand is an alloc, global, or argument and the only uses |
| // are lifetime intrinsics then the intrinsics are dead. |
| if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) |
| return llvm::all_of(Arg->uses(), [](Use &Use) { |
| if (IntrinsicInst *IntrinsicUse = |
| dyn_cast<IntrinsicInst>(Use.getUser())) |
| return IntrinsicUse->isLifetimeStartOrEnd(); |
| return false; |
| }); |
| return false; |
| } |
| |
| // Assumptions are dead if their condition is trivially true. Guards on |
| // true are operationally no-ops. In the future we can consider more |
| // sophisticated tradeoffs for guards considering potential for check |
| // widening, but for now we keep things simple. |
| if ((II->getIntrinsicID() == Intrinsic::assume && |
| isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || |
| II->getIntrinsicID() == Intrinsic::experimental_guard) { |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) |
| return !Cond->isZero(); |
| |
| return false; |
| } |
| |
| if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { |
| Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); |
| return ExBehavior.getValue() != fp::ebStrict; |
| } |
| } |
| |
| if (isAllocLikeFn(I, TLI)) |
| return true; |
| |
| if (CallInst *CI = isFreeCall(I, TLI)) |
| if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) |
| return C->isNullValue() || isa<UndefValue>(C); |
| |
| if (auto *Call = dyn_cast<CallBase>(I)) |
| if (isMathLibCallNoop(Call, TLI)) |
| return true; |
| |
| // To express possible interaction with floating point environment constrained |
| // intrinsics are described as if they access memory. So they look like having |
| // side effect but actually do not have it unless they raise floating point |
| // exception. If FP exceptions are ignored, the intrinsic may be deleted. |
| if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { |
| Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
| if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
| /// trivially dead instruction, delete it. If that makes any of its operands |
| /// trivially dead, delete them too, recursively. Return true if any |
| /// instructions were deleted. |
| bool llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, |
| std::function<void(Value *)> AboutToDeleteCallback) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || !isInstructionTriviallyDead(I, TLI)) |
| return false; |
| |
| SmallVector<WeakTrackingVH, 16> DeadInsts; |
| DeadInsts.push_back(I); |
| RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
| AboutToDeleteCallback); |
| |
| return true; |
| } |
| |
| bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
| MemorySSAUpdater *MSSAU, |
| std::function<void(Value *)> AboutToDeleteCallback) { |
| unsigned S = 0, E = DeadInsts.size(), Alive = 0; |
| for (; S != E; ++S) { |
| auto *I = cast<Instruction>(DeadInsts[S]); |
| if (!isInstructionTriviallyDead(I)) { |
| DeadInsts[S] = nullptr; |
| ++Alive; |
| } |
| } |
| if (Alive == E) |
| return false; |
| RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, |
| AboutToDeleteCallback); |
| return true; |
| } |
| |
| void llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, |
| MemorySSAUpdater *MSSAU, |
| std::function<void(Value *)> AboutToDeleteCallback) { |
| // Process the dead instruction list until empty. |
| while (!DeadInsts.empty()) { |
| Value *V = DeadInsts.pop_back_val(); |
| Instruction *I = cast_or_null<Instruction>(V); |
| if (!I) |
| continue; |
| assert(isInstructionTriviallyDead(I, TLI) && |
| "Live instruction found in dead worklist!"); |
| assert(I->use_empty() && "Instructions with uses are not dead."); |
| |
| // Don't lose the debug info while deleting the instructions. |
| salvageDebugInfo(*I); |
| |
| if (AboutToDeleteCallback) |
| AboutToDeleteCallback(I); |
| |
| // Null out all of the instruction's operands to see if any operand becomes |
| // dead as we go. |
| for (Use &OpU : I->operands()) { |
| Value *OpV = OpU.get(); |
| OpU.set(nullptr); |
| |
| if (!OpV->use_empty()) |
| continue; |
| |
| // If the operand is an instruction that became dead as we nulled out the |
| // operand, and if it is 'trivially' dead, delete it in a future loop |
| // iteration. |
| if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| if (isInstructionTriviallyDead(OpI, TLI)) |
| DeadInsts.push_back(OpI); |
| } |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(I); |
| |
| I->eraseFromParent(); |
| } |
| } |
| |
| bool llvm::replaceDbgUsesWithUndef(Instruction *I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, I); |
| for (auto *DII : DbgUsers) { |
| Value *Undef = UndefValue::get(I->getType()); |
| DII->replaceVariableLocationOp(I, Undef); |
| } |
| return !DbgUsers.empty(); |
| } |
| |
| /// areAllUsesEqual - Check whether the uses of a value are all the same. |
| /// This is similar to Instruction::hasOneUse() except this will also return |
| /// true when there are no uses or multiple uses that all refer to the same |
| /// value. |
| static bool areAllUsesEqual(Instruction *I) { |
| Value::user_iterator UI = I->user_begin(); |
| Value::user_iterator UE = I->user_end(); |
| if (UI == UE) |
| return true; |
| |
| User *TheUse = *UI; |
| for (++UI; UI != UE; ++UI) { |
| if (*UI != TheUse) |
| return false; |
| } |
| return true; |
| } |
| |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
| /// dead PHI node, due to being a def-use chain of single-use nodes that |
| /// either forms a cycle or is terminated by a trivially dead instruction, |
| /// delete it. If that makes any of its operands trivially dead, delete them |
| /// too, recursively. Return true if a change was made. |
| bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, |
| const TargetLibraryInfo *TLI, |
| llvm::MemorySSAUpdater *MSSAU) { |
| SmallPtrSet<Instruction*, 4> Visited; |
| for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
| I = cast<Instruction>(*I->user_begin())) { |
| if (I->use_empty()) |
| return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); |
| |
| // If we find an instruction more than once, we're on a cycle that |
| // won't prove fruitful. |
| if (!Visited.insert(I).second) { |
| // Break the cycle and delete the instruction and its operands. |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool |
| simplifyAndDCEInstruction(Instruction *I, |
| SmallSetVector<Instruction *, 16> &WorkList, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| if (isInstructionTriviallyDead(I, TLI)) { |
| salvageDebugInfo(*I); |
| |
| // Null out all of the instruction's operands to see if any operand becomes |
| // dead as we go. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *OpV = I->getOperand(i); |
| I->setOperand(i, nullptr); |
| |
| if (!OpV->use_empty() || I == OpV) |
| continue; |
| |
| // If the operand is an instruction that became dead as we nulled out the |
| // operand, and if it is 'trivially' dead, delete it in a future loop |
| // iteration. |
| if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| if (isInstructionTriviallyDead(OpI, TLI)) |
| WorkList.insert(OpI); |
| } |
| |
| I->eraseFromParent(); |
| |
| return true; |
| } |
| |
| if (Value *SimpleV = SimplifyInstruction(I, DL)) { |
| // Add the users to the worklist. CAREFUL: an instruction can use itself, |
| // in the case of a phi node. |
| for (User *U : I->users()) { |
| if (U != I) { |
| WorkList.insert(cast<Instruction>(U)); |
| } |
| } |
| |
| // Replace the instruction with its simplified value. |
| bool Changed = false; |
| if (!I->use_empty()) { |
| I->replaceAllUsesWith(SimpleV); |
| Changed = true; |
| } |
| if (isInstructionTriviallyDead(I, TLI)) { |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| return Changed; |
| } |
| return false; |
| } |
| |
| /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
| /// simplify any instructions in it and recursively delete dead instructions. |
| /// |
| /// This returns true if it changed the code, note that it can delete |
| /// instructions in other blocks as well in this block. |
| bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, |
| const TargetLibraryInfo *TLI) { |
| bool MadeChange = false; |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| |
| #ifndef NDEBUG |
| // In debug builds, ensure that the terminator of the block is never replaced |
| // or deleted by these simplifications. The idea of simplification is that it |
| // cannot introduce new instructions, and there is no way to replace the |
| // terminator of a block without introducing a new instruction. |
| AssertingVH<Instruction> TerminatorVH(&BB->back()); |
| #endif |
| |
| SmallSetVector<Instruction *, 16> WorkList; |
| // Iterate over the original function, only adding insts to the worklist |
| // if they actually need to be revisited. This avoids having to pre-init |
| // the worklist with the entire function's worth of instructions. |
| for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); |
| BI != E;) { |
| assert(!BI->isTerminator()); |
| Instruction *I = &*BI; |
| ++BI; |
| |
| // We're visiting this instruction now, so make sure it's not in the |
| // worklist from an earlier visit. |
| if (!WorkList.count(I)) |
| MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| } |
| |
| while (!WorkList.empty()) { |
| Instruction *I = WorkList.pop_back_val(); |
| MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| } |
| return MadeChange; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Control Flow Graph Restructuring. |
| // |
| |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, |
| DomTreeUpdater *DTU) { |
| |
| // If BB has single-entry PHI nodes, fold them. |
| while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { |
| Value *NewVal = PN->getIncomingValue(0); |
| // Replace self referencing PHI with undef, it must be dead. |
| if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); |
| PN->replaceAllUsesWith(NewVal); |
| PN->eraseFromParent(); |
| } |
| |
| BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
| assert(PredBB && "Block doesn't have a single predecessor!"); |
| |
| bool ReplaceEntryBB = PredBB->isEntryBlock(); |
| |
| // DTU updates: Collect all the edges that enter |
| // PredBB. These dominator edges will be redirected to DestBB. |
| SmallVector<DominatorTree::UpdateType, 32> Updates; |
| |
| if (DTU) { |
| SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), |
| pred_end(PredBB)); |
| Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); |
| for (BasicBlock *PredOfPredBB : PredsOfPredBB) |
| // This predecessor of PredBB may already have DestBB as a successor. |
| if (PredOfPredBB != PredBB) |
| Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); |
| for (BasicBlock *PredOfPredBB : PredsOfPredBB) |
| Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); |
| Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); |
| } |
| |
| // Zap anything that took the address of DestBB. Not doing this will give the |
| // address an invalid value. |
| if (DestBB->hasAddressTaken()) { |
| BlockAddress *BA = BlockAddress::get(DestBB); |
| Constant *Replacement = |
| ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); |
| BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, |
| BA->getType())); |
| BA->destroyConstant(); |
| } |
| |
| // Anything that branched to PredBB now branches to DestBB. |
| PredBB->replaceAllUsesWith(DestBB); |
| |
| // Splice all the instructions from PredBB to DestBB. |
| PredBB->getTerminator()->eraseFromParent(); |
| DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); |
| new UnreachableInst(PredBB->getContext(), PredBB); |
| |
| // If the PredBB is the entry block of the function, move DestBB up to |
| // become the entry block after we erase PredBB. |
| if (ReplaceEntryBB) |
| DestBB->moveAfter(PredBB); |
| |
| if (DTU) { |
| assert(PredBB->getInstList().size() == 1 && |
| isa<UnreachableInst>(PredBB->getTerminator()) && |
| "The successor list of PredBB isn't empty before " |
| "applying corresponding DTU updates."); |
| DTU->applyUpdatesPermissive(Updates); |
| DTU->deleteBB(PredBB); |
| // Recalculation of DomTree is needed when updating a forward DomTree and |
| // the Entry BB is replaced. |
| if (ReplaceEntryBB && DTU->hasDomTree()) { |
| // The entry block was removed and there is no external interface for |
| // the dominator tree to be notified of this change. In this corner-case |
| // we recalculate the entire tree. |
| DTU->recalculate(*(DestBB->getParent())); |
| } |
| } |
| |
| else { |
| PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
| } |
| } |
| |
| /// Return true if we can choose one of these values to use in place of the |
| /// other. Note that we will always choose the non-undef value to keep. |
| static bool CanMergeValues(Value *First, Value *Second) { |
| return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); |
| } |
| |
| /// Return true if we can fold BB, an almost-empty BB ending in an unconditional |
| /// branch to Succ, into Succ. |
| /// |
| /// Assumption: Succ is the single successor for BB. |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { |
| assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); |
| |
| LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
| << Succ->getName() << "\n"); |
| // Shortcut, if there is only a single predecessor it must be BB and merging |
| // is always safe |
| if (Succ->getSinglePredecessor()) return true; |
| |
| // Make a list of the predecessors of BB |
| SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Look at all the phi nodes in Succ, to see if they present a conflict when |
| // merging these blocks |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| // If the incoming value from BB is again a PHINode in |
| // BB which has the same incoming value for *PI as PN does, we can |
| // merge the phi nodes and then the blocks can still be merged |
| PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); |
| if (BBPN && BBPN->getParent() == BB) { |
| for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| BasicBlock *IBB = PN->getIncomingBlock(PI); |
| if (BBPreds.count(IBB) && |
| !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), |
| PN->getIncomingValue(PI))) { |
| LLVM_DEBUG(dbgs() |
| << "Can't fold, phi node " << PN->getName() << " in " |
| << Succ->getName() << " is conflicting with " |
| << BBPN->getName() << " with regard to common predecessor " |
| << IBB->getName() << "\n"); |
| return false; |
| } |
| } |
| } else { |
| Value* Val = PN->getIncomingValueForBlock(BB); |
| for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| // See if the incoming value for the common predecessor is equal to the |
| // one for BB, in which case this phi node will not prevent the merging |
| // of the block. |
| BasicBlock *IBB = PN->getIncomingBlock(PI); |
| if (BBPreds.count(IBB) && |
| !CanMergeValues(Val, PN->getIncomingValue(PI))) { |
| LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() |
| << " in " << Succ->getName() |
| << " is conflicting with regard to common " |
| << "predecessor " << IBB->getName() << "\n"); |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| using PredBlockVector = SmallVector<BasicBlock *, 16>; |
| using IncomingValueMap = DenseMap<BasicBlock *, Value *>; |
| |
| /// Determines the value to use as the phi node input for a block. |
| /// |
| /// Select between \p OldVal any value that we know flows from \p BB |
| /// to a particular phi on the basis of which one (if either) is not |
| /// undef. Update IncomingValues based on the selected value. |
| /// |
| /// \param OldVal The value we are considering selecting. |
| /// \param BB The block that the value flows in from. |
| /// \param IncomingValues A map from block-to-value for other phi inputs |
| /// that we have examined. |
| /// |
| /// \returns the selected value. |
| static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, |
| IncomingValueMap &IncomingValues) { |
| if (!isa<UndefValue>(OldVal)) { |
| assert((!IncomingValues.count(BB) || |
| IncomingValues.find(BB)->second == OldVal) && |
| "Expected OldVal to match incoming value from BB!"); |
| |
| IncomingValues.insert(std::make_pair(BB, OldVal)); |
| return OldVal; |
| } |
| |
| IncomingValueMap::const_iterator It = IncomingValues.find(BB); |
| if (It != IncomingValues.end()) return It->second; |
| |
| return OldVal; |
| } |
| |
| /// Create a map from block to value for the operands of a |
| /// given phi. |
| /// |
| /// Create a map from block to value for each non-undef value flowing |
| /// into \p PN. |
| /// |
| /// \param PN The phi we are collecting the map for. |
| /// \param IncomingValues [out] The map from block to value for this phi. |
| static void gatherIncomingValuesToPhi(PHINode *PN, |
| IncomingValueMap &IncomingValues) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| Value *V = PN->getIncomingValue(i); |
| |
| if (!isa<UndefValue>(V)) |
| IncomingValues.insert(std::make_pair(BB, V)); |
| } |
| } |
| |
| /// Replace the incoming undef values to a phi with the values |
| /// from a block-to-value map. |
| /// |
| /// \param PN The phi we are replacing the undefs in. |
| /// \param IncomingValues A map from block to value. |
| static void replaceUndefValuesInPhi(PHINode *PN, |
| const IncomingValueMap &IncomingValues) { |
| SmallVector<unsigned> TrueUndefOps; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| |
| if (!isa<UndefValue>(V)) continue; |
| |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| IncomingValueMap::const_iterator It = IncomingValues.find(BB); |
| |
| // Keep track of undef/poison incoming values. Those must match, so we fix |
| // them up below if needed. |
| // Note: this is conservatively correct, but we could try harder and group |
| // the undef values per incoming basic block. |
| if (It == IncomingValues.end()) { |
| TrueUndefOps.push_back(i); |
| continue; |
| } |
| |
| // There is a defined value for this incoming block, so map this undef |
| // incoming value to the defined value. |
| PN->setIncomingValue(i, It->second); |
| } |
| |
| // If there are both undef and poison values incoming, then convert those |
| // values to undef. It is invalid to have different values for the same |
| // incoming block. |
| unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { |
| return isa<PoisonValue>(PN->getIncomingValue(i)); |
| }); |
| if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { |
| for (unsigned i : TrueUndefOps) |
| PN->setIncomingValue(i, UndefValue::get(PN->getType())); |
| } |
| } |
| |
| /// Replace a value flowing from a block to a phi with |
| /// potentially multiple instances of that value flowing from the |
| /// block's predecessors to the phi. |
| /// |
| /// \param BB The block with the value flowing into the phi. |
| /// \param BBPreds The predecessors of BB. |
| /// \param PN The phi that we are updating. |
| static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, |
| const PredBlockVector &BBPreds, |
| PHINode *PN) { |
| Value *OldVal = PN->removeIncomingValue(BB, false); |
| assert(OldVal && "No entry in PHI for Pred BB!"); |
| |
| IncomingValueMap IncomingValues; |
| |
| // We are merging two blocks - BB, and the block containing PN - and |
| // as a result we need to redirect edges from the predecessors of BB |
| // to go to the block containing PN, and update PN |
| // accordingly. Since we allow merging blocks in the case where the |
| // predecessor and successor blocks both share some predecessors, |
| // and where some of those common predecessors might have undef |
| // values flowing into PN, we want to rewrite those values to be |
| // consistent with the non-undef values. |
| |
| gatherIncomingValuesToPhi(PN, IncomingValues); |
| |
| // If this incoming value is one of the PHI nodes in BB, the new entries |
| // in the PHI node are the entries from the old PHI. |
| if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { |
| PHINode *OldValPN = cast<PHINode>(OldVal); |
| for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { |
| // Note that, since we are merging phi nodes and BB and Succ might |
| // have common predecessors, we could end up with a phi node with |
| // identical incoming branches. This will be cleaned up later (and |
| // will trigger asserts if we try to clean it up now, without also |
| // simplifying the corresponding conditional branch). |
| BasicBlock *PredBB = OldValPN->getIncomingBlock(i); |
| Value *PredVal = OldValPN->getIncomingValue(i); |
| Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, |
| IncomingValues); |
| |
| // And add a new incoming value for this predecessor for the |
| // newly retargeted branch. |
| PN->addIncoming(Selected, PredBB); |
| } |
| } else { |
| for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { |
| // Update existing incoming values in PN for this |
| // predecessor of BB. |
| BasicBlock *PredBB = BBPreds[i]; |
| Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, |
| IncomingValues); |
| |
| // And add a new incoming value for this predecessor for the |
| // newly retargeted branch. |
| PN->addIncoming(Selected, PredBB); |
| } |
| } |
| |
| replaceUndefValuesInPhi(PN, IncomingValues); |
| } |
| |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, |
| DomTreeUpdater *DTU) { |
| assert(BB != &BB->getParent()->getEntryBlock() && |
| "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); |
| |
| // We can't eliminate infinite loops. |
| BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); |
| if (BB == Succ) return false; |
| |
| // Check to see if merging these blocks would cause conflicts for any of the |
| // phi nodes in BB or Succ. If not, we can safely merge. |
| if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; |
| |
| // Check for cases where Succ has multiple predecessors and a PHI node in BB |
| // has uses which will not disappear when the PHI nodes are merged. It is |
| // possible to handle such cases, but difficult: it requires checking whether |
| // BB dominates Succ, which is non-trivial to calculate in the case where |
| // Succ has multiple predecessors. Also, it requires checking whether |
| // constructing the necessary self-referential PHI node doesn't introduce any |
| // conflicts; this isn't too difficult, but the previous code for doing this |
| // was incorrect. |
| // |
| // Note that if this check finds a live use, BB dominates Succ, so BB is |
| // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
| // folding the branch isn't profitable in that case anyway. |
| if (!Succ->getSinglePredecessor()) { |
| BasicBlock::iterator BBI = BB->begin(); |
| while (isa<PHINode>(*BBI)) { |
| for (Use &U : BBI->uses()) { |
| if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { |
| if (PN->getIncomingBlock(U) != BB) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| ++BBI; |
| } |
| } |
| |
| // We cannot fold the block if it's a branch to an already present callbr |
| // successor because that creates duplicate successors. |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { |
| if (Succ == CBI->getDefaultDest()) |
| return false; |
| for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) |
| if (Succ == CBI->getIndirectDest(i)) |
| return false; |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
| |
| SmallVector<DominatorTree::UpdateType, 32> Updates; |
| if (DTU) { |
| // All predecessors of BB will be moved to Succ. |
| SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); |
| SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); |
| Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); |
| for (auto *PredOfBB : PredsOfBB) |
| // This predecessor of BB may already have Succ as a successor. |
| if (!PredsOfSucc.contains(PredOfBB)) |
| Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); |
| for (auto *PredOfBB : PredsOfBB) |
| Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| |
| if (isa<PHINode>(Succ->begin())) { |
| // If there is more than one pred of succ, and there are PHI nodes in |
| // the successor, then we need to add incoming edges for the PHI nodes |
| // |
| const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Loop over all of the PHI nodes in the successor of BB. |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); |
| } |
| } |
| |
| if (Succ->getSinglePredecessor()) { |
| // BB is the only predecessor of Succ, so Succ will end up with exactly |
| // the same predecessors BB had. |
| |
| // Copy over any phi, debug or lifetime instruction. |
| BB->getTerminator()->eraseFromParent(); |
| Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), |
| BB->getInstList()); |
| } else { |
| while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { |
| // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. |
| assert(PN->use_empty() && "There shouldn't be any uses here!"); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| // If the unconditional branch we replaced contains llvm.loop metadata, we |
| // add the metadata to the branch instructions in the predecessors. |
| unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); |
| Instruction *TI = BB->getTerminator(); |
| if (TI) |
| if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) |
| for (BasicBlock *Pred : predecessors(BB)) |
| Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); |
| |
| // Everything that jumped to BB now goes to Succ. |
| BB->replaceAllUsesWith(Succ); |
| if (!Succ->hasName()) Succ->takeName(BB); |
| |
| // Clear the successor list of BB to match updates applying to DTU later. |
| if (BB->getTerminator()) |
| BB->getInstList().pop_back(); |
| new UnreachableInst(BB->getContext(), BB); |
| assert(succ_empty(BB) && "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| DeleteDeadBlock(BB, DTU); |
| |
| return true; |
| } |
| |
| static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { |
| // This implementation doesn't currently consider undef operands |
| // specially. Theoretically, two phis which are identical except for |
| // one having an undef where the other doesn't could be collapsed. |
| |
| bool Changed = false; |
| |
| // Examine each PHI. |
| // Note that increment of I must *NOT* be in the iteration_expression, since |
| // we don't want to immediately advance when we restart from the beginning. |
| for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { |
| ++I; |
| // Is there an identical PHI node in this basic block? |
| // Note that we only look in the upper square's triangle, |
| // we already checked that the lower triangle PHI's aren't identical. |
| for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { |
| if (!DuplicatePN->isIdenticalToWhenDefined(PN)) |
| continue; |
| // A duplicate. Replace this PHI with the base PHI. |
| ++NumPHICSEs; |
| DuplicatePN->replaceAllUsesWith(PN); |
| DuplicatePN->eraseFromParent(); |
| Changed = true; |
| |
| // The RAUW can change PHIs that we already visited. |
| I = BB->begin(); |
| break; // Start over from the beginning. |
| } |
| } |
| return Changed; |
| } |
| |
| static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { |
| // This implementation doesn't currently consider undef operands |
| // specially. Theoretically, two phis which are identical except for |
| // one having an undef where the other doesn't could be collapsed. |
| |
| struct PHIDenseMapInfo { |
| static PHINode *getEmptyKey() { |
| return DenseMapInfo<PHINode *>::getEmptyKey(); |
| } |
| |
| static PHINode *getTombstoneKey() { |
| return DenseMapInfo<PHINode *>::getTombstoneKey(); |
| } |
| |
| static bool isSentinel(PHINode *PN) { |
| return PN == getEmptyKey() || PN == getTombstoneKey(); |
| } |
| |
| // WARNING: this logic must be kept in sync with |
| // Instruction::isIdenticalToWhenDefined()! |
| static unsigned getHashValueImpl(PHINode *PN) { |
| // Compute a hash value on the operands. Instcombine will likely have |
| // sorted them, which helps expose duplicates, but we have to check all |
| // the operands to be safe in case instcombine hasn't run. |
| return static_cast<unsigned>(hash_combine( |
| hash_combine_range(PN->value_op_begin(), PN->value_op_end()), |
| hash_combine_range(PN->block_begin(), PN->block_end()))); |
| } |
| |
| static unsigned getHashValue(PHINode *PN) { |
| #ifndef NDEBUG |
| // If -phicse-debug-hash was specified, return a constant -- this |
| // will force all hashing to collide, so we'll exhaustively search |
| // the table for a match, and the assertion in isEqual will fire if |
| // there's a bug causing equal keys to hash differently. |
| if (PHICSEDebugHash) |
| return 0; |
| #endif |
| return getHashValueImpl(PN); |
| } |
| |
| static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { |
| if (isSentinel(LHS) || isSentinel(RHS)) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(RHS); |
| } |
| |
| static bool isEqual(PHINode *LHS, PHINode *RHS) { |
| // These comparisons are nontrivial, so assert that equality implies |
| // hash equality (DenseMap demands this as an invariant). |
| bool Result = isEqualImpl(LHS, RHS); |
| assert(!Result || (isSentinel(LHS) && LHS == RHS) || |
| getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
| return Result; |
| } |
| }; |
| |
| // Set of unique PHINodes. |
| DenseSet<PHINode *, PHIDenseMapInfo> PHISet; |
| PHISet.reserve(4 * PHICSENumPHISmallSize); |
| |
| // Examine each PHI. |
| bool Changed = false; |
| for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { |
| auto Inserted = PHISet.insert(PN); |
| if (!Inserted.second) { |
| // A duplicate. Replace this PHI with its duplicate. |
| ++NumPHICSEs; |
| PN->replaceAllUsesWith(*Inserted.first); |
| PN->eraseFromParent(); |
| Changed = true; |
| |
| // The RAUW can change PHIs that we already visited. Start over from the |
| // beginning. |
| PHISet.clear(); |
| I = BB->begin(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
| if ( |
| #ifndef NDEBUG |
| !PHICSEDebugHash && |
| #endif |
| hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) |
| return EliminateDuplicatePHINodesNaiveImpl(BB); |
| return EliminateDuplicatePHINodesSetBasedImpl(BB); |
| } |
| |
| /// If the specified pointer points to an object that we control, try to modify |
| /// the object's alignment to PrefAlign. Returns a minimum known alignment of |
| /// the value after the operation, which may be lower than PrefAlign. |
| /// |
| /// Increating value alignment isn't often possible though. If alignment is |
| /// important, a more reliable approach is to simply align all global variables |
| /// and allocation instructions to their preferred alignment from the beginning. |
| static Align tryEnforceAlignment(Value *V, Align PrefAlign, |
| const DataLayout &DL) { |
| V = V->stripPointerCasts(); |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| // TODO: Ideally, this function would not be called if PrefAlign is smaller |
| // than the current alignment, as the known bits calculation should have |
| // already taken it into account. However, this is not always the case, |
| // as computeKnownBits() has a depth limit, while stripPointerCasts() |
| // doesn't. |
| Align CurrentAlign = AI->getAlign(); |
| if (PrefAlign <= CurrentAlign) |
| return CurrentAlign; |
| |
| // If the preferred alignment is greater than the natural stack alignment |
| // then don't round up. This avoids dynamic stack realignment. |
| if (DL.exceedsNaturalStackAlignment(PrefAlign)) |
| return CurrentAlign; |
| AI->setAlignment(PrefAlign); |
| return PrefAlign; |
| } |
| |
| if (auto *GO = dyn_cast<GlobalObject>(V)) { |
| // TODO: as above, this shouldn't be necessary. |
| Align CurrentAlign = GO->getPointerAlignment(DL); |
| if (PrefAlign <= CurrentAlign) |
| return CurrentAlign; |
| |
| // If there is a large requested alignment and we can, bump up the alignment |
| // of the global. If the memory we set aside for the global may not be the |
| // memory used by the final program then it is impossible for us to reliably |
| // enforce the preferred alignment. |
| if (!GO->canIncreaseAlignment()) |
| return CurrentAlign; |
| |
| GO->setAlignment(PrefAlign); |
| return PrefAlign; |
| } |
| |
| return Align(1); |
| } |
| |
| Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, |
| const DataLayout &DL, |
| const Instruction *CxtI, |
| AssumptionCache *AC, |
| const DominatorTree *DT) { |
| assert(V->getType()->isPointerTy() && |
| "getOrEnforceKnownAlignment expects a pointer!"); |
| |
| KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); |
| unsigned TrailZ = Known.countMinTrailingZeros(); |
| |
| // Avoid trouble with ridiculously large TrailZ values, such as |
| // those computed from a null pointer. |
| // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). |
| TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); |
| |
| Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); |
| |
| if (PrefAlign && *PrefAlign > Alignment) |
| Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); |
| |
| // We don't need to make any adjustment. |
| return Alignment; |
| } |
| |
| ///===---------------------------------------------------------------------===// |
| /// Dbg Intrinsic utilities |
| /// |
| |
| /// See if there is a dbg.value intrinsic for DIVar for the PHI node. |
| static bool PhiHasDebugValue(DILocalVariable *DIVar, |
| DIExpression *DIExpr, |
| PHINode *APN) { |
| // Since we can't guarantee that the original dbg.declare instrinsic |
| // is removed by LowerDbgDeclare(), we need to make sure that we are |
| // not inserting the same dbg.value intrinsic over and over. |
| SmallVector<DbgValueInst *, 1> DbgValues; |
| findDbgValues(DbgValues, APN); |
| for (auto *DVI : DbgValues) { |
| assert(is_contained(DVI->getValues(), APN)); |
| if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check if the alloc size of \p ValTy is large enough to cover the variable |
| /// (or fragment of the variable) described by \p DII. |
| /// |
| /// This is primarily intended as a helper for the different |
| /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is |
| /// converted describes an alloca'd variable, so we need to use the |
| /// alloc size of the value when doing the comparison. E.g. an i1 value will be |
| /// identified as covering an n-bit fragment, if the store size of i1 is at |
| /// least n bits. |
| static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { |
| const DataLayout &DL = DII->getModule()->getDataLayout(); |
| TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); |
| if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { |
| assert(!ValueSize.isScalable() && |
| "Fragments don't work on scalable types."); |
| return ValueSize.getFixedSize() >= *FragmentSize; |
| } |
| // We can't always calculate the size of the DI variable (e.g. if it is a |
| // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
| // intead. |
| if (DII->isAddressOfVariable()) { |
| // DII should have exactly 1 location when it is an address. |
| assert(DII->getNumVariableLocationOps() == 1 && |
| "address of variable must have exactly 1 location operand."); |
| if (auto *AI = |
| dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { |
| if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { |
| assert(ValueSize.isScalable() == FragmentSize->isScalable() && |
| "Both sizes should agree on the scalable flag."); |
| return TypeSize::isKnownGE(ValueSize, *FragmentSize); |
| } |
| } |
| } |
| // Could not determine size of variable. Conservatively return false. |
| return false; |
| } |
| |
| /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted |
| /// to a dbg.value. Because no machine insts can come from debug intrinsics, |
| /// only the scope and inlinedAt is significant. Zero line numbers are used in |
| /// case this DebugLoc leaks into any adjacent instructions. |
| static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { |
| // Original dbg.declare must have a location. |
| const DebugLoc &DeclareLoc = DII->getDebugLoc(); |
| MDNode *Scope = DeclareLoc.getScope(); |
| DILocation *InlinedAt = DeclareLoc.getInlinedAt(); |
| // Produce an unknown location with the correct scope / inlinedAt fields. |
| return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value |
| /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| StoreInst *SI, DIBuilder &Builder) { |
| assert(DII->isAddressOfVariable()); |
| auto *DIVar = DII->getVariable(); |
| assert(DIVar && "Missing variable"); |
| auto *DIExpr = DII->getExpression(); |
| Value *DV = SI->getValueOperand(); |
| |
| DebugLoc NewLoc = getDebugValueLoc(DII, SI); |
| |
| if (!valueCoversEntireFragment(DV->getType(), DII)) { |
| // FIXME: If storing to a part of the variable described by the dbg.declare, |
| // then we want to insert a dbg.value for the corresponding fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| // For now, when there is a store to parts of the variable (but we do not |
| // know which part) we insert an dbg.value instrinsic to indicate that we |
| // know nothing about the variable's content. |
| DV = UndefValue::get(DV->getType()); |
| Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); |
| return; |
| } |
| |
| Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value |
| /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| LoadInst *LI, DIBuilder &Builder) { |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| if (!valueCoversEntireFragment(LI->getType(), DII)) { |
| // FIXME: If only referring to a part of the variable described by the |
| // dbg.declare, then we want to insert a dbg.value for the corresponding |
| // fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| return; |
| } |
| |
| DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); |
| |
| // We are now tracking the loaded value instead of the address. In the |
| // future if multi-location support is added to the IR, it might be |
| // preferable to keep tracking both the loaded value and the original |
| // address in case the alloca can not be elided. |
| Instruction *DbgValue = Builder.insertDbgValueIntrinsic( |
| LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); |
| DbgValue->insertAfter(LI); |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated |
| /// llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| PHINode *APN, DIBuilder &Builder) { |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
| return; |
| |
| if (!valueCoversEntireFragment(APN->getType(), DII)) { |
| // FIXME: If only referring to a part of the variable described by the |
| // dbg.declare, then we want to insert a dbg.value for the corresponding |
| // fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| return; |
| } |
| |
| BasicBlock *BB = APN->getParent(); |
| auto InsertionPt = BB->getFirstInsertionPt(); |
| |
| DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); |
| |
| // The block may be a catchswitch block, which does not have a valid |
| // insertion point. |
| // FIXME: Insert dbg.value markers in the successors when appropriate. |
| if (InsertionPt != BB->end()) |
| Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); |
| } |
| |
| /// Determine whether this alloca is either a VLA or an array. |
| static bool isArray(AllocaInst *AI) { |
| return AI->isArrayAllocation() || |
| (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); |
| } |
| |
| /// Determine whether this alloca is a structure. |
| static bool isStructure(AllocaInst *AI) { |
| return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); |
| } |
| |
| /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
| /// of llvm.dbg.value intrinsics. |
| bool llvm::LowerDbgDeclare(Function &F) { |
| bool Changed = false; |
| DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); |
| SmallVector<DbgDeclareInst *, 4> Dbgs; |
| for (auto &FI : F) |
| for (Instruction &BI : FI) |
| if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) |
| Dbgs.push_back(DDI); |
| |
| if (Dbgs.empty()) |
| return Changed; |
| |
| for (auto &I : Dbgs) { |
| DbgDeclareInst *DDI = I; |
| AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); |
| // If this is an alloca for a scalar variable, insert a dbg.value |
| // at each load and store to the alloca and erase the dbg.declare. |
| // The dbg.values allow tracking a variable even if it is not |
| // stored on the stack, while the dbg.declare can only describe |
| // the stack slot (and at a lexical-scope granularity). Later |
| // passes will attempt to elide the stack slot. |
| if (!AI || isArray(AI) || isStructure(AI)) |
| continue; |
| |
| // A volatile load/store means that the alloca can't be elided anyway. |
| if (llvm::any_of(AI->users(), [](User *U) -> bool { |
| if (LoadInst *LI = dyn_cast<LoadInst>(U)) |
| return LI->isVolatile(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(U)) |
| return SI->isVolatile(); |
| return false; |
| })) |
| continue; |
| |
| SmallVector<const Value *, 8> WorkList; |
| WorkList.push_back(AI); |
| while (!WorkList.empty()) { |
| const Value *V = WorkList.pop_back_val(); |
| for (auto &AIUse : V->uses()) { |
| User *U = AIUse.getUser(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
| if (AIUse.getOperandNo() == 1) |
| ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { |
| ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| } else if (CallInst *CI = dyn_cast<CallInst>(U)) { |
| // This is a call by-value or some other instruction that takes a |
| // pointer to the variable. Insert a *value* intrinsic that describes |
| // the variable by dereferencing the alloca. |
| if (!CI->isLifetimeStartOrEnd()) { |
| DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); |
| auto *DerefExpr = |
| DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); |
| DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, |
| NewLoc, CI); |
| } |
| } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { |
| if (BI->getType()->isPointerTy()) |
| WorkList.push_back(BI); |
| } |
| } |
| } |
| DDI->eraseFromParent(); |
| Changed = true; |
| } |
| |
| if (Changed) |
| for (BasicBlock &BB : F) |
| RemoveRedundantDbgInstrs(&BB); |
| |
| return Changed; |
| } |
| |
| /// Propagate dbg.value intrinsics through the newly inserted PHIs. |
| void llvm::insertDebugValuesForPHIs(BasicBlock *BB, |
| SmallVectorImpl<PHINode *> &InsertedPHIs) { |
| assert(BB && "No BasicBlock to clone dbg.value(s) from."); |
| if (InsertedPHIs.size() == 0) |
| return; |
| |
| // Map existing PHI nodes to their dbg.values. |
| ValueToValueMapTy DbgValueMap; |
| for (auto &I : *BB) { |
| if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { |
| for (Value *V : DbgII->location_ops()) |
| if (auto *Loc = dyn_cast_or_null<PHINode>(V)) |
| DbgValueMap.insert({Loc, DbgII}); |
| } |
| } |
| if (DbgValueMap.size() == 0) |
| return; |
| |
| // Map a pair of the destination BB and old dbg.value to the new dbg.value, |
| // so that if a dbg.value is being rewritten to use more than one of the |
| // inserted PHIs in the same destination BB, we can update the same dbg.value |
| // with all the new PHIs instead of creating one copy for each. |
| MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, |
| DbgVariableIntrinsic *> |
| NewDbgValueMap; |
| // Then iterate through the new PHIs and look to see if they use one of the |
| // previously mapped PHIs. If so, create a new dbg.value intrinsic that will |
| // propagate the info through the new PHI. If we use more than one new PHI in |
| // a single destination BB with the same old dbg.value, merge the updates so |
| // that we get a single new dbg.value with all the new PHIs. |
| for (auto PHI : InsertedPHIs) { |
| BasicBlock *Parent = PHI->getParent(); |
| // Avoid inserting an intrinsic into an EH block. |
| if (Parent->getFirstNonPHI()->isEHPad()) |
| continue; |
| for (auto VI : PHI->operand_values()) { |
| auto V = DbgValueMap.find(VI); |
| if (V != DbgValueMap.end()) { |
| auto *DbgII = cast<DbgVariableIntrinsic>(V->second); |
| auto NewDI = NewDbgValueMap.find({Parent, DbgII}); |
| if (NewDI == NewDbgValueMap.end()) { |
| auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); |
| NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; |
| } |
| DbgVariableIntrinsic *NewDbgII = NewDI->second; |
| // If PHI contains VI as an operand more than once, we may |
| // replaced it in NewDbgII; confirm that it is present. |
| if (is_contained(NewDbgII->location_ops(), VI)) |
| NewDbgII->replaceVariableLocationOp(VI, PHI); |
| } |
| } |
| } |
| // Insert thew new dbg.values into their destination blocks. |
| for (auto DI : NewDbgValueMap) { |
| BasicBlock *Parent = DI.first.first; |
| auto *NewDbgII = DI.second; |
| auto InsertionPt = Parent->getFirstInsertionPt(); |
| assert(InsertionPt != Parent->end() && "Ill-formed basic block"); |
| NewDbgII->insertBefore(&*InsertionPt); |
| } |
| } |
| |
| bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, |
| DIBuilder &Builder, uint8_t DIExprFlags, |
| int Offset) { |
| auto DbgAddrs = FindDbgAddrUses(Address); |
| for (DbgVariableIntrinsic *DII : DbgAddrs) { |
| const DebugLoc &Loc = DII->getDebugLoc(); |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); |
| // Insert llvm.dbg.declare immediately before DII, and remove old |
| // llvm.dbg.declare. |
| Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); |
| DII->eraseFromParent(); |
| } |
| return !DbgAddrs.empty(); |
| } |
| |
| static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, |
| DIBuilder &Builder, int Offset) { |
| const DebugLoc &Loc = DVI->getDebugLoc(); |
| auto *DIVar = DVI->getVariable(); |
| auto *DIExpr = DVI->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| // This is an alloca-based llvm.dbg.value. The first thing it should do with |
| // the alloca pointer is dereference it. Otherwise we don't know how to handle |
| // it and give up. |
| if (!DIExpr || DIExpr->getNumElements() < 1 || |
| DIExpr->getElement(0) != dwarf::DW_OP_deref) |
| return; |
| |
| // Insert the offset before the first deref. |
| // We could just change the offset argument of dbg.value, but it's unsigned... |
| if (Offset) |
| DIExpr = DIExpression::prepend(DIExpr, 0, Offset); |
| |
| Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); |
| DVI->eraseFromParent(); |
| } |
| |
| void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, |
| DIBuilder &Builder, int Offset) { |
| if (auto *L = LocalAsMetadata::getIfExists(AI)) |
| if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) |
| for (Use &U : llvm::make_early_inc_range(MDV->uses())) |
| if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) |
| replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); |
| } |
| |
| /// Where possible to salvage debug information for \p I do so |
| /// and return True. If not possible mark undef and return False. |
| void llvm::salvageDebugInfo(Instruction &I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, &I); |
| salvageDebugInfoForDbgValues(I, DbgUsers); |
| } |
| |
| void llvm::salvageDebugInfoForDbgValues( |
| Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { |
| // This is an arbitrary chosen limit on the maximum number of values we can |
| // salvage up to in a DIArgList, used for performance reasons. |
| const unsigned MaxDebugArgs = 16; |
| bool Salvaged = false; |
| |
| for (auto *DII : DbgUsers) { |
| // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they |
| // are implicitly pointing out the value as a DWARF memory location |
| // description. |
| bool StackValue = isa<DbgValueInst>(DII); |
| auto DIILocation = DII->location_ops(); |
| assert( |
| is_contained(DIILocation, &I) && |
| "DbgVariableIntrinsic must use salvaged instruction as its location"); |
| SmallVector<Value *, 4> AdditionalValues; |
| // `I` may appear more than once in DII's location ops, and each use of `I` |
| // must be updated in the DIExpression and potentially have additional |
| // values added; thus we call salvageDebugInfoImpl for each `I` instance in |
| // DIILocation. |
| DIExpression *SalvagedExpr = DII->getExpression(); |
| auto LocItr = find(DIILocation, &I); |
| while (SalvagedExpr && LocItr != DIILocation.end()) { |
| unsigned LocNo = std::distance(DIILocation.begin(), LocItr); |
| SalvagedExpr = salvageDebugInfoImpl(I, SalvagedExpr, StackValue, LocNo, |
| AdditionalValues); |
| LocItr = std::find(++LocItr, DIILocation.end(), &I); |
| } |
| // salvageDebugInfoImpl should fail on examining the first element of |
| // DbgUsers, or none of them. |
| if (!SalvagedExpr) |
| break; |
| |
| DII->replaceVariableLocationOp(&I, I.getOperand(0)); |
| if (AdditionalValues.empty()) { |
| DII->setExpression(SalvagedExpr); |
| } else if (isa<DbgValueInst>(DII) && |
| DII->getNumVariableLocationOps() + AdditionalValues.size() <= |
| MaxDebugArgs) { |
| DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); |
| } else { |
| // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is |
| // currently only valid for stack value expressions. |
| // Also do not salvage if the resulting DIArgList would contain an |
| // unreasonably large number of values. |
| Value *Undef = UndefValue::get(I.getOperand(0)->getType()); |
| DII->replaceVariableLocationOp(I.getOperand(0), Undef); |
| } |
| LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); |
| Salvaged = true; |
| } |
| |
| if (Salvaged) |
| return; |
| |
| for (auto *DII : DbgUsers) { |
| Value *Undef = UndefValue::get(I.getType()); |
| DII->replaceVariableLocationOp(&I, Undef); |
| } |
| } |
| |
| bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, |
| uint64_t CurrentLocOps, |
| SmallVectorImpl<uint64_t> &Opcodes, |
| SmallVectorImpl<Value *> &AdditionalValues) { |
| unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); |
| // Rewrite a GEP into a DIExpression. |
| MapVector<Value *, APInt> VariableOffsets; |
| APInt ConstantOffset(BitWidth, 0); |
| if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) |
| return false; |
| if (!VariableOffsets.empty() && !CurrentLocOps) { |
| Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); |
| CurrentLocOps = 1; |
| } |
| for (auto Offset : VariableOffsets) { |
| AdditionalValues.push_back(Offset.first); |
| assert(Offset.second.isStrictlyPositive() && |
| "Expected strictly positive multiplier for offset."); |
| Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, |
| Offset.second.getZExtValue(), dwarf::DW_OP_mul, |
| dwarf::DW_OP_plus}); |
| } |
| DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); |
| return true; |
| } |
| |
| uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { |
| switch (Opcode) { |
| case Instruction::Add: |
| return dwarf::DW_OP_plus; |
| case Instruction::Sub: |
| return dwarf::DW_OP_minus; |
| case Instruction::Mul: |
| return dwarf::DW_OP_mul; |
| case Instruction::SDiv: |
| return dwarf::DW_OP_div; |
| case Instruction::SRem: |
| return dwarf::DW_OP_mod; |
| case Instruction::Or: |
| return dwarf::DW_OP_or; |
| case Instruction::And: |
| return dwarf::DW_OP_and; |
| case Instruction::Xor: |
| return dwarf::DW_OP_xor; |
| case Instruction::Shl: |
| return dwarf::DW_OP_shl; |
| case Instruction::LShr: |
| return dwarf::DW_OP_shr; |
| case Instruction::AShr: |
| return dwarf::DW_OP_shra; |
| default: |
| // TODO: Salvage from each kind of binop we know about. |
| return 0; |
| } |
| } |
| |
| bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, |
| SmallVectorImpl<uint64_t> &Opcodes, |
| SmallVectorImpl<Value *> &AdditionalValues) { |
| // Handle binary operations with constant integer operands as a special case. |
| auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); |
| // Values wider than 64 bits cannot be represented within a DIExpression. |
| if (ConstInt && ConstInt->getBitWidth() > 64) |
| return false; |
| |
| Instruction::BinaryOps BinOpcode = BI->getOpcode(); |
| // Push any Constant Int operand onto the expression stack. |
| if (ConstInt) { |
| uint64_t Val = ConstInt->getSExtValue(); |
| // Add or Sub Instructions with a constant operand can potentially be |
| // simplified. |
| if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { |
| uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); |
| DIExpression::appendOffset(Opcodes, Offset); |
| return true; |
| } |
| Opcodes.append({dwarf::DW_OP_constu, Val}); |
| } else { |
| if (!CurrentLocOps) { |
| Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); |
| CurrentLocOps = 1; |
| } |
| Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); |
| AdditionalValues.push_back(BI->getOperand(1)); |
| } |
| |
| // Add salvaged binary operator to expression stack, if it has a valid |
| // representation in a DIExpression. |
| uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); |
| if (!DwarfBinOp) |
| return false; |
| Opcodes.push_back(DwarfBinOp); |
| |
| return true; |
| } |
| |
| DIExpression * |
| llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr, |
| bool WithStackValue, unsigned LocNo, |
| SmallVectorImpl<Value *> &AdditionalValues) { |
| uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands(); |
| auto &M = *I.getModule(); |
| auto &DL = M.getDataLayout(); |
| |
| // Apply a vector of opcodes to the source DIExpression. |
| auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { |
| DIExpression *DIExpr = SrcDIExpr; |
| if (!Ops.empty()) { |
| DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); |
| } |
| return DIExpr; |
| }; |
| |
| // initializer-list helper for applying operators to the source DIExpression. |
| auto applyOps = [&](ArrayRef<uint64_t> Opcodes) { |
| SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); |
| return doSalvage(Ops); |
| }; |
| |
| if (auto *CI = dyn_cast<CastInst>(&I)) { |
| // No-op casts are irrelevant for debug info. |
| if (CI->isNoopCast(DL)) |
| return SrcDIExpr; |
| |
| Type *Type = CI->getType(); |
| // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. |
| if (Type->isVectorTy() || |
| !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) |
| return nullptr; |
| |
| Value *FromValue = CI->getOperand(0); |
| unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); |
| unsigned ToTypeBitSize = Type->getScalarSizeInBits(); |
| |
| return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, |
| isa<SExtInst>(&I))); |
| } |
| |
| SmallVector<uint64_t, 8> Ops; |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues)) |
| return doSalvage(Ops); |
| } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { |
| if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues)) |
| return doSalvage(Ops); |
| } |
| // *Not* to do: we should not attempt to salvage load instructions, |
| // because the validity and lifetime of a dbg.value containing |
| // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. |
| return nullptr; |
| } |
| |
| /// A replacement for a dbg.value expression. |
| using DbgValReplacement = Optional<DIExpression *>; |
| |
| /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, |
| /// possibly moving/undefing users to prevent use-before-def. Returns true if |
| /// changes are made. |
| static bool rewriteDebugUsers( |
| Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, |
| function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { |
| // Find debug users of From. |
| SmallVector<DbgVariableIntrinsic *, 1> Users; |
| findDbgUsers(Users, &From); |
| if (Users.empty()) |
| return false; |
| |
| // Prevent use-before-def of To. |
| bool Changed = false; |
| SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; |
| if (isa<Instruction>(&To)) { |
| bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; |
| |
| for (auto *DII : Users) { |
| // It's common to see a debug user between From and DomPoint. Move it |
| // after DomPoint to preserve the variable update without any reordering. |
| if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { |
| LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); |
| DII->moveAfter(&DomPoint); |
| Changed = true; |
| |
| // Users which otherwise aren't dominated by the replacement value must |
| // be salvaged or deleted. |
| } else if (!DT.dominates(&DomPoint, DII)) { |
| UndefOrSalvage.insert(DII); |
| } |
| } |
| } |
| |
| // Update debug users without use-before-def risk. |
| for (auto *DII : Users) { |
| if (UndefOrSalvage.count(DII)) |
| continue; |
| |
| DbgValReplacement DVR = RewriteExpr(*DII); |
| if (!DVR) |
| continue; |
| |
| DII->replaceVariableLocationOp(&From, &To); |
| DII->setExpression(*DVR); |
| LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); |
| Changed = true; |
| } |
| |
| if (!UndefOrSalvage.empty()) { |
| // Try to salvage the remaining debug users. |
| salvageDebugInfo(From); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would |
| /// losslessly preserve the bits and semantics of the value. This predicate is |
| /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. |
| /// |
| /// Note that Type::canLosslesslyBitCastTo is not suitable here because it |
| /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, |
| /// and also does not allow lossless pointer <-> integer conversions. |
| static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, |
| Type *ToTy) { |
| // Trivially compatible types. |
| if (FromTy == ToTy) |
| return true; |
| |
| // Handle compatible pointer <-> integer conversions. |
| if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { |
| bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); |
| bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && |
| !DL.isNonIntegralPointerType(ToTy); |
| return SameSize && LosslessConversion; |
| } |
| |
| // TODO: This is not exhaustive. |
| return false; |
| } |
| |
| bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, |
| Instruction &DomPoint, DominatorTree &DT) { |
| // Exit early if From has no debug users. |
| if (!From.isUsedByMetadata()) |
| return false; |
| |
| assert(&From != &To && "Can't replace something with itself"); |
| |
| Type *FromTy = From.getType(); |
| Type *ToTy = To.getType(); |
| |
| auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| return DII.getExpression(); |
| }; |
| |
| // Handle no-op conversions. |
| Module &M = *From.getModule(); |
| const DataLayout &DL = M.getDataLayout(); |
| if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) |
| return rewriteDebugUsers(From, To, DomPoint, DT, Identity); |
| |
| // Handle integer-to-integer widening and narrowing. |
| // FIXME: Use DW_OP_convert when it's available everywhere. |
| if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { |
| uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); |
| uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); |
| assert(FromBits != ToBits && "Unexpected no-op conversion"); |
| |
| // When the width of the result grows, assume that a debugger will only |
| // access the low `FromBits` bits when inspecting the source variable. |
| if (FromBits < ToBits) |
| return rewriteDebugUsers(From, To, DomPoint, DT, Identity); |
| |
| // The width of the result has shrunk. Use sign/zero extension to describe |
| // the source variable's high bits. |
| auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| DILocalVariable *Var = DII.getVariable(); |
| |
| // Without knowing signedness, sign/zero extension isn't possible. |
| auto Signedness = Var->getSignedness(); |
| if (!Signedness) |
| return None; |
| |
| bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
| return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, |
| Signed); |
| }; |
| return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); |
| } |
| |
| // TODO: Floating-point conversions, vectors. |
| return false; |
| } |
| |
| std::pair<unsigned, unsigned> |
| llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { |
| unsigned NumDeadInst = 0; |
| unsigned NumDeadDbgInst = 0; |
| // Delete the instructions backwards, as it has a reduced likelihood of |
| // having to update as many def-use and use-def chains. |
| Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. |
| while (EndInst != &BB->front()) { |
| // Delete the next to last instruction. |
| Instruction *Inst = &*--EndInst->getIterator(); |
| if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) |
| Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); |
| if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { |
| EndInst = Inst; |
| continue; |
| } |
| if (isa<DbgInfoIntrinsic>(Inst)) |
| ++NumDeadDbgInst; |
| else |
| ++NumDeadInst; |
| Inst->eraseFromParent(); |
| } |
| return {NumDeadInst, NumDeadDbgInst}; |
| } |
| |
| unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, |
| DomTreeUpdater *DTU, |
| MemorySSAUpdater *MSSAU) { |
| BasicBlock *BB = I->getParent(); |
| |
| if (MSSAU) |
| MSSAU->changeToUnreachable(I); |
| |
| SmallSet<BasicBlock *, 8> UniqueSuccessors; |
| |
| // Loop over all of the successors, removing BB's entry from any PHI |
| // nodes. |
| for (BasicBlock *Successor : successors(BB)) { |
| Successor->removePredecessor(BB, PreserveLCSSA); |
| if (DTU) |
| UniqueSuccessors.insert(Successor); |
| } |
| auto *UI = new UnreachableInst(I->getContext(), I); |
| UI->setDebugLoc(I->getDebugLoc()); |
| |
| // All instructions after this are dead. |
| unsigned NumInstrsRemoved = 0; |
| BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); |
| while (BBI != BBE) { |
| if (!BBI->use_empty()) |
| BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); |
| BB->getInstList().erase(BBI++); |
| ++NumInstrsRemoved; |
| } |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 8> Updates; |
| Updates.reserve(UniqueSuccessors.size()); |
| for (BasicBlock *UniqueSuccessor : UniqueSuccessors) |
| Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); |
| DTU->applyUpdates(Updates); |
| } |
| return NumInstrsRemoved; |
| } |
| |
| CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { |
| SmallVector<Value *, 8> Args(II->args()); |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| II->getOperandBundlesAsDefs(OpBundles); |
| CallInst *NewCall = CallInst::Create(II->getFunctionType(), |
| II->getCalledOperand(), Args, OpBundles); |
| NewCall->setCallingConv(II->getCallingConv()); |
| NewCall->setAttributes(II->getAttributes()); |
| NewCall->setDebugLoc(II->getDebugLoc()); |
| NewCall->copyMetadata(*II); |
| |
| // If the invoke had profile metadata, try converting them for CallInst. |
| uint64_t TotalWeight; |
| if (NewCall->extractProfTotalWeight(TotalWeight)) { |
| // Set the total weight if it fits into i32, otherwise reset. |
| MDBuilder MDB(NewCall->getContext()); |
| auto NewWeights = uint32_t(TotalWeight) != TotalWeight |
| ? nullptr |
| : MDB.createBranchWeights({uint32_t(TotalWeight)}); |
| NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); |
| } |
| |
| return NewCall; |
| } |
| |
| /// changeToCall - Convert the specified invoke into a normal call. |
| void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { |
| CallInst *NewCall = createCallMatchingInvoke(II); |
| NewCall->takeName(II); |
| NewCall->insertBefore(II); |
| II->replaceAllUsesWith(NewCall); |
| |
| // Follow the call by a branch to the normal destination. |
| BasicBlock *NormalDestBB = II->getNormalDest(); |
| BranchInst::Create(NormalDestBB, II); |
| |
| // Update PHI nodes in the unwind destination |
| BasicBlock *BB = II->getParent(); |
| BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| UnwindDestBB->removePredecessor(BB); |
| II->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); |
| } |
| |
| BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, |
| BasicBlock *UnwindEdge, |
| DomTreeUpdater *DTU) { |
| BasicBlock *BB = CI->getParent(); |
| |
| // Convert this function call into an invoke instruction. First, split the |
| // basic block. |
| BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, |
| CI->getName() + ".noexc"); |
| |
| // Delete the unconditional branch inserted by SplitBlock |
| BB->getInstList().pop_back(); |
| |
| // Create the new invoke instruction. |
| SmallVector<Value *, 8> InvokeArgs(CI->args()); |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| |
| CI->getOperandBundlesAsDefs(OpBundles); |
| |
| // Note: we're round tripping operand bundles through memory here, and that |
| // can potentially be avoided with a cleverer API design that we do not have |
| // as of this time. |
| |
| InvokeInst *II = |
| InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, |
| UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); |
| II->setDebugLoc(CI->getDebugLoc()); |
| II->setCallingConv(CI->getCallingConv()); |
| II->setAttributes(CI->getAttributes()); |
| |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); |
| |
| // Make sure that anything using the call now uses the invoke! This also |
| // updates the CallGraph if present, because it uses a WeakTrackingVH. |
| CI->replaceAllUsesWith(II); |
| |
| // Delete the original call |
| Split->getInstList().pop_front(); |
| return Split; |
| } |
| |
| static bool markAliveBlocks(Function &F, |
| SmallPtrSetImpl<BasicBlock *> &Reachable, |
| DomTreeUpdater *DTU = nullptr) { |
| SmallVector<BasicBlock*, 128> Worklist; |
| BasicBlock *BB = &F.front(); |
| Worklist.push_back(BB); |
| Reachable.insert(BB); |
| bool Changed = false; |
| do { |
| BB = Worklist.pop_back_val(); |
| |
| // Do a quick scan of the basic block, turning any obviously unreachable |
| // instructions into LLVM unreachable insts. The instruction combining pass |
| // canonicalizes unreachable insts into stores to null or undef. |
| for (Instruction &I : *BB) { |
| if (auto *CI = dyn_cast<CallInst>(&I)) { |
| Value *Callee = CI->getCalledOperand(); |
| // Handle intrinsic calls. |
| if (Function *F = dyn_cast<Function>(Callee)) { |
| auto IntrinsicID = F->getIntrinsicID(); |
| // Assumptions that are known to be false are equivalent to |
| // unreachable. Also, if the condition is undefined, then we make the |
| // choice most beneficial to the optimizer, and choose that to also be |
| // unreachable. |
| if (IntrinsicID == Intrinsic::assume) { |
| if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { |
| // Don't insert a call to llvm.trap right before the unreachable. |
| changeToUnreachable(CI, false, DTU); |
| Changed = true; |
| break; |
| } |
| } else if (IntrinsicID == Intrinsic::experimental_guard) { |
| // A call to the guard intrinsic bails out of the current |
| // compilation unit if the predicate passed to it is false. If the |
| // predicate is a constant false, then we know the guard will bail |
| // out of the current compile unconditionally, so all code following |
| // it is dead. |
| // |
| // Note: unlike in llvm.assume, it is not "obviously profitable" for |
| // guards to treat `undef` as `false` since a guard on `undef` can |
| // still be useful for widening. |
| if (match(CI->getArgOperand(0), m_Zero())) |
| if (!isa<UnreachableInst>(CI->getNextNode())) { |
| changeToUnreachable(CI->getNextNode(), false, DTU); |
| Changed = true; |
| break; |
| } |
| } |
| } else if ((isa<ConstantPointerNull>(Callee) && |
| !NullPointerIsDefined(CI->getFunction())) || |
| isa<UndefValue>(Callee)) { |
| changeToUnreachable(CI, false, DTU); |
| Changed = true; |
| break; |
| } |
| if (CI->doesNotReturn() && !CI->isMustTailCall()) { |
| // If we found a call to a no-return function, insert an unreachable |
| // instruction after it. Make sure there isn't *already* one there |
| // though. |
| if (!isa<UnreachableInst>(CI->getNextNode())) { |
| // Don't insert a call to llvm.trap right before the unreachable. |
| changeToUnreachable(CI->getNextNode(), false, DTU); |
| Changed = true; |
| } |
| break; |
| } |
| } else if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| // Store to undef and store to null are undefined and used to signal |
| // that they should be changed to unreachable by passes that can't |
| // modify the CFG. |
| |
| // Don't touch volatile stores. |
| if (SI->isVolatile()) continue; |
| |
| Value *Ptr = SI->getOperand(1); |
| |
| if (isa<UndefValue>(Ptr) || |
| (isa<ConstantPointerNull>(Ptr) && |
| !NullPointerIsDefined(SI->getFunction(), |
| SI->getPointerAddressSpace()))) { |
| changeToUnreachable(SI, false, DTU); |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| Instruction *Terminator = BB->getTerminator(); |
| if (auto *II = dyn_cast<InvokeInst>(Terminator)) { |
| // Turn invokes that call 'nounwind' functions into ordinary calls. |
| Value *Callee = II->getCalledOperand(); |
| if ((isa<ConstantPointerNull>(Callee) && |
| !NullPointerIsDefined(BB->getParent())) || |
| isa<UndefValue>(Callee)) { |
| changeToUnreachable(II, false, DTU); |
| Changed = true; |
| } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { |
| if (II->use_empty() && II->onlyReadsMemory()) { |
| // jump to the normal destination branch. |
| BasicBlock *NormalDestBB = II->getNormalDest(); |
| BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| BranchInst::Create(NormalDestBB, II); |
| UnwindDestBB->removePredecessor(II->getParent()); |
| II->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); |
| } else |
| changeToCall(II, DTU); |
| Changed = true; |
| } |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { |
| // Remove catchpads which cannot be reached. |
| struct CatchPadDenseMapInfo { |
| static CatchPadInst *getEmptyKey() { |
| return DenseMapInfo<CatchPadInst *>::getEmptyKey(); |
| } |
| |
| static CatchPadInst *getTombstoneKey() { |
| return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); |
| } |
| |
| static unsigned getHashValue(CatchPadInst *CatchPad) { |
| return static_cast<unsigned>(hash_combine_range( |
| CatchPad->value_op_begin(), CatchPad->value_op_end())); |
| } |
| |
| static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { |
| if (LHS == getEmptyKey() || LHS == getTombstoneKey() || |
| RHS == getEmptyKey() || RHS == getTombstoneKey()) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(RHS); |
| } |
| }; |
| |
| SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; |
| // Set of unique CatchPads. |
| SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, |
| CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> |
| HandlerSet; |
| detail::DenseSetEmpty Empty; |
| for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), |
| E = CatchSwitch->handler_end(); |
| I != E; ++I) { |
| BasicBlock *HandlerBB = *I; |
| if (DTU) |
| ++NumPerSuccessorCases[HandlerBB]; |
| auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); |
| if (!HandlerSet.insert({CatchPad, Empty}).second) { |
| if (DTU) |
| --NumPerSuccessorCases[HandlerBB]; |
| CatchSwitch->removeHandler(I); |
| --I; |
| --E; |
| Changed = true; |
| } |
| } |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) |
| if (I.second == 0) |
| Updates.push_back({DominatorTree::Delete, BB, I.first}); |
| DTU->applyUpdates(Updates); |
| } |
| } |
| |
| Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); |
| for (BasicBlock *Successor : successors(BB)) |
| if (Reachable.insert(Successor).second) |
| Worklist.push_back(Successor); |
| } while (!Worklist.empty()); |
| return Changed; |
| } |
| |
| void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { |
| Instruction *TI = BB->getTerminator(); |
| |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| changeToCall(II, DTU); |
| return; |
| } |
| |
| Instruction *NewTI; |
| BasicBlock *UnwindDest; |
| |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { |
| NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); |
| UnwindDest = CRI->getUnwindDest(); |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { |
| auto *NewCatchSwitch = CatchSwitchInst::Create( |
| CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), |
| CatchSwitch->getName(), CatchSwitch); |
| for (BasicBlock *PadBB : CatchSwitch->handlers()) |
| NewCatchSwitch->addHandler(PadBB); |
| |
| NewTI = NewCatchSwitch; |
| UnwindDest = CatchSwitch->getUnwindDest(); |
| } else { |
| llvm_unreachable("Could not find unwind successor"); |
| } |
| |
| NewTI->takeName(TI); |
| NewTI->setDebugLoc(TI->getDebugLoc()); |
| UnwindDest->removePredecessor(BB); |
| TI->replaceAllUsesWith(NewTI); |
| TI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); |
| } |
| |
| /// removeUnreachableBlocks - Remove blocks that are not reachable, even |
| /// if they are in a dead cycle. Return true if a change was made, false |
| /// otherwise. |
| bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
| MemorySSAUpdater *MSSAU) { |
| SmallPtrSet<BasicBlock *, 16> Reachable; |
| bool Changed = markAliveBlocks(F, Reachable, DTU); |
| |
| // If there are unreachable blocks in the CFG... |
| if (Reachable.size() == F.size()) |
| return Changed; |
| |
| assert(Reachable.size() < F.size()); |
| |
| // Are there any blocks left to actually delete? |
| SmallSetVector<BasicBlock *, 8> BlocksToRemove; |
| for (BasicBlock &BB : F) { |
| // Skip reachable basic blocks |
| if (Reachable.count(&BB)) |
| continue; |
| // Skip already-deleted blocks |
| if (DTU && DTU->isBBPendingDeletion(&BB)) |
| continue; |
| BlocksToRemove.insert(&BB); |
| } |
| |
| if (BlocksToRemove.empty()) |
| return Changed; |
| |
| Changed = true; |
| NumRemoved += BlocksToRemove.size(); |
| |
| if (MSSAU) |
| MSSAU->removeBlocks(BlocksToRemove); |
| |
| DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); |
| |
| return Changed; |
| } |
| |
| void llvm::combineMetadata(Instruction *K, const Instruction *J, |
| ArrayRef<unsigned> KnownIDs, bool DoesKMove) { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| K->dropUnknownNonDebugMetadata(KnownIDs); |
| K->getAllMetadataOtherThanDebugLoc(Metadata); |
| for (const auto &MD : Metadata) { |
| unsigned Kind = MD.first; |
| MDNode *JMD = J->getMetadata(Kind); |
| MDNode *KMD = MD.second; |
| |
| switch (Kind) { |
| default: |
| K->setMetadata(Kind, nullptr); // Remove unknown metadata |
| break; |
| case LLVMContext::MD_dbg: |
| llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); |
| case LLVMContext::MD_tbaa: |
| K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); |
| break; |
| case LLVMContext::MD_alias_scope: |
| K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); |
| break; |
| case LLVMContext::MD_noalias: |
| case LLVMContext::MD_mem_parallel_loop_access: |
| K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); |
| break; |
| case LLVMContext::MD_access_group: |
| K->setMetadata(LLVMContext::MD_access_group, |
| intersectAccessGroups(K, J)); |
| break; |
| case LLVMContext::MD_range: |
| |
| // If K does move, use most generic range. Otherwise keep the range of |
| // K. |
| if (DoesKMove) |
| // FIXME: If K does move, we should drop the range info and nonnull. |
| // Currently this function is used with DoesKMove in passes |
| // doing hoisting/sinking and the current behavior of using the |
| // most generic range is correct in those cases. |
| K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); |
| break; |
| case LLVMContext::MD_fpmath: |
| K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); |
| break; |
| case LLVMContext::MD_invariant_load: |
| // Only set the !invariant.load if it is present in both instructions. |
| K->setMetadata(Kind, JMD); |
| break; |
| case LLVMContext::MD_nonnull: |
| // If K does move, keep nonull if it is present in both instructions. |
| if (DoesKMove) |
| K->setMetadata(Kind, JMD); |
| break; |
| case LLVMContext::MD_invariant_group: |
| // Preserve !invariant.group in K. |
| break; |
| case LLVMContext::MD_align: |
| K->setMetadata(Kind, |
| MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); |
| break; |
| case LLVMContext::MD_dereferenceable: |
| case LLVMContext::MD_dereferenceable_or_null: |
| K->setMetadata(Kind, |
| MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); |
| break; |
| case LLVMContext::MD_preserve_access_index: |
| // Preserve !preserve.access.index in K. |
| break; |
| } |
| } |
| // Set !invariant.group from J if J has it. If both instructions have it |
| // then we will just pick it from J - even when they are different. |
| // Also make sure that K is load or store - f.e. combining bitcast with load |
| // could produce bitcast with invariant.group metadata, which is invalid. |
| // FIXME: we should try to preserve both invariant.group md if they are |
| // different, but right now instruction can only have one invariant.group. |
| if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) |
| if (isa<LoadInst>(K) || isa<StoreInst>(K)) |
| K->setMetadata(LLVMContext::MD_invariant_group, JMD); |
| } |
| |
| void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, |
| bool KDominatesJ) { |
| unsigned KnownIDs[] = { |
| LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_range, |
| LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, |
| LLVMContext::MD_invariant_group, LLVMContext::MD_align, |
| LLVMContext::MD_dereferenceable, |
| LLVMContext::MD_dereferenceable_or_null, |
| LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; |
| combineMetadata(K, J, KnownIDs, KDominatesJ); |
| } |
| |
| void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { |
| SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
| Source.getAllMetadata(MD); |
| MDBuilder MDB(Dest.getContext()); |
| Type *NewType = Dest.getType(); |
| const DataLayout &DL = Source.getModule()->getDataLayout(); |
| for (const auto &MDPair : MD) { |
| unsigned ID = MDPair.first; |
| MDNode *N = MDPair.second; |
| // Note, essentially every kind of metadata should be preserved here! This |
| // routine is supposed to clone a load instruction changing *only its type*. |
| // The only metadata it makes sense to drop is metadata which is invalidated |
| // when the pointer type changes. This should essentially never be the case |
| // in LLVM, but we explicitly switch over only known metadata to be |
| // conservatively correct. If you are adding metadata to LLVM which pertains |
| // to loads, you almost certainly want to add it here. |
| switch (ID) { |
| case LLVMContext::MD_dbg: |
| case LLVMContext::MD_tbaa: |
| case LLVMContext::MD_prof: |
| case LLVMContext::MD_fpmath: |
| case LLVMContext::MD_tbaa_struct: |
| case LLVMContext::MD_invariant_load: |
| case LLVMContext::MD_alias_scope: |
| case LLVMContext::MD_noalias: |
| case LLVMContext::MD_nontemporal: |
| case LLVMContext::MD_mem_parallel_loop_access: |
| case LLVMContext::MD_access_group: |
| // All of these directly apply. |
| Dest.setMetadata(ID, N); |
| break; |
| |
| case LLVMContext::MD_nonnull: |
| copyNonnullMetadata(Source, N, Dest); |
| break; |
| |
| case LLVMContext::MD_align: |
| case LLVMContext::MD_dereferenceable: |
| case LLVMContext::MD_dereferenceable_or_null: |
| // These only directly apply if the new type is also a pointer. |
| if (NewType->isPointerTy()) |
| Dest.setMetadata(ID, N); |
| break; |
| |
| case LLVMContext::MD_range: |
| copyRangeMetadata(DL, Source, N, Dest); |
| break; |
| } |
| } |
| } |
| |
| void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { |
| auto *ReplInst = dyn_cast<Instruction>(Repl); |
| if (!ReplInst) |
| return; |
| |
| // Patch the replacement so that it is not more restrictive than the value |
| // being replaced. |
| // Note that if 'I' is a load being replaced by some operation, |
| // for example, by an arithmetic operation, then andIRFlags() |
| // would just erase all math flags from the original arithmetic |
| // operation, which is clearly not wanted and not needed. |
| if (!isa<LoadInst>(I)) |
| ReplInst->andIRFlags(I); |
| |
| // FIXME: If both the original and replacement value are part of the |
| // same control-flow region (meaning that the execution of one |
| // guarantees the execution of the other), then we can combine the |
| // noalias scopes here and do better than the general conservative |
| // answer used in combineMetadata(). |
| |
| // In general, GVN unifies expressions over different control-flow |
| // regions, and so we need a conservative combination of the noalias |
| // scopes. |
| static const unsigned KnownIDs[] = { |
| LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_range, |
| LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, |
| LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, |
| LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; |
| combineMetadata(ReplInst, I, KnownIDs, false); |
| } |
| |
| template <typename RootType, typename DominatesFn> |
| static unsigned replaceDominatedUsesWith(Value *From, Value *To, |
| const RootType &Root, |
| const DominatesFn &Dominates) { |
| assert(From->getType() == To->getType()); |
| |
| unsigned Count = 0; |
| for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| if (!Dominates(Root, U)) |
| continue; |
| U.set(To); |
| LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() |
| << "' as " << *To << " in " << *U << "\n"); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { |
| assert(From->getType() == To->getType()); |
| auto *BB = From->getParent(); |
| unsigned Count = 0; |
| |
| for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| auto *I = cast<Instruction>(U.getUser()); |
| if (I->getParent() == BB) |
| continue; |
| U.set(To); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| DominatorTree &DT, |
| const BasicBlockEdge &Root) { |
| auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { |
| return DT.dominates(Root, U); |
| }; |
| return ::replaceDominatedUsesWith(From, To, Root, Dominates); |
| } |
| |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| DominatorTree &DT, |
| const BasicBlock *BB) { |
| auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { |
| return DT.dominates(BB, U); |
| }; |
| return ::replaceDominatedUsesWith(From, To, BB, Dominates); |
| } |
| |
| bool llvm::callsGCLeafFunction(const CallBase *Call, |
| const TargetLibraryInfo &TLI) { |
| // Check if the function is specifically marked as a gc leaf function. |
| if (Call->hasFnAttr("gc-leaf-function")) |
| return true; |
| if (const Function *F = Call->getCalledFunction()) { |
| if (F->hasFnAttribute("gc-leaf-function")) |
| return true; |
| |
| if (auto IID = F->getIntrinsicID()) { |
| // Most LLVM intrinsics do not take safepoints. |
| return IID != Intrinsic::experimental_gc_statepoint && |
| IID != Intrinsic::experimental_deoptimize && |
| IID != Intrinsic::memcpy_element_unordered_atomic && |
| IID != Intrinsic::memmove_element_unordered_atomic; |
| } |
| } |
| |
| // Lib calls can be materialized by some passes, and won't be |
| // marked as 'gc-leaf-function.' All available Libcalls are |
| // GC-leaf. |
| LibFunc LF; |
| if (TLI.getLibFunc(*Call, LF)) { |
| return TLI.has(LF); |
| } |
| |
| return false; |
| } |
| |
| void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, |
| LoadInst &NewLI) { |
| auto *NewTy = NewLI.getType(); |
| |
| // This only directly applies if the new type is also a pointer. |
| if (NewTy->isPointerTy()) { |
| NewLI.setMetadata(LLVMContext::MD_nonnull, N); |
| return; |
| } |
| |
| // The only other translation we can do is to integral loads with !range |
| // metadata. |
| if (!NewTy->isIntegerTy()) |
| return; |
| |
| MDBuilder MDB(NewLI.getContext()); |
| const Value *Ptr = OldLI.getPointerOperand(); |
| auto *ITy = cast<IntegerType>(NewTy); |
| auto *NullInt = ConstantExpr::getPtrToInt( |
| ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); |
| auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); |
| NewLI.setMetadata(LLVMContext::MD_range, |
| MDB.createRange(NonNullInt, NullInt)); |
| } |
| |
| void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, |
| MDNode *N, LoadInst &NewLI) { |
| auto *NewTy = NewLI.getType(); |
| |
| // Give up unless it is converted to a pointer where there is a single very |
| // valuable mapping we can do reliably. |
| // FIXME: It would be nice to propagate this in more ways, but the type |
| // conversions make it hard. |
| if (!NewTy->isPointerTy()) |
| return; |
| |
| unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); |
| if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { |
| MDNode *NN = MDNode::get(OldLI.getContext(), None); |
| NewLI.setMetadata(LLVMContext::MD_nonnull, NN); |
| } |
| } |
| |
| void llvm::dropDebugUsers(Instruction &I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, &I); |
| for (auto *DII : DbgUsers) |
| DII->eraseFromParent(); |
| } |
| |
| void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, |
| BasicBlock *BB) { |
| // Since we are moving the instructions out of its basic block, we do not |
| // retain their original debug locations (DILocations) and debug intrinsic |
| // instructions. |
| // |
| // Doing so would degrade the debugging experience and adversely affect the |
| // accuracy of profiling information. |
| // |
| // Currently, when hoisting the instructions, we take the following actions: |
| // - Remove their debug intrinsic instructions. |
| // - Set their debug locations to the values from the insertion point. |
| // |
| // As per PR39141 (comment #8), the more fundamental reason why the dbg.values |
| // need to be deleted, is because there will not be any instructions with a |
| // DILocation in either branch left after performing the transformation. We |
| // can only insert a dbg.value after the two branches are joined again. |
| // |
| // See PR38762, PR39243 for more details. |
| // |
| // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to |
| // encode predicated DIExpressions that yield different results on different |
| // code paths. |
| |
| for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| Instruction *I = &*II; |
| I->dropUndefImplyingAttrsAndUnknownMetadata(); |
| if (I->isUsedByMetadata()) |
| dropDebugUsers(*I); |
| if (I->isDebugOrPseudoInst()) { |
| // Remove DbgInfo and pseudo probe Intrinsics. |
| II = I->eraseFromParent(); |
| continue; |
| } |
| I->setDebugLoc(InsertPt->getDebugLoc()); |
| ++II; |
| } |
| DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), |
| BB->begin(), |
| BB->getTerminator()->getIterator()); |
| } |
| |
| namespace { |
| |
| /// A potential constituent of a bitreverse or bswap expression. See |
| /// collectBitParts for a fuller explanation. |
| struct BitPart { |
| BitPart(Value *P, unsigned BW) : Provider(P) { |
| Provenance.resize(BW); |
| } |
| |
| /// The Value that this is a bitreverse/bswap of. |
| Value *Provider; |
| |
| /// The "provenance" of each bit. Provenance[A] = B means that bit A |
| /// in Provider becomes bit B in the result of this expression. |
| SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. |
| |
| enum { Unset = -1 }; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Analyze the specified subexpression and see if it is capable of providing |
| /// pieces of a bswap or bitreverse. The subexpression provides a potential |
| /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in |
| /// the output of the expression came from a corresponding bit in some other |
| /// value. This function is recursive, and the end result is a mapping of |
| /// bitnumber to bitnumber. It is the caller's responsibility to validate that |
| /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. |
| /// |
| /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know |
| /// that the expression deposits the low byte of %X into the high byte of the |
| /// result and that all other bits are zero. This expression is accepted and a |
| /// BitPart is returned with Provider set to %X and Provenance[24-31] set to |
| /// [0-7]. |
| /// |
| /// For vector types, all analysis is performed at the per-element level. No |
| /// cross-element analysis is supported (shuffle/insertion/reduction), and all |
| /// constant masks must be splatted across all elements. |
| /// |
| /// To avoid revisiting values, the BitPart results are memoized into the |
| /// provided map. To avoid unnecessary copying of BitParts, BitParts are |
| /// constructed in-place in the \c BPS map. Because of this \c BPS needs to |
| /// store BitParts objects, not pointers. As we need the concept of a nullptr |
| /// BitParts (Value has been analyzed and the analysis failed), we an Optional |
| /// type instead to provide the same functionality. |
| /// |
| /// Because we pass around references into \c BPS, we must use a container that |
| /// does not invalidate internal references (std::map instead of DenseMap). |
| static const Optional<BitPart> & |
| collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, |
| std::map<Value *, Optional<BitPart>> &BPS, int Depth, |
| bool &FoundRoot) { |
| auto I = BPS.find(V); |
| if (I != BPS.end()) |
| return I->second; |
| |
| auto &Result = BPS[V] = None; |
| auto BitWidth = V->getType()->getScalarSizeInBits(); |
| |
| // Can't do integer/elements > 128 bits. |
| if (BitWidth > 128) |
| return Result; |
| |
| // Prevent stack overflow by limiting the recursion depth |
| if (Depth == BitPartRecursionMaxDepth) { |
| LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); |
| return Result; |
| } |
| |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| Value *X, *Y; |
| const APInt *C; |
| |
| // If this is an or instruction, it may be an inner node of the bswap. |
| if (match(V, m_Or(m_Value(X), m_Value(Y)))) { |
| // Check we have both sources and they are from the same provider. |
| const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!A || !A->Provider) |
| return Result; |
| |
| const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!B || A->Provider != B->Provider) |
| return Result; |
| |
| // Try and merge the two together. |
| Result = BitPart(A->Provider, BitWidth); |
| for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { |
| if (A->Provenance[BitIdx] != BitPart::Unset && |
| B->Provenance[BitIdx] != BitPart::Unset && |
| A->Provenance[BitIdx] != B->Provenance[BitIdx]) |
| return Result = None; |
| |
| if (A->Provenance[BitIdx] == BitPart::Unset) |
| Result->Provenance[BitIdx] = B->Provenance[BitIdx]; |
| else |
| Result->Provenance[BitIdx] = A->Provenance[BitIdx]; |
| } |
| |
| return Result; |
| } |
| |
| // If this is a logical shift by a constant, recurse then shift the result. |
| if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { |
| const APInt &BitShift = *C; |
| |
| // Ensure the shift amount is defined. |
| if (BitShift.uge(BitWidth)) |
| return Result; |
| |
| // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
| if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) |
| return Result; |
| |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| Result = Res; |
| |
| // Perform the "shift" on BitProvenance. |
| auto &P = Result->Provenance; |
| if (I->getOpcode() == Instruction::Shl) { |
| P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); |
| P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); |
| } else { |
| P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); |
| P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); |
| } |
| |
| return Result; |
| } |
| |
| // If this is a logical 'and' with a mask that clears bits, recurse then |
| // unset the appropriate bits. |
| if (match(V, m_And(m_Value(X), m_APInt(C)))) { |
| const APInt &AndMask = *C; |
| |
| // Check that the mask allows a multiple of 8 bits for a bswap, for an |
| // early exit. |
| unsigned NumMaskedBits = AndMask.countPopulation(); |
| if (!MatchBitReversals && (NumMaskedBits % 8) != 0) |
| return Result; |
| |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| Result = Res; |
| |
| for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| // If the AndMask is zero for this bit, clear the bit. |
| if (AndMask[BitIdx] == 0) |
| Result->Provenance[BitIdx] = BitPart::Unset; |
| return Result; |
| } |
| |
| // If this is a zext instruction zero extend the result. |
| if (match(V, m_ZExt(m_Value(X)))) { |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| |
| Result = BitPart(Res->Provider, BitWidth); |
| auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); |
| for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) |
| Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
| for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) |
| Result->Provenance[BitIdx] = BitPart::Unset; |
| return Result; |
| } |
| |
| // If this is a truncate instruction, extract the lower bits. |
| if (match(V, m_Trunc(m_Value(X)))) { |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| |
| Result = BitPart(Res->Provider, BitWidth); |
| for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; |
| return Result; |
| } |
| |
| // BITREVERSE - most likely due to us previous matching a partial |
| // bitreverse. |
| if (match(V, m_BitReverse(m_Value(X)))) { |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| |
| Result = BitPart(Res->Provider, BitWidth); |
| for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; |
| return Result; |
| } |
| |
| // BSWAP - most likely due to us previous matching a partial bswap. |
| if (match(V, m_BSwap(m_Value(X)))) { |
| const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!Res) |
| return Result; |
| |
| unsigned ByteWidth = BitWidth / 8; |
| Result = BitPart(Res->Provider, BitWidth); |
| for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { |
| unsigned ByteBitOfs = ByteIdx * 8; |
| for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) |
| Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = |
| Res->Provenance[ByteBitOfs + BitIdx]; |
| } |
| return Result; |
| } |
| |
| // Funnel 'double' shifts take 3 operands, 2 inputs and the shift |
| // amount (modulo). |
| // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || |
| match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { |
| // We can treat fshr as a fshl by flipping the modulo amount. |
| unsigned ModAmt = C->urem(BitWidth); |
| if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) |
| ModAmt = BitWidth - ModAmt; |
| |
| // For bswap-only, limit shift amounts to whole bytes, for an early exit. |
| if (!MatchBitReversals && (ModAmt % 8) != 0) |
| return Result; |
| |
| // Check we have both sources and they are from the same provider. |
| const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!LHS || !LHS->Provider) |
| return Result; |
| |
| const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, |
| Depth + 1, FoundRoot); |
| if (!RHS || LHS->Provider != RHS->Provider) |
| return Result; |
| |
| unsigned StartBitRHS = BitWidth - ModAmt; |
| Result = BitPart(LHS->Provider, BitWidth); |
| for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) |
| Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; |
| for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) |
| Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; |
| return Result; |
| } |
| } |
| |
| // If we've already found a root input value then we're never going to merge |
| // these back together. |
| if (FoundRoot) |
| return Result; |
| |
| // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must |
| // be the root input value to the bswap/bitreverse. |
| FoundRoot = true; |
| Result = BitPart(V, BitWidth); |
| for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) |
| Result->Provenance[BitIdx] = BitIdx; |
| return Result; |
| } |
| |
| static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, |
| unsigned BitWidth) { |
| if (From % 8 != To % 8) |
| return false; |
| // Convert from bit indices to byte indices and check for a byte reversal. |
| From >>= 3; |
| To >>= 3; |
| BitWidth >>= 3; |
| return From == BitWidth - To - 1; |
| } |
| |
| static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, |
| unsigned BitWidth) { |
| return From == BitWidth - To - 1; |
| } |
| |
| bool llvm::recognizeBSwapOrBitReverseIdiom( |
| Instruction *I, bool MatchBSwaps, bool MatchBitReversals, |
| SmallVectorImpl<Instruction *> &InsertedInsts) { |
| if (!match(I, m_Or(m_Value(), m_Value())) && |
| !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && |
| !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) |
| return false; |
| if (!MatchBSwaps && !MatchBitReversals) |
| return false; |
| Type *ITy = I->getType(); |
| if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) |
| return false; // Can't do integer/elements > 128 bits. |
| |
| Type *DemandedTy = ITy; |
| if (I->hasOneUse()) |
| if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) |
| DemandedTy = Trunc->getType(); |
| |
| // Try to find all the pieces corresponding to the bswap. |
| bool FoundRoot = false; |
| std::map<Value *, Optional<BitPart>> BPS; |
| const auto &Res = |
| collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); |
| if (!Res) |
| return false; |
| ArrayRef<int8_t> BitProvenance = Res->Provenance; |
| assert(all_of(BitProvenance, |
| [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && |
| "Illegal bit provenance index"); |
| |
| // If the upper bits are zero, then attempt to perform as a truncated op. |
| if (BitProvenance.back() == BitPart::Unset) { |
| while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) |
| BitProvenance = BitProvenance.drop_back(); |
| if (BitProvenance.empty()) |
| return false; // TODO - handle null value? |
| DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); |
| if (auto *IVecTy = dyn_cast<VectorType>(ITy)) |
| DemandedTy = VectorType::get(DemandedTy, IVecTy); |
| } |
| |
| // Check BitProvenance hasn't found a source larger than the result type. |
| unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); |
| if (DemandedBW > ITy->getScalarSizeInBits()) |
| return false; |
| |
| // Now, is the bit permutation correct for a bswap or a bitreverse? We can |
| // only byteswap values with an even number of bytes. |
| APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); |
| bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; |
| bool OKForBitReverse = MatchBitReversals; |
| for (unsigned BitIdx = 0; |
| (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { |
| if (BitProvenance[BitIdx] == BitPart::Unset) { |
| DemandedMask.clearBit(BitIdx); |
| continue; |
| } |
| OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, |
| DemandedBW); |
| OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], |
| BitIdx, DemandedBW); |
| } |
| |
| Intrinsic::ID Intrin; |
| if (OKForBSwap) |
| Intrin = Intrinsic::bswap; |
| else if (OKForBitReverse) |
| Intrin = Intrinsic::bitreverse; |
| else |
| return false; |
| |
| Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); |
| Value *Provider = Res->Provider; |
| |
| // We may need to truncate the provider. |
| if (DemandedTy != Provider->getType()) { |
| auto *Trunc = |
| CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); |
| InsertedInsts.push_back(Trunc); |
| Provider = Trunc; |
| } |
| |
| Instruction *Result = CallInst::Create(F, Provider, "rev", I); |
| InsertedInsts.push_back(Result); |
| |
| if (!DemandedMask.isAllOnesValue()) { |
| auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); |
| Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); |
| InsertedInsts.push_back(Result); |
| } |
| |
| // We may need to zeroextend back to the result type. |
| if (ITy != Result->getType()) { |
| auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); |
| InsertedInsts.push_back(ExtInst); |
| } |
| |
| return true; |
| } |
| |
| // CodeGen has special handling for some string functions that may replace |
| // them with target-specific intrinsics. Since that'd skip our interceptors |
| // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, |
| // we mark affected calls as NoBuiltin, which will disable optimization |
| // in CodeGen. |
| void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( |
| CallInst *CI, const TargetLibraryInfo *TLI) { |
| Function *F = CI->getCalledFunction(); |
| LibFunc Func; |
| if (F && !F->hasLocalLinkage() && F->hasName() && |
| TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && |
| !F->doesNotAccessMemory()) |
| CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); |
| } |
| |
| bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { |
| // We can't have a PHI with a metadata type. |
| if (I->getOperand(OpIdx)->getType()->isMetadataTy()) |
| return false; |
| |
| // Early exit. |
| if (!isa<Constant>(I->getOperand(OpIdx))) |
| return true; |
| |
| switch (I->getOpcode()) { |
| default: |
| return true; |
| case Instruction::Call: |
| case Instruction::Invoke: { |
| const auto &CB = cast<CallBase>(*I); |
| |
| // Can't handle inline asm. Skip it. |
| if (CB.isInlineAsm()) |
| return false; |
| |
| // Constant bundle operands may need to retain their constant-ness for |
| // correctness. |
| if (CB.isBundleOperand(OpIdx)) |
| return false; |
| |
| if (OpIdx < CB.getNumArgOperands()) { |
| // Some variadic intrinsics require constants in the variadic arguments, |
| // which currently aren't markable as immarg. |
| if (isa<IntrinsicInst>(CB) && |
| OpIdx >= CB.getFunctionType()->getNumParams()) { |
| // This is known to be OK for stackmap. |
| return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; |
| } |
| |
| // gcroot is a special case, since it requires a constant argument which |
| // isn't also required to be a simple ConstantInt. |
| if (CB.getIntrinsicID() == Intrinsic::gcroot) |
| return false; |
| |
| // Some intrinsic operands are required to be immediates. |
| return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); |
| } |
| |
| // It is never allowed to replace the call argument to an intrinsic, but it |
| // may be possible for a call. |
| return !isa<IntrinsicInst>(CB); |
| } |
| case Instruction::ShuffleVector: |
| // Shufflevector masks are constant. |
| return OpIdx != 2; |
| case Instruction::Switch: |
| case Instruction::ExtractValue: |
| // All operands apart from the first are constant. |
| return OpIdx == 0; |
| case Instruction::InsertValue: |
| // All operands apart from the first and the second are constant. |
| return OpIdx < 2; |
| case Instruction::Alloca: |
| // Static allocas (constant size in the entry block) are handled by |
| // prologue/epilogue insertion so they're free anyway. We definitely don't |
| // want to make them non-constant. |
| return !cast<AllocaInst>(I)->isStaticAlloca(); |
| case Instruction::GetElementPtr: |
| if (OpIdx == 0) |
| return true; |
| gep_type_iterator It = gep_type_begin(I); |
| for (auto E = std::next(It, OpIdx); It != E; ++It) |
| if (It.isStruct()) |
| return false; |
| return true; |
| } |
| } |
| |
| Value *llvm::invertCondition(Value *Condition) { |
| // First: Check if it's a constant |
| if (Constant *C = dyn_cast<Constant>(Condition)) |
| return ConstantExpr::getNot(C); |
| |
| // Second: If the condition is already inverted, return the original value |
| Value *NotCondition; |
| if (match(Condition, m_Not(m_Value(NotCondition)))) |
| return NotCondition; |
| |
| BasicBlock *Parent = nullptr; |
| Instruction *Inst = dyn_cast<Instruction>(Condition); |
| if (Inst) |
| Parent = Inst->getParent(); |
| else if (Argument *Arg = dyn_cast<Argument>(Condition)) |
| Parent = &Arg->getParent()->getEntryBlock(); |
| assert(Parent && "Unsupported condition to invert"); |
| |
| // Third: Check all the users for an invert |
| for (User *U : Condition->users()) |
| if (Instruction *I = dyn_cast<Instruction>(U)) |
| if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) |
| return I; |
| |
| // Last option: Create a new instruction |
| auto *Inverted = |
| BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); |
| if (Inst && !isa<PHINode>(Inst)) |
| Inverted->insertAfter(Inst); |
| else |
| Inverted->insertBefore(&*Parent->getFirstInsertionPt()); |
| return Inverted; |
| } |
| |
| bool llvm::inferAttributesFromOthers(Function &F) { |
| // Note: We explicitly check for attributes rather than using cover functions |
| // because some of the cover functions include the logic being implemented. |
| |
| bool Changed = false; |
| // readnone + not convergent implies nosync |
| if (!F.hasFnAttribute(Attribute::NoSync) && |
| F.doesNotAccessMemory() && !F.isConvergent()) { |
| F.setNoSync(); |
| Changed = true; |
| } |
| |
| // readonly implies nofree |
| if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { |
| F.setDoesNotFreeMemory(); |
| Changed = true; |
| } |
| |
| // willreturn implies mustprogress |
| if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { |
| F.setMustProgress(); |
| Changed = true; |
| } |
| |
| // TODO: There are a bunch of cases of restrictive memory effects we |
| // can infer by inspecting arguments of argmemonly-ish functions. |
| |
| return Changed; |
| } |