blob: ee2ec9bcd9e766c4f282b4aac41c7d1119296047 [file] [log] [blame]
//! Virtual registers.
//!
//! A virtual register is a set of related SSA values whose live ranges don't interfere. If all the
//! values in a virtual register are assigned to the same location, fewer copies will result in the
//! output.
//!
//! A virtual register is typically built by merging together SSA values that are "phi-related" -
//! that is, one value is passed as a block argument to a branch and the other is the block parameter
//! value itself.
//!
//! If any values in a virtual register are spilled, they will use the same stack slot. This avoids
//! memory-to-memory copies when a spilled value is passed as a block argument.
use crate::dbg::DisplayList;
use crate::dominator_tree::DominatorTreePreorder;
use crate::entity::entity_impl;
use crate::entity::{EntityList, ListPool};
use crate::entity::{Keys, PrimaryMap, SecondaryMap};
use crate::ir::{Function, Value};
use crate::packed_option::PackedOption;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::slice;
use smallvec::SmallVec;
/// A virtual register reference.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct VirtReg(u32);
entity_impl!(VirtReg, "vreg");
type ValueList = EntityList<Value>;
/// Collection of virtual registers.
///
/// Each virtual register is a list of values. Also maintain a map from values to their unique
/// virtual register, if any.
pub struct VirtRegs {
/// Memory pool for the value lists.
pool: ListPool<Value>,
/// The primary table of virtual registers.
vregs: PrimaryMap<VirtReg, ValueList>,
/// Allocated virtual register numbers that are no longer in use.
unused_vregs: Vec<VirtReg>,
/// Each value belongs to at most one virtual register.
value_vregs: SecondaryMap<Value, PackedOption<VirtReg>>,
/// Table used during the union-find phase while `vregs` is empty.
union_find: SecondaryMap<Value, i32>,
/// Values that have been activated in the `union_find` table, but not yet added to any virtual
/// registers by the `finish_union_find()` function.
pending_values: Vec<Value>,
}
impl VirtRegs {
/// Create a new virtual register collection.
pub fn new() -> Self {
Self {
pool: ListPool::new(),
vregs: PrimaryMap::new(),
unused_vregs: Vec::new(),
value_vregs: SecondaryMap::new(),
union_find: SecondaryMap::new(),
pending_values: Vec::new(),
}
}
/// Clear all virtual registers.
pub fn clear(&mut self) {
self.vregs.clear();
self.unused_vregs.clear();
self.value_vregs.clear();
self.pool.clear();
self.union_find.clear();
self.pending_values.clear();
}
/// Get the virtual register containing `value`, if any.
pub fn get(&self, value: Value) -> Option<VirtReg> {
self.value_vregs[value].into()
}
/// Get the list of values in `vreg`.
pub fn values(&self, vreg: VirtReg) -> &[Value] {
self.vregs[vreg].as_slice(&self.pool)
}
/// Get an iterator over all virtual registers.
pub fn all_virtregs(&self) -> Keys<VirtReg> {
self.vregs.keys()
}
/// Get the congruence class of `value`.
///
/// If `value` belongs to a virtual register, the congruence class is the values of the virtual
/// register. Otherwise it is just the value itself.
#[cfg_attr(feature = "cargo-clippy", allow(clippy::trivially_copy_pass_by_ref))]
pub fn congruence_class<'a, 'b>(&'a self, value: &'b Value) -> &'b [Value]
where
'a: 'b,
{
self.get(*value)
.map_or_else(|| slice::from_ref(value), |vr| self.values(vr))
}
/// Check if `a` and `b` belong to the same congruence class.
pub fn same_class(&self, a: Value, b: Value) -> bool {
match (self.get(a), self.get(b)) {
(Some(va), Some(vb)) => va == vb,
_ => a == b,
}
}
/// Sort the values in `vreg` according to the dominator tree pre-order.
///
/// Returns the slice of sorted values which `values(vreg)` will also return from now on.
pub fn sort_values(
&mut self,
vreg: VirtReg,
func: &Function,
preorder: &DominatorTreePreorder,
) -> &[Value] {
let s = self.vregs[vreg].as_mut_slice(&mut self.pool);
s.sort_unstable_by(|&a, &b| preorder.pre_cmp_def(a, b, func));
s
}
/// Insert a single value into a sorted virtual register.
///
/// It is assumed that the virtual register containing `big` is already sorted by
/// `sort_values()`, and that `single` does not already belong to a virtual register.
///
/// If `big` is not part of a virtual register, one will be created.
pub fn insert_single(
&mut self,
big: Value,
single: Value,
func: &Function,
preorder: &DominatorTreePreorder,
) -> VirtReg {
debug_assert_eq!(self.get(single), None, "Expected singleton {}", single);
// Make sure `big` has a vreg.
let vreg = self.get(big).unwrap_or_else(|| {
let vr = self.alloc();
self.vregs[vr].push(big, &mut self.pool);
self.value_vregs[big] = vr.into();
vr
});
// Determine the insertion position for `single`.
let index = match self
.values(vreg)
.binary_search_by(|&v| preorder.pre_cmp_def(v, single, func))
{
Ok(_) => panic!("{} already in {}", single, vreg),
Err(i) => i,
};
self.vregs[vreg].insert(index, single, &mut self.pool);
self.value_vregs[single] = vreg.into();
vreg
}
/// Remove a virtual register.
///
/// The values in `vreg` become singletons, and the virtual register number may be reused in
/// the future.
pub fn remove(&mut self, vreg: VirtReg) {
// Start by reassigning all the values.
for &v in self.vregs[vreg].as_slice(&self.pool) {
let old = self.value_vregs[v].take();
debug_assert_eq!(old, Some(vreg));
}
self.vregs[vreg].clear(&mut self.pool);
self.unused_vregs.push(vreg);
}
/// Allocate a new empty virtual register.
fn alloc(&mut self) -> VirtReg {
self.unused_vregs
.pop()
.unwrap_or_else(|| self.vregs.push(Default::default()))
}
/// Unify `values` into a single virtual register.
///
/// The values in the slice can be singletons or they can belong to a virtual register already.
/// If a value belongs to a virtual register, all of the values in that register must be
/// present.
///
/// The values are assumed to already be in topological order.
pub fn unify(&mut self, values: &[Value]) -> VirtReg {
// Start by clearing all virtual registers involved.
let mut singletons = 0;
let mut cleared = 0;
for &val in values {
match self.get(val) {
None => singletons += 1,
Some(vreg) => {
if !self.vregs[vreg].is_empty() {
cleared += self.vregs[vreg].len(&self.pool);
self.vregs[vreg].clear(&mut self.pool);
self.unused_vregs.push(vreg);
}
}
}
}
debug_assert_eq!(
values.len(),
singletons + cleared,
"Can't unify partial virtual registers"
);
let vreg = self.alloc();
self.vregs[vreg].extend(values.iter().cloned(), &mut self.pool);
for &v in values {
self.value_vregs[v] = vreg.into();
}
vreg
}
}
impl fmt::Display for VirtRegs {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for vreg in self.all_virtregs() {
write!(f, "\n{} = {}", vreg, DisplayList(self.values(vreg)))?;
}
Ok(())
}
}
/// Expanded version of a union-find table entry.
enum UFEntry {
/// This value is a a set leader. The embedded number is the set's rank.
Rank(u32),
/// This value belongs to the same set as the linked value.
Link(Value),
}
/// The `union_find` table contains `i32` entries that are interpreted as follows:
///
/// x = 0: The value belongs to its own singleton set.
/// x > 0: The value is the leader of a set with rank x.
/// x < 0: The value belongs to the same set as the value numbered !x.
///
/// The rank of a set is an upper bound on the number of links that must be followed from a member
/// of the set to the set leader.
///
/// A singleton set is the same as a set with rank 0. It contains only the leader value.
impl UFEntry {
/// Decode a table entry.
fn decode(x: i32) -> Self {
if x < 0 {
Self::Link(Value::from_u32((!x) as u32))
} else {
Self::Rank(x as u32)
}
}
/// Encode a link entry.
fn encode_link(v: Value) -> i32 {
!(v.as_u32() as i32)
}
}
/// Union-find algorithm for building virtual registers.
///
/// Before values are added to virtual registers, it is possible to use a union-find algorithm to
/// construct virtual registers efficiently. This support implemented here is used as follows:
///
/// 1. Repeatedly call the `union(a, b)` method to request that `a` and `b` are placed in the same
/// virtual register.
/// 2. When done, call `finish_union_find()` to construct the virtual register sets based on the
/// `union()` calls.
///
/// The values that were passed to `union(a, b)` must not belong to any existing virtual registers
/// by the time `finish_union_find()` is called.
///
/// For more information on the algorithm implemented here, see Chapter 21 "Data Structures for
/// Disjoint Sets" of Cormen, Leiserson, Rivest, Stein, "Introduction to algorithms", 3rd Ed.
///
/// The [Wikipedia entry on disjoint-set data
/// structures](https://en.wikipedia.org/wiki/Disjoint-set_data_structure) is also good.
impl VirtRegs {
/// Find the leader value and rank of the set containing `v`.
/// Compress the path if needed.
fn find(&mut self, mut val: Value) -> (Value, u32) {
let mut val_stack = SmallVec::<[Value; 8]>::new();
let found = loop {
match UFEntry::decode(self.union_find[val]) {
UFEntry::Rank(rank) => break (val, rank),
UFEntry::Link(parent) => {
val_stack.push(val);
val = parent;
}
}
};
// Compress the path
while let Some(val) = val_stack.pop() {
self.union_find[val] = UFEntry::encode_link(found.0);
}
found
}
/// Union the two sets containing `a` and `b`.
///
/// This ensures that `a` and `b` will belong to the same virtual register after calling
/// `finish_union_find()`.
pub fn union(&mut self, a: Value, b: Value) {
let (leader_a, rank_a) = self.find(a);
let (leader_b, rank_b) = self.find(b);
if leader_a == leader_b {
return;
}
// The first time we see a value, its rank will be 0. Add it to the list of pending values.
if rank_a == 0 {
debug_assert_eq!(a, leader_a);
self.pending_values.push(a);
}
if rank_b == 0 {
debug_assert_eq!(b, leader_b);
self.pending_values.push(b);
}
// Merge into the set with the greater rank. This preserves the invariant that the rank is
// an upper bound on the number of links to the leader.
match rank_a.cmp(&rank_b) {
Ordering::Less => {
self.union_find[leader_a] = UFEntry::encode_link(leader_b);
}
Ordering::Greater => {
self.union_find[leader_b] = UFEntry::encode_link(leader_a);
}
Ordering::Equal => {
// When the two sets have the same rank, we arbitrarily pick the a-set to preserve.
// We need to increase the rank by one since the elements in the b-set are now one
// link further away from the leader.
self.union_find[leader_a] += 1;
self.union_find[leader_b] = UFEntry::encode_link(leader_a);
}
}
}
/// Compute virtual registers based on previous calls to `union(a, b)`.
///
/// This terminates the union-find algorithm, so the next time `union()` is called, it is for a
/// new independent batch of values.
///
/// The values in each virtual register will be ordered according to when they were first
/// passed to `union()`, but backwards. It is expected that `sort_values()` will be used to
/// create a more sensible value order.
///
/// The new virtual registers will be appended to `new_vregs`, if present.
pub fn finish_union_find(&mut self, mut new_vregs: Option<&mut Vec<VirtReg>>) {
debug_assert_eq!(
self.pending_values.iter().find(|&&v| self.get(v).is_some()),
None,
"Values participating in union-find must not belong to existing virtual registers"
);
while let Some(val) = self.pending_values.pop() {
let (leader, _) = self.find(val);
// Get the vreg for `leader`, or create it.
let vreg = self.get(leader).unwrap_or_else(|| {
// Allocate a vreg for `leader`, but leave it empty.
let vr = self.alloc();
if let Some(ref mut vec) = new_vregs {
vec.push(vr);
}
self.value_vregs[leader] = vr.into();
vr
});
// Push values in `pending_values` order, including when `v == leader`.
self.vregs[vreg].push(val, &mut self.pool);
self.value_vregs[val] = vreg.into();
// Clear the entry in the union-find table. The `find(val)` call may still look at this
// entry in a future iteration, but that it ok. It will return a rank 0 leader that has
// already been assigned to the correct virtual register.
self.union_find[val] = 0;
}
// We do *not* call `union_find.clear()` table here because re-initializing the table for
// sparse use takes time linear in the number of values in the function. Instead we reset
// the entries that are known to be non-zero in the loop above.
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::entity::EntityRef;
use crate::ir::Value;
#[test]
fn empty_union_find() {
let mut vregs = VirtRegs::new();
vregs.finish_union_find(None);
assert_eq!(vregs.all_virtregs().count(), 0);
}
#[test]
fn union_self() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
vregs.union(v1, v1);
vregs.finish_union_find(None);
assert_eq!(vregs.get(v1), None);
assert_eq!(vregs.all_virtregs().count(), 0);
}
#[test]
fn union_pair() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
let v2 = Value::new(2);
vregs.union(v1, v2);
vregs.finish_union_find(None);
assert_eq!(vregs.congruence_class(&v1), &[v2, v1]);
assert_eq!(vregs.congruence_class(&v2), &[v2, v1]);
assert_eq!(vregs.all_virtregs().count(), 1);
}
#[test]
fn union_pair_backwards() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
let v2 = Value::new(2);
vregs.union(v2, v1);
vregs.finish_union_find(None);
assert_eq!(vregs.congruence_class(&v1), &[v1, v2]);
assert_eq!(vregs.congruence_class(&v2), &[v1, v2]);
assert_eq!(vregs.all_virtregs().count(), 1);
}
#[test]
fn union_tree() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
let v2 = Value::new(2);
let v3 = Value::new(3);
let v4 = Value::new(4);
vregs.union(v2, v4);
vregs.union(v3, v1);
// Leaders: v2, v3
vregs.union(v4, v1);
vregs.finish_union_find(None);
assert_eq!(vregs.congruence_class(&v1), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v2), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v3), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v4), &[v1, v3, v4, v2]);
assert_eq!(vregs.all_virtregs().count(), 1);
}
#[test]
fn union_two() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
let v2 = Value::new(2);
let v3 = Value::new(3);
let v4 = Value::new(4);
vregs.union(v2, v4);
vregs.union(v3, v1);
// Leaders: v2, v3
vregs.finish_union_find(None);
assert_eq!(vregs.congruence_class(&v1), &[v1, v3]);
assert_eq!(vregs.congruence_class(&v2), &[v4, v2]);
assert_eq!(vregs.congruence_class(&v3), &[v1, v3]);
assert_eq!(vregs.congruence_class(&v4), &[v4, v2]);
assert_eq!(vregs.all_virtregs().count(), 2);
}
#[test]
fn union_uneven() {
let mut vregs = VirtRegs::new();
let v1 = Value::new(1);
let v2 = Value::new(2);
let v3 = Value::new(3);
let v4 = Value::new(4);
vregs.union(v2, v4); // Rank 0-0
vregs.union(v3, v2); // Rank 0-1
vregs.union(v2, v1); // Rank 1-0
vregs.finish_union_find(None);
assert_eq!(vregs.congruence_class(&v1), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v2), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v3), &[v1, v3, v4, v2]);
assert_eq!(vregs.congruence_class(&v4), &[v1, v3, v4, v2]);
assert_eq!(vregs.all_virtregs().count(), 1);
}
}