| //! A verifier for ensuring that functions are well formed. |
| //! It verifies: |
| //! |
| //! block integrity |
| //! |
| //! - All instructions reached from the `block_insts` iterator must belong to |
| //! the block as reported by `inst_block()`. |
| //! - Every block must end in a terminator instruction, and no other instruction |
| //! can be a terminator. |
| //! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`. |
| //! |
| //! Instruction integrity |
| //! |
| //! - The instruction format must match the opcode. |
| //! - All result values must be created for multi-valued instructions. |
| //! - All referenced entities must exist. (Values, blocks, stack slots, ...) |
| //! - Instructions must not reference (eg. branch to) the entry block. |
| //! |
| //! SSA form |
| //! |
| //! - Values must be defined by an instruction that exists and that is inserted in |
| //! a block, or be an argument of an existing block. |
| //! - Values used by an instruction must dominate the instruction. |
| //! |
| //! Control flow graph and dominator tree integrity: |
| //! |
| //! - All predecessors in the CFG must be branches to the block. |
| //! - All branches to a block must be present in the CFG. |
| //! - A recomputed dominator tree is identical to the existing one. |
| //! |
| //! Type checking |
| //! |
| //! - Compare input and output values against the opcode's type constraints. |
| //! For polymorphic opcodes, determine the controlling type variable first. |
| //! - Branches and jumps must pass arguments to destination blocks that match the |
| //! expected types exactly. The number of arguments must match. |
| //! - All blocks in a jump table must take no arguments. |
| //! - Function calls are type checked against their signature. |
| //! - The entry block must take arguments that match the signature of the current |
| //! function. |
| //! - All return instructions must have return value operands matching the current |
| //! function signature. |
| //! |
| //! Global values |
| //! |
| //! - Detect cycles in global values. |
| //! - Detect use of 'vmctx' global value when no corresponding parameter is defined. |
| //! |
| //! TODO: |
| //! Ad hoc checking |
| //! |
| //! - Stack slot loads and stores must be in-bounds. |
| //! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`. |
| //! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in |
| //! range for their polymorphic type. |
| //! - Swizzle and shuffle instructions take a variable number of lane arguments. The number |
| //! of arguments must match the destination type, and the lane indexes must be in range. |
| |
| use self::flags::verify_flags; |
| use crate::dbg::DisplayList; |
| use crate::dominator_tree::DominatorTree; |
| use crate::entity::SparseSet; |
| use crate::flowgraph::{BlockPredecessor, ControlFlowGraph}; |
| use crate::ir; |
| use crate::ir::entities::AnyEntity; |
| use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint}; |
| use crate::ir::{ |
| types, ArgumentLoc, ArgumentPurpose, Block, Constant, FuncRef, Function, GlobalValue, Inst, |
| InstructionData, JumpTable, Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef, |
| ValueList, ValueLoc, |
| }; |
| use crate::isa::TargetIsa; |
| use crate::iterators::IteratorExtras; |
| use crate::print_errors::pretty_verifier_error; |
| use crate::settings::FlagsOrIsa; |
| use crate::timing; |
| use alloc::collections::BTreeSet; |
| use alloc::string::{String, ToString}; |
| use alloc::vec::Vec; |
| use core::cmp::Ordering; |
| use core::fmt::{self, Display, Formatter, Write}; |
| |
| pub use self::cssa::verify_cssa; |
| pub use self::liveness::verify_liveness; |
| pub use self::locations::verify_locations; |
| |
| mod cssa; |
| mod flags; |
| mod liveness; |
| mod locations; |
| |
| /// A verifier error. |
| #[derive(Debug, PartialEq, Eq, Clone)] |
| pub struct VerifierError { |
| /// The entity causing the verifier error. |
| pub location: AnyEntity, |
| /// Optionally provide some context for the given location; e.g., for `inst42` provide |
| /// `Some("v3 = iconst.i32 0")` for more comprehensible errors. |
| pub context: Option<String>, |
| /// The error message. |
| pub message: String, |
| } |
| |
| // This is manually implementing Error and Display instead of using thiserror to reduce the amount |
| // of dependencies used by Cranelift. |
| impl std::error::Error for VerifierError {} |
| |
| impl Display for VerifierError { |
| fn fmt(&self, f: &mut Formatter) -> fmt::Result { |
| match &self.context { |
| None => write!(f, "{}: {}", self.location, self.message), |
| Some(context) => write!(f, "{} ({}): {}", self.location, context, self.message), |
| } |
| } |
| } |
| |
| /// Convenience converter for making error-reporting less verbose. |
| /// |
| /// Converts a tuple of `(location, context, message)` to a `VerifierError`. |
| /// ``` |
| /// use cranelift_codegen::verifier::VerifierErrors; |
| /// use cranelift_codegen::ir::Inst; |
| /// let mut errors = VerifierErrors::new(); |
| /// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type")); |
| /// // note the double parenthenses to use this syntax |
| /// ``` |
| impl<L, C, M> From<(L, C, M)> for VerifierError |
| where |
| L: Into<AnyEntity>, |
| C: Into<String>, |
| M: Into<String>, |
| { |
| fn from(items: (L, C, M)) -> Self { |
| let (location, context, message) = items; |
| Self { |
| location: location.into(), |
| context: Some(context.into()), |
| message: message.into(), |
| } |
| } |
| } |
| |
| /// Convenience converter for making error-reporting less verbose. |
| /// |
| /// Same as above but without `context`. |
| impl<L, M> From<(L, M)> for VerifierError |
| where |
| L: Into<AnyEntity>, |
| M: Into<String>, |
| { |
| fn from(items: (L, M)) -> Self { |
| let (location, message) = items; |
| Self { |
| location: location.into(), |
| context: None, |
| message: message.into(), |
| } |
| } |
| } |
| |
| /// Result of a step in the verification process. |
| /// |
| /// Functions that return `VerifierStepResult<()>` should also take a |
| /// mutable reference to `VerifierErrors` as argument in order to report |
| /// errors. |
| /// |
| /// Here, `Ok` represents a step that **did not lead to a fatal error**, |
| /// meaning that the verification process may continue. However, other (non-fatal) |
| /// errors might have been reported through the previously mentioned `VerifierErrors` |
| /// argument. |
| pub type VerifierStepResult<T> = Result<T, ()>; |
| |
| /// Result of a verification operation. |
| /// |
| /// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported |
| /// errors, this type always returns `Err` if an error (fatal or not) was reported. |
| pub type VerifierResult<T> = Result<T, VerifierErrors>; |
| |
| /// List of verifier errors. |
| #[derive(Debug, Default, PartialEq, Eq, Clone)] |
| pub struct VerifierErrors(pub Vec<VerifierError>); |
| |
| // This is manually implementing Error and Display instead of using thiserror to reduce the amount |
| // of dependencies used by Cranelift. |
| impl std::error::Error for VerifierErrors {} |
| |
| impl VerifierErrors { |
| /// Return a new `VerifierErrors` struct. |
| #[inline] |
| pub fn new() -> Self { |
| Self(Vec::new()) |
| } |
| |
| /// Return whether no errors were reported. |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.0.is_empty() |
| } |
| |
| /// Return whether one or more errors were reported. |
| #[inline] |
| pub fn has_error(&self) -> bool { |
| !self.0.is_empty() |
| } |
| |
| /// Return a `VerifierStepResult` that is fatal if at least one error was reported, |
| /// and non-fatal otherwise. |
| #[inline] |
| pub fn as_result(&self) -> VerifierStepResult<()> { |
| if self.is_empty() { |
| Ok(()) |
| } else { |
| Err(()) |
| } |
| } |
| |
| /// Report an error, adding it to the list of errors. |
| pub fn report(&mut self, error: impl Into<VerifierError>) { |
| self.0.push(error.into()); |
| } |
| |
| /// Report a fatal error and return `Err`. |
| pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> { |
| self.report(error); |
| Err(()) |
| } |
| |
| /// Report a non-fatal error and return `Ok`. |
| pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> { |
| self.report(error); |
| Ok(()) |
| } |
| } |
| |
| impl From<Vec<VerifierError>> for VerifierErrors { |
| fn from(v: Vec<VerifierError>) -> Self { |
| Self(v) |
| } |
| } |
| |
| impl Into<Vec<VerifierError>> for VerifierErrors { |
| fn into(self) -> Vec<VerifierError> { |
| self.0 |
| } |
| } |
| |
| impl Into<VerifierResult<()>> for VerifierErrors { |
| fn into(self) -> VerifierResult<()> { |
| if self.is_empty() { |
| Ok(()) |
| } else { |
| Err(self) |
| } |
| } |
| } |
| |
| impl Display for VerifierErrors { |
| fn fmt(&self, f: &mut Formatter) -> fmt::Result { |
| for err in &self.0 { |
| writeln!(f, "- {}", err)?; |
| } |
| Ok(()) |
| } |
| } |
| |
| /// Verify `func`. |
| pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>( |
| func: &Function, |
| fisa: FOI, |
| ) -> VerifierResult<()> { |
| let _tt = timing::verifier(); |
| let mut errors = VerifierErrors::default(); |
| let verifier = Verifier::new(func, fisa.into()); |
| let result = verifier.run(&mut errors); |
| if errors.is_empty() { |
| result.unwrap(); |
| Ok(()) |
| } else { |
| Err(errors) |
| } |
| } |
| |
| /// Verify `func` after checking the integrity of associated context data structures `cfg` and |
| /// `domtree`. |
| pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>( |
| func: &Function, |
| cfg: &ControlFlowGraph, |
| domtree: &DominatorTree, |
| fisa: FOI, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let _tt = timing::verifier(); |
| let verifier = Verifier::new(func, fisa.into()); |
| if cfg.is_valid() { |
| verifier.cfg_integrity(cfg, errors)?; |
| } |
| if domtree.is_valid() { |
| verifier.domtree_integrity(domtree, errors)?; |
| } |
| verifier.run(errors) |
| } |
| |
| struct Verifier<'a> { |
| func: &'a Function, |
| expected_cfg: ControlFlowGraph, |
| expected_domtree: DominatorTree, |
| isa: Option<&'a dyn TargetIsa>, |
| } |
| |
| impl<'a> Verifier<'a> { |
| pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self { |
| let expected_cfg = ControlFlowGraph::with_function(func); |
| let expected_domtree = DominatorTree::with_function(func, &expected_cfg); |
| Self { |
| func, |
| expected_cfg, |
| expected_domtree, |
| isa: fisa.isa, |
| } |
| } |
| |
| /// Determine a contextual error string for an instruction. |
| #[inline] |
| fn context(&self, inst: Inst) -> String { |
| self.func.dfg.display_inst(inst, self.isa).to_string() |
| } |
| |
| // Check for: |
| // - cycles in the global value declarations. |
| // - use of 'vmctx' when no special parameter declares it. |
| fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| let mut cycle_seen = false; |
| let mut seen = SparseSet::new(); |
| |
| 'gvs: for gv in self.func.global_values.keys() { |
| seen.clear(); |
| seen.insert(gv); |
| |
| let mut cur = gv; |
| loop { |
| match self.func.global_values[cur] { |
| ir::GlobalValueData::Load { base, .. } |
| | ir::GlobalValueData::IAddImm { base, .. } => { |
| if seen.insert(base).is_some() { |
| if !cycle_seen { |
| errors.report(( |
| gv, |
| format!("global value cycle: {}", DisplayList(seen.as_slice())), |
| )); |
| // ensures we don't report the cycle multiple times |
| cycle_seen = true; |
| } |
| continue 'gvs; |
| } |
| |
| cur = base; |
| } |
| _ => break, |
| } |
| } |
| |
| match self.func.global_values[gv] { |
| ir::GlobalValueData::VMContext { .. } => { |
| if self |
| .func |
| .special_param(ir::ArgumentPurpose::VMContext) |
| .is_none() |
| { |
| errors.report((gv, format!("undeclared vmctx reference {}", gv))); |
| } |
| } |
| ir::GlobalValueData::IAddImm { |
| base, global_type, .. |
| } => { |
| if !global_type.is_int() { |
| errors.report(( |
| gv, |
| format!("iadd_imm global value with non-int type {}", global_type), |
| )); |
| } else if let Some(isa) = self.isa { |
| let base_type = self.func.global_values[base].global_type(isa); |
| if global_type != base_type { |
| errors.report(( |
| gv, |
| format!( |
| "iadd_imm type {} differs from operand type {}", |
| global_type, base_type |
| ), |
| )); |
| } |
| } |
| } |
| ir::GlobalValueData::Load { base, .. } => { |
| if let Some(isa) = self.isa { |
| let base_type = self.func.global_values[base].global_type(isa); |
| let pointer_type = isa.pointer_type(); |
| if base_type != pointer_type { |
| errors.report(( |
| gv, |
| format!( |
| "base {} has type {}, which is not the pointer type {}", |
| base, base_type, pointer_type |
| ), |
| )); |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| |
| // Invalid global values shouldn't stop us from verifying the rest of the function |
| Ok(()) |
| } |
| |
| fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| if let Some(isa) = self.isa { |
| for (heap, heap_data) in &self.func.heaps { |
| let base = heap_data.base; |
| if !self.func.global_values.is_valid(base) { |
| return errors.nonfatal((heap, format!("invalid base global value {}", base))); |
| } |
| |
| let pointer_type = isa.pointer_type(); |
| let base_type = self.func.global_values[base].global_type(isa); |
| if base_type != pointer_type { |
| errors.report(( |
| heap, |
| format!( |
| "heap base has type {}, which is not the pointer type {}", |
| base_type, pointer_type |
| ), |
| )); |
| } |
| |
| if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style { |
| if !self.func.global_values.is_valid(bound_gv) { |
| return errors |
| .nonfatal((heap, format!("invalid bound global value {}", bound_gv))); |
| } |
| |
| let index_type = heap_data.index_type; |
| let bound_type = self.func.global_values[bound_gv].global_type(isa); |
| if index_type != bound_type { |
| errors.report(( |
| heap, |
| format!( |
| "heap index type {} differs from the type of its bound, {}", |
| index_type, bound_type |
| ), |
| )); |
| } |
| } |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| if let Some(isa) = self.isa { |
| for (table, table_data) in &self.func.tables { |
| let base = table_data.base_gv; |
| if !self.func.global_values.is_valid(base) { |
| return errors.nonfatal((table, format!("invalid base global value {}", base))); |
| } |
| |
| let pointer_type = isa.pointer_type(); |
| let base_type = self.func.global_values[base].global_type(isa); |
| if base_type != pointer_type { |
| errors.report(( |
| table, |
| format!( |
| "table base has type {}, which is not the pointer type {}", |
| base_type, pointer_type |
| ), |
| )); |
| } |
| |
| let bound_gv = table_data.bound_gv; |
| if !self.func.global_values.is_valid(bound_gv) { |
| return errors |
| .nonfatal((table, format!("invalid bound global value {}", bound_gv))); |
| } |
| |
| let index_type = table_data.index_type; |
| let bound_type = self.func.global_values[bound_gv].global_type(isa); |
| if index_type != bound_type { |
| errors.report(( |
| table, |
| format!( |
| "table index type {} differs from the type of its bound, {}", |
| index_type, bound_type |
| ), |
| )); |
| } |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| for (jt, jt_data) in &self.func.jump_tables { |
| for &block in jt_data.iter() { |
| self.verify_block(jt, block, errors)?; |
| } |
| } |
| Ok(()) |
| } |
| |
| /// Check that the given block can be encoded as a BB, by checking that only |
| /// branching instructions are ending the block. |
| fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| match self.func.is_block_basic(block) { |
| Ok(()) => Ok(()), |
| Err((inst, message)) => errors.fatal((inst, self.context(inst), message)), |
| } |
| } |
| |
| fn block_integrity( |
| &self, |
| block: Block, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let is_terminator = self.func.dfg[inst].opcode().is_terminator(); |
| let is_last_inst = self.func.layout.last_inst(block) == Some(inst); |
| |
| if is_terminator && !is_last_inst { |
| // Terminating instructions only occur at the end of blocks. |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "a terminator instruction was encountered before the end of {}", |
| block |
| ), |
| )); |
| } |
| if is_last_inst && !is_terminator { |
| return errors.fatal((block, "block does not end in a terminator instruction")); |
| } |
| |
| // Instructions belong to the correct block. |
| let inst_block = self.func.layout.inst_block(inst); |
| if inst_block != Some(block) { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!("should belong to {} not {:?}", block, inst_block), |
| )); |
| } |
| |
| // Parameters belong to the correct block. |
| for &arg in self.func.dfg.block_params(block) { |
| match self.func.dfg.value_def(arg) { |
| ValueDef::Param(arg_block, _) => { |
| if block != arg_block { |
| return errors.fatal((arg, format!("does not belong to {}", block))); |
| } |
| } |
| _ => { |
| return errors.fatal((arg, "expected an argument, found a result")); |
| } |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| fn instruction_integrity( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let inst_data = &self.func.dfg[inst]; |
| let dfg = &self.func.dfg; |
| |
| // The instruction format matches the opcode |
| if inst_data.opcode().format() != InstructionFormat::from(inst_data) { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "instruction opcode doesn't match instruction format", |
| )); |
| } |
| |
| let num_fixed_results = inst_data.opcode().constraints().num_fixed_results(); |
| // var_results is 0 if we aren't a call instruction |
| let var_results = dfg |
| .call_signature(inst) |
| .map_or(0, |sig| dfg.signatures[sig].returns.len()); |
| let total_results = num_fixed_results + var_results; |
| |
| // All result values for multi-valued instructions are created |
| let got_results = dfg.inst_results(inst).len(); |
| if got_results != total_results { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "expected {} result values, found {}", |
| total_results, got_results, |
| ), |
| )); |
| } |
| |
| self.verify_entity_references(inst, errors) |
| } |
| |
| fn verify_entity_references( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| use crate::ir::instructions::InstructionData::*; |
| |
| for &arg in self.func.dfg.inst_args(inst) { |
| self.verify_inst_arg(inst, arg, errors)?; |
| |
| // All used values must be attached to something. |
| let original = self.func.dfg.resolve_aliases(arg); |
| if !self.func.dfg.value_is_attached(original) { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!("argument {} -> {} is not attached", arg, original), |
| )); |
| } |
| } |
| |
| for &res in self.func.dfg.inst_results(inst) { |
| self.verify_inst_result(inst, res, errors)?; |
| } |
| |
| match self.func.dfg[inst] { |
| MultiAry { ref args, .. } => { |
| self.verify_value_list(inst, args, errors)?; |
| } |
| Jump { |
| destination, |
| ref args, |
| .. |
| } |
| | Branch { |
| destination, |
| ref args, |
| .. |
| } |
| | BranchInt { |
| destination, |
| ref args, |
| .. |
| } |
| | BranchFloat { |
| destination, |
| ref args, |
| .. |
| } |
| | BranchIcmp { |
| destination, |
| ref args, |
| .. |
| } => { |
| self.verify_block(inst, destination, errors)?; |
| self.verify_value_list(inst, args, errors)?; |
| } |
| BranchTable { |
| table, destination, .. |
| } => { |
| self.verify_block(inst, destination, errors)?; |
| self.verify_jump_table(inst, table, errors)?; |
| } |
| BranchTableBase { table, .. } |
| | BranchTableEntry { table, .. } |
| | IndirectJump { table, .. } => { |
| self.verify_jump_table(inst, table, errors)?; |
| } |
| Call { |
| func_ref, ref args, .. |
| } => { |
| self.verify_func_ref(inst, func_ref, errors)?; |
| self.verify_value_list(inst, args, errors)?; |
| } |
| CallIndirect { |
| sig_ref, ref args, .. |
| } => { |
| self.verify_sig_ref(inst, sig_ref, errors)?; |
| self.verify_value_list(inst, args, errors)?; |
| } |
| FuncAddr { func_ref, .. } => { |
| self.verify_func_ref(inst, func_ref, errors)?; |
| } |
| StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => { |
| self.verify_stack_slot(inst, stack_slot, errors)?; |
| } |
| UnaryGlobalValue { global_value, .. } => { |
| self.verify_global_value(inst, global_value, errors)?; |
| } |
| HeapAddr { heap, .. } => { |
| self.verify_heap(inst, heap, errors)?; |
| } |
| TableAddr { table, .. } => { |
| self.verify_table(inst, table, errors)?; |
| } |
| RegSpill { dst, .. } => { |
| self.verify_stack_slot(inst, dst, errors)?; |
| } |
| RegFill { src, .. } => { |
| self.verify_stack_slot(inst, src, errors)?; |
| } |
| LoadComplex { ref args, .. } => { |
| self.verify_value_list(inst, args, errors)?; |
| } |
| StoreComplex { ref args, .. } => { |
| self.verify_value_list(inst, args, errors)?; |
| } |
| |
| NullAry { |
| opcode: Opcode::GetPinnedReg, |
| } |
| | Unary { |
| opcode: Opcode::SetPinnedReg, |
| .. |
| } => { |
| if let Some(isa) = &self.isa { |
| if !isa.flags().enable_pinned_reg() { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg", |
| )); |
| } |
| } else { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "GetPinnedReg/SetPinnedReg need an ISA!", |
| )); |
| } |
| } |
| Unary { |
| opcode: Opcode::Bitcast, |
| arg, |
| } => { |
| self.verify_bitcast(inst, arg, errors)?; |
| } |
| UnaryConst { |
| opcode: Opcode::Vconst, |
| constant_handle, |
| .. |
| } => { |
| self.verify_constant_size(inst, constant_handle, errors)?; |
| } |
| |
| // Exhaustive list so we can't forget to add new formats |
| AtomicCas { .. } |
| | AtomicRmw { .. } |
| | LoadNoOffset { .. } |
| | StoreNoOffset { .. } |
| | Unary { .. } |
| | UnaryConst { .. } |
| | UnaryImm { .. } |
| | UnaryIeee32 { .. } |
| | UnaryIeee64 { .. } |
| | UnaryBool { .. } |
| | Binary { .. } |
| | BinaryImm8 { .. } |
| | BinaryImm64 { .. } |
| | Ternary { .. } |
| | TernaryImm8 { .. } |
| | Shuffle { .. } |
| | IntCompare { .. } |
| | IntCompareImm { .. } |
| | IntCond { .. } |
| | FloatCompare { .. } |
| | FloatCond { .. } |
| | IntSelect { .. } |
| | Load { .. } |
| | Store { .. } |
| | RegMove { .. } |
| | CopySpecial { .. } |
| | CopyToSsa { .. } |
| | Trap { .. } |
| | CondTrap { .. } |
| | IntCondTrap { .. } |
| | FloatCondTrap { .. } |
| | NullAry { .. } => {} |
| } |
| |
| Ok(()) |
| } |
| |
| fn verify_block( |
| &self, |
| loc: impl Into<AnyEntity>, |
| e: Block, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) { |
| return errors.fatal((loc, format!("invalid block reference {}", e))); |
| } |
| if let Some(entry_block) = self.func.layout.entry_block() { |
| if e == entry_block { |
| return errors.fatal((loc, format!("invalid reference to entry block {}", e))); |
| } |
| } |
| Ok(()) |
| } |
| |
| fn verify_sig_ref( |
| &self, |
| inst: Inst, |
| s: SigRef, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.dfg.signatures.is_valid(s) { |
| errors.fatal(( |
| inst, |
| self.context(inst), |
| format!("invalid signature reference {}", s), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_func_ref( |
| &self, |
| inst: Inst, |
| f: FuncRef, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.dfg.ext_funcs.is_valid(f) { |
| errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("invalid function reference {}", f), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_stack_slot( |
| &self, |
| inst: Inst, |
| ss: StackSlot, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.stack_slots.is_valid(ss) { |
| errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("invalid stack slot {}", ss), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_global_value( |
| &self, |
| inst: Inst, |
| gv: GlobalValue, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.global_values.is_valid(gv) { |
| errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("invalid global value {}", gv), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_heap( |
| &self, |
| inst: Inst, |
| heap: ir::Heap, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.heaps.is_valid(heap) { |
| errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap))) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_table( |
| &self, |
| inst: Inst, |
| table: ir::Table, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.tables.is_valid(table) { |
| errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table))) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_value_list( |
| &self, |
| inst: Inst, |
| l: &ValueList, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !l.is_valid(&self.func.dfg.value_lists) { |
| errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("invalid value list reference {:?}", l), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_jump_table( |
| &self, |
| inst: Inst, |
| j: JumpTable, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if !self.func.jump_tables.is_valid(j) { |
| errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("invalid jump table reference {}", j), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_value( |
| &self, |
| loc_inst: Inst, |
| v: Value, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let dfg = &self.func.dfg; |
| if !dfg.value_is_valid(v) { |
| errors.nonfatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("invalid value reference {}", v), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_inst_arg( |
| &self, |
| loc_inst: Inst, |
| v: Value, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| self.verify_value(loc_inst, v, errors)?; |
| |
| let dfg = &self.func.dfg; |
| let loc_block = self.func.layout.pp_block(loc_inst); |
| let is_reachable = self.expected_domtree.is_reachable(loc_block); |
| |
| // SSA form |
| match dfg.value_def(v) { |
| ValueDef::Result(def_inst, _) => { |
| // Value is defined by an instruction that exists. |
| if !dfg.inst_is_valid(def_inst) { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("{} is defined by invalid instruction {}", v, def_inst), |
| )); |
| } |
| // Defining instruction is inserted in a block. |
| if self.func.layout.inst_block(def_inst) == None { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("{} is defined by {} which has no block", v, def_inst), |
| )); |
| } |
| // Defining instruction dominates the instruction that uses the value. |
| if is_reachable { |
| if !self |
| .expected_domtree |
| .dominates(def_inst, loc_inst, &self.func.layout) |
| { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("uses value {} from non-dominating {}", v, def_inst), |
| )); |
| } |
| if def_inst == loc_inst { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("uses value {} from itself", v), |
| )); |
| } |
| } |
| } |
| ValueDef::Param(block, _) => { |
| // Value is defined by an existing block. |
| if !dfg.block_is_valid(block) { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("{} is defined by invalid block {}", v, block), |
| )); |
| } |
| // Defining block is inserted in the layout |
| if !self.func.layout.is_block_inserted(block) { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("{} is defined by {} which is not in the layout", v, block), |
| )); |
| } |
| // The defining block dominates the instruction using this value. |
| if is_reachable |
| && !self |
| .expected_domtree |
| .dominates(block, loc_inst, &self.func.layout) |
| { |
| return errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("uses value arg from non-dominating {}", block), |
| )); |
| } |
| } |
| } |
| Ok(()) |
| } |
| |
| fn verify_inst_result( |
| &self, |
| loc_inst: Inst, |
| v: Value, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| self.verify_value(loc_inst, v, errors)?; |
| |
| match self.func.dfg.value_def(v) { |
| ValueDef::Result(def_inst, _) => { |
| if def_inst != loc_inst { |
| errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("instruction result {} is not defined by the instruction", v), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| ValueDef::Param(_, _) => errors.fatal(( |
| loc_inst, |
| self.context(loc_inst), |
| format!("instruction result {} is not defined by the instruction", v), |
| )), |
| } |
| } |
| |
| fn verify_bitcast( |
| &self, |
| inst: Inst, |
| arg: Value, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let typ = self.func.dfg.ctrl_typevar(inst); |
| let value_type = self.func.dfg.value_type(arg); |
| |
| if typ.lane_bits() < value_type.lane_bits() { |
| errors.fatal(( |
| inst, |
| format!( |
| "The bitcast argument {} doesn't fit in a type of {} bits", |
| arg, |
| typ.lane_bits() |
| ), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn verify_constant_size( |
| &self, |
| inst: Inst, |
| constant: Constant, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize; |
| let constant_size = self.func.dfg.constants.get(constant).len(); |
| if type_size != constant_size { |
| errors.fatal(( |
| inst, |
| format!( |
| "The instruction expects {} to have a size of {} bytes but it has {}", |
| constant, type_size, constant_size |
| ), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn domtree_integrity( |
| &self, |
| domtree: &DominatorTree, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| // We consider two `DominatorTree`s to be equal if they return the same immediate |
| // dominator for each block. Therefore the current domtree is valid if it matches the freshly |
| // computed one. |
| for block in self.func.layout.blocks() { |
| let expected = self.expected_domtree.idom(block); |
| let got = domtree.idom(block); |
| if got != expected { |
| return errors.fatal(( |
| block, |
| format!( |
| "invalid domtree, expected idom({}) = {:?}, got {:?}", |
| block, expected, got |
| ), |
| )); |
| } |
| } |
| // We also verify if the postorder defined by `DominatorTree` is sane |
| if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() { |
| return errors.fatal(( |
| AnyEntity::Function, |
| "incorrect number of Blocks in postorder traversal", |
| )); |
| } |
| for (index, (&test_block, &true_block)) in domtree |
| .cfg_postorder() |
| .iter() |
| .zip(self.expected_domtree.cfg_postorder().iter()) |
| .enumerate() |
| { |
| if test_block != true_block { |
| return errors.fatal(( |
| test_block, |
| format!( |
| "invalid domtree, postorder block number {} should be {}, got {}", |
| index, true_block, test_block |
| ), |
| )); |
| } |
| } |
| // We verify rpo_cmp on pairs of adjacent blocks in the postorder |
| for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() { |
| if self |
| .expected_domtree |
| .rpo_cmp(prev_block, next_block, &self.func.layout) |
| != Ordering::Greater |
| { |
| return errors.fatal(( |
| next_block, |
| format!( |
| "invalid domtree, rpo_cmp does not says {} is greater than {}", |
| prev_block, next_block |
| ), |
| )); |
| } |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| if let Some(block) = self.func.layout.entry_block() { |
| let expected_types = &self.func.signature.params; |
| let block_param_count = self.func.dfg.num_block_params(block); |
| |
| if block_param_count != expected_types.len() { |
| return errors.fatal(( |
| block, |
| format!( |
| "entry block parameters ({}) must match function signature ({})", |
| block_param_count, |
| expected_types.len() |
| ), |
| )); |
| } |
| |
| for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() { |
| let arg_type = self.func.dfg.value_type(arg); |
| if arg_type != expected_types[i].value_type { |
| errors.report(( |
| block, |
| format!( |
| "entry block parameter {} expected to have type {}, got {}", |
| i, expected_types[i], arg_type |
| ), |
| )); |
| } |
| } |
| } |
| |
| errors.as_result() |
| } |
| |
| fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| let inst_data = &self.func.dfg[inst]; |
| let constraints = inst_data.opcode().constraints(); |
| |
| let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() { |
| // For polymorphic opcodes, determine the controlling type variable first. |
| let ctrl_type = self.func.dfg.ctrl_typevar(inst); |
| |
| if !value_typeset.contains(ctrl_type) { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!("has an invalid controlling type {}", ctrl_type), |
| )); |
| } |
| |
| ctrl_type |
| } else { |
| // Non-polymorphic instructions don't check the controlling type variable, so `Option` |
| // is unnecessary and we can just make it `INVALID`. |
| types::INVALID |
| }; |
| |
| // Typechecking instructions is never fatal |
| let _ = self.typecheck_results(inst, ctrl_type, errors); |
| let _ = self.typecheck_fixed_args(inst, ctrl_type, errors); |
| let _ = self.typecheck_variable_args(inst, errors); |
| let _ = self.typecheck_return(inst, errors); |
| let _ = self.typecheck_special(inst, ctrl_type, errors); |
| |
| // Misuses of copy_nop instructions are fatal |
| self.typecheck_copy_nop(inst, errors)?; |
| |
| Ok(()) |
| } |
| |
| fn typecheck_results( |
| &self, |
| inst: Inst, |
| ctrl_type: Type, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let mut i = 0; |
| for &result in self.func.dfg.inst_results(inst) { |
| let result_type = self.func.dfg.value_type(result); |
| let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type); |
| if let Some(expected_type) = expected_type { |
| if result_type != expected_type { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!( |
| "expected result {} ({}) to have type {}, found {}", |
| i, result, expected_type, result_type |
| ), |
| )); |
| } |
| } else { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| "has more result values than expected", |
| )); |
| } |
| i += 1; |
| } |
| |
| // There aren't any more result types left. |
| if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| "has fewer result values than expected", |
| )); |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_fixed_args( |
| &self, |
| inst: Inst, |
| ctrl_type: Type, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let constraints = self.func.dfg[inst].opcode().constraints(); |
| |
| for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() { |
| let arg_type = self.func.dfg.value_type(arg); |
| match constraints.value_argument_constraint(i, ctrl_type) { |
| ResolvedConstraint::Bound(expected_type) => { |
| if arg_type != expected_type { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!( |
| "arg {} ({}) has type {}, expected {}", |
| i, arg, arg_type, expected_type |
| ), |
| )); |
| } |
| } |
| ResolvedConstraint::Free(type_set) => { |
| if !type_set.contains(arg_type) { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!( |
| "arg {} ({}) with type {} failed to satisfy type set {:?}", |
| i, arg, arg_type, type_set |
| ), |
| )); |
| } |
| } |
| } |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_variable_args( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| match self.func.dfg.analyze_branch(inst) { |
| BranchInfo::SingleDest(block, _) => { |
| let iter = self |
| .func |
| .dfg |
| .block_params(block) |
| .iter() |
| .map(|&v| self.func.dfg.value_type(v)); |
| self.typecheck_variable_args_iterator(inst, iter, errors)?; |
| } |
| BranchInfo::Table(table, block) => { |
| if let Some(block) = block { |
| let arg_count = self.func.dfg.num_block_params(block); |
| if arg_count != 0 { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "takes no arguments, but had target {} with {} arguments", |
| block, arg_count, |
| ), |
| )); |
| } |
| } |
| for block in self.func.jump_tables[table].iter() { |
| let arg_count = self.func.dfg.num_block_params(*block); |
| if arg_count != 0 { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "takes no arguments, but had target {} with {} arguments", |
| block, arg_count, |
| ), |
| )); |
| } |
| } |
| } |
| BranchInfo::NotABranch => {} |
| } |
| |
| match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) { |
| CallInfo::Direct(func_ref, _) => { |
| let sig_ref = self.func.dfg.ext_funcs[func_ref].signature; |
| let arg_types = self.func.dfg.signatures[sig_ref] |
| .params |
| .iter() |
| .map(|a| a.value_type); |
| self.typecheck_variable_args_iterator(inst, arg_types, errors)?; |
| self.check_outgoing_args(inst, sig_ref, errors)?; |
| } |
| CallInfo::Indirect(sig_ref, _) => { |
| let arg_types = self.func.dfg.signatures[sig_ref] |
| .params |
| .iter() |
| .map(|a| a.value_type); |
| self.typecheck_variable_args_iterator(inst, arg_types, errors)?; |
| self.check_outgoing_args(inst, sig_ref, errors)?; |
| } |
| CallInfo::NotACall => {} |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>( |
| &self, |
| inst: Inst, |
| iter: I, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let variable_args = self.func.dfg.inst_variable_args(inst); |
| let mut i = 0; |
| |
| for expected_type in iter { |
| if i >= variable_args.len() { |
| // Result count mismatch handled below, we want the full argument count first though |
| i += 1; |
| continue; |
| } |
| let arg = variable_args[i]; |
| let arg_type = self.func.dfg.value_type(arg); |
| if expected_type != arg_type { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!( |
| "arg {} ({}) has type {}, expected {}", |
| i, variable_args[i], arg_type, expected_type |
| ), |
| )); |
| } |
| i += 1; |
| } |
| if i != variable_args.len() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "mismatched argument count for `{}`: got {}, expected {}", |
| self.func.dfg.display_inst(inst, None), |
| variable_args.len(), |
| i, |
| ), |
| )); |
| } |
| Ok(()) |
| } |
| |
| /// Check the locations assigned to outgoing call arguments. |
| /// |
| /// When a signature has been legalized, all values passed as outgoing arguments on the stack |
| /// must be assigned to a matching `OutgoingArg` stack slot. |
| fn check_outgoing_args( |
| &self, |
| inst: Inst, |
| sig_ref: SigRef, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let sig = &self.func.dfg.signatures[sig_ref]; |
| |
| let args = self.func.dfg.inst_variable_args(inst); |
| let expected_args = &sig.params[..]; |
| |
| for (&arg, &abi) in args.iter().zip(expected_args) { |
| // Value types have already been checked by `typecheck_variable_args_iterator()`. |
| if let ArgumentLoc::Stack(offset) = abi.location { |
| let arg_loc = self.func.locations[arg]; |
| if let ValueLoc::Stack(ss) = arg_loc { |
| // Argument value is assigned to a stack slot as expected. |
| self.verify_stack_slot(inst, ss, errors)?; |
| let slot = &self.func.stack_slots[ss]; |
| if slot.kind != StackSlotKind::OutgoingArg { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Outgoing stack argument {} in wrong stack slot: {} = {}", |
| arg, ss, slot, |
| ), |
| )); |
| } |
| if slot.offset != Some(offset) { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Outgoing stack argument {} should have offset {}: {} = {}", |
| arg, offset, ss, slot, |
| ), |
| )); |
| } |
| if abi.purpose == ArgumentPurpose::StructArgument(slot.size) { |
| } else if slot.size != abi.value_type.bytes() { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Outgoing stack argument {} wrong size for {}: {} = {}", |
| arg, abi.value_type, ss, slot, |
| ), |
| )); |
| } |
| } else { |
| let reginfo = self.isa.map(|i| i.register_info()); |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Outgoing stack argument {} in wrong location: {}", |
| arg, |
| arg_loc.display(reginfo.as_ref()) |
| ), |
| )); |
| } |
| } |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| if self.func.dfg[inst].opcode().is_return() { |
| let args = self.func.dfg.inst_variable_args(inst); |
| let expected_types = &self.func.signature.returns; |
| if args.len() != expected_types.len() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| "arguments of return must match function signature", |
| )); |
| } |
| for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() { |
| let arg_type = self.func.dfg.value_type(arg); |
| if arg_type != expected_type.value_type { |
| errors.report(( |
| inst, |
| self.context(inst), |
| format!( |
| "arg {} ({}) has type {}, must match function signature of {}", |
| i, arg, arg_type, expected_type |
| ), |
| )); |
| } |
| } |
| } |
| Ok(()) |
| } |
| |
| // Check special-purpose type constraints that can't be expressed in the normal opcode |
| // constraints. |
| fn typecheck_special( |
| &self, |
| inst: Inst, |
| ctrl_type: Type, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| match self.func.dfg[inst] { |
| ir::InstructionData::Unary { opcode, arg } => { |
| let arg_type = self.func.dfg.value_type(arg); |
| match opcode { |
| Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => { |
| if arg_type.lane_count() != ctrl_type.lane_count() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "input {} and output {} must have same number of lanes", |
| arg_type, ctrl_type, |
| ), |
| )); |
| } |
| if arg_type.lane_bits() >= ctrl_type.lane_bits() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "input {} must be smaller than output {}", |
| arg_type, ctrl_type, |
| ), |
| )); |
| } |
| } |
| Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => { |
| if arg_type.lane_count() != ctrl_type.lane_count() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "input {} and output {} must have same number of lanes", |
| arg_type, ctrl_type, |
| ), |
| )); |
| } |
| if arg_type.lane_bits() <= ctrl_type.lane_bits() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "input {} must be larger than output {}", |
| arg_type, ctrl_type, |
| ), |
| )); |
| } |
| } |
| _ => {} |
| } |
| } |
| ir::InstructionData::HeapAddr { heap, arg, .. } => { |
| let index_type = self.func.dfg.value_type(arg); |
| let heap_index_type = self.func.heaps[heap].index_type; |
| if index_type != heap_index_type { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "index type {} differs from heap index type {}", |
| index_type, heap_index_type, |
| ), |
| )); |
| } |
| } |
| ir::InstructionData::TableAddr { table, arg, .. } => { |
| let index_type = self.func.dfg.value_type(arg); |
| let table_index_type = self.func.tables[table].index_type; |
| if index_type != table_index_type { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "index type {} differs from table index type {}", |
| index_type, table_index_type, |
| ), |
| )); |
| } |
| } |
| ir::InstructionData::UnaryGlobalValue { global_value, .. } => { |
| if let Some(isa) = self.isa { |
| let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst)); |
| let global_type = self.func.global_values[global_value].global_type(isa); |
| if inst_type != global_type { |
| return errors.nonfatal(( |
| inst, self.context(inst), |
| format!( |
| "global_value instruction with type {} references global value with type {}", |
| inst_type, global_type |
| )), |
| ); |
| } |
| } |
| } |
| _ => {} |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_copy_nop( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if let InstructionData::Unary { |
| opcode: Opcode::CopyNop, |
| arg, |
| } = self.func.dfg[inst] |
| { |
| let dst_vals = self.func.dfg.inst_results(inst); |
| if dst_vals.len() != 1 { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "copy_nop must produce exactly one result", |
| )); |
| } |
| let dst_val = dst_vals[0]; |
| if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "copy_nop src and dst types must be the same", |
| )); |
| } |
| let src_loc = self.func.locations[arg]; |
| let dst_loc = self.func.locations[dst_val]; |
| let locs_ok = match (src_loc, dst_loc) { |
| (ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot, |
| _ => false, |
| }; |
| if !locs_ok { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "copy_nop must refer to identical stack slots, but found {:?} vs {:?}", |
| src_loc, dst_loc, |
| ), |
| )); |
| } |
| } |
| Ok(()) |
| } |
| |
| fn cfg_integrity( |
| &self, |
| cfg: &ControlFlowGraph, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let mut expected_succs = BTreeSet::<Block>::new(); |
| let mut got_succs = BTreeSet::<Block>::new(); |
| let mut expected_preds = BTreeSet::<Inst>::new(); |
| let mut got_preds = BTreeSet::<Inst>::new(); |
| |
| for block in self.func.layout.blocks() { |
| expected_succs.extend(self.expected_cfg.succ_iter(block)); |
| got_succs.extend(cfg.succ_iter(block)); |
| |
| let missing_succs: Vec<Block> = |
| expected_succs.difference(&got_succs).cloned().collect(); |
| if !missing_succs.is_empty() { |
| errors.report(( |
| block, |
| format!("cfg lacked the following successor(s) {:?}", missing_succs), |
| )); |
| continue; |
| } |
| |
| let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect(); |
| if !excess_succs.is_empty() { |
| errors.report(( |
| block, |
| format!("cfg had unexpected successor(s) {:?}", excess_succs), |
| )); |
| continue; |
| } |
| |
| expected_preds.extend( |
| self.expected_cfg |
| .pred_iter(block) |
| .map(|BlockPredecessor { inst, .. }| inst), |
| ); |
| got_preds.extend( |
| cfg.pred_iter(block) |
| .map(|BlockPredecessor { inst, .. }| inst), |
| ); |
| |
| let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect(); |
| if !missing_preds.is_empty() { |
| errors.report(( |
| block, |
| format!( |
| "cfg lacked the following predecessor(s) {:?}", |
| missing_preds |
| ), |
| )); |
| continue; |
| } |
| |
| let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect(); |
| if !excess_preds.is_empty() { |
| errors.report(( |
| block, |
| format!("cfg had unexpected predecessor(s) {:?}", excess_preds), |
| )); |
| continue; |
| } |
| |
| expected_succs.clear(); |
| got_succs.clear(); |
| expected_preds.clear(); |
| got_preds.clear(); |
| } |
| errors.as_result() |
| } |
| |
| /// If the verifier has been set up with an ISA, make sure that the recorded encoding for the |
| /// instruction (if any) matches how the ISA would encode it. |
| fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| // When the encodings table is empty, we don't require any instructions to be encoded. |
| // |
| // Once some instructions are encoded, we require all side-effecting instructions to have a |
| // legal encoding. |
| if self.func.encodings.is_empty() { |
| return Ok(()); |
| } |
| |
| let isa = match self.isa { |
| Some(isa) => isa, |
| None => return Ok(()), |
| }; |
| |
| let encoding = self.func.encodings[inst]; |
| if encoding.is_legal() { |
| if self.func.dfg[inst].opcode().is_ghost() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Ghost instruction has an encoding: {}", |
| isa.encoding_info().display(encoding), |
| ), |
| )); |
| } |
| |
| let mut encodings = isa |
| .legal_encodings( |
| &self.func, |
| &self.func.dfg[inst], |
| self.func.dfg.ctrl_typevar(inst), |
| ) |
| .peekable(); |
| |
| if encodings.peek().is_none() { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "Instruction failed to re-encode {}", |
| isa.encoding_info().display(encoding), |
| ), |
| )); |
| } |
| |
| let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc); |
| |
| if !has_valid_encoding { |
| let mut possible_encodings = String::new(); |
| let mut multiple_encodings = false; |
| |
| for enc in isa.legal_encodings( |
| &self.func, |
| &self.func.dfg[inst], |
| self.func.dfg.ctrl_typevar(inst), |
| ) { |
| if !possible_encodings.is_empty() { |
| possible_encodings.push_str(", "); |
| multiple_encodings = true; |
| } |
| possible_encodings |
| .write_fmt(format_args!("{}", isa.encoding_info().display(enc))) |
| .unwrap(); |
| } |
| |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "encoding {} should be {}{}", |
| isa.encoding_info().display(encoding), |
| if multiple_encodings { "one of: " } else { "" }, |
| possible_encodings, |
| ), |
| )); |
| } |
| return Ok(()); |
| } |
| |
| // Instruction is not encoded, so it is a ghost instruction. |
| // Instructions with side effects are not allowed to be ghost instructions. |
| let opcode = self.func.dfg[inst].opcode(); |
| |
| // The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required |
| // to have an encoding. |
| if opcode == Opcode::Fallthrough |
| || opcode == Opcode::FallthroughReturn |
| || opcode == Opcode::Safepoint |
| { |
| return Ok(()); |
| } |
| |
| // Check if this opcode must be encoded. |
| let mut needs_enc = None; |
| if opcode.is_branch() { |
| needs_enc = Some("Branch"); |
| } else if opcode.is_call() { |
| needs_enc = Some("Call"); |
| } else if opcode.is_return() { |
| needs_enc = Some("Return"); |
| } else if opcode.can_store() { |
| needs_enc = Some("Store"); |
| } else if opcode.can_trap() { |
| needs_enc = Some("Trapping instruction"); |
| } else if opcode.other_side_effects() { |
| needs_enc = Some("Instruction with side effects"); |
| } |
| |
| if let Some(text) = needs_enc { |
| // This instruction needs an encoding, so generate an error. |
| // Provide the ISA default encoding as a hint. |
| match self.func.encode(inst, isa) { |
| Ok(enc) => { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!( |
| "{} must have an encoding (e.g., {})))", |
| text, |
| isa.encoding_info().display(enc), |
| ), |
| )); |
| } |
| Err(_) => { |
| return errors.nonfatal(( |
| inst, |
| self.context(inst), |
| format!("{} must have an encoding", text), |
| )) |
| } |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| fn immediate_constraints( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| let inst_data = &self.func.dfg[inst]; |
| |
| match *inst_data { |
| ir::InstructionData::Store { flags, .. } |
| | ir::InstructionData::StoreComplex { flags, .. } => { |
| if flags.readonly() { |
| errors.fatal(( |
| inst, |
| self.context(inst), |
| "A store instruction cannot have the `readonly` MemFlag", |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| ir::InstructionData::BinaryImm8 { |
| opcode: ir::instructions::Opcode::Extractlane, |
| imm: lane, |
| arg, |
| .. |
| } |
| | ir::InstructionData::TernaryImm8 { |
| opcode: ir::instructions::Opcode::Insertlane, |
| imm: lane, |
| args: [arg, _], |
| .. |
| } => { |
| // We must be specific about the opcodes above because other instructions are using |
| // the same formats. |
| let ty = self.func.dfg.value_type(arg); |
| if u16::from(lane) >= ty.lane_count() { |
| errors.fatal(( |
| inst, |
| self.context(inst), |
| format!("The lane {} does not index into the type {}", lane, ty,), |
| )) |
| } else { |
| Ok(()) |
| } |
| } |
| _ => Ok(()), |
| } |
| } |
| |
| fn verify_safepoint_unused( |
| &self, |
| inst: Inst, |
| errors: &mut VerifierErrors, |
| ) -> VerifierStepResult<()> { |
| if let Some(isa) = self.isa { |
| if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint |
| { |
| return errors.fatal(( |
| inst, |
| self.context(inst), |
| "safepoint instruction cannot be used when it is not enabled.", |
| )); |
| } |
| } |
| Ok(()) |
| } |
| |
| fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| self.func |
| .signature |
| .params |
| .iter() |
| .enumerate() |
| .filter(|(_, ¶m)| param.value_type == types::INVALID) |
| .for_each(|(i, _)| { |
| errors.report(( |
| AnyEntity::Function, |
| format!("Parameter at position {} has an invalid type", i), |
| )); |
| }); |
| |
| self.func |
| .signature |
| .returns |
| .iter() |
| .enumerate() |
| .filter(|(_, &ret)| ret.value_type == types::INVALID) |
| .for_each(|(i, _)| { |
| errors.report(( |
| AnyEntity::Function, |
| format!("Return value at position {} has an invalid type", i), |
| )) |
| }); |
| |
| self.func |
| .signature |
| .returns |
| .iter() |
| .enumerate() |
| .for_each(|(i, ret)| { |
| if let ArgumentPurpose::StructArgument(_) = ret.purpose { |
| errors.report(( |
| AnyEntity::Function, |
| format!("Return value at position {} can't be an struct argument", i), |
| )) |
| } |
| }); |
| |
| if errors.has_error() { |
| Err(()) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> { |
| self.verify_global_values(errors)?; |
| self.verify_heaps(errors)?; |
| self.verify_tables(errors)?; |
| self.verify_jump_tables(errors)?; |
| self.typecheck_entry_block_params(errors)?; |
| self.typecheck_function_signature(errors)?; |
| |
| for block in self.func.layout.blocks() { |
| if self.func.layout.first_inst(block).is_none() { |
| return errors.fatal((block, format!("{} cannot be empty", block))); |
| } |
| for inst in self.func.layout.block_insts(block) { |
| self.block_integrity(block, inst, errors)?; |
| self.instruction_integrity(inst, errors)?; |
| self.verify_safepoint_unused(inst, errors)?; |
| self.typecheck(inst, errors)?; |
| self.verify_encoding(inst, errors)?; |
| self.immediate_constraints(inst, errors)?; |
| } |
| |
| self.encodable_as_bb(block, errors)?; |
| } |
| |
| verify_flags(self.func, &self.expected_cfg, self.isa, errors)?; |
| |
| if !errors.is_empty() { |
| log::warn!( |
| "Found verifier errors in function:\n{}", |
| pretty_verifier_error(self.func, None, None, errors.clone()) |
| ); |
| } |
| |
| Ok(()) |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::{Verifier, VerifierError, VerifierErrors}; |
| use crate::entity::EntityList; |
| use crate::ir::instructions::{InstructionData, Opcode}; |
| use crate::ir::{types, AbiParam, Function}; |
| use crate::settings; |
| |
| macro_rules! assert_err_with_msg { |
| ($e:expr, $msg:expr) => { |
| match $e.0.get(0) { |
| None => panic!("Expected an error"), |
| Some(&VerifierError { ref message, .. }) => { |
| if !message.contains($msg) { |
| #[cfg(feature = "std")] |
| panic!("'{}' did not contain the substring '{}'", message, $msg); |
| #[cfg(not(feature = "std"))] |
| panic!("error message did not contain the expected substring"); |
| } |
| } |
| } |
| }; |
| } |
| |
| #[test] |
| fn empty() { |
| let func = Function::new(); |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| let mut errors = VerifierErrors::default(); |
| |
| assert_eq!(verifier.run(&mut errors), Ok(())); |
| assert!(errors.0.is_empty()); |
| } |
| |
| #[test] |
| fn bad_instruction_format() { |
| let mut func = Function::new(); |
| let block0 = func.dfg.make_block(); |
| func.layout.append_block(block0); |
| let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm { |
| opcode: Opcode::F32const, |
| imm: 0.into(), |
| }); |
| func.layout.append_inst(nullary_with_bad_opcode, block0); |
| func.layout.append_inst( |
| func.dfg.make_inst(InstructionData::Jump { |
| opcode: Opcode::Jump, |
| destination: block0, |
| args: EntityList::default(), |
| }), |
| block0, |
| ); |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| let mut errors = VerifierErrors::default(); |
| |
| let _ = verifier.run(&mut errors); |
| |
| assert_err_with_msg!(errors, "instruction format"); |
| } |
| |
| #[test] |
| fn test_function_invalid_param() { |
| let mut func = Function::new(); |
| func.signature.params.push(AbiParam::new(types::INVALID)); |
| |
| let mut errors = VerifierErrors::default(); |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| |
| let _ = verifier.typecheck_function_signature(&mut errors); |
| assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type"); |
| } |
| |
| #[test] |
| fn test_function_invalid_return_value() { |
| let mut func = Function::new(); |
| func.signature.returns.push(AbiParam::new(types::INVALID)); |
| |
| let mut errors = VerifierErrors::default(); |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| |
| let _ = verifier.typecheck_function_signature(&mut errors); |
| assert_err_with_msg!(errors, "Return value at position 0 has an invalid type"); |
| } |
| |
| #[test] |
| fn test_printing_contextual_errors() { |
| // Build function. |
| let mut func = Function::new(); |
| let block0 = func.dfg.make_block(); |
| func.layout.append_block(block0); |
| |
| // Build instruction: v0, v1 = iconst 42 |
| let inst = func.dfg.make_inst(InstructionData::UnaryImm { |
| opcode: Opcode::Iconst, |
| imm: 42.into(), |
| }); |
| func.dfg.append_result(inst, types::I32); |
| func.dfg.append_result(inst, types::I32); |
| func.layout.append_inst(inst, block0); |
| |
| // Setup verifier. |
| let mut errors = VerifierErrors::default(); |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| |
| // Now the error message, when printed, should contain the instruction sequence causing the |
| // error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0) |
| let _ = verifier.typecheck_results(inst, types::I32, &mut errors); |
| assert_eq!( |
| format!("{}", errors.0[0]), |
| "inst0 (v0, v1 = iconst.i32 42): has more result values than expected" |
| ) |
| } |
| |
| #[test] |
| fn test_empty_block() { |
| let mut func = Function::new(); |
| let block0 = func.dfg.make_block(); |
| func.layout.append_block(block0); |
| |
| let flags = &settings::Flags::new(settings::builder()); |
| let verifier = Verifier::new(&func, flags.into()); |
| let mut errors = VerifierErrors::default(); |
| let _ = verifier.run(&mut errors); |
| |
| assert_err_with_msg!(errors, "block0 cannot be empty"); |
| } |
| } |