| //! Lints in the Rust compiler. |
| //! |
| //! This contains lints which can feasibly be implemented as their own |
| //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the |
| //! definitions of lints that are emitted directly inside the main compiler. |
| //! |
| //! To add a new lint to rustc, declare it here using `declare_lint!()`. |
| //! Then add code to emit the new lint in the appropriate circumstances. |
| //! You can do that in an existing `LintPass` if it makes sense, or in a |
| //! new `LintPass`, or using `Session::add_lint` elsewhere in the |
| //! compiler. Only do the latter if the check can't be written cleanly as a |
| //! `LintPass` (also, note that such lints will need to be defined in |
| //! `rustc_session::lint::builtin`, not here). |
| //! |
| //! If you define a new `EarlyLintPass`, you will also need to add it to the |
| //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in |
| //! `lib.rs`. Use the former for unit-like structs and the latter for structs |
| //! with a `pub fn new()`. |
| //! |
| //! If you define a new `LateLintPass`, you will also need to add it to the |
| //! `late_lint_methods!` invocation in `lib.rs`. |
| |
| use crate::fluent_generated as fluent; |
| use crate::{ |
| errors::BuiltinEllipsisInclusiveRangePatterns, |
| lints::{ |
| BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinClashingExtern, |
| BuiltinClashingExternSub, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink, |
| BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr, |
| BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives, |
| BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures, |
| BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents, |
| BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc, |
| BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns, |
| BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasGenericBounds, |
| BuiltinTypeAliasGenericBoundsSuggestion, BuiltinTypeAliasWhereClause, |
| BuiltinUnexpectedCliConfigName, BuiltinUnexpectedCliConfigValue, |
| BuiltinUngatedAsyncFnTrackCaller, BuiltinUnnameableTestItems, BuiltinUnpermittedTypeInit, |
| BuiltinUnpermittedTypeInitSub, BuiltinUnreachablePub, BuiltinUnsafe, |
| BuiltinUnstableFeatures, BuiltinUnusedDocComment, BuiltinUnusedDocCommentSub, |
| BuiltinWhileTrue, SuggestChangingAssocTypes, |
| }, |
| types::{transparent_newtype_field, CItemKind}, |
| EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext, |
| }; |
| use hir::IsAsync; |
| use rustc_ast::attr; |
| use rustc_ast::tokenstream::{TokenStream, TokenTree}; |
| use rustc_ast::visit::{FnCtxt, FnKind}; |
| use rustc_ast::{self as ast, *}; |
| use rustc_ast_pretty::pprust::{self, expr_to_string}; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::stack::ensure_sufficient_stack; |
| use rustc_errors::{Applicability, DecorateLint, MultiSpan}; |
| use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability}; |
| use rustc_hir as hir; |
| use rustc_hir::def::{DefKind, Res}; |
| use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID}; |
| use rustc_hir::intravisit::FnKind as HirFnKind; |
| use rustc_hir::{Body, FnDecl, ForeignItemKind, GenericParamKind, Node, PatKind, PredicateOrigin}; |
| use rustc_middle::lint::in_external_macro; |
| use rustc_middle::ty::layout::{LayoutError, LayoutOf}; |
| use rustc_middle::ty::print::with_no_trimmed_paths; |
| use rustc_middle::ty::subst::GenericArgKind; |
| use rustc_middle::ty::TypeVisitableExt; |
| use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef}; |
| use rustc_session::config::ExpectedValues; |
| use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason}; |
| use rustc_span::edition::Edition; |
| use rustc_span::source_map::Spanned; |
| use rustc_span::symbol::{kw, sym, Ident, Symbol}; |
| use rustc_span::{BytePos, InnerSpan, Span}; |
| use rustc_target::abi::{Abi, FIRST_VARIANT}; |
| use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt}; |
| use rustc_trait_selection::traits::{self, misc::type_allowed_to_implement_copy}; |
| |
| use crate::nonstandard_style::{method_context, MethodLateContext}; |
| |
| use std::fmt::Write; |
| |
| // hardwired lints from librustc_middle |
| pub use rustc_session::lint::builtin::*; |
| |
| declare_lint! { |
| /// The `while_true` lint detects `while true { }`. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// while true { |
| /// |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// `while true` should be replaced with `loop`. A `loop` expression is |
| /// the preferred way to write an infinite loop because it more directly |
| /// expresses the intent of the loop. |
| WHILE_TRUE, |
| Warn, |
| "suggest using `loop { }` instead of `while true { }`" |
| } |
| |
| declare_lint_pass!(WhileTrue => [WHILE_TRUE]); |
| |
| /// Traverse through any amount of parenthesis and return the first non-parens expression. |
| fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr { |
| while let ast::ExprKind::Paren(sub) = &expr.kind { |
| expr = sub; |
| } |
| expr |
| } |
| |
| impl EarlyLintPass for WhileTrue { |
| #[inline] |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { |
| if let ast::ExprKind::While(cond, _, label) = &e.kind |
| && let ast::ExprKind::Lit(token_lit) = pierce_parens(cond).kind |
| && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit |
| && !cond.span.from_expansion() |
| { |
| let condition_span = e.span.with_hi(cond.span.hi()); |
| let replace = format!( |
| "{}loop", |
| label.map_or_else(String::new, |label| format!( |
| "{}: ", |
| label.ident, |
| )) |
| ); |
| cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue { |
| suggestion: condition_span, |
| replace, |
| }); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `box_pointers` lints use of the Box type. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(box_pointers)] |
| /// struct Foo { |
| /// x: Box<isize>, |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is mostly historical, and not particularly useful. `Box<T>` |
| /// used to be built into the language, and the only way to do heap |
| /// allocation. Today's Rust can call into other allocators, etc. |
| BOX_POINTERS, |
| Allow, |
| "use of owned (Box type) heap memory" |
| } |
| |
| declare_lint_pass!(BoxPointers => [BOX_POINTERS]); |
| |
| impl BoxPointers { |
| fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) { |
| for leaf in ty.walk() { |
| if let GenericArgKind::Type(leaf_ty) = leaf.unpack() && leaf_ty.is_box() { |
| cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty }); |
| } |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for BoxPointers { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| match it.kind { |
| hir::ItemKind::Fn(..) |
| | hir::ItemKind::TyAlias(..) |
| | hir::ItemKind::Enum(..) |
| | hir::ItemKind::Struct(..) |
| | hir::ItemKind::Union(..) => { |
| self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id).subst_identity()) |
| } |
| _ => (), |
| } |
| |
| // If it's a struct, we also have to check the fields' types |
| match it.kind { |
| hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { |
| for field in struct_def.fields() { |
| self.check_heap_type( |
| cx, |
| field.span, |
| cx.tcx.type_of(field.def_id).subst_identity(), |
| ); |
| } |
| } |
| _ => (), |
| } |
| } |
| |
| fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) { |
| let ty = cx.typeck_results().node_type(e.hir_id); |
| self.check_heap_type(cx, e.span, ty); |
| } |
| } |
| |
| declare_lint! { |
| /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }` |
| /// instead of `Struct { x }` in a pattern. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// struct Point { |
| /// x: i32, |
| /// y: i32, |
| /// } |
| /// |
| /// |
| /// fn main() { |
| /// let p = Point { |
| /// x: 5, |
| /// y: 5, |
| /// }; |
| /// |
| /// match p { |
| /// Point { x: x, y: y } => (), |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The preferred style is to avoid the repetition of specifying both the |
| /// field name and the binding name if both identifiers are the same. |
| NON_SHORTHAND_FIELD_PATTERNS, |
| Warn, |
| "using `Struct { x: x }` instead of `Struct { x }` in a pattern" |
| } |
| |
| declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns { |
| fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) { |
| if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind { |
| let variant = cx |
| .typeck_results() |
| .pat_ty(pat) |
| .ty_adt_def() |
| .expect("struct pattern type is not an ADT") |
| .variant_of_res(cx.qpath_res(qpath, pat.hir_id)); |
| for fieldpat in field_pats { |
| if fieldpat.is_shorthand { |
| continue; |
| } |
| if fieldpat.span.from_expansion() { |
| // Don't lint if this is a macro expansion: macro authors |
| // shouldn't have to worry about this kind of style issue |
| // (Issue #49588) |
| continue; |
| } |
| if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind { |
| if cx.tcx.find_field_index(ident, &variant) |
| == Some(cx.typeck_results().field_index(fieldpat.hir_id)) |
| { |
| cx.emit_spanned_lint( |
| NON_SHORTHAND_FIELD_PATTERNS, |
| fieldpat.span, |
| BuiltinNonShorthandFieldPatterns { |
| ident, |
| suggestion: fieldpat.span, |
| prefix: binding_annot.prefix_str(), |
| }, |
| ); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unsafe_code` lint catches usage of `unsafe` code. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(unsafe_code)] |
| /// fn main() { |
| /// unsafe { |
| /// |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is intended to restrict the usage of `unsafe`, which can be |
| /// difficult to use correctly. |
| UNSAFE_CODE, |
| Allow, |
| "usage of `unsafe` code" |
| } |
| |
| declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]); |
| |
| impl UnsafeCode { |
| fn report_unsafe( |
| &self, |
| cx: &EarlyContext<'_>, |
| span: Span, |
| decorate: impl for<'a> DecorateLint<'a, ()>, |
| ) { |
| // This comes from a macro that has `#[allow_internal_unsafe]`. |
| if span.allows_unsafe() { |
| return; |
| } |
| |
| cx.emit_spanned_lint(UNSAFE_CODE, span, decorate); |
| } |
| } |
| |
| impl EarlyLintPass for UnsafeCode { |
| fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { |
| if attr.has_name(sym::allow_internal_unsafe) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe); |
| } |
| } |
| |
| #[inline] |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { |
| if let ast::ExprKind::Block(ref blk, _) = e.kind { |
| // Don't warn about generated blocks; that'll just pollute the output. |
| if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) { |
| self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock); |
| } |
| } |
| } |
| |
| fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { |
| match it.kind { |
| ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => { |
| self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait); |
| } |
| |
| ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => { |
| self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl); |
| } |
| |
| ast::ItemKind::Fn(..) => { |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn); |
| } |
| |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn); |
| } |
| |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn); |
| } |
| } |
| |
| ast::ItemKind::Static(..) => { |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic); |
| } |
| |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic); |
| } |
| |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic); |
| } |
| } |
| |
| _ => {} |
| } |
| } |
| |
| fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { |
| if let ast::AssocItemKind::Fn(..) = it.kind { |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod); |
| } |
| if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { |
| self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod); |
| } |
| } |
| } |
| |
| fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) { |
| if let FnKind::Fn( |
| ctxt, |
| _, |
| ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. }, |
| _, |
| _, |
| body, |
| ) = fk |
| { |
| let decorator = match ctxt { |
| FnCtxt::Foreign => return, |
| FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn, |
| FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod, |
| FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod, |
| }; |
| self.report_unsafe(cx, span, decorator); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_docs` lint detects missing documentation for public items. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_docs)] |
| /// pub fn foo() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This lint is intended to ensure that a library is well-documented. |
| /// Items without documentation can be difficult for users to understand |
| /// how to use properly. |
| /// |
| /// This lint is "allow" by default because it can be noisy, and not all |
| /// projects may want to enforce everything to be documented. |
| pub MISSING_DOCS, |
| Allow, |
| "detects missing documentation for public members", |
| report_in_external_macro |
| } |
| |
| pub struct MissingDoc { |
| /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes. |
| doc_hidden_stack: Vec<bool>, |
| } |
| |
| impl_lint_pass!(MissingDoc => [MISSING_DOCS]); |
| |
| fn has_doc(attr: &ast::Attribute) -> bool { |
| if attr.is_doc_comment() { |
| return true; |
| } |
| |
| if !attr.has_name(sym::doc) { |
| return false; |
| } |
| |
| if attr.value_str().is_some() { |
| return true; |
| } |
| |
| if let Some(list) = attr.meta_item_list() { |
| for meta in list { |
| if meta.has_name(sym::hidden) { |
| return true; |
| } |
| } |
| } |
| |
| false |
| } |
| |
| impl MissingDoc { |
| pub fn new() -> MissingDoc { |
| MissingDoc { doc_hidden_stack: vec![false] } |
| } |
| |
| fn doc_hidden(&self) -> bool { |
| *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") |
| } |
| |
| fn check_missing_docs_attrs( |
| &self, |
| cx: &LateContext<'_>, |
| def_id: LocalDefId, |
| article: &'static str, |
| desc: &'static str, |
| ) { |
| // If we're building a test harness, then warning about |
| // documentation is probably not really relevant right now. |
| if cx.sess().opts.test { |
| return; |
| } |
| |
| // `#[doc(hidden)]` disables missing_docs check. |
| if self.doc_hidden() { |
| return; |
| } |
| |
| // Only check publicly-visible items, using the result from the privacy pass. |
| // It's an option so the crate root can also use this function (it doesn't |
| // have a `NodeId`). |
| if def_id != CRATE_DEF_ID { |
| if !cx.effective_visibilities.is_exported(def_id) { |
| return; |
| } |
| } |
| |
| let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id)); |
| let has_doc = attrs.iter().any(has_doc); |
| if !has_doc { |
| cx.emit_spanned_lint( |
| MISSING_DOCS, |
| cx.tcx.def_span(def_id), |
| BuiltinMissingDoc { article, desc }, |
| ); |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingDoc { |
| #[inline] |
| fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) { |
| let doc_hidden = self.doc_hidden() |
| || attrs.iter().any(|attr| { |
| attr.has_name(sym::doc) |
| && match attr.meta_item_list() { |
| None => false, |
| Some(l) => attr::list_contains_name(&l, sym::hidden), |
| } |
| }); |
| self.doc_hidden_stack.push(doc_hidden); |
| } |
| |
| fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) { |
| self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); |
| } |
| |
| fn check_crate(&mut self, cx: &LateContext<'_>) { |
| self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate"); |
| } |
| |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| // Previously the Impl and Use types have been excluded from missing docs, |
| // so we will continue to exclude them for compatibility. |
| // |
| // The documentation on `ExternCrate` is not used at the moment so no need to warn for it. |
| if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(_) = |
| it.kind |
| { |
| return; |
| } |
| |
| let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id()); |
| self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc); |
| } |
| |
| fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) { |
| let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id()); |
| |
| self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc); |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { |
| let context = method_context(cx, impl_item.owner_id.def_id); |
| |
| match context { |
| // If the method is an impl for a trait, don't doc. |
| MethodLateContext::TraitImpl => return, |
| MethodLateContext::TraitAutoImpl => {} |
| // If the method is an impl for an item with docs_hidden, don't doc. |
| MethodLateContext::PlainImpl => { |
| let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id()); |
| let impl_ty = cx.tcx.type_of(parent).subst_identity(); |
| let outerdef = match impl_ty.kind() { |
| ty::Adt(def, _) => Some(def.did()), |
| ty::Foreign(def_id) => Some(*def_id), |
| _ => None, |
| }; |
| let is_hidden = match outerdef { |
| Some(id) => cx.tcx.is_doc_hidden(id), |
| None => false, |
| }; |
| if is_hidden { |
| return; |
| } |
| } |
| } |
| |
| let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id()); |
| self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc); |
| } |
| |
| fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) { |
| let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id()); |
| self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc); |
| } |
| |
| fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) { |
| if !sf.is_positional() { |
| self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field") |
| } |
| } |
| |
| fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) { |
| self.check_missing_docs_attrs(cx, v.def_id, "a", "variant"); |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_copy_implementations` lint detects potentially-forgotten |
| /// implementations of [`Copy`] for public types. |
| /// |
| /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_copy_implementations)] |
| /// pub struct Foo { |
| /// pub field: i32 |
| /// } |
| /// # fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Historically (before 1.0), types were automatically marked as `Copy` |
| /// if possible. This was changed so that it required an explicit opt-in |
| /// by implementing the `Copy` trait. As part of this change, a lint was |
| /// added to alert if a copyable type was not marked `Copy`. |
| /// |
| /// This lint is "allow" by default because this code isn't bad; it is |
| /// common to write newtypes like this specifically so that a `Copy` type |
| /// is no longer `Copy`. `Copy` types can result in unintended copies of |
| /// large data which can impact performance. |
| pub MISSING_COPY_IMPLEMENTATIONS, |
| Allow, |
| "detects potentially-forgotten implementations of `Copy`" |
| } |
| |
| declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| if !(cx.effective_visibilities.is_reachable(item.owner_id.def_id) |
| && cx.tcx.local_visibility(item.owner_id.def_id).is_public()) |
| { |
| return; |
| } |
| let (def, ty) = match item.kind { |
| hir::ItemKind::Struct(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.owner_id); |
| (def, cx.tcx.mk_adt(def, ty::List::empty())) |
| } |
| hir::ItemKind::Union(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.owner_id); |
| (def, cx.tcx.mk_adt(def, ty::List::empty())) |
| } |
| hir::ItemKind::Enum(_, ref ast_generics) => { |
| if !ast_generics.params.is_empty() { |
| return; |
| } |
| let def = cx.tcx.adt_def(item.owner_id); |
| (def, cx.tcx.mk_adt(def, ty::List::empty())) |
| } |
| _ => return, |
| }; |
| if def.has_dtor(cx.tcx) { |
| return; |
| } |
| |
| // If the type contains a raw pointer, it may represent something like a handle, |
| // and recommending Copy might be a bad idea. |
| for field in def.all_fields() { |
| let did = field.did; |
| if cx.tcx.type_of(did).subst_identity().is_unsafe_ptr() { |
| return; |
| } |
| } |
| let param_env = ty::ParamEnv::empty(); |
| if ty.is_copy_modulo_regions(cx.tcx, param_env) { |
| return; |
| } |
| |
| // We shouldn't recommend implementing `Copy` on stateful things, |
| // such as iterators. |
| if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator) |
| && cx.tcx |
| .infer_ctxt() |
| .build() |
| .type_implements_trait(iter_trait, [ty], param_env) |
| .must_apply_modulo_regions() |
| { |
| return; |
| } |
| |
| // Default value of clippy::trivially_copy_pass_by_ref |
| const MAX_SIZE: u64 = 256; |
| |
| if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) { |
| if size > MAX_SIZE { |
| return; |
| } |
| } |
| |
| if type_allowed_to_implement_copy( |
| cx.tcx, |
| param_env, |
| ty, |
| traits::ObligationCause::misc(item.span, item.owner_id.def_id), |
| ) |
| .is_ok() |
| { |
| cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `missing_debug_implementations` lint detects missing |
| /// implementations of [`fmt::Debug`] for public types. |
| /// |
| /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(missing_debug_implementations)] |
| /// pub struct Foo; |
| /// # fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Having a `Debug` implementation on all types can assist with |
| /// debugging, as it provides a convenient way to format and display a |
| /// value. Using the `#[derive(Debug)]` attribute will automatically |
| /// generate a typical implementation, or a custom implementation can be |
| /// added by manually implementing the `Debug` trait. |
| /// |
| /// This lint is "allow" by default because adding `Debug` to all types can |
| /// have a negative impact on compile time and code size. It also requires |
| /// boilerplate to be added to every type, which can be an impediment. |
| MISSING_DEBUG_IMPLEMENTATIONS, |
| Allow, |
| "detects missing implementations of Debug" |
| } |
| |
| #[derive(Default)] |
| pub struct MissingDebugImplementations { |
| impling_types: Option<LocalDefIdSet>, |
| } |
| |
| impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| if !(cx.effective_visibilities.is_reachable(item.owner_id.def_id) |
| && cx.tcx.local_visibility(item.owner_id.def_id).is_public()) |
| { |
| return; |
| } |
| |
| match item.kind { |
| hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {} |
| _ => return, |
| } |
| |
| let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { |
| return |
| }; |
| |
| if self.impling_types.is_none() { |
| let mut impls = LocalDefIdSet::default(); |
| cx.tcx.for_each_impl(debug, |d| { |
| if let Some(ty_def) = cx.tcx.type_of(d).subst_identity().ty_adt_def() { |
| if let Some(def_id) = ty_def.did().as_local() { |
| impls.insert(def_id); |
| } |
| } |
| }); |
| |
| self.impling_types = Some(impls); |
| debug!("{:?}", self.impling_types); |
| } |
| |
| if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) { |
| cx.emit_spanned_lint( |
| MISSING_DEBUG_IMPLEMENTATIONS, |
| item.span, |
| BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug }, |
| ); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `anonymous_parameters` lint detects anonymous parameters in trait |
| /// definitions. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,edition2015,compile_fail |
| /// #![deny(anonymous_parameters)] |
| /// // edition 2015 |
| /// pub trait Foo { |
| /// fn foo(usize); |
| /// } |
| /// fn main() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// This syntax is mostly a historical accident, and can be worked around |
| /// quite easily by adding an `_` pattern or a descriptive identifier: |
| /// |
| /// ```rust |
| /// trait Foo { |
| /// fn foo(_: usize); |
| /// } |
| /// ``` |
| /// |
| /// This syntax is now a hard error in the 2018 edition. In the 2015 |
| /// edition, this lint is "warn" by default. This lint |
| /// enables the [`cargo fix`] tool with the `--edition` flag to |
| /// automatically transition old code from the 2015 edition to 2018. The |
| /// tool will run this lint and automatically apply the |
| /// suggested fix from the compiler (which is to add `_` to each |
| /// parameter). This provides a completely automated way to update old |
| /// code for a new edition. See [issue #41686] for more details. |
| /// |
| /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686 |
| /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html |
| pub ANONYMOUS_PARAMETERS, |
| Warn, |
| "detects anonymous parameters", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), |
| }; |
| } |
| |
| declare_lint_pass!( |
| /// Checks for use of anonymous parameters (RFC 1685). |
| AnonymousParameters => [ANONYMOUS_PARAMETERS] |
| ); |
| |
| impl EarlyLintPass for AnonymousParameters { |
| fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { |
| if cx.sess().edition() != Edition::Edition2015 { |
| // This is a hard error in future editions; avoid linting and erroring |
| return; |
| } |
| if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind { |
| for arg in sig.decl.inputs.iter() { |
| if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind { |
| if ident.name == kw::Empty { |
| let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span); |
| |
| let (ty_snip, appl) = if let Ok(ref snip) = ty_snip { |
| (snip.as_str(), Applicability::MachineApplicable) |
| } else { |
| ("<type>", Applicability::HasPlaceholders) |
| }; |
| cx.emit_spanned_lint( |
| ANONYMOUS_PARAMETERS, |
| arg.pat.span, |
| BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip }, |
| ); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Check for use of attributes which have been deprecated. |
| #[derive(Clone)] |
| pub struct DeprecatedAttr { |
| // This is not free to compute, so we want to keep it around, rather than |
| // compute it for every attribute. |
| depr_attrs: Vec<&'static BuiltinAttribute>, |
| } |
| |
| impl_lint_pass!(DeprecatedAttr => []); |
| |
| impl DeprecatedAttr { |
| pub fn new() -> DeprecatedAttr { |
| DeprecatedAttr { depr_attrs: deprecated_attributes() } |
| } |
| } |
| |
| impl EarlyLintPass for DeprecatedAttr { |
| fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { |
| for BuiltinAttribute { name, gate, .. } in &self.depr_attrs { |
| if attr.ident().map(|ident| ident.name) == Some(*name) { |
| if let &AttributeGate::Gated( |
| Stability::Deprecated(link, suggestion), |
| name, |
| reason, |
| _, |
| ) = gate |
| { |
| let suggestion = match suggestion { |
| Some(msg) => { |
| BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg } |
| } |
| None => { |
| BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span } |
| } |
| }; |
| cx.emit_spanned_lint( |
| DEPRECATED, |
| attr.span, |
| BuiltinDeprecatedAttrLink { name, reason, link, suggestion }, |
| ); |
| } |
| return; |
| } |
| } |
| if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) { |
| cx.emit_spanned_lint( |
| DEPRECATED, |
| attr.span, |
| BuiltinDeprecatedAttrUsed { |
| name: pprust::path_to_string(&attr.get_normal_item().path), |
| suggestion: attr.span, |
| }, |
| ); |
| } |
| } |
| } |
| |
| fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) { |
| use rustc_ast::token::CommentKind; |
| |
| let mut attrs = attrs.iter().peekable(); |
| |
| // Accumulate a single span for sugared doc comments. |
| let mut sugared_span: Option<Span> = None; |
| |
| while let Some(attr) = attrs.next() { |
| let is_doc_comment = attr.is_doc_comment(); |
| if is_doc_comment { |
| sugared_span = |
| Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi()))); |
| } |
| |
| if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) { |
| continue; |
| } |
| |
| let span = sugared_span.take().unwrap_or(attr.span); |
| |
| if is_doc_comment || attr.has_name(sym::doc) { |
| let sub = match attr.kind { |
| AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => { |
| BuiltinUnusedDocCommentSub::PlainHelp |
| } |
| AttrKind::DocComment(CommentKind::Block, _) => { |
| BuiltinUnusedDocCommentSub::BlockHelp |
| } |
| }; |
| cx.emit_spanned_lint( |
| UNUSED_DOC_COMMENTS, |
| span, |
| BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub }, |
| ); |
| } |
| } |
| } |
| |
| impl EarlyLintPass for UnusedDocComment { |
| fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { |
| let kind = match stmt.kind { |
| ast::StmtKind::Local(..) => "statements", |
| // Disabled pending discussion in #78306 |
| ast::StmtKind::Item(..) => return, |
| // expressions will be reported by `check_expr`. |
| ast::StmtKind::Empty |
| | ast::StmtKind::Semi(_) |
| | ast::StmtKind::Expr(_) |
| | ast::StmtKind::MacCall(_) => return, |
| }; |
| |
| warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs()); |
| } |
| |
| fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) { |
| let arm_span = arm.pat.span.with_hi(arm.body.span.hi()); |
| warn_if_doc(cx, arm_span, "match arms", &arm.attrs); |
| } |
| |
| fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { |
| warn_if_doc(cx, expr.span, "expressions", &expr.attrs); |
| } |
| |
| fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) { |
| warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs); |
| } |
| |
| fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) { |
| warn_if_doc(cx, block.span, "blocks", &block.attrs()); |
| } |
| |
| fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { |
| if let ast::ItemKind::ForeignMod(_) = item.kind { |
| warn_if_doc(cx, item.span, "extern blocks", &item.attrs); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `no_mangle_const_items` lint detects any `const` items with the |
| /// [`no_mangle` attribute]. |
| /// |
| /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #[no_mangle] |
| /// const FOO: i32 = 5; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Constants do not have their symbols exported, and therefore, this |
| /// probably means you meant to use a [`static`], not a [`const`]. |
| /// |
| /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html |
| /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html |
| NO_MANGLE_CONST_ITEMS, |
| Deny, |
| "const items will not have their symbols exported" |
| } |
| |
| declare_lint! { |
| /// The `no_mangle_generic_items` lint detects generic items that must be |
| /// mangled. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #[no_mangle] |
| /// fn foo<T>(t: T) { |
| /// |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// A function with generics must have its symbol mangled to accommodate |
| /// the generic parameter. The [`no_mangle` attribute] has no effect in |
| /// this situation, and should be removed. |
| /// |
| /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute |
| NO_MANGLE_GENERIC_ITEMS, |
| Warn, |
| "generic items must be mangled" |
| } |
| |
| declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| let attrs = cx.tcx.hir().attrs(it.hir_id()); |
| let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute, |
| impl_generics: Option<&hir::Generics<'_>>, |
| generics: &hir::Generics<'_>, |
| span| { |
| for param in |
| generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten()) |
| { |
| match param.kind { |
| GenericParamKind::Lifetime { .. } => {} |
| GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { |
| cx.emit_spanned_lint( |
| NO_MANGLE_GENERIC_ITEMS, |
| span, |
| BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span }, |
| ); |
| break; |
| } |
| } |
| } |
| }; |
| match it.kind { |
| hir::ItemKind::Fn(.., ref generics, _) => { |
| if let Some(no_mangle_attr) = attr::find_by_name(attrs, sym::no_mangle) { |
| check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span); |
| } |
| } |
| hir::ItemKind::Const(..) => { |
| if attr::contains_name(attrs, sym::no_mangle) { |
| // account for "pub const" (#45562) |
| let start = cx |
| .tcx |
| .sess |
| .source_map() |
| .span_to_snippet(it.span) |
| .map(|snippet| snippet.find("const").unwrap_or(0)) |
| .unwrap_or(0) as u32; |
| // `const` is 5 chars |
| let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5)); |
| |
| // Const items do not refer to a particular location in memory, and therefore |
| // don't have anything to attach a symbol to |
| cx.emit_spanned_lint( |
| NO_MANGLE_CONST_ITEMS, |
| it.span, |
| BuiltinConstNoMangle { suggestion }, |
| ); |
| } |
| } |
| hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => { |
| for it in *items { |
| if let hir::AssocItemKind::Fn { .. } = it.kind { |
| if let Some(no_mangle_attr) = |
| attr::find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle) |
| { |
| check_no_mangle_on_generic_fn( |
| no_mangle_attr, |
| Some(generics), |
| cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(), |
| it.span, |
| ); |
| } |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut |
| /// T` because it is [undefined behavior]. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// unsafe { |
| /// let y = std::mem::transmute::<&i32, &mut i32>(&5); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Certain assumptions are made about aliasing of data, and this transmute |
| /// violates those assumptions. Consider using [`UnsafeCell`] instead. |
| /// |
| /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html |
| MUTABLE_TRANSMUTES, |
| Deny, |
| "transmuting &T to &mut T is undefined behavior, even if the reference is unused" |
| } |
| |
| declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]); |
| |
| impl<'tcx> LateLintPass<'tcx> for MutableTransmutes { |
| fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { |
| if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) = |
| get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind())) |
| { |
| if from_mutbl < to_mutbl { |
| cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes); |
| } |
| } |
| |
| fn get_transmute_from_to<'tcx>( |
| cx: &LateContext<'tcx>, |
| expr: &hir::Expr<'_>, |
| ) -> Option<(Ty<'tcx>, Ty<'tcx>)> { |
| let def = if let hir::ExprKind::Path(ref qpath) = expr.kind { |
| cx.qpath_res(qpath, expr.hir_id) |
| } else { |
| return None; |
| }; |
| if let Res::Def(DefKind::Fn, did) = def { |
| if !def_id_is_transmute(cx, did) { |
| return None; |
| } |
| let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx); |
| let from = sig.inputs().skip_binder()[0]; |
| let to = sig.output().skip_binder(); |
| return Some((from, to)); |
| } |
| None |
| } |
| |
| fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool { |
| cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unstable_features` is deprecated and should no longer be used. |
| UNSTABLE_FEATURES, |
| Allow, |
| "enabling unstable features (deprecated. do not use)" |
| } |
| |
| declare_lint_pass!( |
| /// Forbids using the `#[feature(...)]` attribute |
| UnstableFeatures => [UNSTABLE_FEATURES] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for UnstableFeatures { |
| fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) { |
| if attr.has_name(sym::feature) { |
| if let Some(items) = attr.meta_item_list() { |
| for item in items { |
| cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `ungated_async_fn_track_caller` lint warns when the |
| /// `#[track_caller]` attribute is used on an async function, method, or |
| /// closure, without enabling the corresponding unstable feature flag. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #[track_caller] |
| /// async fn foo() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The attribute must be used in conjunction with the |
| /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]` |
| /// annotation will function as a no-op. |
| /// |
| /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html |
| UNGATED_ASYNC_FN_TRACK_CALLER, |
| Warn, |
| "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled" |
| } |
| |
| declare_lint_pass!( |
| /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to |
| /// do anything |
| UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller { |
| fn check_fn( |
| &mut self, |
| cx: &LateContext<'_>, |
| fn_kind: HirFnKind<'_>, |
| _: &'tcx FnDecl<'_>, |
| _: &'tcx Body<'_>, |
| span: Span, |
| def_id: LocalDefId, |
| ) { |
| if fn_kind.asyncness() == IsAsync::Async |
| && !cx.tcx.features().closure_track_caller |
| // Now, check if the function has the `#[track_caller]` attribute |
| && let Some(attr) = cx.tcx.get_attr(def_id, sym::track_caller) |
| { |
| cx.emit_spanned_lint(UNGATED_ASYNC_FN_TRACK_CALLER, attr.span, BuiltinUngatedAsyncFnTrackCaller { |
| label: span, |
| parse_sess: &cx.tcx.sess.parse_sess, |
| }); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unreachable_pub` lint triggers for `pub` items not reachable from |
| /// the crate root. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// #![deny(unreachable_pub)] |
| /// mod foo { |
| /// pub mod bar { |
| /// |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// A bare `pub` visibility may be misleading if the item is not actually |
| /// publicly exported from the crate. The `pub(crate)` visibility is |
| /// recommended to be used instead, which more clearly expresses the intent |
| /// that the item is only visible within its own crate. |
| /// |
| /// This lint is "allow" by default because it will trigger for a large |
| /// amount existing Rust code, and has some false-positives. Eventually it |
| /// is desired for this to become warn-by-default. |
| pub UNREACHABLE_PUB, |
| Allow, |
| "`pub` items not reachable from crate root" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for items marked `pub` that aren't reachable from other crates. |
| UnreachablePub => [UNREACHABLE_PUB] |
| ); |
| |
| impl UnreachablePub { |
| fn perform_lint( |
| &self, |
| cx: &LateContext<'_>, |
| what: &str, |
| def_id: LocalDefId, |
| vis_span: Span, |
| exportable: bool, |
| ) { |
| let mut applicability = Applicability::MachineApplicable; |
| if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id) |
| { |
| if vis_span.from_expansion() { |
| applicability = Applicability::MaybeIncorrect; |
| } |
| let def_span = cx.tcx.def_span(def_id); |
| cx.emit_spanned_lint( |
| UNREACHABLE_PUB, |
| def_span, |
| BuiltinUnreachablePub { |
| what, |
| suggestion: (vis_span, applicability), |
| help: exportable.then_some(()), |
| }, |
| ); |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for UnreachablePub { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| // Do not warn for fake `use` statements. |
| if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind { |
| return; |
| } |
| self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true); |
| } |
| |
| fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) { |
| self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true); |
| } |
| |
| fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) { |
| let map = cx.tcx.hir(); |
| if matches!(map.get_parent(field.hir_id), Node::Variant(_)) { |
| return; |
| } |
| self.perform_lint(cx, "field", field.def_id, field.vis_span, false); |
| } |
| |
| fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { |
| // Only lint inherent impl items. |
| if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() { |
| self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false); |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `type_alias_bounds` lint detects bounds in type aliases. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// type SendVec<T: Send> = Vec<T>; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The trait bounds in a type alias are currently ignored, and should not |
| /// be included to avoid confusion. This was previously allowed |
| /// unintentionally; this may become a hard error in the future. |
| TYPE_ALIAS_BOUNDS, |
| Warn, |
| "bounds in type aliases are not enforced" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for trait and lifetime bounds in type aliases being mostly ignored. |
| /// They are relevant when using associated types, but otherwise neither checked |
| /// at definition site nor enforced at use site. |
| TypeAliasBounds => [TYPE_ALIAS_BOUNDS] |
| ); |
| |
| impl TypeAliasBounds { |
| pub(crate) fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool { |
| match *qpath { |
| hir::QPath::TypeRelative(ref ty, _) => { |
| // If this is a type variable, we found a `T::Assoc`. |
| match ty.kind { |
| hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { |
| matches!(path.res, Res::Def(DefKind::TyParam, _)) |
| } |
| _ => false, |
| } |
| } |
| hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false, |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds { |
| fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { |
| let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else { |
| return |
| }; |
| if let hir::TyKind::OpaqueDef(..) = ty.kind { |
| // Bounds are respected for `type X = impl Trait` |
| return; |
| } |
| if cx.tcx.type_of(item.owner_id).skip_binder().has_inherent_projections() { |
| // Bounds are respected for `type X = … Type::Inherent …` |
| return; |
| } |
| // There must not be a where clause |
| if type_alias_generics.predicates.is_empty() { |
| return; |
| } |
| |
| let mut where_spans = Vec::new(); |
| let mut inline_spans = Vec::new(); |
| let mut inline_sugg = Vec::new(); |
| for p in type_alias_generics.predicates { |
| let span = p.span(); |
| if p.in_where_clause() { |
| where_spans.push(span); |
| } else { |
| for b in p.bounds() { |
| inline_spans.push(b.span()); |
| } |
| inline_sugg.push((span, String::new())); |
| } |
| } |
| |
| let mut suggested_changing_assoc_types = false; |
| if !where_spans.is_empty() { |
| let sub = (!suggested_changing_assoc_types).then(|| { |
| suggested_changing_assoc_types = true; |
| SuggestChangingAssocTypes { ty } |
| }); |
| cx.emit_spanned_lint( |
| TYPE_ALIAS_BOUNDS, |
| where_spans, |
| BuiltinTypeAliasWhereClause { |
| suggestion: type_alias_generics.where_clause_span, |
| sub, |
| }, |
| ); |
| } |
| |
| if !inline_spans.is_empty() { |
| let suggestion = BuiltinTypeAliasGenericBoundsSuggestion { suggestions: inline_sugg }; |
| let sub = (!suggested_changing_assoc_types).then(|| { |
| suggested_changing_assoc_types = true; |
| SuggestChangingAssocTypes { ty } |
| }); |
| cx.emit_spanned_lint( |
| TYPE_ALIAS_BOUNDS, |
| inline_spans, |
| BuiltinTypeAliasGenericBounds { suggestion, sub }, |
| ); |
| } |
| } |
| } |
| |
| declare_lint_pass!( |
| /// Lint constants that are erroneous. |
| /// Without this lint, we might not get any diagnostic if the constant is |
| /// unused within this crate, even though downstream crates can't use it |
| /// without producing an error. |
| UnusedBrokenConst => [] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| match it.kind { |
| hir::ItemKind::Const(_, body_id) => { |
| let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); |
| // trigger the query once for all constants since that will already report the errors |
| cx.tcx.ensure().const_eval_poly(def_id); |
| } |
| hir::ItemKind::Static(_, _, body_id) => { |
| let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); |
| cx.tcx.ensure().eval_static_initializer(def_id); |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `trivial_bounds` lint detects trait bounds that don't depend on |
| /// any type parameters. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #![feature(trivial_bounds)] |
| /// pub struct A where i32: Copy; |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Usually you would not write a trait bound that you know is always |
| /// true, or never true. However, when using macros, the macro may not |
| /// know whether or not the constraint would hold or not at the time when |
| /// generating the code. Currently, the compiler does not alert you if the |
| /// constraint is always true, and generates an error if it is never true. |
| /// The `trivial_bounds` feature changes this to be a warning in both |
| /// cases, giving macros more freedom and flexibility to generate code, |
| /// while still providing a signal when writing non-macro code that |
| /// something is amiss. |
| /// |
| /// See [RFC 2056] for more details. This feature is currently only |
| /// available on the nightly channel, see [tracking issue #48214]. |
| /// |
| /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md |
| /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214 |
| TRIVIAL_BOUNDS, |
| Warn, |
| "these bounds don't depend on an type parameters" |
| } |
| |
| declare_lint_pass!( |
| /// Lint for trait and lifetime bounds that don't depend on type parameters |
| /// which either do nothing, or stop the item from being used. |
| TrivialConstraints => [TRIVIAL_BOUNDS] |
| ); |
| |
| impl<'tcx> LateLintPass<'tcx> for TrivialConstraints { |
| fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { |
| use rustc_middle::ty::Clause; |
| use rustc_middle::ty::PredicateKind::*; |
| |
| if cx.tcx.features().trivial_bounds { |
| let predicates = cx.tcx.predicates_of(item.owner_id); |
| for &(predicate, span) in predicates.predicates { |
| let predicate_kind_name = match predicate.kind().skip_binder() { |
| Clause(Clause::Trait(..)) => "trait", |
| Clause(Clause::TypeOutlives(..)) | |
| Clause(Clause::RegionOutlives(..)) => "lifetime", |
| |
| // `ConstArgHasType` is never global as `ct` is always a param |
| Clause(Clause::ConstArgHasType(..)) | |
| // Ignore projections, as they can only be global |
| // if the trait bound is global |
| Clause(Clause::Projection(..)) | |
| AliasRelate(..) | |
| // Ignore bounds that a user can't type |
| WellFormed(..) | |
| ObjectSafe(..) | |
| ClosureKind(..) | |
| Subtype(..) | |
| Coerce(..) | |
| // FIXME(generic_const_exprs): `ConstEvaluatable` can be written |
| ConstEvaluatable(..) | |
| ConstEquate(..) | |
| Ambiguous | |
| TypeWellFormedFromEnv(..) => continue, |
| }; |
| if predicate.is_global() { |
| cx.emit_spanned_lint( |
| TRIVIAL_BOUNDS, |
| span, |
| BuiltinTrivialBounds { predicate_kind_name, predicate }, |
| ); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint_pass!( |
| /// Does nothing as a lint pass, but registers some `Lint`s |
| /// which are used by other parts of the compiler. |
| SoftLints => [ |
| WHILE_TRUE, |
| BOX_POINTERS, |
| NON_SHORTHAND_FIELD_PATTERNS, |
| UNSAFE_CODE, |
| MISSING_DOCS, |
| MISSING_COPY_IMPLEMENTATIONS, |
| MISSING_DEBUG_IMPLEMENTATIONS, |
| ANONYMOUS_PARAMETERS, |
| UNUSED_DOC_COMMENTS, |
| NO_MANGLE_CONST_ITEMS, |
| NO_MANGLE_GENERIC_ITEMS, |
| MUTABLE_TRANSMUTES, |
| UNSTABLE_FEATURES, |
| UNREACHABLE_PUB, |
| TYPE_ALIAS_BOUNDS, |
| TRIVIAL_BOUNDS |
| ] |
| ); |
| |
| declare_lint! { |
| /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range |
| /// pattern], which is deprecated. |
| /// |
| /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns |
| /// |
| /// ### Example |
| /// |
| /// ```rust,edition2018 |
| /// let x = 123; |
| /// match x { |
| /// 0...100 => {} |
| /// _ => {} |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// The `...` range pattern syntax was changed to `..=` to avoid potential |
| /// confusion with the [`..` range expression]. Use the new form instead. |
| /// |
| /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html |
| pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, |
| Warn, |
| "`...` range patterns are deprecated", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021), |
| }; |
| } |
| |
| #[derive(Default)] |
| pub struct EllipsisInclusiveRangePatterns { |
| /// If `Some(_)`, suppress all subsequent pattern |
| /// warnings for better diagnostics. |
| node_id: Option<ast::NodeId>, |
| } |
| |
| impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]); |
| |
| impl EarlyLintPass for EllipsisInclusiveRangePatterns { |
| fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { |
| if self.node_id.is_some() { |
| // Don't recursively warn about patterns inside range endpoints. |
| return; |
| } |
| |
| use self::ast::{PatKind, RangeSyntax::DotDotDot}; |
| |
| /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span |
| /// corresponding to the ellipsis. |
| fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> { |
| match &pat.kind { |
| PatKind::Range( |
| a, |
| Some(b), |
| Spanned { span, node: RangeEnd::Included(DotDotDot) }, |
| ) => Some((a.as_deref(), b, *span)), |
| _ => None, |
| } |
| } |
| |
| let (parentheses, endpoints) = match &pat.kind { |
| PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)), |
| _ => (false, matches_ellipsis_pat(pat)), |
| }; |
| |
| if let Some((start, end, join)) = endpoints { |
| if parentheses { |
| self.node_id = Some(pat.id); |
| let end = expr_to_string(&end); |
| let replace = match start { |
| Some(start) => format!("&({}..={})", expr_to_string(&start), end), |
| None => format!("&(..={})", end), |
| }; |
| if join.edition() >= Edition::Edition2021 { |
| cx.sess().emit_err(BuiltinEllipsisInclusiveRangePatterns { |
| span: pat.span, |
| suggestion: pat.span, |
| replace, |
| }); |
| } else { |
| cx.emit_spanned_lint( |
| ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, |
| pat.span, |
| BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise { |
| suggestion: pat.span, |
| replace, |
| }, |
| ); |
| } |
| } else { |
| let replace = "..="; |
| if join.edition() >= Edition::Edition2021 { |
| cx.sess().emit_err(BuiltinEllipsisInclusiveRangePatterns { |
| span: pat.span, |
| suggestion: join, |
| replace: replace.to_string(), |
| }); |
| } else { |
| cx.emit_spanned_lint( |
| ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, |
| join, |
| BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise { |
| suggestion: join, |
| }, |
| ); |
| } |
| }; |
| } |
| } |
| |
| fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) { |
| if let Some(node_id) = self.node_id { |
| if pat.id == node_id { |
| self.node_id = None |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `unnameable_test_items` lint detects [`#[test]`][test] functions |
| /// that are not able to be run by the test harness because they are in a |
| /// position where they are not nameable. |
| /// |
| /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute |
| /// |
| /// ### Example |
| /// |
| /// ```rust,test |
| /// fn main() { |
| /// #[test] |
| /// fn foo() { |
| /// // This test will not fail because it does not run. |
| /// assert_eq!(1, 2); |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// In order for the test harness to run a test, the test function must be |
| /// located in a position where it can be accessed from the crate root. |
| /// This generally means it must be defined in a module, and not anywhere |
| /// else such as inside another function. The compiler previously allowed |
| /// this without an error, so a lint was added as an alert that a test is |
| /// not being used. Whether or not this should be allowed has not yet been |
| /// decided, see [RFC 2471] and [issue #36629]. |
| /// |
| /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443 |
| /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629 |
| UNNAMEABLE_TEST_ITEMS, |
| Warn, |
| "detects an item that cannot be named being marked as `#[test_case]`", |
| report_in_external_macro |
| } |
| |
| pub struct UnnameableTestItems { |
| boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable |
| items_nameable: bool, |
| } |
| |
| impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]); |
| |
| impl UnnameableTestItems { |
| pub fn new() -> Self { |
| Self { boundary: None, items_nameable: true } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems { |
| fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| if self.items_nameable { |
| if let hir::ItemKind::Mod(..) = it.kind { |
| } else { |
| self.items_nameable = false; |
| self.boundary = Some(it.owner_id); |
| } |
| return; |
| } |
| |
| let attrs = cx.tcx.hir().attrs(it.hir_id()); |
| if let Some(attr) = attr::find_by_name(attrs, sym::rustc_test_marker) { |
| cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems); |
| } |
| } |
| |
| fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) { |
| if !self.items_nameable && self.boundary == Some(it.owner_id) { |
| self.items_nameable = true; |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `keyword_idents` lint detects edition keywords being used as an |
| /// identifier. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,edition2015,compile_fail |
| /// #![deny(keyword_idents)] |
| /// // edition 2015 |
| /// fn dyn() {} |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Rust [editions] allow the language to evolve without breaking |
| /// backwards compatibility. This lint catches code that uses new keywords |
| /// that are added to the language that are used as identifiers (such as a |
| /// variable name, function name, etc.). If you switch the compiler to a |
| /// new edition without updating the code, then it will fail to compile if |
| /// you are using a new keyword as an identifier. |
| /// |
| /// You can manually change the identifiers to a non-keyword, or use a |
| /// [raw identifier], for example `r#dyn`, to transition to a new edition. |
| /// |
| /// This lint solves the problem automatically. It is "allow" by default |
| /// because the code is perfectly valid in older editions. The [`cargo |
| /// fix`] tool with the `--edition` flag will switch this lint to "warn" |
| /// and automatically apply the suggested fix from the compiler (which is |
| /// to use a raw identifier). This provides a completely automated way to |
| /// update old code for a new edition. |
| /// |
| /// [editions]: https://doc.rust-lang.org/edition-guide/ |
| /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html |
| /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html |
| pub KEYWORD_IDENTS, |
| Allow, |
| "detects edition keywords being used as an identifier", |
| @future_incompatible = FutureIncompatibleInfo { |
| reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>", |
| reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), |
| }; |
| } |
| |
| declare_lint_pass!( |
| /// Check for uses of edition keywords used as an identifier. |
| KeywordIdents => [KEYWORD_IDENTS] |
| ); |
| |
| struct UnderMacro(bool); |
| |
| impl KeywordIdents { |
| fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) { |
| for tt in tokens.trees() { |
| match tt { |
| // Only report non-raw idents. |
| TokenTree::Token(token, _) => { |
| if let Some((ident, false)) = token.ident() { |
| self.check_ident_token(cx, UnderMacro(true), ident); |
| } |
| } |
| TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts), |
| } |
| } |
| } |
| |
| fn check_ident_token( |
| &mut self, |
| cx: &EarlyContext<'_>, |
| UnderMacro(under_macro): UnderMacro, |
| ident: Ident, |
| ) { |
| let next_edition = match cx.sess().edition() { |
| Edition::Edition2015 => { |
| match ident.name { |
| kw::Async | kw::Await | kw::Try => Edition::Edition2018, |
| |
| // rust-lang/rust#56327: Conservatively do not |
| // attempt to report occurrences of `dyn` within |
| // macro definitions or invocations, because `dyn` |
| // can legitimately occur as a contextual keyword |
| // in 2015 code denoting its 2018 meaning, and we |
| // do not want rustfix to inject bugs into working |
| // code by rewriting such occurrences. |
| // |
| // But if we see `dyn` outside of a macro, we know |
| // its precise role in the parsed AST and thus are |
| // assured this is truly an attempt to use it as |
| // an identifier. |
| kw::Dyn if !under_macro => Edition::Edition2018, |
| |
| _ => return, |
| } |
| } |
| |
| // There are no new keywords yet for the 2018 edition and beyond. |
| _ => return, |
| }; |
| |
| // Don't lint `r#foo`. |
| if cx.sess().parse_sess.raw_identifier_spans.contains(ident.span) { |
| return; |
| } |
| |
| cx.emit_spanned_lint( |
| KEYWORD_IDENTS, |
| ident.span, |
| BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span }, |
| ); |
| } |
| } |
| |
| impl EarlyLintPass for KeywordIdents { |
| fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) { |
| self.check_tokens(cx, &mac_def.body.tokens); |
| } |
| fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) { |
| self.check_tokens(cx, &mac.args.tokens); |
| } |
| fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) { |
| self.check_ident_token(cx, UnderMacro(false), ident); |
| } |
| } |
| |
| declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]); |
| |
| impl ExplicitOutlivesRequirements { |
| fn lifetimes_outliving_lifetime<'tcx>( |
| inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)], |
| def_id: DefId, |
| ) -> Vec<ty::Region<'tcx>> { |
| inferred_outlives |
| .iter() |
| .filter_map(|(clause, _)| match *clause { |
| ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a { |
| ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b), |
| _ => None, |
| }, |
| _ => None, |
| }) |
| .collect() |
| } |
| |
| fn lifetimes_outliving_type<'tcx>( |
| inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)], |
| index: u32, |
| ) -> Vec<ty::Region<'tcx>> { |
| inferred_outlives |
| .iter() |
| .filter_map(|(clause, _)| match *clause { |
| ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => { |
| a.is_param(index).then_some(b) |
| } |
| _ => None, |
| }) |
| .collect() |
| } |
| |
| fn collect_outlives_bound_spans<'tcx>( |
| &self, |
| tcx: TyCtxt<'tcx>, |
| bounds: &hir::GenericBounds<'_>, |
| inferred_outlives: &[ty::Region<'tcx>], |
| predicate_span: Span, |
| ) -> Vec<(usize, Span)> { |
| use rustc_middle::middle::resolve_bound_vars::ResolvedArg; |
| |
| bounds |
| .iter() |
| .enumerate() |
| .filter_map(|(i, bound)| { |
| let hir::GenericBound::Outlives(lifetime) = bound else { |
| return None; |
| }; |
| |
| let is_inferred = match tcx.named_bound_var(lifetime.hir_id) { |
| Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives |
| .iter() |
| .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })), |
| _ => false, |
| }; |
| |
| if !is_inferred { |
| return None; |
| } |
| |
| let span = bound.span().find_ancestor_inside(predicate_span)?; |
| if in_external_macro(tcx.sess, span) { |
| return None; |
| } |
| |
| Some((i, span)) |
| }) |
| .collect() |
| } |
| |
| fn consolidate_outlives_bound_spans( |
| &self, |
| lo: Span, |
| bounds: &hir::GenericBounds<'_>, |
| bound_spans: Vec<(usize, Span)>, |
| ) -> Vec<Span> { |
| if bounds.is_empty() { |
| return Vec::new(); |
| } |
| if bound_spans.len() == bounds.len() { |
| let (_, last_bound_span) = bound_spans[bound_spans.len() - 1]; |
| // If all bounds are inferable, we want to delete the colon, so |
| // start from just after the parameter (span passed as argument) |
| vec![lo.to(last_bound_span)] |
| } else { |
| let mut merged = Vec::new(); |
| let mut last_merged_i = None; |
| |
| let mut from_start = true; |
| for (i, bound_span) in bound_spans { |
| match last_merged_i { |
| // If the first bound is inferable, our span should also eat the leading `+`. |
| None if i == 0 => { |
| merged.push(bound_span.to(bounds[1].span().shrink_to_lo())); |
| last_merged_i = Some(0); |
| } |
| // If consecutive bounds are inferable, merge their spans |
| Some(h) if i == h + 1 => { |
| if let Some(tail) = merged.last_mut() { |
| // Also eat the trailing `+` if the first |
| // more-than-one bound is inferable |
| let to_span = if from_start && i < bounds.len() { |
| bounds[i + 1].span().shrink_to_lo() |
| } else { |
| bound_span |
| }; |
| *tail = tail.to(to_span); |
| last_merged_i = Some(i); |
| } else { |
| bug!("another bound-span visited earlier"); |
| } |
| } |
| _ => { |
| // When we find a non-inferable bound, subsequent inferable bounds |
| // won't be consecutive from the start (and we'll eat the leading |
| // `+` rather than the trailing one) |
| from_start = false; |
| merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span)); |
| last_merged_i = Some(i); |
| } |
| } |
| } |
| merged |
| } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements { |
| fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) { |
| use rustc_middle::middle::resolve_bound_vars::ResolvedArg; |
| |
| let def_id = item.owner_id.def_id; |
| if let hir::ItemKind::Struct(_, hir_generics) |
| | hir::ItemKind::Enum(_, hir_generics) |
| | hir::ItemKind::Union(_, hir_generics) = item.kind |
| { |
| let inferred_outlives = cx.tcx.inferred_outlives_of(def_id); |
| if inferred_outlives.is_empty() { |
| return; |
| } |
| |
| let ty_generics = cx.tcx.generics_of(def_id); |
| |
| let mut bound_count = 0; |
| let mut lint_spans = Vec::new(); |
| let mut where_lint_spans = Vec::new(); |
| let mut dropped_predicate_count = 0; |
| let num_predicates = hir_generics.predicates.len(); |
| for (i, where_predicate) in hir_generics.predicates.iter().enumerate() { |
| let (relevant_lifetimes, bounds, predicate_span, in_where_clause) = |
| match where_predicate { |
| hir::WherePredicate::RegionPredicate(predicate) => { |
| if let Some(ResolvedArg::EarlyBound(region_def_id)) = |
| cx.tcx.named_bound_var(predicate.lifetime.hir_id) |
| { |
| ( |
| Self::lifetimes_outliving_lifetime( |
| inferred_outlives, |
| region_def_id, |
| ), |
| &predicate.bounds, |
| predicate.span, |
| predicate.in_where_clause, |
| ) |
| } else { |
| continue; |
| } |
| } |
| hir::WherePredicate::BoundPredicate(predicate) => { |
| // FIXME we can also infer bounds on associated types, |
| // and should check for them here. |
| match predicate.bounded_ty.kind { |
| hir::TyKind::Path(hir::QPath::Resolved(None, path)) => { |
| let Res::Def(DefKind::TyParam, def_id) = path.res else { |
| continue; |
| }; |
| let index = ty_generics.param_def_id_to_index[&def_id]; |
| ( |
| Self::lifetimes_outliving_type(inferred_outlives, index), |
| &predicate.bounds, |
| predicate.span, |
| predicate.origin == PredicateOrigin::WhereClause, |
| ) |
| } |
| _ => { |
| continue; |
| } |
| } |
| } |
| _ => continue, |
| }; |
| if relevant_lifetimes.is_empty() { |
| continue; |
| } |
| |
| let bound_spans = self.collect_outlives_bound_spans( |
| cx.tcx, |
| bounds, |
| &relevant_lifetimes, |
| predicate_span, |
| ); |
| bound_count += bound_spans.len(); |
| |
| let drop_predicate = bound_spans.len() == bounds.len(); |
| if drop_predicate { |
| dropped_predicate_count += 1; |
| } |
| |
| if drop_predicate { |
| if !in_where_clause { |
| lint_spans.push(predicate_span); |
| } else if predicate_span.from_expansion() { |
| // Don't try to extend the span if it comes from a macro expansion. |
| where_lint_spans.push(predicate_span); |
| } else if i + 1 < num_predicates { |
| // If all the bounds on a predicate were inferable and there are |
| // further predicates, we want to eat the trailing comma. |
| let next_predicate_span = hir_generics.predicates[i + 1].span(); |
| if next_predicate_span.from_expansion() { |
| where_lint_spans.push(predicate_span); |
| } else { |
| where_lint_spans |
| .push(predicate_span.to(next_predicate_span.shrink_to_lo())); |
| } |
| } else { |
| // Eat the optional trailing comma after the last predicate. |
| let where_span = hir_generics.where_clause_span; |
| if where_span.from_expansion() { |
| where_lint_spans.push(predicate_span); |
| } else { |
| where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi())); |
| } |
| } |
| } else { |
| where_lint_spans.extend(self.consolidate_outlives_bound_spans( |
| predicate_span.shrink_to_lo(), |
| bounds, |
| bound_spans, |
| )); |
| } |
| } |
| |
| // If all predicates are inferable, drop the entire clause |
| // (including the `where`) |
| if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates |
| { |
| let where_span = hir_generics.where_clause_span; |
| // Extend the where clause back to the closing `>` of the |
| // generics, except for tuple struct, which have the `where` |
| // after the fields of the struct. |
| let full_where_span = |
| if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind { |
| where_span |
| } else { |
| hir_generics.span.shrink_to_hi().to(where_span) |
| }; |
| |
| // Due to macro expansions, the `full_where_span` might not actually contain all predicates. |
| if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) { |
| lint_spans.push(full_where_span); |
| } else { |
| lint_spans.extend(where_lint_spans); |
| } |
| } else { |
| lint_spans.extend(where_lint_spans); |
| } |
| |
| if !lint_spans.is_empty() { |
| // Do not automatically delete outlives requirements from macros. |
| let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions()) |
| { |
| Applicability::MachineApplicable |
| } else { |
| Applicability::MaybeIncorrect |
| }; |
| |
| // Due to macros, there might be several predicates with the same span |
| // and we only want to suggest removing them once. |
| lint_spans.sort_unstable(); |
| lint_spans.dedup(); |
| |
| cx.emit_spanned_lint( |
| EXPLICIT_OUTLIVES_REQUIREMENTS, |
| lint_spans.clone(), |
| BuiltinExplicitOutlives { |
| count: bound_count, |
| suggestion: BuiltinExplicitOutlivesSuggestion { |
| spans: lint_spans, |
| applicability, |
| }, |
| }, |
| ); |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `incomplete_features` lint detects unstable features enabled with |
| /// the [`feature` attribute] that may function improperly in some or all |
| /// cases. |
| /// |
| /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// #![feature(generic_const_exprs)] |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Although it is encouraged for people to experiment with unstable |
| /// features, some of them are known to be incomplete or faulty. This lint |
| /// is a signal that the feature has not yet been finished, and you may |
| /// experience problems with it. |
| pub INCOMPLETE_FEATURES, |
| Warn, |
| "incomplete features that may function improperly in some or all cases" |
| } |
| |
| declare_lint_pass!( |
| /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`. |
| IncompleteFeatures => [INCOMPLETE_FEATURES] |
| ); |
| |
| impl EarlyLintPass for IncompleteFeatures { |
| fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { |
| let features = cx.sess().features_untracked(); |
| features |
| .declared_lang_features |
| .iter() |
| .map(|(name, span, _)| (name, span)) |
| .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span))) |
| .filter(|(&name, _)| features.incomplete(name)) |
| .for_each(|(&name, &span)| { |
| let note = rustc_feature::find_feature_issue(name, GateIssue::Language) |
| .map(|n| BuiltinIncompleteFeaturesNote { n }); |
| let help = |
| HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp); |
| cx.emit_spanned_lint( |
| INCOMPLETE_FEATURES, |
| span, |
| BuiltinIncompleteFeatures { name, note, help }, |
| ); |
| }); |
| } |
| } |
| |
| const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization]; |
| |
| declare_lint! { |
| /// The `invalid_value` lint detects creating a value that is not valid, |
| /// such as a null reference. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// # #![allow(unused)] |
| /// unsafe { |
| /// let x: &'static i32 = std::mem::zeroed(); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// In some situations the compiler can detect that the code is creating |
| /// an invalid value, which should be avoided. |
| /// |
| /// In particular, this lint will check for improper use of |
| /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and |
| /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The |
| /// lint should provide extra information to indicate what the problem is |
| /// and a possible solution. |
| /// |
| /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html |
| /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html |
| /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html |
| /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| pub INVALID_VALUE, |
| Warn, |
| "an invalid value is being created (such as a null reference)" |
| } |
| |
| declare_lint_pass!(InvalidValue => [INVALID_VALUE]); |
| |
| /// Information about why a type cannot be initialized this way. |
| pub struct InitError { |
| pub(crate) message: String, |
| /// Spans from struct fields and similar that can be obtained from just the type. |
| pub(crate) span: Option<Span>, |
| /// Used to report a trace through adts. |
| pub(crate) nested: Option<Box<InitError>>, |
| } |
| impl InitError { |
| fn spanned(self, span: Span) -> InitError { |
| Self { span: Some(span), ..self } |
| } |
| |
| fn nested(self, nested: impl Into<Option<InitError>>) -> InitError { |
| assert!(self.nested.is_none()); |
| Self { nested: nested.into().map(Box::new), ..self } |
| } |
| } |
| |
| impl<'a> From<&'a str> for InitError { |
| fn from(s: &'a str) -> Self { |
| s.to_owned().into() |
| } |
| } |
| impl From<String> for InitError { |
| fn from(message: String) -> Self { |
| Self { message, span: None, nested: None } |
| } |
| } |
| |
| impl<'tcx> LateLintPass<'tcx> for InvalidValue { |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { |
| #[derive(Debug, Copy, Clone, PartialEq)] |
| enum InitKind { |
| Zeroed, |
| Uninit, |
| } |
| |
| /// Test if this constant is all-0. |
| fn is_zero(expr: &hir::Expr<'_>) -> bool { |
| use hir::ExprKind::*; |
| use rustc_ast::LitKind::*; |
| match &expr.kind { |
| Lit(lit) => { |
| if let Int(i, _) = lit.node { |
| i == 0 |
| } else { |
| false |
| } |
| } |
| Tup(tup) => tup.iter().all(is_zero), |
| _ => false, |
| } |
| } |
| |
| /// Determine if this expression is a "dangerous initialization". |
| fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> { |
| if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind { |
| // Find calls to `mem::{uninitialized,zeroed}` methods. |
| if let hir::ExprKind::Path(ref qpath) = path_expr.kind { |
| let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; |
| match cx.tcx.get_diagnostic_name(def_id) { |
| Some(sym::mem_zeroed) => return Some(InitKind::Zeroed), |
| Some(sym::mem_uninitialized) => return Some(InitKind::Uninit), |
| Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed), |
| _ => {} |
| } |
| } |
| } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind { |
| // Find problematic calls to `MaybeUninit::assume_init`. |
| let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?; |
| if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) { |
| // This is a call to *some* method named `assume_init`. |
| // See if the `self` parameter is one of the dangerous constructors. |
| if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind { |
| if let hir::ExprKind::Path(ref qpath) = path_expr.kind { |
| let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; |
| match cx.tcx.get_diagnostic_name(def_id) { |
| Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed), |
| Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit), |
| _ => {} |
| } |
| } |
| } |
| } |
| } |
| |
| None |
| } |
| |
| fn variant_find_init_error<'tcx>( |
| cx: &LateContext<'tcx>, |
| ty: Ty<'tcx>, |
| variant: &VariantDef, |
| substs: ty::SubstsRef<'tcx>, |
| descr: &str, |
| init: InitKind, |
| ) -> Option<InitError> { |
| let mut field_err = variant.fields.iter().find_map(|field| { |
| ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| { |
| if !field.did.is_local() { |
| err |
| } else if err.span.is_none() { |
| err.span = Some(cx.tcx.def_span(field.did)); |
| write!(&mut err.message, " (in this {descr})").unwrap(); |
| err |
| } else { |
| InitError::from(format!("in this {descr}")) |
| .spanned(cx.tcx.def_span(field.did)) |
| .nested(err) |
| } |
| }) |
| }); |
| |
| // Check if this ADT has a constrained layout (like `NonNull` and friends). |
| if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) { |
| if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi { |
| let range = scalar.valid_range(cx); |
| let msg = if !range.contains(0) { |
| "must be non-null" |
| } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) { |
| // Prefer reporting on the fields over the entire struct for uninit, |
| // as the information bubbles out and it may be unclear why the type can't |
| // be null from just its outside signature. |
| |
| "must be initialized inside its custom valid range" |
| } else { |
| return field_err; |
| }; |
| if let Some(field_err) = &mut field_err { |
| // Most of the time, if the field error is the same as the struct error, |
| // the struct error only happens because of the field error. |
| if field_err.message.contains(msg) { |
| field_err.message = format!("because {}", field_err.message); |
| } |
| } |
| return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err)); |
| } |
| } |
| field_err |
| } |
| |
| /// Return `Some` only if we are sure this type does *not* |
| /// allow zero initialization. |
| fn ty_find_init_error<'tcx>( |
| cx: &LateContext<'tcx>, |
| ty: Ty<'tcx>, |
| init: InitKind, |
| ) -> Option<InitError> { |
| use rustc_type_ir::sty::TyKind::*; |
| match ty.kind() { |
| // Primitive types that don't like 0 as a value. |
| Ref(..) => Some("references must be non-null".into()), |
| Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()), |
| FnPtr(..) => Some("function pointers must be non-null".into()), |
| Never => Some("the `!` type has no valid value".into()), |
| RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) => |
| // raw ptr to dyn Trait |
| { |
| Some("the vtable of a wide raw pointer must be non-null".into()) |
| } |
| // Primitive types with other constraints. |
| Bool if init == InitKind::Uninit => { |
| Some("booleans must be either `true` or `false`".into()) |
| } |
| Char if init == InitKind::Uninit => { |
| Some("characters must be a valid Unicode codepoint".into()) |
| } |
| Int(_) | Uint(_) if init == InitKind::Uninit => { |
| Some("integers must be initialized".into()) |
| } |
| Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()), |
| RawPtr(_) if init == InitKind::Uninit => { |
| Some("raw pointers must be initialized".into()) |
| } |
| // Recurse and checks for some compound types. (but not unions) |
| Adt(adt_def, substs) if !adt_def.is_union() => { |
| // Handle structs. |
| if adt_def.is_struct() { |
| return variant_find_init_error( |
| cx, |
| ty, |
| adt_def.non_enum_variant(), |
| substs, |
| "struct field", |
| init, |
| ); |
| } |
| // And now, enums. |
| let span = cx.tcx.def_span(adt_def.did()); |
| let mut potential_variants = adt_def.variants().iter().filter_map(|variant| { |
| let definitely_inhabited = match variant |
| .inhabited_predicate(cx.tcx, *adt_def) |
| .subst(cx.tcx, substs) |
| .apply_any_module(cx.tcx, cx.param_env) |
| { |
| // Entirely skip uninhabited variants. |
| Some(false) => return None, |
| // Forward the others, but remember which ones are definitely inhabited. |
| Some(true) => true, |
| None => false, |
| }; |
| Some((variant, definitely_inhabited)) |
| }); |
| let Some(first_variant) = potential_variants.next() else { |
| return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span)); |
| }; |
| // So we have at least one potentially inhabited variant. Might we have two? |
| let Some(second_variant) = potential_variants.next() else { |
| // There is only one potentially inhabited variant. So we can recursively check that variant! |
| return variant_find_init_error( |
| cx, |
| ty, |
| &first_variant.0, |
| substs, |
| "field of the only potentially inhabited enum variant", |
| init, |
| ); |
| }; |
| // So we have at least two potentially inhabited variants. |
| // If we can prove that we have at least two *definitely* inhabited variants, |
| // then we have a tag and hence leaving this uninit is definitely disallowed. |
| // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.) |
| if init == InitKind::Uninit { |
| let definitely_inhabited = (first_variant.1 as usize) |
| + (second_variant.1 as usize) |
| + potential_variants |
| .filter(|(_variant, definitely_inhabited)| *definitely_inhabited) |
| .count(); |
| if definitely_inhabited > 1 { |
| return Some(InitError::from( |
| "enums with multiple inhabited variants have to be initialized to a variant", |
| ).spanned(span)); |
| } |
| } |
| // We couldn't find anything wrong here. |
| None |
| } |
| Tuple(..) => { |
| // Proceed recursively, check all fields. |
| ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init)) |
| } |
| Array(ty, len) => { |
| if matches!(len.try_eval_target_usize(cx.tcx, cx.param_env), Some(v) if v > 0) { |
| // Array length known at array non-empty -- recurse. |
| ty_find_init_error(cx, *ty, init) |
| } else { |
| // Empty array or size unknown. |
| None |
| } |
| } |
| // Conservative fallback. |
| _ => None, |
| } |
| } |
| |
| if let Some(init) = is_dangerous_init(cx, expr) { |
| // This conjures an instance of a type out of nothing, |
| // using zeroed or uninitialized memory. |
| // We are extremely conservative with what we warn about. |
| let conjured_ty = cx.typeck_results().expr_ty(expr); |
| if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) { |
| let msg = match init { |
| InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed, |
| InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit, |
| }; |
| let sub = BuiltinUnpermittedTypeInitSub { err }; |
| cx.emit_spanned_lint( |
| INVALID_VALUE, |
| expr.span, |
| BuiltinUnpermittedTypeInit { |
| msg, |
| ty: conjured_ty, |
| label: expr.span, |
| sub, |
| tcx: cx.tcx, |
| }, |
| ); |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `clashing_extern_declarations` lint detects when an `extern fn` |
| /// has been declared with the same name but different types. |
| /// |
| /// ### Example |
| /// |
| /// ```rust |
| /// mod m { |
| /// extern "C" { |
| /// fn foo(); |
| /// } |
| /// } |
| /// |
| /// extern "C" { |
| /// fn foo(_: u32); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Because two symbols of the same name cannot be resolved to two |
| /// different functions at link time, and one function cannot possibly |
| /// have two types, a clashing extern declaration is almost certainly a |
| /// mistake. Check to make sure that the `extern` definitions are correct |
| /// and equivalent, and possibly consider unifying them in one location. |
| /// |
| /// This lint does not run between crates because a project may have |
| /// dependencies which both rely on the same extern function, but declare |
| /// it in a different (but valid) way. For example, they may both declare |
| /// an opaque type for one or more of the arguments (which would end up |
| /// distinct types), or use types that are valid conversions in the |
| /// language the `extern fn` is defined in. In these cases, the compiler |
| /// can't say that the clashing declaration is incorrect. |
| pub CLASHING_EXTERN_DECLARATIONS, |
| Warn, |
| "detects when an extern fn has been declared with the same name but different types" |
| } |
| |
| pub struct ClashingExternDeclarations { |
| /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls |
| /// contains an entry for key K, it means a symbol with name K has been seen by this lint and |
| /// the symbol should be reported as a clashing declaration. |
| // FIXME: Technically, we could just store a &'tcx str here without issue; however, the |
| // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime. |
| seen_decls: FxHashMap<Symbol, hir::OwnerId>, |
| } |
| |
| /// Differentiate between whether the name for an extern decl came from the link_name attribute or |
| /// just from declaration itself. This is important because we don't want to report clashes on |
| /// symbol name if they don't actually clash because one or the other links against a symbol with a |
| /// different name. |
| enum SymbolName { |
| /// The name of the symbol + the span of the annotation which introduced the link name. |
| Link(Symbol, Span), |
| /// No link name, so just the name of the symbol. |
| Normal(Symbol), |
| } |
| |
| impl SymbolName { |
| fn get_name(&self) -> Symbol { |
| match self { |
| SymbolName::Link(s, _) | SymbolName::Normal(s) => *s, |
| } |
| } |
| } |
| |
| impl ClashingExternDeclarations { |
| pub(crate) fn new() -> Self { |
| ClashingExternDeclarations { seen_decls: FxHashMap::default() } |
| } |
| |
| /// Insert a new foreign item into the seen set. If a symbol with the same name already exists |
| /// for the item, return its HirId without updating the set. |
| fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<hir::OwnerId> { |
| let did = fi.owner_id.to_def_id(); |
| let instance = Instance::new(did, ty::List::identity_for_item(tcx, did)); |
| let name = Symbol::intern(tcx.symbol_name(instance).name); |
| if let Some(&existing_id) = self.seen_decls.get(&name) { |
| // Avoid updating the map with the new entry when we do find a collision. We want to |
| // make sure we're always pointing to the first definition as the previous declaration. |
| // This lets us avoid emitting "knock-on" diagnostics. |
| Some(existing_id) |
| } else { |
| self.seen_decls.insert(name, fi.owner_id) |
| } |
| } |
| |
| /// Get the name of the symbol that's linked against for a given extern declaration. That is, |
| /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the |
| /// symbol's name. |
| fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName { |
| if let Some((overridden_link_name, overridden_link_name_span)) = |
| tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| { |
| // FIXME: Instead of searching through the attributes again to get span |
| // information, we could have codegen_fn_attrs also give span information back for |
| // where the attribute was defined. However, until this is found to be a |
| // bottleneck, this does just fine. |
| (overridden_link_name, tcx.get_attr(fi.owner_id, sym::link_name).unwrap().span) |
| }) |
| { |
| SymbolName::Link(overridden_link_name, overridden_link_name_span) |
| } else { |
| SymbolName::Normal(fi.ident.name) |
| } |
| } |
| |
| /// Checks whether two types are structurally the same enough that the declarations shouldn't |
| /// clash. We need this so we don't emit a lint when two modules both declare an extern struct, |
| /// with the same members (as the declarations shouldn't clash). |
| fn structurally_same_type<'tcx>( |
| cx: &LateContext<'tcx>, |
| a: Ty<'tcx>, |
| b: Ty<'tcx>, |
| ckind: CItemKind, |
| ) -> bool { |
| fn structurally_same_type_impl<'tcx>( |
| seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>, |
| cx: &LateContext<'tcx>, |
| a: Ty<'tcx>, |
| b: Ty<'tcx>, |
| ckind: CItemKind, |
| ) -> bool { |
| debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b); |
| let tcx = cx.tcx; |
| |
| // Given a transparent newtype, reach through and grab the inner |
| // type unless the newtype makes the type non-null. |
| let non_transparent_ty = |mut ty: Ty<'tcx>| -> Ty<'tcx> { |
| loop { |
| if let ty::Adt(def, substs) = *ty.kind() { |
| let is_transparent = def.repr().transparent(); |
| let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def); |
| debug!( |
| "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}", |
| ty, is_transparent, is_non_null |
| ); |
| if is_transparent && !is_non_null { |
| debug_assert_eq!(def.variants().len(), 1); |
| let v = &def.variant(FIRST_VARIANT); |
| // continue with `ty`'s non-ZST field, |
| // otherwise `ty` is a ZST and we can return |
| if let Some(field) = transparent_newtype_field(tcx, v) { |
| ty = field.ty(tcx, substs); |
| continue; |
| } |
| } |
| } |
| debug!("non_transparent_ty -> {:?}", ty); |
| return ty; |
| } |
| }; |
| |
| let a = non_transparent_ty(a); |
| let b = non_transparent_ty(b); |
| |
| if !seen_types.insert((a, b)) { |
| // We've encountered a cycle. There's no point going any further -- the types are |
| // structurally the same. |
| true |
| } else if a == b { |
| // All nominally-same types are structurally same, too. |
| true |
| } else { |
| // Do a full, depth-first comparison between the two. |
| use rustc_type_ir::sty::TyKind::*; |
| let a_kind = a.kind(); |
| let b_kind = b.kind(); |
| |
| let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> { |
| debug!("compare_layouts({:?}, {:?})", a, b); |
| let a_layout = &cx.layout_of(a)?.layout.abi(); |
| let b_layout = &cx.layout_of(b)?.layout.abi(); |
| debug!( |
| "comparing layouts: {:?} == {:?} = {}", |
| a_layout, |
| b_layout, |
| a_layout == b_layout |
| ); |
| Ok(a_layout == b_layout) |
| }; |
| |
| #[allow(rustc::usage_of_ty_tykind)] |
| let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| { |
| kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..)) |
| }; |
| |
| ensure_sufficient_stack(|| { |
| match (a_kind, b_kind) { |
| (Adt(a_def, _), Adt(b_def, _)) => { |
| // We can immediately rule out these types as structurally same if |
| // their layouts differ. |
| match compare_layouts(a, b) { |
| Ok(false) => return false, |
| _ => (), // otherwise, continue onto the full, fields comparison |
| } |
| |
| // Grab a flattened representation of all fields. |
| let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter()); |
| let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter()); |
| |
| // Perform a structural comparison for each field. |
| a_fields.eq_by( |
| b_fields, |
| |&ty::FieldDef { did: a_did, .. }, |
| &ty::FieldDef { did: b_did, .. }| { |
| structurally_same_type_impl( |
| seen_types, |
| cx, |
| tcx.type_of(a_did).subst_identity(), |
| tcx.type_of(b_did).subst_identity(), |
| ckind, |
| ) |
| }, |
| ) |
| } |
| (Array(a_ty, a_const), Array(b_ty, b_const)) => { |
| // For arrays, we also check the constness of the type. |
| a_const.kind() == b_const.kind() |
| && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) |
| } |
| (Slice(a_ty), Slice(b_ty)) => { |
| structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) |
| } |
| (RawPtr(a_tymut), RawPtr(b_tymut)) => { |
| a_tymut.mutbl == b_tymut.mutbl |
| && structurally_same_type_impl( |
| seen_types, cx, a_tymut.ty, b_tymut.ty, ckind, |
| ) |
| } |
| (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => { |
| // For structural sameness, we don't need the region to be same. |
| a_mut == b_mut |
| && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) |
| } |
| (FnDef(..), FnDef(..)) => { |
| let a_poly_sig = a.fn_sig(tcx); |
| let b_poly_sig = b.fn_sig(tcx); |
| |
| // We don't compare regions, but leaving bound regions around ICEs, so |
| // we erase them. |
| let a_sig = tcx.erase_late_bound_regions(a_poly_sig); |
| let b_sig = tcx.erase_late_bound_regions(b_poly_sig); |
| |
| (a_sig.abi, a_sig.unsafety, a_sig.c_variadic) |
| == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic) |
| && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| { |
| structurally_same_type_impl(seen_types, cx, *a, *b, ckind) |
| }) |
| && structurally_same_type_impl( |
| seen_types, |
| cx, |
| a_sig.output(), |
| b_sig.output(), |
| ckind, |
| ) |
| } |
| (Tuple(a_substs), Tuple(b_substs)) => { |
| a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| { |
| structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) |
| }) |
| } |
| // For these, it's not quite as easy to define structural-sameness quite so easily. |
| // For the purposes of this lint, take the conservative approach and mark them as |
| // not structurally same. |
| (Dynamic(..), Dynamic(..)) |
| | (Error(..), Error(..)) |
| | (Closure(..), Closure(..)) |
| | (Generator(..), Generator(..)) |
| | (GeneratorWitness(..), GeneratorWitness(..)) |
| | (Alias(ty::Projection, ..), Alias(ty::Projection, ..)) |
| | (Alias(ty::Inherent, ..), Alias(ty::Inherent, ..)) |
| | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false, |
| |
| // These definitely should have been caught above. |
| (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(), |
| |
| // An Adt and a primitive or pointer type. This can be FFI-safe if non-null |
| // enum layout optimisation is being applied. |
| (Adt(..), other_kind) | (other_kind, Adt(..)) |
| if is_primitive_or_pointer(other_kind) => |
| { |
| let (primitive, adt) = |
| if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) }; |
| if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) { |
| ty == primitive |
| } else { |
| compare_layouts(a, b).unwrap_or(false) |
| } |
| } |
| // Otherwise, just compare the layouts. This may fail to lint for some |
| // incompatible types, but at the very least, will stop reads into |
| // uninitialised memory. |
| _ => compare_layouts(a, b).unwrap_or(false), |
| } |
| }) |
| } |
| } |
| let mut seen_types = FxHashSet::default(); |
| structurally_same_type_impl(&mut seen_types, cx, a, b, ckind) |
| } |
| } |
| |
| impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations { |
| #[instrument(level = "trace", skip(self, cx))] |
| fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) { |
| if let ForeignItemKind::Fn(..) = this_fi.kind { |
| let tcx = cx.tcx; |
| if let Some(existing_did) = self.insert(tcx, this_fi) { |
| let existing_decl_ty = tcx.type_of(existing_did).skip_binder(); |
| let this_decl_ty = tcx.type_of(this_fi.owner_id).subst_identity(); |
| debug!( |
| "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}", |
| existing_did, existing_decl_ty, this_fi.owner_id, this_decl_ty |
| ); |
| // Check that the declarations match. |
| if !Self::structurally_same_type( |
| cx, |
| existing_decl_ty, |
| this_decl_ty, |
| CItemKind::Declaration, |
| ) { |
| let orig_fi = tcx.hir().expect_foreign_item(existing_did); |
| let orig = Self::name_of_extern_decl(tcx, orig_fi); |
| |
| // We want to ensure that we use spans for both decls that include where the |
| // name was defined, whether that was from the link_name attribute or not. |
| let get_relevant_span = |
| |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) { |
| SymbolName::Normal(_) => fi.span, |
| SymbolName::Link(_, annot_span) => fi.span.to(annot_span), |
| }; |
| |
| // Finally, emit the diagnostic. |
| let this = this_fi.ident.name; |
| let orig = orig.get_name(); |
| let previous_decl_label = get_relevant_span(orig_fi); |
| let mismatch_label = get_relevant_span(this_fi); |
| let sub = BuiltinClashingExternSub { |
| tcx, |
| expected: existing_decl_ty, |
| found: this_decl_ty, |
| }; |
| let decorator = if orig == this { |
| BuiltinClashingExtern::SameName { |
| this, |
| orig, |
| previous_decl_label, |
| mismatch_label, |
| sub, |
| } |
| } else { |
| BuiltinClashingExtern::DiffName { |
| this, |
| orig, |
| previous_decl_label, |
| mismatch_label, |
| sub, |
| } |
| }; |
| tcx.emit_spanned_lint( |
| CLASHING_EXTERN_DECLARATIONS, |
| this_fi.hir_id(), |
| get_relevant_span(this_fi), |
| decorator, |
| ); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `deref_nullptr` lint detects when an null pointer is dereferenced, |
| /// which causes [undefined behavior]. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,no_run |
| /// # #![allow(unused)] |
| /// use std::ptr; |
| /// unsafe { |
| /// let x = &*ptr::null::<i32>(); |
| /// let x = ptr::addr_of!(*ptr::null::<i32>()); |
| /// let x = *(0 as *const i32); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Dereferencing a null pointer causes [undefined behavior] even as a place expression, |
| /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| pub DEREF_NULLPTR, |
| Warn, |
| "detects when an null pointer is dereferenced" |
| } |
| |
| declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]); |
| |
| impl<'tcx> LateLintPass<'tcx> for DerefNullPtr { |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { |
| /// test if expression is a null ptr |
| fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool { |
| match &expr.kind { |
| rustc_hir::ExprKind::Cast(ref expr, ref ty) => { |
| if let rustc_hir::TyKind::Ptr(_) = ty.kind { |
| return is_zero(expr) || is_null_ptr(cx, expr); |
| } |
| } |
| // check for call to `core::ptr::null` or `core::ptr::null_mut` |
| rustc_hir::ExprKind::Call(ref path, _) => { |
| if let rustc_hir::ExprKind::Path(ref qpath) = path.kind { |
| if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() { |
| return matches!( |
| cx.tcx.get_diagnostic_name(def_id), |
| Some(sym::ptr_null | sym::ptr_null_mut) |
| ); |
| } |
| } |
| } |
| _ => {} |
| } |
| false |
| } |
| |
| /// test if expression is the literal `0` |
| fn is_zero(expr: &hir::Expr<'_>) -> bool { |
| match &expr.kind { |
| rustc_hir::ExprKind::Lit(ref lit) => { |
| if let LitKind::Int(a, _) = lit.node { |
| return a == 0; |
| } |
| } |
| _ => {} |
| } |
| false |
| } |
| |
| if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind { |
| if is_null_ptr(cx, expr_deref) { |
| cx.emit_spanned_lint( |
| DEREF_NULLPTR, |
| expr.span, |
| BuiltinDerefNullptr { label: expr.span }, |
| ); |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `named_asm_labels` lint detects the use of named labels in the |
| /// inline `asm!` macro. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// # #![feature(asm_experimental_arch)] |
| /// use std::arch::asm; |
| /// |
| /// fn main() { |
| /// unsafe { |
| /// asm!("foo: bar"); |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// LLVM is allowed to duplicate inline assembly blocks for any |
| /// reason, for example when it is in a function that gets inlined. Because |
| /// of this, GNU assembler [local labels] *must* be used instead of labels |
| /// with a name. Using named labels might cause assembler or linker errors. |
| /// |
| /// See the explanation in [Rust By Example] for more details. |
| /// |
| /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels |
| /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels |
| pub NAMED_ASM_LABELS, |
| Deny, |
| "named labels in inline assembly", |
| } |
| |
| declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]); |
| |
| impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels { |
| #[allow(rustc::diagnostic_outside_of_impl)] |
| fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { |
| if let hir::Expr { |
| kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }), |
| .. |
| } = expr |
| { |
| for (template_sym, template_snippet, template_span) in template_strs.iter() { |
| let template_str = template_sym.as_str(); |
| let find_label_span = |needle: &str| -> Option<Span> { |
| if let Some(template_snippet) = template_snippet { |
| let snippet = template_snippet.as_str(); |
| if let Some(pos) = snippet.find(needle) { |
| let end = pos |
| + snippet[pos..] |
| .find(|c| c == ':') |
| .unwrap_or(snippet[pos..].len() - 1); |
| let inner = InnerSpan::new(pos, end); |
| return Some(template_span.from_inner(inner)); |
| } |
| } |
| |
| None |
| }; |
| |
| let mut found_labels = Vec::new(); |
| |
| // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always |
| let statements = template_str.split(|c| matches!(c, '\n' | ';')); |
| for statement in statements { |
| // If there's a comment, trim it from the statement |
| let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]); |
| let mut start_idx = 0; |
| for (idx, _) in statement.match_indices(':') { |
| let possible_label = statement[start_idx..idx].trim(); |
| let mut chars = possible_label.chars(); |
| let Some(c) = chars.next() else { |
| // Empty string means a leading ':' in this section, which is not a label |
| break |
| }; |
| // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $ |
| if (c.is_alphabetic() || matches!(c, '.' | '_')) |
| && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$')) |
| { |
| found_labels.push(possible_label); |
| } else { |
| // If we encounter a non-label, there cannot be any further labels, so stop checking |
| break; |
| } |
| |
| start_idx = idx + 1; |
| } |
| } |
| |
| debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels); |
| |
| if found_labels.len() > 0 { |
| let spans = found_labels |
| .into_iter() |
| .filter_map(|label| find_label_span(label)) |
| .collect::<Vec<Span>>(); |
| // If there were labels but we couldn't find a span, combine the warnings and use the template span |
| let target_spans: MultiSpan = |
| if spans.len() > 0 { spans.into() } else { (*template_span).into() }; |
| |
| cx.lookup_with_diagnostics( |
| NAMED_ASM_LABELS, |
| Some(target_spans), |
| fluent::lint_builtin_asm_labels, |
| |lint| lint, |
| BuiltinLintDiagnostics::NamedAsmLabel( |
| "only local labels of the form `<number>:` should be used in inline asm" |
| .to_string(), |
| ), |
| ); |
| } |
| } |
| } |
| } |
| } |
| |
| declare_lint! { |
| /// The `special_module_name` lint detects module |
| /// declarations for files that have a special meaning. |
| /// |
| /// ### Example |
| /// |
| /// ```rust,compile_fail |
| /// mod lib; |
| /// |
| /// fn main() { |
| /// lib::run(); |
| /// } |
| /// ``` |
| /// |
| /// {{produces}} |
| /// |
| /// ### Explanation |
| /// |
| /// Cargo recognizes `lib.rs` and `main.rs` as the root of a |
| /// library or binary crate, so declaring them as modules |
| /// will lead to miscompilation of the crate unless configured |
| /// explicitly. |
| /// |
| /// To access a library from a binary target within the same crate, |
| /// use `your_crate_name::` as the path instead of `lib::`: |
| /// |
| /// ```rust,compile_fail |
| /// // bar/src/lib.rs |
| /// fn run() { |
| /// // ... |
| /// } |
| /// |
| /// // bar/src/main.rs |
| /// fn main() { |
| /// bar::run(); |
| /// } |
| /// ``` |
| /// |
| /// Binary targets cannot be used as libraries and so declaring |
| /// one as a module is not allowed. |
| pub SPECIAL_MODULE_NAME, |
| Warn, |
| "module declarations for files with a special meaning", |
| } |
| |
| declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]); |
| |
| impl EarlyLintPass for SpecialModuleName { |
| fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) { |
| for item in &krate.items { |
| if let ast::ItemKind::Mod( |
| _, |
| ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _), |
| ) = item.kind |
| { |
| if item.attrs.iter().any(|a| a.has_name(sym::path)) { |
| continue; |
| } |
| |
| match item.ident.name.as_str() { |
| "lib" => cx.emit_spanned_lint( |
| SPECIAL_MODULE_NAME, |
| item.span, |
| BuiltinSpecialModuleNameUsed::Lib, |
| ), |
| "main" => cx.emit_spanned_lint( |
| SPECIAL_MODULE_NAME, |
| item.span, |
| BuiltinSpecialModuleNameUsed::Main, |
| ), |
| _ => continue, |
| } |
| } |
| } |
| } |
| } |
| |
| pub use rustc_session::lint::builtin::UNEXPECTED_CFGS; |
| |
| declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]); |
| |
| impl EarlyLintPass for UnexpectedCfgs { |
| fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { |
| let cfg = &cx.sess().parse_sess.config; |
| let check_cfg = &cx.sess().parse_sess.check_config; |
| for &(name, value) in cfg { |
| match check_cfg.expecteds.get(&name) { |
| Some(ExpectedValues::Some(values)) if !values.contains(&value) => { |
| let value = value.unwrap_or(kw::Empty); |
| cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigValue { name, value }); |
| } |
| None if check_cfg.exhaustive_names => { |
| cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName { name }); |
| } |
| _ => { /* expected */ } |
| } |
| } |
| } |
| } |