| //! Defines how the compiler represents types internally. |
| //! |
| //! Two important entities in this module are: |
| //! |
| //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type. |
| //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler. |
| //! |
| //! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide. |
| //! |
| //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html |
| |
| #![allow(rustc::usage_of_ty_tykind)] |
| |
| pub use self::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable}; |
| pub use self::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor}; |
| pub use self::AssocItemContainer::*; |
| pub use self::BorrowKind::*; |
| pub use self::IntVarValue::*; |
| pub use self::Variance::*; |
| use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason}; |
| use crate::metadata::ModChild; |
| use crate::middle::privacy::EffectiveVisibilities; |
| use crate::mir::{Body, GeneratorLayout}; |
| use crate::query::Providers; |
| use crate::traits::{self, Reveal}; |
| use crate::ty; |
| use crate::ty::fast_reject::SimplifiedType; |
| use crate::ty::util::Discr; |
| pub use adt::*; |
| pub use assoc::*; |
| pub use generics::*; |
| use rustc_ast as ast; |
| use rustc_ast::node_id::NodeMap; |
| use rustc_attr as attr; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::intern::Interned; |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_data_structures::steal::Steal; |
| use rustc_data_structures::tagged_ptr::CopyTaggedPtr; |
| use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed, StashKey}; |
| use rustc_hir as hir; |
| use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res}; |
| use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap}; |
| use rustc_hir::Node; |
| use rustc_index::IndexVec; |
| use rustc_macros::HashStable; |
| use rustc_query_system::ich::StableHashingContext; |
| use rustc_serialize::{Decodable, Encodable}; |
| use rustc_session::lint::LintBuffer; |
| pub use rustc_session::lint::RegisteredTools; |
| use rustc_span::hygiene::MacroKind; |
| use rustc_span::symbol::{kw, sym, Ident, Symbol}; |
| use rustc_span::{ExpnId, ExpnKind, Span}; |
| use rustc_target::abi::{Align, FieldIdx, Integer, IntegerType, VariantIdx}; |
| pub use rustc_target::abi::{ReprFlags, ReprOptions}; |
| use rustc_type_ir::WithCachedTypeInfo; |
| pub use subst::*; |
| pub use vtable::*; |
| |
| use std::fmt::Debug; |
| use std::hash::{Hash, Hasher}; |
| use std::marker::PhantomData; |
| use std::mem; |
| use std::num::NonZeroUsize; |
| use std::ops::ControlFlow; |
| use std::{fmt, str}; |
| |
| pub use crate::ty::diagnostics::*; |
| pub use rustc_type_ir::AliasKind::*; |
| pub use rustc_type_ir::DynKind::*; |
| pub use rustc_type_ir::InferTy::*; |
| pub use rustc_type_ir::RegionKind::*; |
| pub use rustc_type_ir::TyKind::*; |
| pub use rustc_type_ir::*; |
| |
| pub use self::binding::BindingMode; |
| pub use self::binding::BindingMode::*; |
| pub use self::closure::{ |
| is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo, |
| CapturedPlace, ClosureKind, ClosureTypeInfo, MinCaptureInformationMap, MinCaptureList, |
| RootVariableMinCaptureList, UpvarCapture, UpvarCaptureMap, UpvarId, UpvarListMap, UpvarPath, |
| CAPTURE_STRUCT_LOCAL, |
| }; |
| pub use self::consts::{ |
| Const, ConstData, ConstInt, ConstKind, Expr, InferConst, ScalarInt, UnevaluatedConst, ValTree, |
| }; |
| pub use self::context::{ |
| tls, CtxtInterners, DeducedParamAttrs, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt, TyCtxtFeed, |
| }; |
| pub use self::instance::{Instance, InstanceDef, ShortInstance, UnusedGenericParams}; |
| pub use self::list::List; |
| pub use self::parameterized::ParameterizedOverTcx; |
| pub use self::rvalue_scopes::RvalueScopes; |
| pub use self::sty::BoundRegionKind::*; |
| pub use self::sty::{ |
| AliasTy, Article, Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, |
| BoundVariableKind, CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, |
| EarlyBoundRegion, ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, |
| FreeRegion, GenSig, GeneratorSubsts, GeneratorSubstsParts, InlineConstSubsts, |
| InlineConstSubstsParts, ParamConst, ParamTy, PolyExistentialPredicate, |
| PolyExistentialProjection, PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, |
| Region, RegionKind, RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts, VarianceDiagInfo, |
| }; |
| pub use self::trait_def::TraitDef; |
| pub use self::typeck_results::{ |
| CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, |
| GeneratorDiagnosticData, GeneratorInteriorTypeCause, TypeckResults, UserType, |
| UserTypeAnnotationIndex, |
| }; |
| |
| pub mod _match; |
| pub mod abstract_const; |
| pub mod adjustment; |
| pub mod binding; |
| pub mod cast; |
| pub mod codec; |
| pub mod error; |
| pub mod fast_reject; |
| pub mod flags; |
| pub mod fold; |
| pub mod inhabitedness; |
| pub mod layout; |
| pub mod normalize_erasing_regions; |
| pub mod print; |
| pub mod relate; |
| pub mod subst; |
| pub mod trait_def; |
| pub mod util; |
| pub mod visit; |
| pub mod vtable; |
| pub mod walk; |
| |
| mod adt; |
| mod assoc; |
| mod closure; |
| mod consts; |
| mod context; |
| mod diagnostics; |
| mod erase_regions; |
| mod generics; |
| mod impls_ty; |
| mod instance; |
| mod list; |
| mod opaque_types; |
| mod parameterized; |
| mod rvalue_scopes; |
| mod structural_impls; |
| mod sty; |
| mod typeck_results; |
| |
| // Data types |
| |
| pub struct ResolverOutputs { |
| pub global_ctxt: ResolverGlobalCtxt, |
| pub ast_lowering: ResolverAstLowering, |
| } |
| |
| #[derive(Debug)] |
| pub struct ResolverGlobalCtxt { |
| pub visibilities: FxHashMap<LocalDefId, Visibility>, |
| /// This field is used to decide whether we should make `PRIVATE_IN_PUBLIC` a hard error. |
| pub has_pub_restricted: bool, |
| /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`. |
| pub expn_that_defined: FxHashMap<LocalDefId, ExpnId>, |
| pub effective_visibilities: EffectiveVisibilities, |
| pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>, |
| pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>, |
| pub module_children: LocalDefIdMap<Vec<ModChild>>, |
| pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>, |
| pub main_def: Option<MainDefinition>, |
| pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>, |
| /// A list of proc macro LocalDefIds, written out in the order in which |
| /// they are declared in the static array generated by proc_macro_harness. |
| pub proc_macros: Vec<LocalDefId>, |
| /// Mapping from ident span to path span for paths that don't exist as written, but that |
| /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`. |
| pub confused_type_with_std_module: FxHashMap<Span, Span>, |
| pub doc_link_resolutions: FxHashMap<LocalDefId, DocLinkResMap>, |
| pub doc_link_traits_in_scope: FxHashMap<LocalDefId, Vec<DefId>>, |
| pub all_macro_rules: FxHashMap<Symbol, Res<ast::NodeId>>, |
| } |
| |
| /// Resolutions that should only be used for lowering. |
| /// This struct is meant to be consumed by lowering. |
| #[derive(Debug)] |
| pub struct ResolverAstLowering { |
| pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>, |
| |
| /// Resolutions for nodes that have a single resolution. |
| pub partial_res_map: NodeMap<hir::def::PartialRes>, |
| /// Resolutions for import nodes, which have multiple resolutions in different namespaces. |
| pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>, |
| /// Resolutions for labels (node IDs of their corresponding blocks or loops). |
| pub label_res_map: NodeMap<ast::NodeId>, |
| /// Resolutions for lifetimes. |
| pub lifetimes_res_map: NodeMap<LifetimeRes>, |
| /// Lifetime parameters that lowering will have to introduce. |
| pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>, |
| |
| pub next_node_id: ast::NodeId, |
| |
| pub node_id_to_def_id: FxHashMap<ast::NodeId, LocalDefId>, |
| pub def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>, |
| |
| pub trait_map: NodeMap<Vec<hir::TraitCandidate>>, |
| /// A small map keeping true kinds of built-in macros that appear to be fn-like on |
| /// the surface (`macro` items in libcore), but are actually attributes or derives. |
| pub builtin_macro_kinds: FxHashMap<LocalDefId, MacroKind>, |
| /// List functions and methods for which lifetime elision was successful. |
| pub lifetime_elision_allowed: FxHashSet<ast::NodeId>, |
| |
| /// Lints that were emitted by the resolver and early lints. |
| pub lint_buffer: Steal<LintBuffer>, |
| } |
| |
| #[derive(Clone, Copy, Debug)] |
| pub struct MainDefinition { |
| pub res: Res<ast::NodeId>, |
| pub is_import: bool, |
| pub span: Span, |
| } |
| |
| impl MainDefinition { |
| pub fn opt_fn_def_id(self) -> Option<DefId> { |
| if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None } |
| } |
| } |
| |
| /// The "header" of an impl is everything outside the body: a Self type, a trait |
| /// ref (in the case of a trait impl), and a set of predicates (from the |
| /// bounds / where-clauses). |
| #[derive(Clone, Debug, TypeFoldable, TypeVisitable)] |
| pub struct ImplHeader<'tcx> { |
| pub impl_def_id: DefId, |
| pub self_ty: Ty<'tcx>, |
| pub trait_ref: Option<TraitRef<'tcx>>, |
| pub predicates: Vec<Predicate<'tcx>>, |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)] |
| pub enum ImplSubject<'tcx> { |
| Trait(TraitRef<'tcx>), |
| Inherent(Ty<'tcx>), |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)] |
| #[derive(TypeFoldable, TypeVisitable)] |
| pub enum ImplPolarity { |
| /// `impl Trait for Type` |
| Positive, |
| /// `impl !Trait for Type` |
| Negative, |
| /// `#[rustc_reservation_impl] impl Trait for Type` |
| /// |
| /// This is a "stability hack", not a real Rust feature. |
| /// See #64631 for details. |
| Reservation, |
| } |
| |
| impl ImplPolarity { |
| /// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`. |
| pub fn flip(&self) -> Option<ImplPolarity> { |
| match self { |
| ImplPolarity::Positive => Some(ImplPolarity::Negative), |
| ImplPolarity::Negative => Some(ImplPolarity::Positive), |
| ImplPolarity::Reservation => None, |
| } |
| } |
| } |
| |
| impl fmt::Display for ImplPolarity { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| Self::Positive => f.write_str("positive"), |
| Self::Negative => f.write_str("negative"), |
| Self::Reservation => f.write_str("reservation"), |
| } |
| } |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)] |
| pub enum Visibility<Id = LocalDefId> { |
| /// Visible everywhere (including in other crates). |
| Public, |
| /// Visible only in the given crate-local module. |
| Restricted(Id), |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)] |
| pub enum BoundConstness { |
| /// `T: Trait` |
| NotConst, |
| /// `T: ~const Trait` |
| /// |
| /// Requires resolving to const only when we are in a const context. |
| ConstIfConst, |
| } |
| |
| impl BoundConstness { |
| /// Reduce `self` and `constness` to two possible combined states instead of four. |
| pub fn and(&mut self, constness: hir::Constness) -> hir::Constness { |
| match (constness, self) { |
| (hir::Constness::Const, BoundConstness::ConstIfConst) => hir::Constness::Const, |
| (_, this) => { |
| *this = BoundConstness::NotConst; |
| hir::Constness::NotConst |
| } |
| } |
| } |
| } |
| |
| impl fmt::Display for BoundConstness { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| Self::NotConst => f.write_str("normal"), |
| Self::ConstIfConst => f.write_str("`~const`"), |
| } |
| } |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)] |
| #[derive(TypeFoldable, TypeVisitable)] |
| pub struct ClosureSizeProfileData<'tcx> { |
| /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields` |
| pub before_feature_tys: Ty<'tcx>, |
| /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields` |
| pub after_feature_tys: Ty<'tcx>, |
| } |
| |
| impl TyCtxt<'_> { |
| #[inline] |
| pub fn opt_parent(self, id: DefId) -> Option<DefId> { |
| self.def_key(id).parent.map(|index| DefId { index, ..id }) |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn parent(self, id: DefId) -> DefId { |
| match self.opt_parent(id) { |
| Some(id) => id, |
| // not `unwrap_or_else` to avoid breaking caller tracking |
| None => bug!("{id:?} doesn't have a parent"), |
| } |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> { |
| self.opt_parent(id.to_def_id()).map(DefId::expect_local) |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn local_parent(self, id: LocalDefId) -> LocalDefId { |
| self.parent(id.to_def_id()).expect_local() |
| } |
| |
| pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool { |
| if descendant.krate != ancestor.krate { |
| return false; |
| } |
| |
| while descendant != ancestor { |
| match self.opt_parent(descendant) { |
| Some(parent) => descendant = parent, |
| None => return false, |
| } |
| } |
| true |
| } |
| } |
| |
| impl<Id> Visibility<Id> { |
| pub fn is_public(self) -> bool { |
| matches!(self, Visibility::Public) |
| } |
| |
| pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> { |
| match self { |
| Visibility::Public => Visibility::Public, |
| Visibility::Restricted(id) => Visibility::Restricted(f(id)), |
| } |
| } |
| } |
| |
| impl<Id: Into<DefId>> Visibility<Id> { |
| pub fn to_def_id(self) -> Visibility<DefId> { |
| self.map_id(Into::into) |
| } |
| |
| /// Returns `true` if an item with this visibility is accessible from the given module. |
| pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool { |
| match self { |
| // Public items are visible everywhere. |
| Visibility::Public => true, |
| Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()), |
| } |
| } |
| |
| /// Returns `true` if this visibility is at least as accessible as the given visibility |
| pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool { |
| match vis { |
| Visibility::Public => self.is_public(), |
| Visibility::Restricted(id) => self.is_accessible_from(id, tcx), |
| } |
| } |
| } |
| |
| impl Visibility<DefId> { |
| pub fn expect_local(self) -> Visibility { |
| self.map_id(|id| id.expect_local()) |
| } |
| |
| /// Returns `true` if this item is visible anywhere in the local crate. |
| pub fn is_visible_locally(self) -> bool { |
| match self { |
| Visibility::Public => true, |
| Visibility::Restricted(def_id) => def_id.is_local(), |
| } |
| } |
| } |
| |
| /// The crate variances map is computed during typeck and contains the |
| /// variance of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.variances_of()` to get the variance for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CrateVariancesMap<'tcx> { |
| /// For each item with generics, maps to a vector of the variance |
| /// of its generics. If an item has no generics, it will have no |
| /// entry. |
| pub variances: DefIdMap<&'tcx [ty::Variance]>, |
| } |
| |
| // Contains information needed to resolve types and (in the future) look up |
| // the types of AST nodes. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash)] |
| pub struct CReaderCacheKey { |
| pub cnum: Option<CrateNum>, |
| pub pos: usize, |
| } |
| |
| /// Use this rather than `TyKind`, whenever possible. |
| #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable)] |
| #[rustc_diagnostic_item = "Ty"] |
| #[rustc_pass_by_value] |
| pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>); |
| |
| impl ty::EarlyBoundRegion { |
| /// Does this early bound region have a name? Early bound regions normally |
| /// always have names except when using anonymous lifetimes (`'_`). |
| pub fn has_name(&self) -> bool { |
| self.name != kw::UnderscoreLifetime && self.name != kw::Empty |
| } |
| } |
| |
| /// Use this rather than `PredicateKind`, whenever possible. |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable)] |
| #[rustc_pass_by_value] |
| pub struct Predicate<'tcx>( |
| Interned<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>, |
| ); |
| |
| impl<'tcx> Predicate<'tcx> { |
| /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`. |
| #[inline] |
| pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> { |
| self.0.internee |
| } |
| |
| #[inline(always)] |
| pub fn flags(self) -> TypeFlags { |
| self.0.flags |
| } |
| |
| #[inline(always)] |
| pub fn outer_exclusive_binder(self) -> DebruijnIndex { |
| self.0.outer_exclusive_binder |
| } |
| |
| /// Flips the polarity of a Predicate. |
| /// |
| /// Given `T: Trait` predicate it returns `T: !Trait` and given `T: !Trait` returns `T: Trait`. |
| pub fn flip_polarity(self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>> { |
| let kind = self |
| .kind() |
| .map_bound(|kind| match kind { |
| PredicateKind::Clause(Clause::Trait(TraitPredicate { |
| trait_ref, |
| constness, |
| polarity, |
| })) => Some(PredicateKind::Clause(Clause::Trait(TraitPredicate { |
| trait_ref, |
| constness, |
| polarity: polarity.flip()?, |
| }))), |
| |
| _ => None, |
| }) |
| .transpose()?; |
| |
| Some(tcx.mk_predicate(kind)) |
| } |
| |
| pub fn without_const(mut self, tcx: TyCtxt<'tcx>) -> Self { |
| if let PredicateKind::Clause(Clause::Trait(TraitPredicate { trait_ref, constness, polarity })) = self.kind().skip_binder() |
| && constness != BoundConstness::NotConst |
| { |
| self = tcx.mk_predicate(self.kind().rebind(PredicateKind::Clause(Clause::Trait(TraitPredicate { |
| trait_ref, |
| constness: BoundConstness::NotConst, |
| polarity, |
| })))); |
| } |
| self |
| } |
| |
| #[instrument(level = "debug", skip(tcx), ret)] |
| pub fn is_coinductive(self, tcx: TyCtxt<'tcx>) -> bool { |
| match self.kind().skip_binder() { |
| ty::PredicateKind::Clause(ty::Clause::Trait(data)) => { |
| tcx.trait_is_coinductive(data.def_id()) |
| } |
| ty::PredicateKind::WellFormed(_) => true, |
| _ => false, |
| } |
| } |
| |
| /// Whether this projection can be soundly normalized. |
| /// |
| /// Wf predicates must not be normalized, as normalization |
| /// can remove required bounds which would cause us to |
| /// unsoundly accept some programs. See #91068. |
| #[inline] |
| pub fn allow_normalization(self) -> bool { |
| match self.kind().skip_binder() { |
| PredicateKind::WellFormed(_) => false, |
| PredicateKind::Clause(Clause::Trait(_)) |
| | PredicateKind::Clause(Clause::RegionOutlives(_)) |
| | PredicateKind::Clause(Clause::TypeOutlives(_)) |
| | PredicateKind::Clause(Clause::Projection(_)) |
| | PredicateKind::Clause(Clause::ConstArgHasType(..)) |
| | PredicateKind::AliasRelate(..) |
| | PredicateKind::ObjectSafe(_) |
| | PredicateKind::ClosureKind(_, _, _) |
| | PredicateKind::Subtype(_) |
| | PredicateKind::Coerce(_) |
| | PredicateKind::ConstEvaluatable(_) |
| | PredicateKind::ConstEquate(_, _) |
| | PredicateKind::Ambiguous |
| | PredicateKind::TypeWellFormedFromEnv(_) => true, |
| } |
| } |
| } |
| |
| impl rustc_errors::IntoDiagnosticArg for Predicate<'_> { |
| fn into_diagnostic_arg(self) -> rustc_errors::DiagnosticArgValue<'static> { |
| rustc_errors::DiagnosticArgValue::Str(std::borrow::Cow::Owned(self.to_string())) |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| /// A clause is something that can appear in where bounds or be inferred |
| /// by implied bounds. |
| pub enum Clause<'tcx> { |
| /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be |
| /// the `Self` type of the trait reference and `A`, `B`, and `C` |
| /// would be the type parameters. |
| Trait(TraitPredicate<'tcx>), |
| |
| /// `where 'a: 'b` |
| RegionOutlives(RegionOutlivesPredicate<'tcx>), |
| |
| /// `where T: 'a` |
| TypeOutlives(TypeOutlivesPredicate<'tcx>), |
| |
| /// `where <T as TraitRef>::Name == X`, approximately. |
| /// See the `ProjectionPredicate` struct for details. |
| Projection(ProjectionPredicate<'tcx>), |
| |
| /// Ensures that a const generic argument to a parameter `const N: u8` |
| /// is of type `u8`. |
| ConstArgHasType(Const<'tcx>, Ty<'tcx>), |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub enum PredicateKind<'tcx> { |
| /// Prove a clause |
| Clause(Clause<'tcx>), |
| |
| /// No syntax: `T` well-formed. |
| WellFormed(GenericArg<'tcx>), |
| |
| /// Trait must be object-safe. |
| ObjectSafe(DefId), |
| |
| /// No direct syntax. May be thought of as `where T: FnFoo<...>` |
| /// for some substitutions `...` and `T` being a closure type. |
| /// Satisfied (or refuted) once we know the closure's kind. |
| ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind), |
| |
| /// `T1 <: T2` |
| /// |
| /// This obligation is created most often when we have two |
| /// unresolved type variables and hence don't have enough |
| /// information to process the subtyping obligation yet. |
| Subtype(SubtypePredicate<'tcx>), |
| |
| /// `T1` coerced to `T2` |
| /// |
| /// Like a subtyping obligation, this is created most often |
| /// when we have two unresolved type variables and hence |
| /// don't have enough information to process the coercion |
| /// obligation yet. At the moment, we actually process coercions |
| /// very much like subtyping and don't handle the full coercion |
| /// logic. |
| Coerce(CoercePredicate<'tcx>), |
| |
| /// Constant initializer must evaluate successfully. |
| ConstEvaluatable(ty::Const<'tcx>), |
| |
| /// Constants must be equal. The first component is the const that is expected. |
| ConstEquate(Const<'tcx>, Const<'tcx>), |
| |
| /// Represents a type found in the environment that we can use for implied bounds. |
| /// |
| /// Only used for Chalk. |
| TypeWellFormedFromEnv(Ty<'tcx>), |
| |
| /// A marker predicate that is always ambiguous. |
| /// Used for coherence to mark opaque types as possibly equal to each other but ambiguous. |
| Ambiguous, |
| |
| /// Separate from `Clause::Projection` which is used for normalization in new solver. |
| /// This predicate requires two terms to be equal to eachother. |
| /// |
| /// Only used for new solver |
| AliasRelate(Term<'tcx>, Term<'tcx>, AliasRelationDirection), |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, Debug)] |
| pub enum AliasRelationDirection { |
| Equate, |
| Subtype, |
| } |
| |
| impl std::fmt::Display for AliasRelationDirection { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| match self { |
| AliasRelationDirection::Equate => write!(f, "=="), |
| AliasRelationDirection::Subtype => write!(f, "<:"), |
| } |
| } |
| } |
| |
| /// The crate outlives map is computed during typeck and contains the |
| /// outlives of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.inferred_outlives_of()` to get the outlives for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CratePredicatesMap<'tcx> { |
| /// For each struct with outlive bounds, maps to a vector of the |
| /// predicate of its outlive bounds. If an item has no outlives |
| /// bounds, it will have no entry. |
| pub predicates: FxHashMap<DefId, &'tcx [(Clause<'tcx>, Span)]>, |
| } |
| |
| impl<'tcx> Predicate<'tcx> { |
| /// Performs a substitution suitable for going from a |
| /// poly-trait-ref to supertraits that must hold if that |
| /// poly-trait-ref holds. This is slightly different from a normal |
| /// substitution in terms of what happens with bound regions. See |
| /// lengthy comment below for details. |
| pub fn subst_supertrait( |
| self, |
| tcx: TyCtxt<'tcx>, |
| trait_ref: &ty::PolyTraitRef<'tcx>, |
| ) -> Predicate<'tcx> { |
| // The interaction between HRTB and supertraits is not entirely |
| // obvious. Let me walk you (and myself) through an example. |
| // |
| // Let's start with an easy case. Consider two traits: |
| // |
| // trait Foo<'a>: Bar<'a,'a> { } |
| // trait Bar<'b,'c> { } |
| // |
| // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then |
| // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we |
| // knew that `Foo<'x>` (for any 'x) then we also know that |
| // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from |
| // normal substitution. |
| // |
| // In terms of why this is sound, the idea is that whenever there |
| // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>` |
| // holds. So if there is an impl of `T:Foo<'a>` that applies to |
| // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all |
| // `'a`. |
| // |
| // Another example to be careful of is this: |
| // |
| // trait Foo1<'a>: for<'b> Bar1<'a,'b> { } |
| // trait Bar1<'b,'c> { } |
| // |
| // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know? |
| // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The |
| // reason is similar to the previous example: any impl of |
| // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So |
| // basically we would want to collapse the bound lifetimes from |
| // the input (`trait_ref`) and the supertraits. |
| // |
| // To achieve this in practice is fairly straightforward. Let's |
| // consider the more complicated scenario: |
| // |
| // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x` |
| // has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`, |
| // where both `'x` and `'b` would have a DB index of 1. |
| // The substitution from the input trait-ref is therefore going to be |
| // `'a => 'x` (where `'x` has a DB index of 1). |
| // - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an |
| // early-bound parameter and `'b` is a late-bound parameter with a |
| // DB index of 1. |
| // - If we replace `'a` with `'x` from the input, it too will have |
| // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>` |
| // just as we wanted. |
| // |
| // There is only one catch. If we just apply the substitution `'a |
| // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will |
| // adjust the DB index because we substituting into a binder (it |
| // tries to be so smart...) resulting in `for<'x> for<'b> |
| // Bar1<'x,'b>` (we have no syntax for this, so use your |
| // imagination). Basically the 'x will have DB index of 2 and 'b |
| // will have DB index of 1. Not quite what we want. So we apply |
| // the substitution to the *contents* of the trait reference, |
| // rather than the trait reference itself (put another way, the |
| // substitution code expects equal binding levels in the values |
| // from the substitution and the value being substituted into, and |
| // this trick achieves that). |
| |
| // Working through the second example: |
| // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0] |
| // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0] |
| // We want to end up with: |
| // for<'x, 'b> T: Bar1<'^0.0, '^0.1> |
| // To do this: |
| // 1) We must shift all bound vars in predicate by the length |
| // of trait ref's bound vars. So, we would end up with predicate like |
| // Self: Bar1<'a, '^0.1> |
| // 2) We can then apply the trait substs to this, ending up with |
| // T: Bar1<'^0.0, '^0.1> |
| // 3) Finally, to create the final bound vars, we concatenate the bound |
| // vars of the trait ref with those of the predicate: |
| // ['x, 'b] |
| let bound_pred = self.kind(); |
| let pred_bound_vars = bound_pred.bound_vars(); |
| let trait_bound_vars = trait_ref.bound_vars(); |
| // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1> |
| let shifted_pred = |
| tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder()); |
| // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1> |
| let new = EarlyBinder(shifted_pred).subst(tcx, trait_ref.skip_binder().substs); |
| // 3) ['x] + ['b] -> ['x, 'b] |
| let bound_vars = |
| tcx.mk_bound_variable_kinds_from_iter(trait_bound_vars.iter().chain(pred_bound_vars)); |
| tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars)) |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub struct TraitPredicate<'tcx> { |
| pub trait_ref: TraitRef<'tcx>, |
| |
| pub constness: BoundConstness, |
| |
| /// If polarity is Positive: we are proving that the trait is implemented. |
| /// |
| /// If polarity is Negative: we are proving that a negative impl of this trait |
| /// exists. (Note that coherence also checks whether negative impls of supertraits |
| /// exist via a series of predicates.) |
| /// |
| /// If polarity is Reserved: that's a bug. |
| pub polarity: ImplPolarity, |
| } |
| |
| pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>; |
| |
| impl<'tcx> TraitPredicate<'tcx> { |
| pub fn remap_constness(&mut self, param_env: &mut ParamEnv<'tcx>) { |
| *param_env = param_env.with_constness(self.constness.and(param_env.constness())) |
| } |
| |
| /// Remap the constness of this predicate before emitting it for diagnostics. |
| pub fn remap_constness_diag(&mut self, param_env: ParamEnv<'tcx>) { |
| // this is different to `remap_constness` that callees want to print this predicate |
| // in case of selection errors. `T: ~const Drop` bounds cannot end up here when the |
| // param_env is not const because it is always satisfied in non-const contexts. |
| if let hir::Constness::NotConst = param_env.constness() { |
| self.constness = ty::BoundConstness::NotConst; |
| } |
| } |
| |
| pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self { |
| Self { trait_ref: self.trait_ref.with_self_ty(tcx, self_ty), ..self } |
| } |
| |
| pub fn def_id(self) -> DefId { |
| self.trait_ref.def_id |
| } |
| |
| pub fn self_ty(self) -> Ty<'tcx> { |
| self.trait_ref.self_ty() |
| } |
| |
| #[inline] |
| pub fn is_const_if_const(self) -> bool { |
| self.constness == BoundConstness::ConstIfConst |
| } |
| |
| pub fn is_constness_satisfied_by(self, constness: hir::Constness) -> bool { |
| match (self.constness, constness) { |
| (BoundConstness::NotConst, _) |
| | (BoundConstness::ConstIfConst, hir::Constness::Const) => true, |
| (BoundConstness::ConstIfConst, hir::Constness::NotConst) => false, |
| } |
| } |
| |
| pub fn without_const(mut self) -> Self { |
| self.constness = BoundConstness::NotConst; |
| self |
| } |
| } |
| |
| impl<'tcx> PolyTraitPredicate<'tcx> { |
| pub fn def_id(self) -> DefId { |
| // Ok to skip binder since trait `DefId` does not care about regions. |
| self.skip_binder().def_id() |
| } |
| |
| pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> { |
| self.map_bound(|trait_ref| trait_ref.self_ty()) |
| } |
| |
| /// Remap the constness of this predicate before emitting it for diagnostics. |
| pub fn remap_constness_diag(&mut self, param_env: ParamEnv<'tcx>) { |
| *self = self.map_bound(|mut p| { |
| p.remap_constness_diag(param_env); |
| p |
| }); |
| } |
| |
| #[inline] |
| pub fn is_const_if_const(self) -> bool { |
| self.skip_binder().is_const_if_const() |
| } |
| |
| #[inline] |
| pub fn polarity(self) -> ImplPolarity { |
| self.skip_binder().polarity |
| } |
| } |
| |
| /// `A: B` |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub struct OutlivesPredicate<A, B>(pub A, pub B); |
| pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>; |
| pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>; |
| pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>; |
| pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>; |
| |
| /// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates |
| /// whether the `a` type is the type that we should label as "expected" when |
| /// presenting user diagnostics. |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub struct SubtypePredicate<'tcx> { |
| pub a_is_expected: bool, |
| pub a: Ty<'tcx>, |
| pub b: Ty<'tcx>, |
| } |
| pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>; |
| |
| /// Encodes that we have to coerce *from* the `a` type to the `b` type. |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub struct CoercePredicate<'tcx> { |
| pub a: Ty<'tcx>, |
| pub b: Ty<'tcx>, |
| } |
| pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>; |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| pub struct Term<'tcx> { |
| ptr: NonZeroUsize, |
| marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>, |
| } |
| |
| impl Debug for Term<'_> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let data = if let Some(ty) = self.ty() { |
| format!("Term::Ty({:?})", ty) |
| } else if let Some(ct) = self.ct() { |
| format!("Term::Ct({:?})", ct) |
| } else { |
| unreachable!() |
| }; |
| f.write_str(&data) |
| } |
| } |
| |
| impl<'tcx> From<Ty<'tcx>> for Term<'tcx> { |
| fn from(ty: Ty<'tcx>) -> Self { |
| TermKind::Ty(ty).pack() |
| } |
| } |
| |
| impl<'tcx> From<Const<'tcx>> for Term<'tcx> { |
| fn from(c: Const<'tcx>) -> Self { |
| TermKind::Const(c).pack() |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| self.unpack().hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> { |
| fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>( |
| self, |
| folder: &mut F, |
| ) -> Result<Self, F::Error> { |
| Ok(self.unpack().try_fold_with(folder)?.pack()) |
| } |
| } |
| |
| impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> { |
| fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> { |
| self.unpack().visit_with(visitor) |
| } |
| } |
| |
| impl<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<E> for Term<'tcx> { |
| fn encode(&self, e: &mut E) { |
| self.unpack().encode(e) |
| } |
| } |
| |
| impl<'tcx, D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<D> for Term<'tcx> { |
| fn decode(d: &mut D) -> Self { |
| let res: TermKind<'tcx> = Decodable::decode(d); |
| res.pack() |
| } |
| } |
| |
| impl<'tcx> Term<'tcx> { |
| #[inline] |
| pub fn unpack(self) -> TermKind<'tcx> { |
| let ptr = self.ptr.get(); |
| // SAFETY: use of `Interned::new_unchecked` here is ok because these |
| // pointers were originally created from `Interned` types in `pack()`, |
| // and this is just going in the other direction. |
| unsafe { |
| match ptr & TAG_MASK { |
| TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked( |
| &*((ptr & !TAG_MASK) as *const WithCachedTypeInfo<ty::TyKind<'tcx>>), |
| ))), |
| CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked( |
| &*((ptr & !TAG_MASK) as *const ty::ConstData<'tcx>), |
| ))), |
| _ => core::intrinsics::unreachable(), |
| } |
| } |
| } |
| |
| pub fn ty(&self) -> Option<Ty<'tcx>> { |
| if let TermKind::Ty(ty) = self.unpack() { Some(ty) } else { None } |
| } |
| |
| pub fn ct(&self) -> Option<Const<'tcx>> { |
| if let TermKind::Const(c) = self.unpack() { Some(c) } else { None } |
| } |
| |
| pub fn into_arg(self) -> GenericArg<'tcx> { |
| match self.unpack() { |
| TermKind::Ty(ty) => ty.into(), |
| TermKind::Const(c) => c.into(), |
| } |
| } |
| |
| /// This function returns the inner `AliasTy` for a `ty::Alias` or `ConstKind::Unevaluated`. |
| pub fn to_alias_ty(&self, tcx: TyCtxt<'tcx>) -> Option<AliasTy<'tcx>> { |
| match self.unpack() { |
| TermKind::Ty(ty) => match *ty.kind() { |
| ty::Alias(_kind, alias_ty) => Some(alias_ty), |
| _ => None, |
| }, |
| TermKind::Const(ct) => match ct.kind() { |
| ConstKind::Unevaluated(uv) => Some(tcx.mk_alias_ty(uv.def, uv.substs)), |
| _ => None, |
| }, |
| } |
| } |
| |
| pub fn is_infer(&self) -> bool { |
| match self.unpack() { |
| TermKind::Ty(ty) => ty.is_ty_var(), |
| TermKind::Const(ct) => ct.is_ct_infer(), |
| } |
| } |
| } |
| |
| const TAG_MASK: usize = 0b11; |
| const TYPE_TAG: usize = 0b00; |
| const CONST_TAG: usize = 0b01; |
| |
| #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable)] |
| pub enum TermKind<'tcx> { |
| Ty(Ty<'tcx>), |
| Const(Const<'tcx>), |
| } |
| |
| impl<'tcx> TermKind<'tcx> { |
| #[inline] |
| fn pack(self) -> Term<'tcx> { |
| let (tag, ptr) = match self { |
| TermKind::Ty(ty) => { |
| // Ensure we can use the tag bits. |
| assert_eq!(mem::align_of_val(&*ty.0.0) & TAG_MASK, 0); |
| (TYPE_TAG, ty.0.0 as *const WithCachedTypeInfo<ty::TyKind<'tcx>> as usize) |
| } |
| TermKind::Const(ct) => { |
| // Ensure we can use the tag bits. |
| assert_eq!(mem::align_of_val(&*ct.0.0) & TAG_MASK, 0); |
| (CONST_TAG, ct.0.0 as *const ty::ConstData<'tcx> as usize) |
| } |
| }; |
| |
| Term { ptr: unsafe { NonZeroUsize::new_unchecked(ptr | tag) }, marker: PhantomData } |
| } |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub enum ParamTerm { |
| Ty(ParamTy), |
| Const(ParamConst), |
| } |
| |
| impl ParamTerm { |
| pub fn index(self) -> usize { |
| match self { |
| ParamTerm::Ty(ty) => ty.index as usize, |
| ParamTerm::Const(ct) => ct.index as usize, |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, Eq, PartialEq, Debug)] |
| pub enum TermVid<'tcx> { |
| Ty(ty::TyVid), |
| Const(ty::ConstVid<'tcx>), |
| } |
| |
| impl From<ty::TyVid> for TermVid<'_> { |
| fn from(value: ty::TyVid) -> Self { |
| TermVid::Ty(value) |
| } |
| } |
| |
| impl<'tcx> From<ty::ConstVid<'tcx>> for TermVid<'tcx> { |
| fn from(value: ty::ConstVid<'tcx>) -> Self { |
| TermVid::Const(value) |
| } |
| } |
| |
| /// This kind of predicate has no *direct* correspondent in the |
| /// syntax, but it roughly corresponds to the syntactic forms: |
| /// |
| /// 1. `T: TraitRef<..., Item = Type>` |
| /// 2. `<T as TraitRef<...>>::Item == Type` (NYI) |
| /// |
| /// In particular, form #1 is "desugared" to the combination of a |
| /// normal trait predicate (`T: TraitRef<...>`) and one of these |
| /// predicates. Form #2 is a broader form in that it also permits |
| /// equality between arbitrary types. Processing an instance of |
| /// Form #2 eventually yields one of these `ProjectionPredicate` |
| /// instances to normalize the LHS. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] |
| pub struct ProjectionPredicate<'tcx> { |
| pub projection_ty: AliasTy<'tcx>, |
| pub term: Term<'tcx>, |
| } |
| |
| impl<'tcx> ProjectionPredicate<'tcx> { |
| pub fn self_ty(self) -> Ty<'tcx> { |
| self.projection_ty.self_ty() |
| } |
| |
| pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ProjectionPredicate<'tcx> { |
| Self { projection_ty: self.projection_ty.with_self_ty(tcx, self_ty), ..self } |
| } |
| |
| pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId { |
| self.projection_ty.trait_def_id(tcx) |
| } |
| |
| pub fn def_id(self) -> DefId { |
| self.projection_ty.def_id |
| } |
| } |
| |
| pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>; |
| |
| impl<'tcx> PolyProjectionPredicate<'tcx> { |
| /// Returns the `DefId` of the trait of the associated item being projected. |
| #[inline] |
| pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId { |
| self.skip_binder().projection_ty.trait_def_id(tcx) |
| } |
| |
| /// Get the [PolyTraitRef] required for this projection to be well formed. |
| /// Note that for generic associated types the predicates of the associated |
| /// type also need to be checked. |
| #[inline] |
| pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> { |
| // Note: unlike with `TraitRef::to_poly_trait_ref()`, |
| // `self.0.trait_ref` is permitted to have escaping regions. |
| // This is because here `self` has a `Binder` and so does our |
| // return value, so we are preserving the number of binding |
| // levels. |
| self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx)) |
| } |
| |
| pub fn term(&self) -> Binder<'tcx, Term<'tcx>> { |
| self.map_bound(|predicate| predicate.term) |
| } |
| |
| /// The `DefId` of the `TraitItem` for the associated type. |
| /// |
| /// Note that this is not the `DefId` of the `TraitRef` containing this |
| /// associated type, which is in `tcx.associated_item(projection_def_id()).container`. |
| pub fn projection_def_id(&self) -> DefId { |
| // Ok to skip binder since trait `DefId` does not care about regions. |
| self.skip_binder().projection_ty.def_id |
| } |
| } |
| |
| pub trait ToPolyTraitRef<'tcx> { |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>; |
| } |
| |
| impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> { |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { |
| self.map_bound_ref(|trait_pred| trait_pred.trait_ref) |
| } |
| } |
| |
| pub trait ToPredicate<'tcx, P = Predicate<'tcx>> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> P; |
| } |
| |
| impl<'tcx, T> ToPredicate<'tcx, T> for T { |
| fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T { |
| self |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PredicateKind<'tcx> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| ty::Binder::dummy(self).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| tcx.mk_predicate(self) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for Clause<'tcx> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| tcx.mk_predicate(ty::Binder::dummy(ty::PredicateKind::Clause(self))) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| ty::Binder::dummy(self).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for Binder<'tcx, TraitRef<'tcx>> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| let pred: PolyTraitPredicate<'tcx> = self.to_predicate(tcx); |
| pred.to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx, PolyTraitPredicate<'tcx>> for Binder<'tcx, TraitRef<'tcx>> { |
| #[inline(always)] |
| fn to_predicate(self, _: TyCtxt<'tcx>) -> PolyTraitPredicate<'tcx> { |
| self.map_bound(|trait_ref| TraitPredicate { |
| trait_ref, |
| constness: ty::BoundConstness::NotConst, |
| polarity: ty::ImplPolarity::Positive, |
| }) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx, PolyTraitPredicate<'tcx>> for TraitRef<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> PolyTraitPredicate<'tcx> { |
| ty::Binder::dummy(self).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx, PolyTraitPredicate<'tcx>> for TraitPredicate<'tcx> { |
| fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> PolyTraitPredicate<'tcx> { |
| ty::Binder::dummy(self) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(|p| PredicateKind::Clause(Clause::Trait(p))).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(|p| PredicateKind::Clause(Clause::RegionOutlives(p))).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(|p| PredicateKind::Clause(Clause::TypeOutlives(p))).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(|p| PredicateKind::Clause(Clause::Projection(p))).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for TraitPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| PredicateKind::Clause(Clause::Trait(self)).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> Predicate<'tcx> { |
| pub fn to_opt_poly_trait_pred(self) -> Option<PolyTraitPredicate<'tcx>> { |
| let predicate = self.kind(); |
| match predicate.skip_binder() { |
| PredicateKind::Clause(Clause::Trait(t)) => Some(predicate.rebind(t)), |
| PredicateKind::Clause(Clause::Projection(..)) |
| | PredicateKind::Clause(Clause::ConstArgHasType(..)) |
| | PredicateKind::AliasRelate(..) |
| | PredicateKind::Subtype(..) |
| | PredicateKind::Coerce(..) |
| | PredicateKind::Clause(Clause::RegionOutlives(..)) |
| | PredicateKind::WellFormed(..) |
| | PredicateKind::ObjectSafe(..) |
| | PredicateKind::ClosureKind(..) |
| | PredicateKind::Clause(Clause::TypeOutlives(..)) |
| | PredicateKind::ConstEvaluatable(..) |
| | PredicateKind::ConstEquate(..) |
| | PredicateKind::Ambiguous |
| | PredicateKind::TypeWellFormedFromEnv(..) => None, |
| } |
| } |
| |
| pub fn to_opt_poly_projection_pred(self) -> Option<PolyProjectionPredicate<'tcx>> { |
| let predicate = self.kind(); |
| match predicate.skip_binder() { |
| PredicateKind::Clause(Clause::Projection(t)) => Some(predicate.rebind(t)), |
| PredicateKind::Clause(Clause::Trait(..)) |
| | PredicateKind::Clause(Clause::ConstArgHasType(..)) |
| | PredicateKind::AliasRelate(..) |
| | PredicateKind::Subtype(..) |
| | PredicateKind::Coerce(..) |
| | PredicateKind::Clause(Clause::RegionOutlives(..)) |
| | PredicateKind::WellFormed(..) |
| | PredicateKind::ObjectSafe(..) |
| | PredicateKind::ClosureKind(..) |
| | PredicateKind::Clause(Clause::TypeOutlives(..)) |
| | PredicateKind::ConstEvaluatable(..) |
| | PredicateKind::ConstEquate(..) |
| | PredicateKind::Ambiguous |
| | PredicateKind::TypeWellFormedFromEnv(..) => None, |
| } |
| } |
| |
| pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> { |
| let predicate = self.kind(); |
| match predicate.skip_binder() { |
| PredicateKind::Clause(Clause::TypeOutlives(data)) => Some(predicate.rebind(data)), |
| PredicateKind::Clause(Clause::Trait(..)) |
| | PredicateKind::Clause(Clause::ConstArgHasType(..)) |
| | PredicateKind::Clause(Clause::Projection(..)) |
| | PredicateKind::AliasRelate(..) |
| | PredicateKind::Subtype(..) |
| | PredicateKind::Coerce(..) |
| | PredicateKind::Clause(Clause::RegionOutlives(..)) |
| | PredicateKind::WellFormed(..) |
| | PredicateKind::ObjectSafe(..) |
| | PredicateKind::ClosureKind(..) |
| | PredicateKind::ConstEvaluatable(..) |
| | PredicateKind::ConstEquate(..) |
| | PredicateKind::Ambiguous |
| | PredicateKind::TypeWellFormedFromEnv(..) => None, |
| } |
| } |
| } |
| |
| /// Represents the bounds declared on a particular set of type |
| /// parameters. Should eventually be generalized into a flag list of |
| /// where-clauses. You can obtain an `InstantiatedPredicates` list from a |
| /// `GenericPredicates` by using the `instantiate` method. Note that this method |
| /// reflects an important semantic invariant of `InstantiatedPredicates`: while |
| /// the `GenericPredicates` are expressed in terms of the bound type |
| /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance |
| /// represented a set of bounds for some particular instantiation, |
| /// meaning that the generic parameters have been substituted with |
| /// their values. |
| /// |
| /// Example: |
| /// ```ignore (illustrative) |
| /// struct Foo<T, U: Bar<T>> { ... } |
| /// ``` |
| /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like |
| /// `[[], [U:Bar<T>]]`. Now if there were some particular reference |
| /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[], |
| /// [usize:Bar<isize>]]`. |
| #[derive(Clone, Debug, TypeFoldable, TypeVisitable)] |
| pub struct InstantiatedPredicates<'tcx> { |
| pub predicates: Vec<Predicate<'tcx>>, |
| pub spans: Vec<Span>, |
| } |
| |
| impl<'tcx> InstantiatedPredicates<'tcx> { |
| pub fn empty() -> InstantiatedPredicates<'tcx> { |
| InstantiatedPredicates { predicates: vec![], spans: vec![] } |
| } |
| |
| pub fn is_empty(&self) -> bool { |
| self.predicates.is_empty() |
| } |
| |
| pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter { |
| (&self).into_iter() |
| } |
| } |
| |
| impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> { |
| type Item = (Predicate<'tcx>, Span); |
| |
| type IntoIter = std::iter::Zip<std::vec::IntoIter<Predicate<'tcx>>, std::vec::IntoIter<Span>>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| debug_assert_eq!(self.predicates.len(), self.spans.len()); |
| std::iter::zip(self.predicates, self.spans) |
| } |
| } |
| |
| impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> { |
| type Item = (Predicate<'tcx>, Span); |
| |
| type IntoIter = std::iter::Zip< |
| std::iter::Copied<std::slice::Iter<'a, Predicate<'tcx>>>, |
| std::iter::Copied<std::slice::Iter<'a, Span>>, |
| >; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| debug_assert_eq!(self.predicates.len(), self.spans.len()); |
| std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied()) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable, Lift)] |
| #[derive(TypeFoldable, TypeVisitable)] |
| pub struct OpaqueTypeKey<'tcx> { |
| pub def_id: LocalDefId, |
| pub substs: SubstsRef<'tcx>, |
| } |
| |
| #[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)] |
| pub struct OpaqueHiddenType<'tcx> { |
| /// The span of this particular definition of the opaque type. So |
| /// for example: |
| /// |
| /// ```ignore (incomplete snippet) |
| /// type Foo = impl Baz; |
| /// fn bar() -> Foo { |
| /// // ^^^ This is the span we are looking for! |
| /// } |
| /// ``` |
| /// |
| /// In cases where the fn returns `(impl Trait, impl Trait)` or |
| /// other such combinations, the result is currently |
| /// over-approximated, but better than nothing. |
| pub span: Span, |
| |
| /// The type variable that represents the value of the opaque type |
| /// that we require. In other words, after we compile this function, |
| /// we will be created a constraint like: |
| /// ```ignore (pseudo-rust) |
| /// Foo<'a, T> = ?C |
| /// ``` |
| /// where `?C` is the value of this type variable. =) It may |
| /// naturally refer to the type and lifetime parameters in scope |
| /// in this function, though ultimately it should only reference |
| /// those that are arguments to `Foo` in the constraint above. (In |
| /// other words, `?C` should not include `'b`, even though it's a |
| /// lifetime parameter on `foo`.) |
| pub ty: Ty<'tcx>, |
| } |
| |
| impl<'tcx> OpaqueHiddenType<'tcx> { |
| pub fn report_mismatch( |
| &self, |
| other: &Self, |
| opaque_def_id: LocalDefId, |
| tcx: TyCtxt<'tcx>, |
| ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> { |
| if let Some(diag) = tcx |
| .sess |
| .diagnostic() |
| .steal_diagnostic(tcx.def_span(opaque_def_id), StashKey::OpaqueHiddenTypeMismatch) |
| { |
| diag.cancel(); |
| } |
| // Found different concrete types for the opaque type. |
| let sub_diag = if self.span == other.span { |
| TypeMismatchReason::ConflictType { span: self.span } |
| } else { |
| TypeMismatchReason::PreviousUse { span: self.span } |
| }; |
| tcx.sess.create_err(OpaqueHiddenTypeMismatch { |
| self_ty: self.ty, |
| other_ty: other.ty, |
| other_span: other.span, |
| sub: sub_diag, |
| }) |
| } |
| |
| #[instrument(level = "debug", skip(tcx), ret)] |
| pub fn remap_generic_params_to_declaration_params( |
| self, |
| opaque_type_key: OpaqueTypeKey<'tcx>, |
| tcx: TyCtxt<'tcx>, |
| // typeck errors have subpar spans for opaque types, so delay error reporting until borrowck. |
| ignore_errors: bool, |
| ) -> Self { |
| let OpaqueTypeKey { def_id, substs } = opaque_type_key; |
| |
| // Use substs to build up a reverse map from regions to their |
| // identity mappings. This is necessary because of `impl |
| // Trait` lifetimes are computed by replacing existing |
| // lifetimes with 'static and remapping only those used in the |
| // `impl Trait` return type, resulting in the parameters |
| // shifting. |
| let id_substs = InternalSubsts::identity_for_item(tcx, def_id); |
| debug!(?id_substs); |
| |
| // This zip may have several times the same lifetime in `substs` paired with a different |
| // lifetime from `id_substs`. Simply `collect`ing the iterator is the correct behaviour: |
| // it will pick the last one, which is the one we introduced in the impl-trait desugaring. |
| let map = substs.iter().zip(id_substs).collect(); |
| debug!("map = {:#?}", map); |
| |
| // Convert the type from the function into a type valid outside |
| // the function, by replacing invalid regions with 'static, |
| // after producing an error for each of them. |
| self.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span, ignore_errors)) |
| } |
| } |
| |
| /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are |
| /// identified by both a universe, as well as a name residing within that universe. Distinct bound |
| /// regions/types/consts within the same universe simply have an unknown relationship to one |
| /// another. |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] |
| #[derive(HashStable, TyEncodable, TyDecodable)] |
| pub struct Placeholder<T> { |
| pub universe: UniverseIndex, |
| pub bound: T, |
| } |
| |
| pub type PlaceholderRegion = Placeholder<BoundRegion>; |
| |
| pub type PlaceholderType = Placeholder<BoundTy>; |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] |
| #[derive(TyEncodable, TyDecodable, PartialOrd, Ord)] |
| pub struct BoundConst<'tcx> { |
| pub var: BoundVar, |
| pub ty: Ty<'tcx>, |
| } |
| |
| pub type PlaceholderConst<'tcx> = Placeholder<BoundVar>; |
| |
| /// When type checking, we use the `ParamEnv` to track |
| /// details about the set of where-clauses that are in scope at this |
| /// particular point. |
| #[derive(Copy, Clone, Hash, PartialEq, Eq)] |
| pub struct ParamEnv<'tcx> { |
| /// This packs both caller bounds and the reveal enum into one pointer. |
| /// |
| /// Caller bounds are `Obligation`s that the caller must satisfy. This is |
| /// basically the set of bounds on the in-scope type parameters, translated |
| /// into `Obligation`s, and elaborated and normalized. |
| /// |
| /// Use the `caller_bounds()` method to access. |
| /// |
| /// Typically, this is `Reveal::UserFacing`, but during codegen we |
| /// want `Reveal::All`. |
| /// |
| /// Note: This is packed, use the reveal() method to access it. |
| packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, ParamTag, true>, |
| } |
| |
| #[derive(Copy, Clone)] |
| struct ParamTag { |
| reveal: traits::Reveal, |
| constness: hir::Constness, |
| } |
| |
| impl_tag! { |
| impl Tag for ParamTag; |
| ParamTag { reveal: traits::Reveal::UserFacing, constness: hir::Constness::NotConst }, |
| ParamTag { reveal: traits::Reveal::All, constness: hir::Constness::NotConst }, |
| ParamTag { reveal: traits::Reveal::UserFacing, constness: hir::Constness::Const }, |
| ParamTag { reveal: traits::Reveal::All, constness: hir::Constness::Const }, |
| } |
| |
| impl<'tcx> fmt::Debug for ParamEnv<'tcx> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("ParamEnv") |
| .field("caller_bounds", &self.caller_bounds()) |
| .field("reveal", &self.reveal()) |
| .field("constness", &self.constness()) |
| .finish() |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| self.caller_bounds().hash_stable(hcx, hasher); |
| self.reveal().hash_stable(hcx, hasher); |
| self.constness().hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for ParamEnv<'tcx> { |
| fn try_fold_with<F: ty::fold::FallibleTypeFolder<TyCtxt<'tcx>>>( |
| self, |
| folder: &mut F, |
| ) -> Result<Self, F::Error> { |
| Ok(ParamEnv::new( |
| self.caller_bounds().try_fold_with(folder)?, |
| self.reveal().try_fold_with(folder)?, |
| self.constness(), |
| )) |
| } |
| } |
| |
| impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for ParamEnv<'tcx> { |
| fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> { |
| self.caller_bounds().visit_with(visitor)?; |
| self.reveal().visit_with(visitor) |
| } |
| } |
| |
| impl<'tcx> ParamEnv<'tcx> { |
| /// Construct a trait environment suitable for contexts where |
| /// there are no where-clauses in scope. Hidden types (like `impl |
| /// Trait`) are left hidden, so this is suitable for ordinary |
| /// type-checking. |
| #[inline] |
| pub fn empty() -> Self { |
| Self::new(List::empty(), Reveal::UserFacing, hir::Constness::NotConst) |
| } |
| |
| #[inline] |
| pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> { |
| self.packed.pointer() |
| } |
| |
| #[inline] |
| pub fn reveal(self) -> traits::Reveal { |
| self.packed.tag().reveal |
| } |
| |
| #[inline] |
| pub fn constness(self) -> hir::Constness { |
| self.packed.tag().constness |
| } |
| |
| #[inline] |
| pub fn is_const(self) -> bool { |
| self.packed.tag().constness == hir::Constness::Const |
| } |
| |
| /// Construct a trait environment with no where-clauses in scope |
| /// where the values of all `impl Trait` and other hidden types |
| /// are revealed. This is suitable for monomorphized, post-typeck |
| /// environments like codegen or doing optimizations. |
| /// |
| /// N.B., if you want to have predicates in scope, use `ParamEnv::new`, |
| /// or invoke `param_env.with_reveal_all()`. |
| #[inline] |
| pub fn reveal_all() -> Self { |
| Self::new(List::empty(), Reveal::All, hir::Constness::NotConst) |
| } |
| |
| /// Construct a trait environment with the given set of predicates. |
| #[inline] |
| pub fn new( |
| caller_bounds: &'tcx List<Predicate<'tcx>>, |
| reveal: Reveal, |
| constness: hir::Constness, |
| ) -> Self { |
| ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, ParamTag { reveal, constness }) } |
| } |
| |
| pub fn with_user_facing(mut self) -> Self { |
| self.packed.set_tag(ParamTag { reveal: Reveal::UserFacing, ..self.packed.tag() }); |
| self |
| } |
| |
| #[inline] |
| pub fn with_constness(mut self, constness: hir::Constness) -> Self { |
| self.packed.set_tag(ParamTag { constness, ..self.packed.tag() }); |
| self |
| } |
| |
| #[inline] |
| pub fn with_const(mut self) -> Self { |
| self.packed.set_tag(ParamTag { constness: hir::Constness::Const, ..self.packed.tag() }); |
| self |
| } |
| |
| #[inline] |
| pub fn without_const(mut self) -> Self { |
| self.packed.set_tag(ParamTag { constness: hir::Constness::NotConst, ..self.packed.tag() }); |
| self |
| } |
| |
| #[inline] |
| pub fn remap_constness_with(&mut self, mut constness: ty::BoundConstness) { |
| *self = self.with_constness(constness.and(self.constness())) |
| } |
| |
| /// Returns a new parameter environment with the same clauses, but |
| /// which "reveals" the true results of projections in all cases |
| /// (even for associated types that are specializable). This is |
| /// the desired behavior during codegen and certain other special |
| /// contexts; normally though we want to use `Reveal::UserFacing`, |
| /// which is the default. |
| /// All opaque types in the caller_bounds of the `ParamEnv` |
| /// will be normalized to their underlying types. |
| /// See PR #65989 and issue #65918 for more details |
| pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self { |
| if self.packed.tag().reveal == traits::Reveal::All { |
| return self; |
| } |
| |
| ParamEnv::new( |
| tcx.reveal_opaque_types_in_bounds(self.caller_bounds()), |
| Reveal::All, |
| self.constness(), |
| ) |
| } |
| |
| /// Returns this same environment but with no caller bounds. |
| #[inline] |
| pub fn without_caller_bounds(self) -> Self { |
| Self::new(List::empty(), self.reveal(), self.constness()) |
| } |
| |
| /// Creates a suitable environment in which to perform trait |
| /// queries on the given value. When type-checking, this is simply |
| /// the pair of the environment plus value. But when reveal is set to |
| /// All, then if `value` does not reference any type parameters, we will |
| /// pair it with the empty environment. This improves caching and is generally |
| /// invisible. |
| /// |
| /// N.B., we preserve the environment when type-checking because it |
| /// is possible for the user to have wacky where-clauses like |
| /// `where Box<u32>: Copy`, which are clearly never |
| /// satisfiable. We generally want to behave as if they were true, |
| /// although the surrounding function is never reachable. |
| pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> { |
| match self.reveal() { |
| Reveal::UserFacing => ParamEnvAnd { param_env: self, value }, |
| |
| Reveal::All => { |
| if value.is_global() { |
| ParamEnvAnd { param_env: self.without_caller_bounds(), value } |
| } else { |
| ParamEnvAnd { param_env: self, value } |
| } |
| } |
| } |
| } |
| } |
| |
| // FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that |
| // the constness of trait bounds is being propagated correctly. |
| impl<'tcx> PolyTraitRef<'tcx> { |
| #[inline] |
| pub fn with_constness(self, constness: BoundConstness) -> PolyTraitPredicate<'tcx> { |
| self.map_bound(|trait_ref| ty::TraitPredicate { |
| trait_ref, |
| constness, |
| polarity: ty::ImplPolarity::Positive, |
| }) |
| } |
| |
| #[inline] |
| pub fn without_const(self) -> PolyTraitPredicate<'tcx> { |
| self.with_constness(BoundConstness::NotConst) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)] |
| #[derive(HashStable, Lift)] |
| pub struct ParamEnvAnd<'tcx, T> { |
| pub param_env: ParamEnv<'tcx>, |
| pub value: T, |
| } |
| |
| impl<'tcx, T> ParamEnvAnd<'tcx, T> { |
| pub fn into_parts(self) -> (ParamEnv<'tcx>, T) { |
| (self.param_env, self.value) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)] |
| pub struct Destructor { |
| /// The `DefId` of the destructor method |
| pub did: DefId, |
| /// The constness of the destructor method |
| pub constness: hir::Constness, |
| } |
| |
| bitflags! { |
| #[derive(HashStable, TyEncodable, TyDecodable)] |
| pub struct VariantFlags: u8 { |
| const NO_VARIANT_FLAGS = 0; |
| /// Indicates whether the field list of this variant is `#[non_exhaustive]`. |
| const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0; |
| /// Indicates whether this variant was obtained as part of recovering from |
| /// a syntactic error. May be incomplete or bogus. |
| const IS_RECOVERED = 1 << 1; |
| } |
| } |
| |
| /// Definition of a variant -- a struct's fields or an enum variant. |
| #[derive(Debug, HashStable, TyEncodable, TyDecodable)] |
| pub struct VariantDef { |
| /// `DefId` that identifies the variant itself. |
| /// If this variant belongs to a struct or union, then this is a copy of its `DefId`. |
| pub def_id: DefId, |
| /// `DefId` that identifies the variant's constructor. |
| /// If this variant is a struct variant, then this is `None`. |
| pub ctor: Option<(CtorKind, DefId)>, |
| /// Variant or struct name. |
| pub name: Symbol, |
| /// Discriminant of this variant. |
| pub discr: VariantDiscr, |
| /// Fields of this variant. |
| pub fields: IndexVec<FieldIdx, FieldDef>, |
| /// Flags of the variant (e.g. is field list non-exhaustive)? |
| flags: VariantFlags, |
| } |
| |
| impl VariantDef { |
| /// Creates a new `VariantDef`. |
| /// |
| /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef` |
| /// represents an enum variant). |
| /// |
| /// `ctor_did` is the `DefId` that identifies the constructor of unit or |
| /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`. |
| /// |
| /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that |
| /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having |
| /// to go through the redirect of checking the ctor's attributes - but compiling a small crate |
| /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any |
| /// built-in trait), and we do not want to load attributes twice. |
| /// |
| /// If someone speeds up attribute loading to not be a performance concern, they can |
| /// remove this hack and use the constructor `DefId` everywhere. |
| pub fn new( |
| name: Symbol, |
| variant_did: Option<DefId>, |
| ctor: Option<(CtorKind, DefId)>, |
| discr: VariantDiscr, |
| fields: IndexVec<FieldIdx, FieldDef>, |
| adt_kind: AdtKind, |
| parent_did: DefId, |
| recovered: bool, |
| is_field_list_non_exhaustive: bool, |
| ) -> Self { |
| debug!( |
| "VariantDef::new(name = {:?}, variant_did = {:?}, ctor = {:?}, discr = {:?}, |
| fields = {:?}, adt_kind = {:?}, parent_did = {:?})", |
| name, variant_did, ctor, discr, fields, adt_kind, parent_did, |
| ); |
| |
| let mut flags = VariantFlags::NO_VARIANT_FLAGS; |
| if is_field_list_non_exhaustive { |
| flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE; |
| } |
| |
| if recovered { |
| flags |= VariantFlags::IS_RECOVERED; |
| } |
| |
| VariantDef { def_id: variant_did.unwrap_or(parent_did), ctor, name, discr, fields, flags } |
| } |
| |
| /// Is this field list non-exhaustive? |
| #[inline] |
| pub fn is_field_list_non_exhaustive(&self) -> bool { |
| self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE) |
| } |
| |
| /// Was this variant obtained as part of recovering from a syntactic error? |
| #[inline] |
| pub fn is_recovered(&self) -> bool { |
| self.flags.intersects(VariantFlags::IS_RECOVERED) |
| } |
| |
| /// Computes the `Ident` of this variant by looking up the `Span` |
| pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { |
| Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap()) |
| } |
| |
| #[inline] |
| pub fn ctor_kind(&self) -> Option<CtorKind> { |
| self.ctor.map(|(kind, _)| kind) |
| } |
| |
| #[inline] |
| pub fn ctor_def_id(&self) -> Option<DefId> { |
| self.ctor.map(|(_, def_id)| def_id) |
| } |
| |
| /// Returns the one field in this variant. |
| /// |
| /// `panic!`s if there are no fields or multiple fields. |
| #[inline] |
| pub fn single_field(&self) -> &FieldDef { |
| assert!(self.fields.len() == 1); |
| |
| &self.fields[FieldIdx::from_u32(0)] |
| } |
| } |
| |
| impl PartialEq for VariantDef { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| // There should be only one `VariantDef` for each `def_id`, therefore |
| // it is fine to implement `PartialEq` only based on `def_id`. |
| // |
| // Below, we exhaustively destructure `self` and `other` so that if the |
| // definition of `VariantDef` changes, a compile-error will be produced, |
| // reminding us to revisit this assumption. |
| |
| let Self { def_id: lhs_def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = &self; |
| let Self { def_id: rhs_def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = other; |
| |
| let res = lhs_def_id == rhs_def_id; |
| |
| // Double check that implicit assumption detailed above. |
| if cfg!(debug_assertions) && res { |
| let deep = self.ctor == other.ctor |
| && self.name == other.name |
| && self.discr == other.discr |
| && self.fields == other.fields |
| && self.flags == other.flags; |
| assert!(deep, "VariantDef for the same def-id has differing data"); |
| } |
| |
| res |
| } |
| } |
| |
| impl Eq for VariantDef {} |
| |
| impl Hash for VariantDef { |
| #[inline] |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| // There should be only one `VariantDef` for each `def_id`, therefore |
| // it is fine to implement `Hash` only based on `def_id`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `VariantDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _ } = &self; |
| def_id.hash(s) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] |
| pub enum VariantDiscr { |
| /// Explicit value for this variant, i.e., `X = 123`. |
| /// The `DefId` corresponds to the embedded constant. |
| Explicit(DefId), |
| |
| /// The previous variant's discriminant plus one. |
| /// For efficiency reasons, the distance from the |
| /// last `Explicit` discriminant is being stored, |
| /// or `0` for the first variant, if it has none. |
| Relative(u32), |
| } |
| |
| #[derive(Debug, HashStable, TyEncodable, TyDecodable)] |
| pub struct FieldDef { |
| pub did: DefId, |
| pub name: Symbol, |
| pub vis: Visibility<DefId>, |
| } |
| |
| impl PartialEq for FieldDef { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| // There should be only one `FieldDef` for each `did`, therefore it is |
| // fine to implement `PartialEq` only based on `did`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `FieldDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { did: lhs_did, name: _, vis: _ } = &self; |
| |
| let Self { did: rhs_did, name: _, vis: _ } = other; |
| |
| let res = lhs_did == rhs_did; |
| |
| // Double check that implicit assumption detailed above. |
| if cfg!(debug_assertions) && res { |
| let deep = self.name == other.name && self.vis == other.vis; |
| assert!(deep, "FieldDef for the same def-id has differing data"); |
| } |
| |
| res |
| } |
| } |
| |
| impl Eq for FieldDef {} |
| |
| impl Hash for FieldDef { |
| #[inline] |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| // There should be only one `FieldDef` for each `did`, therefore it is |
| // fine to implement `Hash` only based on `did`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `FieldDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { did, name: _, vis: _ } = &self; |
| |
| did.hash(s) |
| } |
| } |
| |
| impl<'tcx> FieldDef { |
| /// Returns the type of this field. The resulting type is not normalized. The `subst` is |
| /// typically obtained via the second field of [`TyKind::Adt`]. |
| pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> { |
| tcx.type_of(self.did).subst(tcx, subst) |
| } |
| |
| /// Computes the `Ident` of this variant by looking up the `Span` |
| pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { |
| Ident::new(self.name, tcx.def_ident_span(self.did).unwrap()) |
| } |
| } |
| |
| #[derive(Debug, PartialEq, Eq)] |
| pub enum ImplOverlapKind { |
| /// These impls are always allowed to overlap. |
| Permitted { |
| /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait |
| marker: bool, |
| }, |
| /// These impls are allowed to overlap, but that raises |
| /// an issue #33140 future-compatibility warning. |
| /// |
| /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's |
| /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different. |
| /// |
| /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied |
| /// that difference, making what reduces to the following set of impls: |
| /// |
| /// ```compile_fail,(E0119) |
| /// trait Trait {} |
| /// impl Trait for dyn Send + Sync {} |
| /// impl Trait for dyn Sync + Send {} |
| /// ``` |
| /// |
| /// Obviously, once we made these types be identical, that code causes a coherence |
| /// error and a fairly big headache for us. However, luckily for us, the trait |
| /// `Trait` used in this case is basically a marker trait, and therefore having |
| /// overlapping impls for it is sound. |
| /// |
| /// To handle this, we basically regard the trait as a marker trait, with an additional |
| /// future-compatibility warning. To avoid accidentally "stabilizing" this feature, |
| /// it has the following restrictions: |
| /// |
| /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be |
| /// positive impls. |
| /// 2. The trait-ref of both impls must be equal. |
| /// 3. The trait-ref of both impls must be a trait object type consisting only of |
| /// marker traits. |
| /// 4. Neither of the impls can have any where-clauses. |
| /// |
| /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed. |
| Issue33140, |
| } |
| |
| /// Useful source information about where a desugared associated type for an |
| /// RPITIT originated from. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)] |
| pub enum ImplTraitInTraitData { |
| Trait { fn_def_id: DefId, opaque_def_id: DefId }, |
| Impl { fn_def_id: DefId }, |
| } |
| |
| impl<'tcx> TyCtxt<'tcx> { |
| pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> { |
| self.typeck(self.hir().body_owner_def_id(body)) |
| } |
| |
| pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> { |
| self.associated_items(id) |
| .in_definition_order() |
| .filter(move |item| item.kind == AssocKind::Fn && item.defaultness(self).has_value()) |
| } |
| |
| pub fn repr_options_of_def(self, did: DefId) -> ReprOptions { |
| let mut flags = ReprFlags::empty(); |
| let mut size = None; |
| let mut max_align: Option<Align> = None; |
| let mut min_pack: Option<Align> = None; |
| |
| // Generate a deterministically-derived seed from the item's path hash |
| // to allow for cross-crate compilation to actually work |
| let mut field_shuffle_seed = self.def_path_hash(did).0.to_smaller_hash(); |
| |
| // If the user defined a custom seed for layout randomization, xor the item's |
| // path hash with the user defined seed, this will allowing determinism while |
| // still allowing users to further randomize layout generation for e.g. fuzzing |
| if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed { |
| field_shuffle_seed ^= user_seed; |
| } |
| |
| for attr in self.get_attrs(did, sym::repr) { |
| for r in attr::parse_repr_attr(&self.sess, attr) { |
| flags.insert(match r { |
| attr::ReprC => ReprFlags::IS_C, |
| attr::ReprPacked(pack) => { |
| let pack = Align::from_bytes(pack as u64).unwrap(); |
| min_pack = Some(if let Some(min_pack) = min_pack { |
| min_pack.min(pack) |
| } else { |
| pack |
| }); |
| ReprFlags::empty() |
| } |
| attr::ReprTransparent => ReprFlags::IS_TRANSPARENT, |
| attr::ReprSimd => ReprFlags::IS_SIMD, |
| attr::ReprInt(i) => { |
| size = Some(match i { |
| attr::IntType::SignedInt(x) => match x { |
| ast::IntTy::Isize => IntegerType::Pointer(true), |
| ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true), |
| ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true), |
| ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true), |
| ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true), |
| ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true), |
| }, |
| attr::IntType::UnsignedInt(x) => match x { |
| ast::UintTy::Usize => IntegerType::Pointer(false), |
| ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false), |
| ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false), |
| ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false), |
| ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false), |
| ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false), |
| }, |
| }); |
| ReprFlags::empty() |
| } |
| attr::ReprAlign(align) => { |
| max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap())); |
| ReprFlags::empty() |
| } |
| }); |
| } |
| } |
| |
| // If `-Z randomize-layout` was enabled for the type definition then we can |
| // consider performing layout randomization |
| if self.sess.opts.unstable_opts.randomize_layout { |
| flags.insert(ReprFlags::RANDOMIZE_LAYOUT); |
| } |
| |
| // This is here instead of layout because the choice must make it into metadata. |
| if !self.consider_optimizing(|| format!("Reorder fields of {:?}", self.def_path_str(did))) { |
| flags.insert(ReprFlags::IS_LINEAR); |
| } |
| |
| ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed } |
| } |
| |
| /// Look up the name of a definition across crates. This does not look at HIR. |
| pub fn opt_item_name(self, def_id: DefId) -> Option<Symbol> { |
| if let Some(cnum) = def_id.as_crate_root() { |
| Some(self.crate_name(cnum)) |
| } else { |
| let def_key = self.def_key(def_id); |
| match def_key.disambiguated_data.data { |
| // The name of a constructor is that of its parent. |
| rustc_hir::definitions::DefPathData::Ctor => self |
| .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }), |
| // The name of opaque types only exists in HIR. |
| rustc_hir::definitions::DefPathData::ImplTrait |
| if let Some(def_id) = def_id.as_local() => |
| self.hir().opt_name(self.hir().local_def_id_to_hir_id(def_id)), |
| _ => def_key.get_opt_name(), |
| } |
| } |
| } |
| |
| /// Look up the name of a definition across crates. This does not look at HIR. |
| /// |
| /// This method will ICE if the corresponding item does not have a name. In these cases, use |
| /// [`opt_item_name`] instead. |
| /// |
| /// [`opt_item_name`]: Self::opt_item_name |
| pub fn item_name(self, id: DefId) -> Symbol { |
| self.opt_item_name(id).unwrap_or_else(|| { |
| bug!("item_name: no name for {:?}", self.def_path(id)); |
| }) |
| } |
| |
| /// Look up the name and span of a definition. |
| /// |
| /// See [`item_name`][Self::item_name] for more information. |
| pub fn opt_item_ident(self, def_id: DefId) -> Option<Ident> { |
| let def = self.opt_item_name(def_id)?; |
| let span = self |
| .def_ident_span(def_id) |
| .unwrap_or_else(|| bug!("missing ident span for {def_id:?}")); |
| Some(Ident::new(def, span)) |
| } |
| |
| pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> { |
| if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { |
| Some(self.associated_item(def_id)) |
| } else { |
| None |
| } |
| } |
| |
| /// If the def-id is an associated type that was desugared from a |
| /// return-position `impl Trait` from a trait, then provide the source info |
| /// about where that RPITIT came from. |
| pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> { |
| if let DefKind::AssocTy = self.def_kind(def_id) { |
| self.associated_item(def_id).opt_rpitit_info |
| } else { |
| None |
| } |
| } |
| |
| pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> { |
| variant.fields.iter_enumerated().find_map(|(i, field)| { |
| self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i) |
| }) |
| } |
| |
| /// Returns `true` if the impls are the same polarity and the trait either |
| /// has no items or is annotated `#[marker]` and prevents item overrides. |
| #[instrument(level = "debug", skip(self), ret)] |
| pub fn impls_are_allowed_to_overlap( |
| self, |
| def_id1: DefId, |
| def_id2: DefId, |
| ) -> Option<ImplOverlapKind> { |
| let impl_trait_ref1 = self.impl_trait_ref(def_id1); |
| let impl_trait_ref2 = self.impl_trait_ref(def_id2); |
| // If either trait impl references an error, they're allowed to overlap, |
| // as one of them essentially doesn't exist. |
| if impl_trait_ref1.is_some_and(|tr| tr.subst_identity().references_error()) |
| || impl_trait_ref2.is_some_and(|tr| tr.subst_identity().references_error()) |
| { |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| |
| match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) { |
| (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => { |
| // `#[rustc_reservation_impl]` impls don't overlap with anything |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| (ImplPolarity::Positive, ImplPolarity::Negative) |
| | (ImplPolarity::Negative, ImplPolarity::Positive) => { |
| // `impl AutoTrait for Type` + `impl !AutoTrait for Type` |
| return None; |
| } |
| (ImplPolarity::Positive, ImplPolarity::Positive) |
| | (ImplPolarity::Negative, ImplPolarity::Negative) => {} |
| }; |
| |
| let is_marker_overlap = { |
| let is_marker_impl = |trait_ref: Option<EarlyBinder<TraitRef<'_>>>| -> bool { |
| trait_ref.is_some_and(|tr| self.trait_def(tr.skip_binder().def_id).is_marker) |
| }; |
| is_marker_impl(impl_trait_ref1) && is_marker_impl(impl_trait_ref2) |
| }; |
| |
| if is_marker_overlap { |
| Some(ImplOverlapKind::Permitted { marker: true }) |
| } else { |
| if let Some(self_ty1) = self.issue33140_self_ty(def_id1) { |
| if let Some(self_ty2) = self.issue33140_self_ty(def_id2) { |
| if self_ty1 == self_ty2 { |
| return Some(ImplOverlapKind::Issue33140); |
| } else { |
| debug!("found {self_ty1:?} != {self_ty2:?}"); |
| } |
| } |
| } |
| |
| None |
| } |
| } |
| |
| /// Returns `ty::VariantDef` if `res` refers to a struct, |
| /// or variant or their constructors, panics otherwise. |
| pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef { |
| match res { |
| Res::Def(DefKind::Variant, did) => { |
| let enum_did = self.parent(did); |
| self.adt_def(enum_did).variant_with_id(did) |
| } |
| Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(), |
| Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => { |
| let variant_did = self.parent(variant_ctor_did); |
| let enum_did = self.parent(variant_did); |
| self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did) |
| } |
| Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => { |
| let struct_did = self.parent(ctor_did); |
| self.adt_def(struct_did).non_enum_variant() |
| } |
| _ => bug!("expect_variant_res used with unexpected res {:?}", res), |
| } |
| } |
| |
| /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair. |
| #[instrument(skip(self), level = "debug")] |
| pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> { |
| match instance { |
| ty::InstanceDef::Item(def) => { |
| debug!("calling def_kind on def: {:?}", def); |
| let def_kind = self.def_kind(def); |
| debug!("returned from def_kind: {:?}", def_kind); |
| match def_kind { |
| DefKind::Const |
| | DefKind::Static(..) |
| | DefKind::AssocConst |
| | DefKind::Ctor(..) |
| | DefKind::AnonConst |
| | DefKind::InlineConst => self.mir_for_ctfe(def), |
| // If the caller wants `mir_for_ctfe` of a function they should not be using |
| // `instance_mir`, so we'll assume const fn also wants the optimized version. |
| _ => self.optimized_mir(def), |
| } |
| } |
| ty::InstanceDef::VTableShim(..) |
| | ty::InstanceDef::ReifyShim(..) |
| | ty::InstanceDef::Intrinsic(..) |
| | ty::InstanceDef::FnPtrShim(..) |
| | ty::InstanceDef::Virtual(..) |
| | ty::InstanceDef::ClosureOnceShim { .. } |
| | ty::InstanceDef::DropGlue(..) |
| | ty::InstanceDef::CloneShim(..) |
| | ty::InstanceDef::ThreadLocalShim(..) |
| | ty::InstanceDef::FnPtrAddrShim(..) => self.mir_shims(instance), |
| } |
| } |
| |
| // FIXME(@lcnr): Remove this function. |
| pub fn get_attrs_unchecked(self, did: DefId) -> &'tcx [ast::Attribute] { |
| if let Some(did) = did.as_local() { |
| self.hir().attrs(self.hir().local_def_id_to_hir_id(did)) |
| } else { |
| self.item_attrs(did) |
| } |
| } |
| |
| /// Gets all attributes with the given name. |
| pub fn get_attrs( |
| self, |
| did: impl Into<DefId>, |
| attr: Symbol, |
| ) -> impl Iterator<Item = &'tcx ast::Attribute> { |
| let did: DefId = did.into(); |
| let filter_fn = move |a: &&ast::Attribute| a.has_name(attr); |
| if let Some(did) = did.as_local() { |
| self.hir().attrs(self.hir().local_def_id_to_hir_id(did)).iter().filter(filter_fn) |
| } else if cfg!(debug_assertions) && rustc_feature::is_builtin_only_local(attr) { |
| bug!("tried to access the `only_local` attribute `{}` from an extern crate", attr); |
| } else { |
| self.item_attrs(did).iter().filter(filter_fn) |
| } |
| } |
| |
| pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx ast::Attribute> { |
| if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) { |
| let did: DefId = did.into(); |
| bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr); |
| } else { |
| self.get_attrs(did, attr).next() |
| } |
| } |
| |
| /// Determines whether an item is annotated with an attribute. |
| pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool { |
| let did: DefId = did.into(); |
| if cfg!(debug_assertions) && !did.is_local() && rustc_feature::is_builtin_only_local(attr) { |
| bug!("tried to access the `only_local` attribute `{}` from an extern crate", attr); |
| } else { |
| self.get_attrs(did, attr).next().is_some() |
| } |
| } |
| |
| /// Returns `true` if this is an `auto trait`. |
| pub fn trait_is_auto(self, trait_def_id: DefId) -> bool { |
| self.trait_def(trait_def_id).has_auto_impl |
| } |
| |
| /// Returns `true` if this is coinductive, either because it is |
| /// an auto trait or because it has the `#[rustc_coinductive]` attribute. |
| pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool { |
| self.trait_def(trait_def_id).is_coinductive |
| } |
| |
| /// Returns `true` if this is a trait alias. |
| pub fn trait_is_alias(self, trait_def_id: DefId) -> bool { |
| self.def_kind(trait_def_id) == DefKind::TraitAlias |
| } |
| |
| /// Returns layout of a generator. Layout might be unavailable if the |
| /// generator is tainted by errors. |
| pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> { |
| self.optimized_mir(def_id).generator_layout() |
| } |
| |
| /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements. |
| /// If it implements no trait, returns `None`. |
| pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> { |
| self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id) |
| } |
| |
| /// If the given `DefId` describes an item belonging to a trait, |
| /// returns the `DefId` of the trait that the trait item belongs to; |
| /// otherwise, returns `None`. |
| pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> { |
| if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { |
| let parent = self.parent(def_id); |
| if let DefKind::Trait | DefKind::TraitAlias = self.def_kind(parent) { |
| return Some(parent); |
| } |
| } |
| None |
| } |
| |
| /// If the given `DefId` describes a method belonging to an impl, returns the |
| /// `DefId` of the impl that the method belongs to; otherwise, returns `None`. |
| pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> { |
| if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { |
| let parent = self.parent(def_id); |
| if let DefKind::Impl { .. } = self.def_kind(parent) { |
| return Some(parent); |
| } |
| } |
| None |
| } |
| |
| /// Check if the given `DefId` is `#\[automatically_derived\]`, *and* |
| /// whether it was produced by expanding a builtin derive macro. |
| pub fn is_builtin_derived(self, def_id: DefId) -> bool { |
| if self.is_automatically_derived(def_id) |
| && let Some(def_id) = def_id.as_local() |
| && let outer = self.def_span(def_id).ctxt().outer_expn_data() |
| && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _)) |
| && self.has_attr(outer.macro_def_id.unwrap(), sym::rustc_builtin_macro) |
| { |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Check if the given `DefId` is `#\[automatically_derived\]`. |
| pub fn is_automatically_derived(self, def_id: DefId) -> bool { |
| self.has_attr(def_id, sym::automatically_derived) |
| } |
| |
| /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err` |
| /// with the name of the crate containing the impl. |
| pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> { |
| if let Some(impl_def_id) = impl_def_id.as_local() { |
| Ok(self.def_span(impl_def_id)) |
| } else { |
| Err(self.crate_name(impl_def_id.krate)) |
| } |
| } |
| |
| /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with |
| /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed |
| /// definition's parent/scope to perform comparison. |
| pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool { |
| // We could use `Ident::eq` here, but we deliberately don't. The name |
| // comparison fails frequently, and we want to avoid the expensive |
| // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible. |
| use_name.name == def_name.name |
| && use_name |
| .span |
| .ctxt() |
| .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id)) |
| } |
| |
| pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident { |
| ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)); |
| ident |
| } |
| |
| // FIXME(vincenzopalazzo): move the HirId to a LocalDefId |
| pub fn adjust_ident_and_get_scope( |
| self, |
| mut ident: Ident, |
| scope: DefId, |
| block: hir::HirId, |
| ) -> (Ident, DefId) { |
| let scope = ident |
| .span |
| .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)) |
| .and_then(|actual_expansion| actual_expansion.expn_data().parent_module) |
| .unwrap_or_else(|| self.parent_module(block).to_def_id()); |
| (ident, scope) |
| } |
| |
| /// Returns `true` if the debuginfo for `span` should be collapsed to the outermost expansion |
| /// site. Only applies when `Span` is the result of macro expansion. |
| /// |
| /// - If the `collapse_debuginfo` feature is enabled then debuginfo is not collapsed by default |
| /// and only when a macro definition is annotated with `#[collapse_debuginfo]`. |
| /// - If `collapse_debuginfo` is not enabled, then debuginfo is collapsed by default. |
| /// |
| /// When `-Zdebug-macros` is provided then debuginfo will never be collapsed. |
| pub fn should_collapse_debuginfo(self, span: Span) -> bool { |
| !self.sess.opts.unstable_opts.debug_macros |
| && if self.features().collapse_debuginfo { |
| span.in_macro_expansion_with_collapse_debuginfo() |
| } else { |
| span.from_expansion() |
| } |
| } |
| |
| #[inline] |
| pub fn is_const_fn_raw(self, def_id: DefId) -> bool { |
| matches!( |
| self.def_kind(def_id), |
| DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(..) | DefKind::Closure |
| ) && self.constness(def_id) == hir::Constness::Const |
| } |
| |
| #[inline] |
| pub fn is_const_default_method(self, def_id: DefId) -> bool { |
| matches!(self.trait_of_item(def_id), Some(trait_id) if self.has_attr(trait_id, sym::const_trait)) |
| } |
| |
| pub fn impl_trait_in_trait_parent_fn(self, mut def_id: DefId) -> DefId { |
| match self.opt_rpitit_info(def_id) { |
| Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) |
| | Some(ImplTraitInTraitData::Impl { fn_def_id, .. }) => fn_def_id, |
| None => { |
| while let def_kind = self.def_kind(def_id) && def_kind != DefKind::AssocFn { |
| debug_assert_eq!(def_kind, DefKind::ImplTraitPlaceholder); |
| def_id = self.parent(def_id); |
| } |
| def_id |
| } |
| } |
| } |
| |
| /// Returns the `DefId` of the item within which the `impl Trait` is declared. |
| /// For type-alias-impl-trait this is the `type` alias. |
| /// For impl-trait-in-assoc-type this is the assoc type. |
| /// For return-position-impl-trait this is the function. |
| pub fn impl_trait_parent(self, mut def_id: LocalDefId) -> LocalDefId { |
| // Find the surrounding item (type alias or assoc type) |
| while let DefKind::OpaqueTy = self.def_kind(def_id) { |
| def_id = self.local_parent(def_id); |
| } |
| def_id |
| } |
| |
| pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool { |
| if self.def_kind(def_id) != DefKind::AssocFn { |
| return false; |
| } |
| |
| let Some(item) = self.opt_associated_item(def_id) else { return false; }; |
| if item.container != ty::AssocItemContainer::ImplContainer { |
| return false; |
| } |
| |
| let Some(trait_item_def_id) = item.trait_item_def_id else { return false; }; |
| |
| if self.lower_impl_trait_in_trait_to_assoc_ty() { |
| return !self |
| .associated_types_for_impl_traits_in_associated_fn(trait_item_def_id) |
| .is_empty(); |
| } |
| |
| // FIXME(RPITIT): This does a somewhat manual walk through the signature |
| // of the trait fn to look for any RPITITs, but that's kinda doing a lot |
| // of work. We can probably remove this when we refactor RPITITs to be |
| // associated types. |
| self.fn_sig(trait_item_def_id).subst_identity().skip_binder().output().walk().any(|arg| { |
| if let ty::GenericArgKind::Type(ty) = arg.unpack() |
| && let ty::Alias(ty::Projection, data) = ty.kind() |
| && self.def_kind(data.def_id) == DefKind::ImplTraitPlaceholder |
| { |
| true |
| } else { |
| false |
| } |
| }) |
| } |
| } |
| |
| /// Yields the parent function's `LocalDefId` if `def_id` is an `impl Trait` definition. |
| pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<LocalDefId> { |
| let def_id = def_id.as_local()?; |
| if let Node::Item(item) = tcx.hir().get_by_def_id(def_id) { |
| if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind { |
| return match opaque_ty.origin { |
| hir::OpaqueTyOrigin::FnReturn(parent) | hir::OpaqueTyOrigin::AsyncFn(parent) => { |
| Some(parent) |
| } |
| hir::OpaqueTyOrigin::TyAlias { .. } => None, |
| }; |
| } |
| } |
| None |
| } |
| |
| pub fn int_ty(ity: ast::IntTy) -> IntTy { |
| match ity { |
| ast::IntTy::Isize => IntTy::Isize, |
| ast::IntTy::I8 => IntTy::I8, |
| ast::IntTy::I16 => IntTy::I16, |
| ast::IntTy::I32 => IntTy::I32, |
| ast::IntTy::I64 => IntTy::I64, |
| ast::IntTy::I128 => IntTy::I128, |
| } |
| } |
| |
| pub fn uint_ty(uty: ast::UintTy) -> UintTy { |
| match uty { |
| ast::UintTy::Usize => UintTy::Usize, |
| ast::UintTy::U8 => UintTy::U8, |
| ast::UintTy::U16 => UintTy::U16, |
| ast::UintTy::U32 => UintTy::U32, |
| ast::UintTy::U64 => UintTy::U64, |
| ast::UintTy::U128 => UintTy::U128, |
| } |
| } |
| |
| pub fn float_ty(fty: ast::FloatTy) -> FloatTy { |
| match fty { |
| ast::FloatTy::F32 => FloatTy::F32, |
| ast::FloatTy::F64 => FloatTy::F64, |
| } |
| } |
| |
| pub fn ast_int_ty(ity: IntTy) -> ast::IntTy { |
| match ity { |
| IntTy::Isize => ast::IntTy::Isize, |
| IntTy::I8 => ast::IntTy::I8, |
| IntTy::I16 => ast::IntTy::I16, |
| IntTy::I32 => ast::IntTy::I32, |
| IntTy::I64 => ast::IntTy::I64, |
| IntTy::I128 => ast::IntTy::I128, |
| } |
| } |
| |
| pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy { |
| match uty { |
| UintTy::Usize => ast::UintTy::Usize, |
| UintTy::U8 => ast::UintTy::U8, |
| UintTy::U16 => ast::UintTy::U16, |
| UintTy::U32 => ast::UintTy::U32, |
| UintTy::U64 => ast::UintTy::U64, |
| UintTy::U128 => ast::UintTy::U128, |
| } |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| closure::provide(providers); |
| context::provide(providers); |
| erase_regions::provide(providers); |
| inhabitedness::provide(providers); |
| util::provide(providers); |
| print::provide(providers); |
| super::util::bug::provide(providers); |
| super::middle::provide(providers); |
| *providers = Providers { |
| trait_impls_of: trait_def::trait_impls_of_provider, |
| incoherent_impls: trait_def::incoherent_impls_provider, |
| const_param_default: consts::const_param_default, |
| vtable_allocation: vtable::vtable_allocation_provider, |
| ..*providers |
| }; |
| } |
| |
| /// A map for the local crate mapping each type to a vector of its |
| /// inherent impls. This is not meant to be used outside of coherence; |
| /// rather, you should request the vector for a specific type via |
| /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies |
| /// (constructing this map requires touching the entire crate). |
| #[derive(Clone, Debug, Default, HashStable)] |
| pub struct CrateInherentImpls { |
| pub inherent_impls: LocalDefIdMap<Vec<DefId>>, |
| pub incoherent_impls: FxHashMap<SimplifiedType, Vec<LocalDefId>>, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)] |
| pub struct SymbolName<'tcx> { |
| /// `&str` gives a consistent ordering, which ensures reproducible builds. |
| pub name: &'tcx str, |
| } |
| |
| impl<'tcx> SymbolName<'tcx> { |
| pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> { |
| SymbolName { |
| name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) }, |
| } |
| } |
| } |
| |
| impl<'tcx> fmt::Display for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |
| |
| impl<'tcx> fmt::Debug for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |
| |
| #[derive(Debug, Default, Copy, Clone)] |
| pub struct InferVarInfo { |
| /// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo` |
| /// obligation, where: |
| /// |
| /// * `Foo` is not `Sized` |
| /// * `(): Foo` may be satisfied |
| pub self_in_trait: bool, |
| /// This is true if we identified that this Ty (`?T`) is found in a `<_ as |
| /// _>::AssocType = ?T` |
| pub output: bool, |
| } |
| |
| /// The constituent parts of a type level constant of kind ADT or array. |
| #[derive(Copy, Clone, Debug, HashStable)] |
| pub struct DestructuredConst<'tcx> { |
| pub variant: Option<VariantIdx>, |
| pub fields: &'tcx [ty::Const<'tcx>], |
| } |
| |
| // Some types are used a lot. Make sure they don't unintentionally get bigger. |
| #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] |
| mod size_asserts { |
| use super::*; |
| use rustc_data_structures::static_assert_size; |
| // tidy-alphabetical-start |
| static_assert_size!(PredicateKind<'_>, 32); |
| static_assert_size!(WithCachedTypeInfo<TyKind<'_>>, 56); |
| // tidy-alphabetical-end |
| } |