| //! Trait Resolution. See the [rustc dev guide] for more information on how this works. |
| //! |
| //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html |
| |
| pub mod auto_trait; |
| mod chalk_fulfill; |
| pub(crate) mod coherence; |
| pub mod const_evaluatable; |
| mod engine; |
| pub mod error_reporting; |
| mod fulfill; |
| pub mod misc; |
| mod object_safety; |
| pub mod outlives_bounds; |
| mod project; |
| pub mod query; |
| mod select; |
| mod specialize; |
| mod structural_match; |
| mod structural_normalize; |
| mod util; |
| mod vtable; |
| pub mod wf; |
| |
| use crate::infer::outlives::env::OutlivesEnvironment; |
| use crate::infer::{InferCtxt, TyCtxtInferExt}; |
| use crate::traits::error_reporting::TypeErrCtxtExt as _; |
| use crate::traits::query::evaluate_obligation::InferCtxtExt as _; |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_middle::query::Providers; |
| use rustc_middle::ty::fold::TypeFoldable; |
| use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt}; |
| use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeSuperVisitable}; |
| use rustc_middle::ty::{InternalSubsts, SubstsRef}; |
| use rustc_span::def_id::DefId; |
| use rustc_span::Span; |
| |
| use std::fmt::Debug; |
| use std::ops::ControlFlow; |
| |
| pub use self::FulfillmentErrorCode::*; |
| pub use self::ImplSource::*; |
| pub use self::ObligationCauseCode::*; |
| pub use self::SelectionError::*; |
| |
| pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls}; |
| pub use self::coherence::{OrphanCheckErr, OverlapResult}; |
| pub use self::engine::{ObligationCtxt, TraitEngineExt}; |
| pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation}; |
| pub use self::object_safety::astconv_object_safety_violations; |
| pub use self::object_safety::is_vtable_safe_method; |
| pub use self::object_safety::MethodViolationCode; |
| pub use self::object_safety::ObjectSafetyViolation; |
| pub use self::project::NormalizeExt; |
| pub use self::project::{normalize_inherent_projection, normalize_projection_type}; |
| pub use self::select::{EvaluationCache, SelectionCache, SelectionContext}; |
| pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError}; |
| pub use self::specialize::specialization_graph::FutureCompatOverlapError; |
| pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind; |
| pub use self::specialize::{ |
| specialization_graph, translate_substs, translate_substs_with_cause, OverlapError, |
| }; |
| pub use self::structural_match::{ |
| search_for_adt_const_param_violation, search_for_structural_match_violation, |
| }; |
| pub use self::structural_normalize::StructurallyNormalizeExt; |
| pub use self::util::elaborate; |
| pub use self::util::{expand_trait_aliases, TraitAliasExpander}; |
| pub use self::util::{get_vtable_index_of_object_method, impl_item_is_final, upcast_choices}; |
| pub use self::util::{ |
| supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_item, |
| SupertraitDefIds, |
| }; |
| |
| pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext; |
| |
| pub use rustc_infer::traits::*; |
| |
| /// Whether to skip the leak check, as part of a future compatibility warning step. |
| /// |
| /// The "default" for skip-leak-check corresponds to the current |
| /// behavior (do not skip the leak check) -- not the behavior we are |
| /// transitioning into. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)] |
| pub enum SkipLeakCheck { |
| Yes, |
| #[default] |
| No, |
| } |
| |
| impl SkipLeakCheck { |
| fn is_yes(self) -> bool { |
| self == SkipLeakCheck::Yes |
| } |
| } |
| |
| /// The mode that trait queries run in. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub enum TraitQueryMode { |
| /// Standard/un-canonicalized queries get accurate |
| /// spans etc. passed in and hence can do reasonable |
| /// error reporting on their own. |
| Standard, |
| /// Canonical queries get dummy spans and hence |
| /// must generally propagate errors to |
| /// pre-canonicalization callsites. |
| Canonical, |
| } |
| |
| /// Creates predicate obligations from the generic bounds. |
| #[instrument(level = "debug", skip(cause, param_env))] |
| pub fn predicates_for_generics<'tcx>( |
| cause: impl Fn(usize, Span) -> ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| generic_bounds: ty::InstantiatedPredicates<'tcx>, |
| ) -> impl Iterator<Item = PredicateObligation<'tcx>> { |
| generic_bounds.into_iter().enumerate().map(move |(idx, (predicate, span))| Obligation { |
| cause: cause(idx, span), |
| recursion_depth: 0, |
| param_env, |
| predicate, |
| }) |
| } |
| |
| /// Determines whether the type `ty` is known to meet `bound` and |
| /// returns true if so. Returns false if `ty` either does not meet |
| /// `bound` or is not known to meet bound (note that this is |
| /// conservative towards *no impl*, which is the opposite of the |
| /// `evaluate` methods). |
| pub fn type_known_to_meet_bound_modulo_regions<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| def_id: DefId, |
| ) -> bool { |
| let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]); |
| pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref.without_const()) |
| } |
| |
| /// FIXME(@lcnr): this function doesn't seem right and shouldn't exist? |
| /// |
| /// Ping me on zulip if you want to use this method and need help with finding |
| /// an appropriate replacement. |
| #[instrument(level = "debug", skip(infcx, param_env, pred), ret)] |
| fn pred_known_to_hold_modulo_regions<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| pred: impl ToPredicate<'tcx>, |
| ) -> bool { |
| let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred); |
| |
| let result = infcx.evaluate_obligation_no_overflow(&obligation); |
| debug!(?result); |
| |
| if result.must_apply_modulo_regions() { |
| true |
| } else if result.may_apply() { |
| // Sometimes obligations are ambiguous because the recursive evaluator |
| // is not smart enough, so we fall back to fulfillment when we're not certain |
| // that an obligation holds or not. Even still, we must make sure that |
| // the we do no inference in the process of checking this obligation. |
| let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env)); |
| infcx.probe(|_| { |
| let ocx = ObligationCtxt::new_in_snapshot(infcx); |
| ocx.register_obligation(obligation); |
| |
| let errors = ocx.select_all_or_error(); |
| match errors.as_slice() { |
| // Only known to hold if we did no inference. |
| [] => infcx.shallow_resolve(goal) == goal, |
| |
| errors => { |
| debug!(?errors); |
| false |
| } |
| } |
| }) |
| } else { |
| false |
| } |
| } |
| |
| #[instrument(level = "debug", skip(tcx, elaborated_env))] |
| fn do_normalize_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| elaborated_env: ty::ParamEnv<'tcx>, |
| predicates: Vec<ty::Predicate<'tcx>>, |
| ) -> Result<Vec<ty::Predicate<'tcx>>, ErrorGuaranteed> { |
| let span = cause.span; |
| // FIXME. We should really... do something with these region |
| // obligations. But this call just continues the older |
| // behavior (i.e., doesn't cause any new bugs), and it would |
| // take some further refactoring to actually solve them. In |
| // particular, we would have to handle implied bounds |
| // properly, and that code is currently largely confined to |
| // regionck (though I made some efforts to extract it |
| // out). -nmatsakis |
| // |
| // @arielby: In any case, these obligations are checked |
| // by wfcheck anyway, so I'm not sure we have to check |
| // them here too, and we will remove this function when |
| // we move over to lazy normalization *anyway*. |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(); |
| let predicates = match fully_normalize(&infcx, cause, elaborated_env, predicates) { |
| Ok(predicates) => predicates, |
| Err(errors) => { |
| let reported = infcx.err_ctxt().report_fulfillment_errors(&errors); |
| return Err(reported); |
| } |
| }; |
| |
| debug!("do_normalize_predicates: normalized predicates = {:?}", predicates); |
| |
| // We can use the `elaborated_env` here; the region code only |
| // cares about declarations like `'a: 'b`. |
| let outlives_env = OutlivesEnvironment::new(elaborated_env); |
| |
| // FIXME: It's very weird that we ignore region obligations but apparently |
| // still need to use `resolve_regions` as we need the resolved regions in |
| // the normalized predicates. |
| let errors = infcx.resolve_regions(&outlives_env); |
| if !errors.is_empty() { |
| tcx.sess.delay_span_bug( |
| span, |
| format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"), |
| ); |
| } |
| |
| match infcx.fully_resolve(predicates) { |
| Ok(predicates) => Ok(predicates), |
| Err(fixup_err) => { |
| // If we encounter a fixup error, it means that some type |
| // variable wound up unconstrained. I actually don't know |
| // if this can happen, and I certainly don't expect it to |
| // happen often, but if it did happen it probably |
| // represents a legitimate failure due to some kind of |
| // unconstrained variable. |
| // |
| // @lcnr: Let's still ICE here for now. I want a test case |
| // for that. |
| span_bug!( |
| span, |
| "inference variables in normalized parameter environment: {}", |
| fixup_err |
| ); |
| } |
| } |
| } |
| |
| // FIXME: this is gonna need to be removed ... |
| /// Normalizes the parameter environment, reporting errors if they occur. |
| #[instrument(level = "debug", skip(tcx))] |
| pub fn normalize_param_env_or_error<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| unnormalized_env: ty::ParamEnv<'tcx>, |
| cause: ObligationCause<'tcx>, |
| ) -> ty::ParamEnv<'tcx> { |
| // I'm not wild about reporting errors here; I'd prefer to |
| // have the errors get reported at a defined place (e.g., |
| // during typeck). Instead I have all parameter |
| // environments, in effect, going through this function |
| // and hence potentially reporting errors. This ensures of |
| // course that we never forget to normalize (the |
| // alternative seemed like it would involve a lot of |
| // manual invocations of this fn -- and then we'd have to |
| // deal with the errors at each of those sites). |
| // |
| // In any case, in practice, typeck constructs all the |
| // parameter environments once for every fn as it goes, |
| // and errors will get reported then; so outside of type inference we |
| // can be sure that no errors should occur. |
| let mut predicates: Vec<_> = |
| util::elaborate(tcx, unnormalized_env.caller_bounds().into_iter()).collect(); |
| |
| debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates); |
| |
| let elaborated_env = ty::ParamEnv::new( |
| tcx.mk_predicates(&predicates), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ); |
| |
| // HACK: we are trying to normalize the param-env inside *itself*. The problem is that |
| // normalization expects its param-env to be already normalized, which means we have |
| // a circularity. |
| // |
| // The way we handle this is by normalizing the param-env inside an unnormalized version |
| // of the param-env, which means that if the param-env contains unnormalized projections, |
| // we'll have some normalization failures. This is unfortunate. |
| // |
| // Lazy normalization would basically handle this by treating just the |
| // normalizing-a-trait-ref-requires-itself cycles as evaluation failures. |
| // |
| // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated |
| // types, so to make the situation less bad, we normalize all the predicates *but* |
| // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and |
| // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment. |
| // |
| // This works fairly well because trait matching does not actually care about param-env |
| // TypeOutlives predicates - these are normally used by regionck. |
| let outlives_predicates: Vec<_> = predicates |
| .drain_filter(|predicate| { |
| matches!( |
| predicate.kind().skip_binder(), |
| ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) |
| ) |
| }) |
| .collect(); |
| |
| debug!( |
| "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})", |
| predicates, outlives_predicates |
| ); |
| let Ok(non_outlives_predicates) = do_normalize_predicates( |
| tcx, |
| cause.clone(), |
| elaborated_env, |
| predicates, |
| ) else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving non-outlives predicates"); |
| return elaborated_env; |
| }; |
| |
| debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates); |
| |
| // Not sure whether it is better to include the unnormalized TypeOutlives predicates |
| // here. I believe they should not matter, because we are ignoring TypeOutlives param-env |
| // predicates here anyway. Keeping them here anyway because it seems safer. |
| let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned(); |
| let outlives_env = ty::ParamEnv::new( |
| tcx.mk_predicates_from_iter(outlives_env), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ); |
| let Ok(outlives_predicates) = do_normalize_predicates( |
| tcx, |
| cause, |
| outlives_env, |
| outlives_predicates, |
| ) else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving outlives predicates"); |
| return elaborated_env; |
| }; |
| debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates); |
| |
| let mut predicates = non_outlives_predicates; |
| predicates.extend(outlives_predicates); |
| debug!("normalize_param_env_or_error: final predicates={:?}", predicates); |
| ty::ParamEnv::new( |
| tcx.mk_predicates(&predicates), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ) |
| } |
| |
| /// Normalize a type and process all resulting obligations, returning any errors |
| #[instrument(skip_all)] |
| pub fn fully_normalize<'tcx, T>( |
| infcx: &InferCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| value: T, |
| ) -> Result<T, Vec<FulfillmentError<'tcx>>> |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| let ocx = ObligationCtxt::new(infcx); |
| debug!(?value); |
| let normalized_value = ocx.normalize(&cause, param_env, value); |
| debug!(?normalized_value); |
| debug!("select_all_or_error start"); |
| let errors = ocx.select_all_or_error(); |
| if !errors.is_empty() { |
| return Err(errors); |
| } |
| debug!("select_all_or_error complete"); |
| let resolved_value = infcx.resolve_vars_if_possible(normalized_value); |
| debug!(?resolved_value); |
| Ok(resolved_value) |
| } |
| |
| /// Normalizes the predicates and checks whether they hold in an empty environment. If this |
| /// returns true, then either normalize encountered an error or one of the predicates did not |
| /// hold. Used when creating vtables to check for unsatisfiable methods. |
| pub fn impossible_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| predicates: Vec<ty::Predicate<'tcx>>, |
| ) -> bool { |
| debug!("impossible_predicates(predicates={:?})", predicates); |
| |
| let infcx = tcx.infer_ctxt().build(); |
| let param_env = ty::ParamEnv::reveal_all(); |
| let ocx = ObligationCtxt::new(&infcx); |
| let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates); |
| for predicate in predicates { |
| let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate); |
| ocx.register_obligation(obligation); |
| } |
| let errors = ocx.select_all_or_error(); |
| |
| let result = !errors.is_empty(); |
| debug!("impossible_predicates = {:?}", result); |
| result |
| } |
| |
| fn subst_and_check_impossible_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| key: (DefId, SubstsRef<'tcx>), |
| ) -> bool { |
| debug!("subst_and_check_impossible_predicates(key={:?})", key); |
| |
| let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates; |
| |
| // Specifically check trait fulfillment to avoid an error when trying to resolve |
| // associated items. |
| if let Some(trait_def_id) = tcx.trait_of_item(key.0) { |
| let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1); |
| predicates.push(ty::Binder::dummy(trait_ref).to_predicate(tcx)); |
| } |
| |
| predicates.retain(|predicate| !predicate.has_param()); |
| let result = impossible_predicates(tcx, predicates); |
| |
| debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result); |
| result |
| } |
| |
| /// Checks whether a trait's method is impossible to call on a given impl. |
| /// |
| /// This only considers predicates that reference the impl's generics, and not |
| /// those that reference the method's generics. |
| fn is_impossible_method(tcx: TyCtxt<'_>, (impl_def_id, trait_item_def_id): (DefId, DefId)) -> bool { |
| struct ReferencesOnlyParentGenerics<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| generics: &'tcx ty::Generics, |
| trait_item_def_id: DefId, |
| } |
| impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for ReferencesOnlyParentGenerics<'tcx> { |
| type BreakTy = (); |
| fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> { |
| // If this is a parameter from the trait item's own generics, then bail |
| if let ty::Param(param) = t.kind() |
| && let param_def_id = self.generics.type_param(param, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| t.super_visit_with(self) |
| } |
| fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> { |
| if let ty::ReEarlyBound(param) = r.kind() |
| && let param_def_id = self.generics.region_param(¶m, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| ControlFlow::Continue(()) |
| } |
| fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> { |
| if let ty::ConstKind::Param(param) = ct.kind() |
| && let param_def_id = self.generics.const_param(¶m, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| ct.super_visit_with(self) |
| } |
| } |
| |
| let generics = tcx.generics_of(trait_item_def_id); |
| let predicates = tcx.predicates_of(trait_item_def_id); |
| let impl_trait_ref = tcx |
| .impl_trait_ref(impl_def_id) |
| .expect("expected impl to correspond to trait") |
| .subst_identity(); |
| let param_env = tcx.param_env(impl_def_id); |
| |
| let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id }; |
| let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| { |
| pred.visit_with(&mut visitor).is_continue().then(|| { |
| Obligation::new( |
| tcx, |
| ObligationCause::dummy_with_span(*span), |
| param_env, |
| ty::EarlyBinder(*pred).subst(tcx, impl_trait_ref.substs), |
| ) |
| }) |
| }); |
| |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(); |
| for obligation in predicates_for_trait { |
| // Ignore overflow error, to be conservative. |
| if let Ok(result) = infcx.evaluate_obligation(&obligation) |
| && !result.may_apply() |
| { |
| return true; |
| } |
| } |
| false |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| object_safety::provide(providers); |
| vtable::provide(providers); |
| *providers = Providers { |
| specialization_graph_of: specialize::specialization_graph_provider, |
| specializes: specialize::specializes, |
| subst_and_check_impossible_predicates, |
| check_tys_might_be_eq: misc::check_tys_might_be_eq, |
| is_impossible_method, |
| ..*providers |
| }; |
| } |