| //! Operations on ASCII `[u8]`. |
| |
| use crate::ascii; |
| use crate::fmt::{self, Write}; |
| use crate::iter; |
| use crate::mem; |
| use crate::ops; |
| |
| #[cfg(not(test))] |
| impl [u8] { |
| /// Checks if all bytes in this slice are within the ASCII range. |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[rustc_const_unstable(feature = "const_slice_is_ascii", issue = "111090")] |
| #[must_use] |
| #[inline] |
| pub const fn is_ascii(&self) -> bool { |
| is_ascii(self) |
| } |
| |
| /// If this slice [`is_ascii`](Self::is_ascii), returns it as a slice of |
| /// [ASCII characters](`ascii::Char`), otherwise returns `None`. |
| #[unstable(feature = "ascii_char", issue = "110998")] |
| #[must_use] |
| #[inline] |
| pub const fn as_ascii(&self) -> Option<&[ascii::Char]> { |
| if self.is_ascii() { |
| // SAFETY: Just checked that it's ASCII |
| Some(unsafe { self.as_ascii_unchecked() }) |
| } else { |
| None |
| } |
| } |
| |
| /// Converts this slice of bytes into a slice of ASCII characters, |
| /// without checking whether they're valid. |
| /// |
| /// # Safety |
| /// |
| /// Every byte in the slice must be in `0..=127`, or else this is UB. |
| #[unstable(feature = "ascii_char", issue = "110998")] |
| #[must_use] |
| #[inline] |
| pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] { |
| let byte_ptr: *const [u8] = self; |
| let ascii_ptr = byte_ptr as *const [ascii::Char]; |
| // SAFETY: The caller promised all the bytes are ASCII |
| unsafe { &*ascii_ptr } |
| } |
| |
| /// Checks that two slices are an ASCII case-insensitive match. |
| /// |
| /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, |
| /// but without allocating and copying temporaries. |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[must_use] |
| #[inline] |
| pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { |
| self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b)) |
| } |
| |
| /// Converts this slice to its ASCII upper case equivalent in-place. |
| /// |
| /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new uppercased value without modifying the existing one, use |
| /// [`to_ascii_uppercase`]. |
| /// |
| /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn make_ascii_uppercase(&mut self) { |
| for byte in self { |
| byte.make_ascii_uppercase(); |
| } |
| } |
| |
| /// Converts this slice to its ASCII lower case equivalent in-place. |
| /// |
| /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new lowercased value without modifying the existing one, use |
| /// [`to_ascii_lowercase`]. |
| /// |
| /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn make_ascii_lowercase(&mut self) { |
| for byte in self { |
| byte.make_ascii_lowercase(); |
| } |
| } |
| |
| /// Returns an iterator that produces an escaped version of this slice, |
| /// treating it as an ASCII string. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// |
| /// let s = b"0\t\r\n'\"\\\x9d"; |
| /// let escaped = s.escape_ascii().to_string(); |
| /// assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d"); |
| /// ``` |
| #[must_use = "this returns the escaped bytes as an iterator, \ |
| without modifying the original"] |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| pub fn escape_ascii(&self) -> EscapeAscii<'_> { |
| EscapeAscii { inner: self.iter().flat_map(EscapeByte) } |
| } |
| |
| /// Returns a byte slice with leading ASCII whitespace bytes removed. |
| /// |
| /// 'Whitespace' refers to the definition used by |
| /// `u8::is_ascii_whitespace`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(byte_slice_trim_ascii)] |
| /// |
| /// assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n"); |
| /// assert_eq!(b" ".trim_ascii_start(), b""); |
| /// assert_eq!(b"".trim_ascii_start(), b""); |
| /// ``` |
| #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")] |
| pub const fn trim_ascii_start(&self) -> &[u8] { |
| let mut bytes = self; |
| // Note: A pattern matching based approach (instead of indexing) allows |
| // making the function const. |
| while let [first, rest @ ..] = bytes { |
| if first.is_ascii_whitespace() { |
| bytes = rest; |
| } else { |
| break; |
| } |
| } |
| bytes |
| } |
| |
| /// Returns a byte slice with trailing ASCII whitespace bytes removed. |
| /// |
| /// 'Whitespace' refers to the definition used by |
| /// `u8::is_ascii_whitespace`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(byte_slice_trim_ascii)] |
| /// |
| /// assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world"); |
| /// assert_eq!(b" ".trim_ascii_end(), b""); |
| /// assert_eq!(b"".trim_ascii_end(), b""); |
| /// ``` |
| #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")] |
| pub const fn trim_ascii_end(&self) -> &[u8] { |
| let mut bytes = self; |
| // Note: A pattern matching based approach (instead of indexing) allows |
| // making the function const. |
| while let [rest @ .., last] = bytes { |
| if last.is_ascii_whitespace() { |
| bytes = rest; |
| } else { |
| break; |
| } |
| } |
| bytes |
| } |
| |
| /// Returns a byte slice with leading and trailing ASCII whitespace bytes |
| /// removed. |
| /// |
| /// 'Whitespace' refers to the definition used by |
| /// `u8::is_ascii_whitespace`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(byte_slice_trim_ascii)] |
| /// |
| /// assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world"); |
| /// assert_eq!(b" ".trim_ascii(), b""); |
| /// assert_eq!(b"".trim_ascii(), b""); |
| /// ``` |
| #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")] |
| pub const fn trim_ascii(&self) -> &[u8] { |
| self.trim_ascii_start().trim_ascii_end() |
| } |
| } |
| |
| impl_fn_for_zst! { |
| #[derive(Clone)] |
| struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault { |
| ascii::escape_default(*byte) |
| }; |
| } |
| |
| /// An iterator over the escaped version of a byte slice. |
| /// |
| /// This `struct` is created by the [`slice::escape_ascii`] method. See its |
| /// documentation for more information. |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| #[derive(Clone)] |
| #[must_use = "iterators are lazy and do nothing unless consumed"] |
| pub struct EscapeAscii<'a> { |
| inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>, |
| } |
| |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| impl<'a> iter::Iterator for EscapeAscii<'a> { |
| type Item = u8; |
| #[inline] |
| fn next(&mut self) -> Option<u8> { |
| self.inner.next() |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[inline] |
| fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R |
| where |
| Fold: FnMut(Acc, Self::Item) -> R, |
| R: ops::Try<Output = Acc>, |
| { |
| self.inner.try_fold(init, fold) |
| } |
| #[inline] |
| fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc |
| where |
| Fold: FnMut(Acc, Self::Item) -> Acc, |
| { |
| self.inner.fold(init, fold) |
| } |
| #[inline] |
| fn last(mut self) -> Option<u8> { |
| self.next_back() |
| } |
| } |
| |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> { |
| fn next_back(&mut self) -> Option<u8> { |
| self.inner.next_back() |
| } |
| } |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| impl<'a> iter::FusedIterator for EscapeAscii<'a> {} |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| impl<'a> fmt::Display for EscapeAscii<'a> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| self.clone().try_for_each(|b| f.write_char(b as char)) |
| } |
| } |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| impl<'a> fmt::Debug for EscapeAscii<'a> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("EscapeAscii").finish_non_exhaustive() |
| } |
| } |
| |
| /// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed |
| /// from `../str/mod.rs`, which does something similar for utf8 validation. |
| #[inline] |
| const fn contains_nonascii(v: usize) -> bool { |
| const NONASCII_MASK: usize = usize::repeat_u8(0x80); |
| (NONASCII_MASK & v) != 0 |
| } |
| |
| /// ASCII test *without* the chunk-at-a-time optimizations. |
| /// |
| /// This is carefully structured to produce nice small code -- it's smaller in |
| /// `-O` than what the "obvious" ways produces under `-C opt-level=s`. If you |
| /// touch it, be sure to run (and update if needed) the assembly test. |
| #[unstable(feature = "str_internals", issue = "none")] |
| #[doc(hidden)] |
| #[inline] |
| pub const fn is_ascii_simple(mut bytes: &[u8]) -> bool { |
| while let [rest @ .., last] = bytes { |
| if !last.is_ascii() { |
| break; |
| } |
| bytes = rest; |
| } |
| bytes.is_empty() |
| } |
| |
| /// Optimized ASCII test that will use usize-at-a-time operations instead of |
| /// byte-at-a-time operations (when possible). |
| /// |
| /// The algorithm we use here is pretty simple. If `s` is too short, we just |
| /// check each byte and be done with it. Otherwise: |
| /// |
| /// - Read the first word with an unaligned load. |
| /// - Align the pointer, read subsequent words until end with aligned loads. |
| /// - Read the last `usize` from `s` with an unaligned load. |
| /// |
| /// If any of these loads produces something for which `contains_nonascii` |
| /// (above) returns true, then we know the answer is false. |
| #[inline] |
| const fn is_ascii(s: &[u8]) -> bool { |
| const USIZE_SIZE: usize = mem::size_of::<usize>(); |
| |
| let len = s.len(); |
| let align_offset = s.as_ptr().align_offset(USIZE_SIZE); |
| |
| // If we wouldn't gain anything from the word-at-a-time implementation, fall |
| // back to a scalar loop. |
| // |
| // We also do this for architectures where `size_of::<usize>()` isn't |
| // sufficient alignment for `usize`, because it's a weird edge case. |
| if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() { |
| return is_ascii_simple(s); |
| } |
| |
| // We always read the first word unaligned, which means `align_offset` is |
| // 0, we'd read the same value again for the aligned read. |
| let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset }; |
| |
| let start = s.as_ptr(); |
| // SAFETY: We verify `len < USIZE_SIZE` above. |
| let first_word = unsafe { (start as *const usize).read_unaligned() }; |
| |
| if contains_nonascii(first_word) { |
| return false; |
| } |
| // We checked this above, somewhat implicitly. Note that `offset_to_aligned` |
| // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked |
| // above. |
| debug_assert!(offset_to_aligned <= len); |
| |
| // SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the |
| // middle chunk of the slice. |
| let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize }; |
| |
| // `byte_pos` is the byte index of `word_ptr`, used for loop end checks. |
| let mut byte_pos = offset_to_aligned; |
| |
| // Paranoia check about alignment, since we're about to do a bunch of |
| // unaligned loads. In practice this should be impossible barring a bug in |
| // `align_offset` though. |
| // While this method is allowed to spuriously fail in CTFE, if it doesn't |
| // have alignment information it should have given a `usize::MAX` for |
| // `align_offset` earlier, sending things through the scalar path instead of |
| // this one, so this check should pass if it's reachable. |
| debug_assert!(word_ptr.is_aligned_to(mem::align_of::<usize>())); |
| |
| // Read subsequent words until the last aligned word, excluding the last |
| // aligned word by itself to be done in tail check later, to ensure that |
| // tail is always one `usize` at most to extra branch `byte_pos == len`. |
| while byte_pos < len - USIZE_SIZE { |
| // Sanity check that the read is in bounds |
| debug_assert!(byte_pos + USIZE_SIZE <= len); |
| // And that our assumptions about `byte_pos` hold. |
| debug_assert!(matches!( |
| word_ptr.cast::<u8>().guaranteed_eq(start.wrapping_add(byte_pos)), |
| // These are from the same allocation, so will hopefully always be |
| // known to match even in CTFE, but if it refuses to compare them |
| // that's ok since it's just a debug check anyway. |
| None | Some(true), |
| )); |
| |
| // SAFETY: We know `word_ptr` is properly aligned (because of |
| // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end |
| let word = unsafe { word_ptr.read() }; |
| if contains_nonascii(word) { |
| return false; |
| } |
| |
| byte_pos += USIZE_SIZE; |
| // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that |
| // after this `add`, `word_ptr` will be at most one-past-the-end. |
| word_ptr = unsafe { word_ptr.add(1) }; |
| } |
| |
| // Sanity check to ensure there really is only one `usize` left. This should |
| // be guaranteed by our loop condition. |
| debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE); |
| |
| // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start. |
| let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() }; |
| |
| !contains_nonascii(last_word) |
| } |