| use std::mem; |
| |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; |
| use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, DefIdSet}; |
| use rustc_middle::ty::{self, TyCtxt}; |
| use rustc_span::Symbol; |
| |
| use crate::clean::{self, types::ExternalLocation, ExternalCrate, ItemId, PrimitiveType}; |
| use crate::core::DocContext; |
| use crate::fold::DocFolder; |
| use crate::formats::item_type::ItemType; |
| use crate::formats::Impl; |
| use crate::html::format::join_with_double_colon; |
| use crate::html::markdown::short_markdown_summary; |
| use crate::html::render::search_index::get_function_type_for_search; |
| use crate::html::render::IndexItem; |
| use crate::visit_lib::RustdocEffectiveVisibilities; |
| |
| /// This cache is used to store information about the [`clean::Crate`] being |
| /// rendered in order to provide more useful documentation. This contains |
| /// information like all implementors of a trait, all traits a type implements, |
| /// documentation for all known traits, etc. |
| /// |
| /// This structure purposefully does not implement `Clone` because it's intended |
| /// to be a fairly large and expensive structure to clone. Instead this adheres |
| /// to `Send` so it may be stored in an `Arc` instance and shared among the various |
| /// rendering threads. |
| #[derive(Default)] |
| pub(crate) struct Cache { |
| /// Maps a type ID to all known implementations for that type. This is only |
| /// recognized for intra-crate [`clean::Type::Path`]s, and is used to print |
| /// out extra documentation on the page of an enum/struct. |
| /// |
| /// The values of the map are a list of implementations and documentation |
| /// found on that implementation. |
| pub(crate) impls: DefIdMap<Vec<Impl>>, |
| |
| /// Maintains a mapping of local crate `DefId`s to the fully qualified name |
| /// and "short type description" of that node. This is used when generating |
| /// URLs when a type is being linked to. External paths are not located in |
| /// this map because the `External` type itself has all the information |
| /// necessary. |
| pub(crate) paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>, |
| |
| /// Similar to `paths`, but only holds external paths. This is only used for |
| /// generating explicit hyperlinks to other crates. |
| pub(crate) external_paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>, |
| |
| /// Maps local `DefId`s of exported types to fully qualified paths. |
| /// Unlike 'paths', this mapping ignores any renames that occur |
| /// due to 'use' statements. |
| /// |
| /// This map is used when writing out the special 'implementors' |
| /// javascript file. By using the exact path that the type |
| /// is declared with, we ensure that each path will be identical |
| /// to the path used if the corresponding type is inlined. By |
| /// doing this, we can detect duplicate impls on a trait page, and only display |
| /// the impl for the inlined type. |
| pub(crate) exact_paths: DefIdMap<Vec<Symbol>>, |
| |
| /// This map contains information about all known traits of this crate. |
| /// Implementations of a crate should inherit the documentation of the |
| /// parent trait if no extra documentation is specified, and default methods |
| /// should show up in documentation about trait implementations. |
| pub(crate) traits: FxHashMap<DefId, clean::Trait>, |
| |
| /// When rendering traits, it's often useful to be able to list all |
| /// implementors of the trait, and this mapping is exactly, that: a mapping |
| /// of trait ids to the list of known implementors of the trait |
| pub(crate) implementors: FxHashMap<DefId, Vec<Impl>>, |
| |
| /// Cache of where external crate documentation can be found. |
| pub(crate) extern_locations: FxHashMap<CrateNum, ExternalLocation>, |
| |
| /// Cache of where documentation for primitives can be found. |
| pub(crate) primitive_locations: FxHashMap<clean::PrimitiveType, DefId>, |
| |
| // Note that external items for which `doc(hidden)` applies to are shown as |
| // non-reachable while local items aren't. This is because we're reusing |
| // the effective visibilities from the privacy check pass. |
| pub(crate) effective_visibilities: RustdocEffectiveVisibilities, |
| |
| /// The version of the crate being documented, if given from the `--crate-version` flag. |
| pub(crate) crate_version: Option<String>, |
| |
| /// Whether to document private items. |
| /// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions. |
| pub(crate) document_private: bool, |
| |
| /// Crates marked with [`#[doc(masked)]`][doc_masked]. |
| /// |
| /// [doc_masked]: https://doc.rust-lang.org/nightly/unstable-book/language-features/doc-masked.html |
| pub(crate) masked_crates: FxHashSet<CrateNum>, |
| |
| // Private fields only used when initially crawling a crate to build a cache |
| stack: Vec<Symbol>, |
| parent_stack: Vec<ParentStackItem>, |
| stripped_mod: bool, |
| |
| pub(crate) search_index: Vec<IndexItem>, |
| |
| // In rare case where a structure is defined in one module but implemented |
| // in another, if the implementing module is parsed before defining module, |
| // then the fully qualified name of the structure isn't presented in `paths` |
| // yet when its implementation methods are being indexed. Caches such methods |
| // and their parent id here and indexes them at the end of crate parsing. |
| pub(crate) orphan_impl_items: Vec<OrphanImplItem>, |
| |
| // Similarly to `orphan_impl_items`, sometimes trait impls are picked up |
| // even though the trait itself is not exported. This can happen if a trait |
| // was defined in function/expression scope, since the impl will be picked |
| // up by `collect-trait-impls` but the trait won't be scraped out in the HIR |
| // crawl. In order to prevent crashes when looking for notable traits or |
| // when gathering trait documentation on a type, hold impls here while |
| // folding and add them to the cache later on if we find the trait. |
| orphan_trait_impls: Vec<(DefId, FxHashSet<DefId>, Impl)>, |
| |
| /// All intra-doc links resolved so far. |
| /// |
| /// Links are indexed by the DefId of the item they document. |
| pub(crate) intra_doc_links: FxHashMap<ItemId, FxIndexSet<clean::ItemLink>>, |
| /// Cfg that have been hidden via #![doc(cfg_hide(...))] |
| pub(crate) hidden_cfg: FxHashSet<clean::cfg::Cfg>, |
| } |
| |
| /// This struct is used to wrap the `cache` and `tcx` in order to run `DocFolder`. |
| struct CacheBuilder<'a, 'tcx> { |
| cache: &'a mut Cache, |
| /// This field is used to prevent duplicated impl blocks. |
| impl_ids: DefIdMap<DefIdSet>, |
| tcx: TyCtxt<'tcx>, |
| } |
| |
| impl Cache { |
| pub(crate) fn new(document_private: bool) -> Self { |
| Cache { document_private, ..Cache::default() } |
| } |
| |
| /// Populates the `Cache` with more data. The returned `Crate` will be missing some data that was |
| /// in `krate` due to the data being moved into the `Cache`. |
| pub(crate) fn populate(cx: &mut DocContext<'_>, mut krate: clean::Crate) -> clean::Crate { |
| let tcx = cx.tcx; |
| |
| // Crawl the crate to build various caches used for the output |
| debug!(?cx.cache.crate_version); |
| cx.cache.traits = krate.external_traits.take(); |
| |
| // Cache where all our extern crates are located |
| // FIXME: this part is specific to HTML so it'd be nice to remove it from the common code |
| for &crate_num in tcx.crates(()) { |
| let e = ExternalCrate { crate_num }; |
| |
| let name = e.name(tcx); |
| let render_options = &cx.render_options; |
| let extern_url = render_options.extern_html_root_urls.get(name.as_str()).map(|u| &**u); |
| let extern_url_takes_precedence = render_options.extern_html_root_takes_precedence; |
| let dst = &render_options.output; |
| let location = e.location(extern_url, extern_url_takes_precedence, dst, tcx); |
| cx.cache.extern_locations.insert(e.crate_num, location); |
| cx.cache.external_paths.insert(e.def_id(), (vec![name], ItemType::Module)); |
| } |
| |
| // FIXME: avoid this clone (requires implementing Default manually) |
| cx.cache.primitive_locations = PrimitiveType::primitive_locations(tcx).clone(); |
| for (prim, &def_id) in &cx.cache.primitive_locations { |
| let crate_name = tcx.crate_name(def_id.krate); |
| // Recall that we only allow primitive modules to be at the root-level of the crate. |
| // If that restriction is ever lifted, this will have to include the relative paths instead. |
| cx.cache |
| .external_paths |
| .insert(def_id, (vec![crate_name, prim.as_sym()], ItemType::Primitive)); |
| } |
| |
| let (krate, mut impl_ids) = { |
| let mut cache_builder = |
| CacheBuilder { tcx, cache: &mut cx.cache, impl_ids: Default::default() }; |
| krate = cache_builder.fold_crate(krate); |
| (krate, cache_builder.impl_ids) |
| }; |
| |
| for (trait_did, dids, impl_) in cx.cache.orphan_trait_impls.drain(..) { |
| if cx.cache.traits.contains_key(&trait_did) { |
| for did in dids { |
| if impl_ids.entry(did).or_default().insert(impl_.def_id()) { |
| cx.cache.impls.entry(did).or_default().push(impl_.clone()); |
| } |
| } |
| } |
| } |
| |
| krate |
| } |
| } |
| |
| impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> { |
| fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> { |
| if item.item_id.is_local() { |
| let is_stripped = matches!(*item.kind, clean::ItemKind::StrippedItem(..)); |
| debug!( |
| "folding {} (stripped: {is_stripped:?}) \"{:?}\", id {:?}", |
| item.type_(), |
| item.name, |
| item.item_id |
| ); |
| } |
| |
| // If this is a stripped module, |
| // we don't want it or its children in the search index. |
| let orig_stripped_mod = match *item.kind { |
| clean::StrippedItem(box clean::ModuleItem(..)) => { |
| mem::replace(&mut self.cache.stripped_mod, true) |
| } |
| _ => self.cache.stripped_mod, |
| }; |
| |
| // If the impl is from a masked crate or references something from a |
| // masked crate then remove it completely. |
| if let clean::ImplItem(ref i) = *item.kind { |
| if self.cache.masked_crates.contains(&item.item_id.krate()) |
| || i.trait_ |
| .as_ref() |
| .map_or(false, |t| self.cache.masked_crates.contains(&t.def_id().krate)) |
| || i.for_ |
| .def_id(self.cache) |
| .map_or(false, |d| self.cache.masked_crates.contains(&d.krate)) |
| { |
| return None; |
| } |
| } |
| |
| // Propagate a trait method's documentation to all implementors of the |
| // trait. |
| if let clean::TraitItem(ref t) = *item.kind { |
| self.cache.traits.entry(item.item_id.expect_def_id()).or_insert_with(|| (**t).clone()); |
| } |
| |
| // Collect all the implementors of traits. |
| if let clean::ImplItem(ref i) = *item.kind && |
| let Some(trait_) = &i.trait_ && |
| !i.kind.is_blanket() |
| { |
| self.cache |
| .implementors |
| .entry(trait_.def_id()) |
| .or_default() |
| .push(Impl { impl_item: item.clone() }); |
| } |
| |
| // Index this method for searching later on. |
| if let Some(s) = item.name.or_else(|| { |
| if item.is_stripped() { |
| None |
| } else if let clean::ImportItem(ref i) = *item.kind && |
| let clean::ImportKind::Simple(s) = i.kind { |
| Some(s) |
| } else { |
| None |
| } |
| }) { |
| let (parent, is_inherent_impl_item) = match *item.kind { |
| clean::StrippedItem(..) => ((None, None), false), |
| clean::AssocConstItem(..) | clean::AssocTypeItem(..) |
| if self |
| .cache |
| .parent_stack |
| .last() |
| .map_or(false, |parent| parent.is_trait_impl()) => |
| { |
| // skip associated items in trait impls |
| ((None, None), false) |
| } |
| clean::TyMethodItem(..) |
| | clean::TyAssocConstItem(..) |
| | clean::TyAssocTypeItem(..) |
| | clean::StructFieldItem(..) |
| | clean::VariantItem(..) => ( |
| ( |
| Some( |
| self.cache |
| .parent_stack |
| .last() |
| .expect("parent_stack is empty") |
| .item_id() |
| .expect_def_id(), |
| ), |
| Some(&self.cache.stack[..self.cache.stack.len() - 1]), |
| ), |
| false, |
| ), |
| clean::MethodItem(..) | clean::AssocConstItem(..) | clean::AssocTypeItem(..) => { |
| if self.cache.parent_stack.is_empty() { |
| ((None, None), false) |
| } else { |
| let last = self.cache.parent_stack.last().expect("parent_stack is empty 2"); |
| let did = match &*last { |
| ParentStackItem::Impl { |
| // impl Trait for &T { fn method(self); } |
| // |
| // When generating a function index with the above shape, we want it |
| // associated with `T`, not with the primitive reference type. It should |
| // show up as `T::method`, rather than `reference::method`, in the search |
| // results page. |
| for_: clean::Type::BorrowedRef { type_, .. }, |
| .. |
| } => type_.def_id(&self.cache), |
| ParentStackItem::Impl { for_, .. } => for_.def_id(&self.cache), |
| ParentStackItem::Type(item_id) => item_id.as_def_id(), |
| }; |
| let path = did |
| .and_then(|did| self.cache.paths.get(&did)) |
| // The current stack not necessarily has correlation |
| // for where the type was defined. On the other |
| // hand, `paths` always has the right |
| // information if present. |
| .map(|(fqp, _)| &fqp[..fqp.len() - 1]); |
| ((did, path), true) |
| } |
| } |
| _ => ((None, Some(&*self.cache.stack)), false), |
| }; |
| |
| match parent { |
| (parent, Some(path)) if is_inherent_impl_item || !self.cache.stripped_mod => { |
| debug_assert!(!item.is_stripped()); |
| |
| // A crate has a module at its root, containing all items, |
| // which should not be indexed. The crate-item itself is |
| // inserted later on when serializing the search-index. |
| if item.item_id.as_def_id().map_or(false, |idx| !idx.is_crate_root()) { |
| let desc = |
| short_markdown_summary(&item.doc_value(), &item.link_names(self.cache)); |
| let ty = item.type_(); |
| if ty != ItemType::StructField |
| || u16::from_str_radix(s.as_str(), 10).is_err() |
| { |
| // In case this is a field from a tuple struct, we don't add it into |
| // the search index because its name is something like "0", which is |
| // not useful for rustdoc search. |
| self.cache.search_index.push(IndexItem { |
| ty, |
| name: s, |
| path: join_with_double_colon(path), |
| desc, |
| parent, |
| parent_idx: None, |
| search_type: get_function_type_for_search( |
| &item, |
| self.tcx, |
| clean_impl_generics(self.cache.parent_stack.last()).as_ref(), |
| self.cache, |
| ), |
| aliases: item.attrs.get_doc_aliases(), |
| deprecation: item.deprecation(self.tcx), |
| }); |
| } |
| } |
| } |
| (Some(parent), None) if is_inherent_impl_item => { |
| // We have a parent, but we don't know where they're |
| // defined yet. Wait for later to index this item. |
| let impl_generics = clean_impl_generics(self.cache.parent_stack.last()); |
| self.cache.orphan_impl_items.push(OrphanImplItem { |
| parent, |
| item: item.clone(), |
| impl_generics, |
| }); |
| } |
| _ => {} |
| } |
| } |
| |
| // Keep track of the fully qualified path for this item. |
| let pushed = match item.name { |
| Some(n) if !n.is_empty() => { |
| self.cache.stack.push(n); |
| true |
| } |
| _ => false, |
| }; |
| |
| match *item.kind { |
| clean::StructItem(..) |
| | clean::EnumItem(..) |
| | clean::TypedefItem(..) |
| | clean::TraitItem(..) |
| | clean::TraitAliasItem(..) |
| | clean::FunctionItem(..) |
| | clean::ModuleItem(..) |
| | clean::ForeignFunctionItem(..) |
| | clean::ForeignStaticItem(..) |
| | clean::ConstantItem(..) |
| | clean::StaticItem(..) |
| | clean::UnionItem(..) |
| | clean::ForeignTypeItem |
| | clean::MacroItem(..) |
| | clean::ProcMacroItem(..) |
| | clean::VariantItem(..) => { |
| if !self.cache.stripped_mod { |
| // Re-exported items mean that the same id can show up twice |
| // in the rustdoc ast that we're looking at. We know, |
| // however, that a re-exported item doesn't show up in the |
| // `public_items` map, so we can skip inserting into the |
| // paths map if there was already an entry present and we're |
| // not a public item. |
| if !self.cache.paths.contains_key(&item.item_id.expect_def_id()) |
| || self |
| .cache |
| .effective_visibilities |
| .is_directly_public(self.tcx, item.item_id.expect_def_id()) |
| { |
| self.cache.paths.insert( |
| item.item_id.expect_def_id(), |
| (self.cache.stack.clone(), item.type_()), |
| ); |
| } |
| } |
| } |
| clean::PrimitiveItem(..) => { |
| self.cache |
| .paths |
| .insert(item.item_id.expect_def_id(), (self.cache.stack.clone(), item.type_())); |
| } |
| |
| clean::ExternCrateItem { .. } |
| | clean::ImportItem(..) |
| | clean::OpaqueTyItem(..) |
| | clean::ImplItem(..) |
| | clean::TyMethodItem(..) |
| | clean::MethodItem(..) |
| | clean::StructFieldItem(..) |
| | clean::TyAssocConstItem(..) |
| | clean::AssocConstItem(..) |
| | clean::TyAssocTypeItem(..) |
| | clean::AssocTypeItem(..) |
| | clean::StrippedItem(..) |
| | clean::KeywordItem => { |
| // FIXME: Do these need handling? |
| // The person writing this comment doesn't know. |
| // So would rather leave them to an expert, |
| // as at least the list is better than `_ => {}`. |
| } |
| } |
| |
| // Maintain the parent stack. |
| let (item, parent_pushed) = match *item.kind { |
| clean::TraitItem(..) |
| | clean::EnumItem(..) |
| | clean::ForeignTypeItem |
| | clean::StructItem(..) |
| | clean::UnionItem(..) |
| | clean::VariantItem(..) |
| | clean::ImplItem(..) => { |
| self.cache.parent_stack.push(ParentStackItem::new(&item)); |
| (self.fold_item_recur(item), true) |
| } |
| _ => (self.fold_item_recur(item), false), |
| }; |
| |
| // Once we've recursively found all the generics, hoard off all the |
| // implementations elsewhere. |
| let ret = if let clean::Item { kind: box clean::ImplItem(ref i), .. } = item { |
| // Figure out the id of this impl. This may map to a |
| // primitive rather than always to a struct/enum. |
| // Note: matching twice to restrict the lifetime of the `i` borrow. |
| let mut dids = FxHashSet::default(); |
| match i.for_ { |
| clean::Type::Path { ref path } |
| | clean::BorrowedRef { type_: box clean::Type::Path { ref path }, .. } => { |
| dids.insert(path.def_id()); |
| if let Some(generics) = path.generics() && |
| let ty::Adt(adt, _) = self.tcx.type_of(path.def_id()).subst_identity().kind() && |
| adt.is_fundamental() { |
| for ty in generics { |
| if let Some(did) = ty.def_id(self.cache) { |
| dids.insert(did); |
| } |
| } |
| } |
| } |
| clean::DynTrait(ref bounds, _) |
| | clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => { |
| dids.insert(bounds[0].trait_.def_id()); |
| } |
| ref t => { |
| let did = t |
| .primitive_type() |
| .and_then(|t| self.cache.primitive_locations.get(&t).cloned()); |
| |
| if let Some(did) = did { |
| dids.insert(did); |
| } |
| } |
| } |
| |
| if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) { |
| for bound in generics { |
| if let Some(did) = bound.def_id(self.cache) { |
| dids.insert(did); |
| } |
| } |
| } |
| let impl_item = Impl { impl_item: item }; |
| if impl_item.trait_did().map_or(true, |d| self.cache.traits.contains_key(&d)) { |
| for did in dids { |
| if self.impl_ids.entry(did).or_default().insert(impl_item.def_id()) { |
| self.cache |
| .impls |
| .entry(did) |
| .or_insert_with(Vec::new) |
| .push(impl_item.clone()); |
| } |
| } |
| } else { |
| let trait_did = impl_item.trait_did().expect("no trait did"); |
| self.cache.orphan_trait_impls.push((trait_did, dids, impl_item)); |
| } |
| None |
| } else { |
| Some(item) |
| }; |
| |
| if pushed { |
| self.cache.stack.pop().expect("stack already empty"); |
| } |
| if parent_pushed { |
| self.cache.parent_stack.pop().expect("parent stack already empty"); |
| } |
| self.cache.stripped_mod = orig_stripped_mod; |
| ret |
| } |
| } |
| |
| pub(crate) struct OrphanImplItem { |
| pub(crate) parent: DefId, |
| pub(crate) item: clean::Item, |
| pub(crate) impl_generics: Option<(clean::Type, clean::Generics)>, |
| } |
| |
| /// Information about trait and type parents is tracked while traversing the item tree to build |
| /// the cache. |
| /// |
| /// We don't just store `Item` in there, because `Item` contains the list of children being |
| /// traversed and it would be wasteful to clone all that. We also need the item id, so just |
| /// storing `ItemKind` won't work, either. |
| enum ParentStackItem { |
| Impl { |
| for_: clean::Type, |
| trait_: Option<clean::Path>, |
| generics: clean::Generics, |
| kind: clean::ImplKind, |
| item_id: ItemId, |
| }, |
| Type(ItemId), |
| } |
| |
| impl ParentStackItem { |
| fn new(item: &clean::Item) -> Self { |
| match &*item.kind { |
| clean::ItemKind::ImplItem(box clean::Impl { for_, trait_, generics, kind, .. }) => { |
| ParentStackItem::Impl { |
| for_: for_.clone(), |
| trait_: trait_.clone(), |
| generics: generics.clone(), |
| kind: kind.clone(), |
| item_id: item.item_id, |
| } |
| } |
| _ => ParentStackItem::Type(item.item_id), |
| } |
| } |
| fn is_trait_impl(&self) -> bool { |
| matches!(self, ParentStackItem::Impl { trait_: Some(..), .. }) |
| } |
| fn item_id(&self) -> ItemId { |
| match self { |
| ParentStackItem::Impl { item_id, .. } => *item_id, |
| ParentStackItem::Type(item_id) => *item_id, |
| } |
| } |
| } |
| |
| fn clean_impl_generics(item: Option<&ParentStackItem>) -> Option<(clean::Type, clean::Generics)> { |
| if let Some(ParentStackItem::Impl { for_, generics, kind: clean::ImplKind::Normal, .. }) = item |
| { |
| Some((for_.clone(), generics.clone())) |
| } else { |
| None |
| } |
| } |