| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Peephole optimize the CFG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/GuardUtils.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ProfDataUtils.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <optional> |
| #include <set> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "simplifycfg" |
| |
| cl::opt<bool> llvm::RequireAndPreserveDomTree( |
| "simplifycfg-require-and-preserve-domtree", cl::Hidden, |
| |
| cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " |
| "into preserving DomTree,")); |
| |
| // Chosen as 2 so as to be cheap, but still to have enough power to fold |
| // a select, so the "clamp" idiom (of a min followed by a max) will be caught. |
| // To catch this, we need to fold a compare and a select, hence '2' being the |
| // minimum reasonable default. |
| static cl::opt<unsigned> PHINodeFoldingThreshold( |
| "phi-node-folding-threshold", cl::Hidden, cl::init(2), |
| cl::desc( |
| "Control the amount of phi node folding to perform (default = 2)")); |
| |
| static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( |
| "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), |
| cl::desc("Control the maximal total instruction cost that we are willing " |
| "to speculatively execute to fold a 2-entry PHI node into a " |
| "select (default = 4)")); |
| |
| static cl::opt<bool> |
| HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), |
| cl::desc("Hoist common instructions up to the parent block")); |
| |
| static cl::opt<unsigned> |
| HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, |
| cl::init(20), |
| cl::desc("Allow reordering across at most this many " |
| "instructions when hoisting")); |
| |
| static cl::opt<bool> |
| SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), |
| cl::desc("Sink common instructions down to the end block")); |
| |
| static cl::opt<bool> HoistCondStores( |
| "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), |
| cl::desc("Hoist conditional stores if an unconditional store precedes")); |
| |
| static cl::opt<bool> MergeCondStores( |
| "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), |
| cl::desc("Hoist conditional stores even if an unconditional store does not " |
| "precede - hoist multiple conditional stores into a single " |
| "predicated store")); |
| |
| static cl::opt<bool> MergeCondStoresAggressively( |
| "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), |
| cl::desc("When merging conditional stores, do so even if the resultant " |
| "basic blocks are unlikely to be if-converted as a result")); |
| |
| static cl::opt<bool> SpeculateOneExpensiveInst( |
| "speculate-one-expensive-inst", cl::Hidden, cl::init(true), |
| cl::desc("Allow exactly one expensive instruction to be speculatively " |
| "executed")); |
| |
| static cl::opt<unsigned> MaxSpeculationDepth( |
| "max-speculation-depth", cl::Hidden, cl::init(10), |
| cl::desc("Limit maximum recursion depth when calculating costs of " |
| "speculatively executed instructions")); |
| |
| static cl::opt<int> |
| MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, |
| cl::init(10), |
| cl::desc("Max size of a block which is still considered " |
| "small enough to thread through")); |
| |
| // Two is chosen to allow one negation and a logical combine. |
| static cl::opt<unsigned> |
| BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, |
| cl::init(2), |
| cl::desc("Maximum cost of combining conditions when " |
| "folding branches")); |
| |
| static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( |
| "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, |
| cl::init(2), |
| cl::desc("Multiplier to apply to threshold when determining whether or not " |
| "to fold branch to common destination when vector operations are " |
| "present")); |
| |
| static cl::opt<bool> EnableMergeCompatibleInvokes( |
| "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), |
| cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); |
| |
| static cl::opt<unsigned> MaxSwitchCasesPerResult( |
| "max-switch-cases-per-result", cl::Hidden, cl::init(16), |
| cl::desc("Limit cases to analyze when converting a switch to select")); |
| |
| STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); |
| STATISTIC(NumLinearMaps, |
| "Number of switch instructions turned into linear mapping"); |
| STATISTIC(NumLookupTables, |
| "Number of switch instructions turned into lookup tables"); |
| STATISTIC( |
| NumLookupTablesHoles, |
| "Number of switch instructions turned into lookup tables (holes checked)"); |
| STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); |
| STATISTIC(NumFoldValueComparisonIntoPredecessors, |
| "Number of value comparisons folded into predecessor basic blocks"); |
| STATISTIC(NumFoldBranchToCommonDest, |
| "Number of branches folded into predecessor basic block"); |
| STATISTIC( |
| NumHoistCommonCode, |
| "Number of common instruction 'blocks' hoisted up to the begin block"); |
| STATISTIC(NumHoistCommonInstrs, |
| "Number of common instructions hoisted up to the begin block"); |
| STATISTIC(NumSinkCommonCode, |
| "Number of common instruction 'blocks' sunk down to the end block"); |
| STATISTIC(NumSinkCommonInstrs, |
| "Number of common instructions sunk down to the end block"); |
| STATISTIC(NumSpeculations, "Number of speculative executed instructions"); |
| STATISTIC(NumInvokes, |
| "Number of invokes with empty resume blocks simplified into calls"); |
| STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); |
| STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); |
| |
| namespace { |
| |
| // The first field contains the value that the switch produces when a certain |
| // case group is selected, and the second field is a vector containing the |
| // cases composing the case group. |
| using SwitchCaseResultVectorTy = |
| SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; |
| |
| // The first field contains the phi node that generates a result of the switch |
| // and the second field contains the value generated for a certain case in the |
| // switch for that PHI. |
| using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; |
| |
| /// ValueEqualityComparisonCase - Represents a case of a switch. |
| struct ValueEqualityComparisonCase { |
| ConstantInt *Value; |
| BasicBlock *Dest; |
| |
| ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) |
| : Value(Value), Dest(Dest) {} |
| |
| bool operator<(ValueEqualityComparisonCase RHS) const { |
| // Comparing pointers is ok as we only rely on the order for uniquing. |
| return Value < RHS.Value; |
| } |
| |
| bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } |
| }; |
| |
| class SimplifyCFGOpt { |
| const TargetTransformInfo &TTI; |
| DomTreeUpdater *DTU; |
| const DataLayout &DL; |
| ArrayRef<WeakVH> LoopHeaders; |
| const SimplifyCFGOptions &Options; |
| bool Resimplify; |
| |
| Value *isValueEqualityComparison(Instruction *TI); |
| BasicBlock *GetValueEqualityComparisonCases( |
| Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); |
| bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, |
| BasicBlock *Pred, |
| IRBuilder<> &Builder); |
| bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, |
| Instruction *PTI, |
| IRBuilder<> &Builder); |
| bool FoldValueComparisonIntoPredecessors(Instruction *TI, |
| IRBuilder<> &Builder); |
| |
| bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); |
| bool simplifySingleResume(ResumeInst *RI); |
| bool simplifyCommonResume(ResumeInst *RI); |
| bool simplifyCleanupReturn(CleanupReturnInst *RI); |
| bool simplifyUnreachable(UnreachableInst *UI); |
| bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); |
| bool simplifyIndirectBr(IndirectBrInst *IBI); |
| bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); |
| bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); |
| bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); |
| |
| bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, |
| IRBuilder<> &Builder); |
| |
| bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, |
| bool EqTermsOnly); |
| bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, |
| const TargetTransformInfo &TTI); |
| bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, |
| BasicBlock *TrueBB, BasicBlock *FalseBB, |
| uint32_t TrueWeight, uint32_t FalseWeight); |
| bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, |
| const DataLayout &DL); |
| bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); |
| bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); |
| bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); |
| |
| public: |
| SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, |
| const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, |
| const SimplifyCFGOptions &Opts) |
| : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { |
| assert((!DTU || !DTU->hasPostDomTree()) && |
| "SimplifyCFG is not yet capable of maintaining validity of a " |
| "PostDomTree, so don't ask for it."); |
| } |
| |
| bool simplifyOnce(BasicBlock *BB); |
| bool run(BasicBlock *BB); |
| |
| // Helper to set Resimplify and return change indication. |
| bool requestResimplify() { |
| Resimplify = true; |
| return true; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Return true if all the PHI nodes in the basic block \p BB |
| /// receive compatible (identical) incoming values when coming from |
| /// all of the predecessor blocks that are specified in \p IncomingBlocks. |
| /// |
| /// Note that if the values aren't exactly identical, but \p EquivalenceSet |
| /// is provided, and *both* of the values are present in the set, |
| /// then they are considered equal. |
| static bool IncomingValuesAreCompatible( |
| BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, |
| SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { |
| assert(IncomingBlocks.size() == 2 && |
| "Only for a pair of incoming blocks at the time!"); |
| |
| // FIXME: it is okay if one of the incoming values is an `undef` value, |
| // iff the other incoming value is guaranteed to be a non-poison value. |
| // FIXME: it is okay if one of the incoming values is a `poison` value. |
| return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { |
| Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); |
| Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); |
| if (IV0 == IV1) |
| return true; |
| if (EquivalenceSet && EquivalenceSet->contains(IV0) && |
| EquivalenceSet->contains(IV1)) |
| return true; |
| return false; |
| }); |
| } |
| |
| /// Return true if it is safe to merge these two |
| /// terminator instructions together. |
| static bool |
| SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, |
| SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { |
| if (SI1 == SI2) |
| return false; // Can't merge with self! |
| |
| // It is not safe to merge these two switch instructions if they have a common |
| // successor, and if that successor has a PHI node, and if *that* PHI node has |
| // conflicting incoming values from the two switch blocks. |
| BasicBlock *SI1BB = SI1->getParent(); |
| BasicBlock *SI2BB = SI2->getParent(); |
| |
| SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); |
| bool Fail = false; |
| for (BasicBlock *Succ : successors(SI2BB)) { |
| if (!SI1Succs.count(Succ)) |
| continue; |
| if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) |
| continue; |
| Fail = true; |
| if (FailBlocks) |
| FailBlocks->insert(Succ); |
| else |
| break; |
| } |
| |
| return !Fail; |
| } |
| |
| /// Update PHI nodes in Succ to indicate that there will now be entries in it |
| /// from the 'NewPred' block. The values that will be flowing into the PHI nodes |
| /// will be the same as those coming in from ExistPred, an existing predecessor |
| /// of Succ. |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, |
| BasicBlock *ExistPred, |
| MemorySSAUpdater *MSSAU = nullptr) { |
| for (PHINode &PN : Succ->phis()) |
| PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); |
| if (MSSAU) |
| if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) |
| MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); |
| } |
| |
| /// Compute an abstract "cost" of speculating the given instruction, |
| /// which is assumed to be safe to speculate. TCC_Free means cheap, |
| /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively |
| /// expensive. |
| static InstructionCost computeSpeculationCost(const User *I, |
| const TargetTransformInfo &TTI) { |
| assert((!isa<Instruction>(I) || |
| isSafeToSpeculativelyExecute(cast<Instruction>(I))) && |
| "Instruction is not safe to speculatively execute!"); |
| return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); |
| } |
| |
| /// If we have a merge point of an "if condition" as accepted above, |
| /// return true if the specified value dominates the block. We |
| /// don't handle the true generality of domination here, just a special case |
| /// which works well enough for us. |
| /// |
| /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to |
| /// see if V (which must be an instruction) and its recursive operands |
| /// that do not dominate BB have a combined cost lower than Budget and |
| /// are non-trapping. If both are true, the instruction is inserted into the |
| /// set and true is returned. |
| /// |
| /// The cost for most non-trapping instructions is defined as 1 except for |
| /// Select whose cost is 2. |
| /// |
| /// After this function returns, Cost is increased by the cost of |
| /// V plus its non-dominating operands. If that cost is greater than |
| /// Budget, false is returned and Cost is undefined. |
| static bool dominatesMergePoint(Value *V, BasicBlock *BB, |
| SmallPtrSetImpl<Instruction *> &AggressiveInsts, |
| InstructionCost &Cost, |
| InstructionCost Budget, |
| const TargetTransformInfo &TTI, |
| unsigned Depth = 0) { |
| // It is possible to hit a zero-cost cycle (phi/gep instructions for example), |
| // so limit the recursion depth. |
| // TODO: While this recursion limit does prevent pathological behavior, it |
| // would be better to track visited instructions to avoid cycles. |
| if (Depth == MaxSpeculationDepth) |
| return false; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| // Non-instructions dominate all instructions and can be executed |
| // unconditionally. |
| return true; |
| } |
| BasicBlock *PBB = I->getParent(); |
| |
| // We don't want to allow weird loops that might have the "if condition" in |
| // the bottom of this block. |
| if (PBB == BB) |
| return false; |
| |
| // If this instruction is defined in a block that contains an unconditional |
| // branch to BB, then it must be in the 'conditional' part of the "if |
| // statement". If not, it definitely dominates the region. |
| BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); |
| if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) |
| return true; |
| |
| // If we have seen this instruction before, don't count it again. |
| if (AggressiveInsts.count(I)) |
| return true; |
| |
| // Okay, it looks like the instruction IS in the "condition". Check to |
| // see if it's a cheap instruction to unconditionally compute, and if it |
| // only uses stuff defined outside of the condition. If so, hoist it out. |
| if (!isSafeToSpeculativelyExecute(I)) |
| return false; |
| |
| Cost += computeSpeculationCost(I, TTI); |
| |
| // Allow exactly one instruction to be speculated regardless of its cost |
| // (as long as it is safe to do so). |
| // This is intended to flatten the CFG even if the instruction is a division |
| // or other expensive operation. The speculation of an expensive instruction |
| // is expected to be undone in CodeGenPrepare if the speculation has not |
| // enabled further IR optimizations. |
| if (Cost > Budget && |
| (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || |
| !Cost.isValid())) |
| return false; |
| |
| // Okay, we can only really hoist these out if their operands do |
| // not take us over the cost threshold. |
| for (Use &Op : I->operands()) |
| if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, |
| Depth + 1)) |
| return false; |
| // Okay, it's safe to do this! Remember this instruction. |
| AggressiveInsts.insert(I); |
| return true; |
| } |
| |
| /// Extract ConstantInt from value, looking through IntToPtr |
| /// and PointerNullValue. Return NULL if value is not a constant int. |
| static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { |
| // Normal constant int. |
| ConstantInt *CI = dyn_cast<ConstantInt>(V); |
| if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || |
| DL.isNonIntegralPointerType(V->getType())) |
| return CI; |
| |
| // This is some kind of pointer constant. Turn it into a pointer-sized |
| // ConstantInt if possible. |
| IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); |
| |
| // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). |
| if (isa<ConstantPointerNull>(V)) |
| return ConstantInt::get(PtrTy, 0); |
| |
| // IntToPtr const int. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->getOpcode() == Instruction::IntToPtr) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { |
| // The constant is very likely to have the right type already. |
| if (CI->getType() == PtrTy) |
| return CI; |
| else |
| return cast<ConstantInt>( |
| ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| |
| /// Given a chain of or (||) or and (&&) comparison of a value against a |
| /// constant, this will try to recover the information required for a switch |
| /// structure. |
| /// It will depth-first traverse the chain of comparison, seeking for patterns |
| /// like %a == 12 or %a < 4 and combine them to produce a set of integer |
| /// representing the different cases for the switch. |
| /// Note that if the chain is composed of '||' it will build the set of elements |
| /// that matches the comparisons (i.e. any of this value validate the chain) |
| /// while for a chain of '&&' it will build the set elements that make the test |
| /// fail. |
| struct ConstantComparesGatherer { |
| const DataLayout &DL; |
| |
| /// Value found for the switch comparison |
| Value *CompValue = nullptr; |
| |
| /// Extra clause to be checked before the switch |
| Value *Extra = nullptr; |
| |
| /// Set of integers to match in switch |
| SmallVector<ConstantInt *, 8> Vals; |
| |
| /// Number of comparisons matched in the and/or chain |
| unsigned UsedICmps = 0; |
| |
| /// Construct and compute the result for the comparison instruction Cond |
| ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { |
| gather(Cond); |
| } |
| |
| ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; |
| ConstantComparesGatherer & |
| operator=(const ConstantComparesGatherer &) = delete; |
| |
| private: |
| /// Try to set the current value used for the comparison, it succeeds only if |
| /// it wasn't set before or if the new value is the same as the old one |
| bool setValueOnce(Value *NewVal) { |
| if (CompValue && CompValue != NewVal) |
| return false; |
| CompValue = NewVal; |
| return (CompValue != nullptr); |
| } |
| |
| /// Try to match Instruction "I" as a comparison against a constant and |
| /// populates the array Vals with the set of values that match (or do not |
| /// match depending on isEQ). |
| /// Return false on failure. On success, the Value the comparison matched |
| /// against is placed in CompValue. |
| /// If CompValue is already set, the function is expected to fail if a match |
| /// is found but the value compared to is different. |
| bool matchInstruction(Instruction *I, bool isEQ) { |
| // If this is an icmp against a constant, handle this as one of the cases. |
| ICmpInst *ICI; |
| ConstantInt *C; |
| if (!((ICI = dyn_cast<ICmpInst>(I)) && |
| (C = GetConstantInt(I->getOperand(1), DL)))) { |
| return false; |
| } |
| |
| Value *RHSVal; |
| const APInt *RHSC; |
| |
| // Pattern match a special case |
| // (x & ~2^z) == y --> x == y || x == y|2^z |
| // This undoes a transformation done by instcombine to fuse 2 compares. |
| if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { |
| // It's a little bit hard to see why the following transformations are |
| // correct. Here is a CVC3 program to verify them for 64-bit values: |
| |
| /* |
| ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); |
| x : BITVECTOR(64); |
| y : BITVECTOR(64); |
| z : BITVECTOR(64); |
| mask : BITVECTOR(64) = BVSHL(ONE, z); |
| QUERY( (y & ~mask = y) => |
| ((x & ~mask = y) <=> (x = y OR x = (y | mask))) |
| ); |
| QUERY( (y | mask = y) => |
| ((x | mask = y) <=> (x = y OR x = (y & ~mask))) |
| ); |
| */ |
| |
| // Please note that each pattern must be a dual implication (<--> or |
| // iff). One directional implication can create spurious matches. If the |
| // implication is only one-way, an unsatisfiable condition on the left |
| // side can imply a satisfiable condition on the right side. Dual |
| // implication ensures that satisfiable conditions are transformed to |
| // other satisfiable conditions and unsatisfiable conditions are |
| // transformed to other unsatisfiable conditions. |
| |
| // Here is a concrete example of a unsatisfiable condition on the left |
| // implying a satisfiable condition on the right: |
| // |
| // mask = (1 << z) |
| // (x & ~mask) == y --> (x == y || x == (y | mask)) |
| // |
| // Substituting y = 3, z = 0 yields: |
| // (x & -2) == 3 --> (x == 3 || x == 2) |
| |
| // Pattern match a special case: |
| /* |
| QUERY( (y & ~mask = y) => |
| ((x & ~mask = y) <=> (x = y OR x = (y | mask))) |
| ); |
| */ |
| if (match(ICI->getOperand(0), |
| m_And(m_Value(RHSVal), m_APInt(RHSC)))) { |
| APInt Mask = ~*RHSC; |
| if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { |
| // If we already have a value for the switch, it has to match! |
| if (!setValueOnce(RHSVal)) |
| return false; |
| |
| Vals.push_back(C); |
| Vals.push_back( |
| ConstantInt::get(C->getContext(), |
| C->getValue() | Mask)); |
| UsedICmps++; |
| return true; |
| } |
| } |
| |
| // Pattern match a special case: |
| /* |
| QUERY( (y | mask = y) => |
| ((x | mask = y) <=> (x = y OR x = (y & ~mask))) |
| ); |
| */ |
| if (match(ICI->getOperand(0), |
| m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { |
| APInt Mask = *RHSC; |
| if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { |
| // If we already have a value for the switch, it has to match! |
| if (!setValueOnce(RHSVal)) |
| return false; |
| |
| Vals.push_back(C); |
| Vals.push_back(ConstantInt::get(C->getContext(), |
| C->getValue() & ~Mask)); |
| UsedICmps++; |
| return true; |
| } |
| } |
| |
| // If we already have a value for the switch, it has to match! |
| if (!setValueOnce(ICI->getOperand(0))) |
| return false; |
| |
| UsedICmps++; |
| Vals.push_back(C); |
| return ICI->getOperand(0); |
| } |
| |
| // If we have "x ult 3", for example, then we can add 0,1,2 to the set. |
| ConstantRange Span = |
| ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); |
| |
| // Shift the range if the compare is fed by an add. This is the range |
| // compare idiom as emitted by instcombine. |
| Value *CandidateVal = I->getOperand(0); |
| if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { |
| Span = Span.subtract(*RHSC); |
| CandidateVal = RHSVal; |
| } |
| |
| // If this is an and/!= check, then we are looking to build the set of |
| // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into |
| // x != 0 && x != 1. |
| if (!isEQ) |
| Span = Span.inverse(); |
| |
| // If there are a ton of values, we don't want to make a ginormous switch. |
| if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { |
| return false; |
| } |
| |
| // If we already have a value for the switch, it has to match! |
| if (!setValueOnce(CandidateVal)) |
| return false; |
| |
| // Add all values from the range to the set |
| for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) |
| Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); |
| |
| UsedICmps++; |
| return true; |
| } |
| |
| /// Given a potentially 'or'd or 'and'd together collection of icmp |
| /// eq/ne/lt/gt instructions that compare a value against a constant, extract |
| /// the value being compared, and stick the list constants into the Vals |
| /// vector. |
| /// One "Extra" case is allowed to differ from the other. |
| void gather(Value *V) { |
| bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); |
| |
| // Keep a stack (SmallVector for efficiency) for depth-first traversal |
| SmallVector<Value *, 8> DFT; |
| SmallPtrSet<Value *, 8> Visited; |
| |
| // Initialize |
| Visited.insert(V); |
| DFT.push_back(V); |
| |
| while (!DFT.empty()) { |
| V = DFT.pop_back_val(); |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // If it is a || (or && depending on isEQ), process the operands. |
| Value *Op0, *Op1; |
| if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) |
| : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { |
| if (Visited.insert(Op1).second) |
| DFT.push_back(Op1); |
| if (Visited.insert(Op0).second) |
| DFT.push_back(Op0); |
| |
| continue; |
| } |
| |
| // Try to match the current instruction |
| if (matchInstruction(I, isEQ)) |
| // Match succeed, continue the loop |
| continue; |
| } |
| |
| // One element of the sequence of || (or &&) could not be match as a |
| // comparison against the same value as the others. |
| // We allow only one "Extra" case to be checked before the switch |
| if (!Extra) { |
| Extra = V; |
| continue; |
| } |
| // Failed to parse a proper sequence, abort now |
| CompValue = nullptr; |
| break; |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void EraseTerminatorAndDCECond(Instruction *TI, |
| MemorySSAUpdater *MSSAU = nullptr) { |
| Instruction *Cond = nullptr; |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Cond = dyn_cast<Instruction>(SI->getCondition()); |
| } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional()) |
| Cond = dyn_cast<Instruction>(BI->getCondition()); |
| } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { |
| Cond = dyn_cast<Instruction>(IBI->getAddress()); |
| } |
| |
| TI->eraseFromParent(); |
| if (Cond) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); |
| } |
| |
| /// Return true if the specified terminator checks |
| /// to see if a value is equal to constant integer value. |
| Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { |
| Value *CV = nullptr; |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| // Do not permit merging of large switch instructions into their |
| // predecessors unless there is only one predecessor. |
| if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) |
| CV = SI->getCondition(); |
| } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) |
| if (BI->isConditional() && BI->getCondition()->hasOneUse()) |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) |
| CV = ICI->getOperand(0); |
| } |
| |
| // Unwrap any lossless ptrtoint cast. |
| if (CV) { |
| if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { |
| Value *Ptr = PTII->getPointerOperand(); |
| if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) |
| CV = Ptr; |
| } |
| } |
| return CV; |
| } |
| |
| /// Given a value comparison instruction, |
| /// decode all of the 'cases' that it represents and return the 'default' block. |
| BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( |
| Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Cases.reserve(SI->getNumCases()); |
| for (auto Case : SI->cases()) |
| Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), |
| Case.getCaseSuccessor())); |
| return SI->getDefaultDest(); |
| } |
| |
| BranchInst *BI = cast<BranchInst>(TI); |
| ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); |
| BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); |
| Cases.push_back(ValueEqualityComparisonCase( |
| GetConstantInt(ICI->getOperand(1), DL), Succ)); |
| return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); |
| } |
| |
| /// Given a vector of bb/value pairs, remove any entries |
| /// in the list that match the specified block. |
| static void |
| EliminateBlockCases(BasicBlock *BB, |
| std::vector<ValueEqualityComparisonCase> &Cases) { |
| llvm::erase_value(Cases, BB); |
| } |
| |
| /// Return true if there are any keys in C1 that exist in C2 as well. |
| static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, |
| std::vector<ValueEqualityComparisonCase> &C2) { |
| std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; |
| |
| // Make V1 be smaller than V2. |
| if (V1->size() > V2->size()) |
| std::swap(V1, V2); |
| |
| if (V1->empty()) |
| return false; |
| if (V1->size() == 1) { |
| // Just scan V2. |
| ConstantInt *TheVal = (*V1)[0].Value; |
| for (const ValueEqualityComparisonCase &VECC : *V2) |
| if (TheVal == VECC.Value) |
| return true; |
| } |
| |
| // Otherwise, just sort both lists and compare element by element. |
| array_pod_sort(V1->begin(), V1->end()); |
| array_pod_sort(V2->begin(), V2->end()); |
| unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); |
| while (i1 != e1 && i2 != e2) { |
| if ((*V1)[i1].Value == (*V2)[i2].Value) |
| return true; |
| if ((*V1)[i1].Value < (*V2)[i2].Value) |
| ++i1; |
| else |
| ++i2; |
| } |
| return false; |
| } |
| |
| // Set branch weights on SwitchInst. This sets the metadata if there is at |
| // least one non-zero weight. |
| static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { |
| // Check that there is at least one non-zero weight. Otherwise, pass |
| // nullptr to setMetadata which will erase the existing metadata. |
| MDNode *N = nullptr; |
| if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) |
| N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); |
| SI->setMetadata(LLVMContext::MD_prof, N); |
| } |
| |
| // Similar to the above, but for branch and select instructions that take |
| // exactly 2 weights. |
| static void setBranchWeights(Instruction *I, uint32_t TrueWeight, |
| uint32_t FalseWeight) { |
| assert(isa<BranchInst>(I) || isa<SelectInst>(I)); |
| // Check that there is at least one non-zero weight. Otherwise, pass |
| // nullptr to setMetadata which will erase the existing metadata. |
| MDNode *N = nullptr; |
| if (TrueWeight || FalseWeight) |
| N = MDBuilder(I->getParent()->getContext()) |
| .createBranchWeights(TrueWeight, FalseWeight); |
| I->setMetadata(LLVMContext::MD_prof, N); |
| } |
| |
| /// If TI is known to be a terminator instruction and its block is known to |
| /// only have a single predecessor block, check to see if that predecessor is |
| /// also a value comparison with the same value, and if that comparison |
| /// determines the outcome of this comparison. If so, simplify TI. This does a |
| /// very limited form of jump threading. |
| bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( |
| Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { |
| Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); |
| if (!PredVal) |
| return false; // Not a value comparison in predecessor. |
| |
| Value *ThisVal = isValueEqualityComparison(TI); |
| assert(ThisVal && "This isn't a value comparison!!"); |
| if (ThisVal != PredVal) |
| return false; // Different predicates. |
| |
| // TODO: Preserve branch weight metadata, similarly to how |
| // FoldValueComparisonIntoPredecessors preserves it. |
| |
| // Find out information about when control will move from Pred to TI's block. |
| std::vector<ValueEqualityComparisonCase> PredCases; |
| BasicBlock *PredDef = |
| GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); |
| EliminateBlockCases(PredDef, PredCases); // Remove default from cases. |
| |
| // Find information about how control leaves this block. |
| std::vector<ValueEqualityComparisonCase> ThisCases; |
| BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); |
| EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. |
| |
| // If TI's block is the default block from Pred's comparison, potentially |
| // simplify TI based on this knowledge. |
| if (PredDef == TI->getParent()) { |
| // If we are here, we know that the value is none of those cases listed in |
| // PredCases. If there are any cases in ThisCases that are in PredCases, we |
| // can simplify TI. |
| if (!ValuesOverlap(PredCases, ThisCases)) |
| return false; |
| |
| if (isa<BranchInst>(TI)) { |
| // Okay, one of the successors of this condbr is dead. Convert it to a |
| // uncond br. |
| assert(ThisCases.size() == 1 && "Branch can only have one case!"); |
| // Insert the new branch. |
| Instruction *NI = Builder.CreateBr(ThisDef); |
| (void)NI; |
| |
| // Remove PHI node entries for the dead edge. |
| ThisCases[0].Dest->removePredecessor(PredDef); |
| |
| LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI << "Leaving: " << *NI |
| << "\n"); |
| |
| EraseTerminatorAndDCECond(TI); |
| |
| if (DTU) |
| DTU->applyUpdates( |
| {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); |
| |
| return true; |
| } |
| |
| SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); |
| // Okay, TI has cases that are statically dead, prune them away. |
| SmallPtrSet<Constant *, 16> DeadCases; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| DeadCases.insert(PredCases[i].Value); |
| |
| LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI); |
| |
| SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; |
| for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { |
| --i; |
| auto *Successor = i->getCaseSuccessor(); |
| if (DTU) |
| ++NumPerSuccessorCases[Successor]; |
| if (DeadCases.count(i->getCaseValue())) { |
| Successor->removePredecessor(PredDef); |
| SI.removeCase(i); |
| if (DTU) |
| --NumPerSuccessorCases[Successor]; |
| } |
| } |
| |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) |
| if (I.second == 0) |
| Updates.push_back({DominatorTree::Delete, PredDef, I.first}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); |
| return true; |
| } |
| |
| // Otherwise, TI's block must correspond to some matched value. Find out |
| // which value (or set of values) this is. |
| ConstantInt *TIV = nullptr; |
| BasicBlock *TIBB = TI->getParent(); |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].Dest == TIBB) { |
| if (TIV) |
| return false; // Cannot handle multiple values coming to this block. |
| TIV = PredCases[i].Value; |
| } |
| assert(TIV && "No edge from pred to succ?"); |
| |
| // Okay, we found the one constant that our value can be if we get into TI's |
| // BB. Find out which successor will unconditionally be branched to. |
| BasicBlock *TheRealDest = nullptr; |
| for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) |
| if (ThisCases[i].Value == TIV) { |
| TheRealDest = ThisCases[i].Dest; |
| break; |
| } |
| |
| // If not handled by any explicit cases, it is handled by the default case. |
| if (!TheRealDest) |
| TheRealDest = ThisDef; |
| |
| SmallPtrSet<BasicBlock *, 2> RemovedSuccs; |
| |
| // Remove PHI node entries for dead edges. |
| BasicBlock *CheckEdge = TheRealDest; |
| for (BasicBlock *Succ : successors(TIBB)) |
| if (Succ != CheckEdge) { |
| if (Succ != TheRealDest) |
| RemovedSuccs.insert(Succ); |
| Succ->removePredecessor(TIBB); |
| } else |
| CheckEdge = nullptr; |
| |
| // Insert the new branch. |
| Instruction *NI = Builder.CreateBr(TheRealDest); |
| (void)NI; |
| |
| LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI << "Leaving: " << *NI |
| << "\n"); |
| |
| EraseTerminatorAndDCECond(TI); |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| Updates.reserve(RemovedSuccs.size()); |
| for (auto *RemovedSucc : RemovedSuccs) |
| Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); |
| DTU->applyUpdates(Updates); |
| } |
| return true; |
| } |
| |
| namespace { |
| |
| /// This class implements a stable ordering of constant |
| /// integers that does not depend on their address. This is important for |
| /// applications that sort ConstantInt's to ensure uniqueness. |
| struct ConstantIntOrdering { |
| bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { |
| return LHS->getValue().ult(RHS->getValue()); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static int ConstantIntSortPredicate(ConstantInt *const *P1, |
| ConstantInt *const *P2) { |
| const ConstantInt *LHS = *P1; |
| const ConstantInt *RHS = *P2; |
| if (LHS == RHS) |
| return 0; |
| return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; |
| } |
| |
| /// Get Weights of a given terminator, the default weight is at the front |
| /// of the vector. If TI is a conditional eq, we need to swap the branch-weight |
| /// metadata. |
| static void GetBranchWeights(Instruction *TI, |
| SmallVectorImpl<uint64_t> &Weights) { |
| MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); |
| assert(MD); |
| for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); |
| Weights.push_back(CI->getValue().getZExtValue()); |
| } |
| |
| // If TI is a conditional eq, the default case is the false case, |
| // and the corresponding branch-weight data is at index 2. We swap the |
| // default weight to be the first entry. |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| assert(Weights.size() == 2); |
| ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| std::swap(Weights.front(), Weights.back()); |
| } |
| } |
| |
| /// Keep halving the weights until all can fit in uint32_t. |
| static void FitWeights(MutableArrayRef<uint64_t> Weights) { |
| uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); |
| if (Max > UINT_MAX) { |
| unsigned Offset = 32 - countLeadingZeros(Max); |
| for (uint64_t &I : Weights) |
| I >>= Offset; |
| } |
| } |
| |
| static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( |
| BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { |
| Instruction *PTI = PredBlock->getTerminator(); |
| |
| // If we have bonus instructions, clone them into the predecessor block. |
| // Note that there may be multiple predecessor blocks, so we cannot move |
| // bonus instructions to a predecessor block. |
| for (Instruction &BonusInst : *BB) { |
| if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) |
| continue; |
| |
| Instruction *NewBonusInst = BonusInst.clone(); |
| |
| if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { |
| // Unless the instruction has the same !dbg location as the original |
| // branch, drop it. When we fold the bonus instructions we want to make |
| // sure we reset their debug locations in order to avoid stepping on |
| // dead code caused by folding dead branches. |
| NewBonusInst->setDebugLoc(DebugLoc()); |
| } |
| |
| RemapInstruction(NewBonusInst, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| VMap[&BonusInst] = NewBonusInst; |
| |
| // If we moved a load, we cannot any longer claim any knowledge about |
| // its potential value. The previous information might have been valid |
| // only given the branch precondition. |
| // For an analogous reason, we must also drop all the metadata whose |
| // semantics we don't understand. We *can* preserve !annotation, because |
| // it is tied to the instruction itself, not the value or position. |
| // Similarly strip attributes on call parameters that may cause UB in |
| // location the call is moved to. |
| NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( |
| LLVMContext::MD_annotation); |
| |
| NewBonusInst->insertInto(PredBlock, PTI->getIterator()); |
| NewBonusInst->takeName(&BonusInst); |
| BonusInst.setName(NewBonusInst->getName() + ".old"); |
| |
| // Update (liveout) uses of bonus instructions, |
| // now that the bonus instruction has been cloned into predecessor. |
| // Note that we expect to be in a block-closed SSA form for this to work! |
| for (Use &U : make_early_inc_range(BonusInst.uses())) { |
| auto *UI = cast<Instruction>(U.getUser()); |
| auto *PN = dyn_cast<PHINode>(UI); |
| if (!PN) { |
| assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && |
| "If the user is not a PHI node, then it should be in the same " |
| "block as, and come after, the original bonus instruction."); |
| continue; // Keep using the original bonus instruction. |
| } |
| // Is this the block-closed SSA form PHI node? |
| if (PN->getIncomingBlock(U) == BB) |
| continue; // Great, keep using the original bonus instruction. |
| // The only other alternative is an "use" when coming from |
| // the predecessor block - here we should refer to the cloned bonus instr. |
| assert(PN->getIncomingBlock(U) == PredBlock && |
| "Not in block-closed SSA form?"); |
| U.set(NewBonusInst); |
| } |
| } |
| } |
| |
| bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( |
| Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { |
| BasicBlock *BB = TI->getParent(); |
| BasicBlock *Pred = PTI->getParent(); |
| |
| SmallVector<DominatorTree::UpdateType, 32> Updates; |
| |
| // Figure out which 'cases' to copy from SI to PSI. |
| std::vector<ValueEqualityComparisonCase> BBCases; |
| BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); |
| |
| std::vector<ValueEqualityComparisonCase> PredCases; |
| BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); |
| |
| // Based on whether the default edge from PTI goes to BB or not, fill in |
| // PredCases and PredDefault with the new switch cases we would like to |
| // build. |
| SmallMapVector<BasicBlock *, int, 8> NewSuccessors; |
| |
| // Update the branch weight metadata along the way |
| SmallVector<uint64_t, 8> Weights; |
| bool PredHasWeights = hasBranchWeightMD(*PTI); |
| bool SuccHasWeights = hasBranchWeightMD(*TI); |
| |
| if (PredHasWeights) { |
| GetBranchWeights(PTI, Weights); |
| // branch-weight metadata is inconsistent here. |
| if (Weights.size() != 1 + PredCases.size()) |
| PredHasWeights = SuccHasWeights = false; |
| } else if (SuccHasWeights) |
| // If there are no predecessor weights but there are successor weights, |
| // populate Weights with 1, which will later be scaled to the sum of |
| // successor's weights |
| Weights.assign(1 + PredCases.size(), 1); |
| |
| SmallVector<uint64_t, 8> SuccWeights; |
| if (SuccHasWeights) { |
| GetBranchWeights(TI, SuccWeights); |
| // branch-weight metadata is inconsistent here. |
| if (SuccWeights.size() != 1 + BBCases.size()) |
| PredHasWeights = SuccHasWeights = false; |
| } else if (PredHasWeights) |
| SuccWeights.assign(1 + BBCases.size(), 1); |
| |
| if (PredDefault == BB) { |
| // If this is the default destination from PTI, only the edges in TI |
| // that don't occur in PTI, or that branch to BB will be activated. |
| std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].Dest != BB) |
| PTIHandled.insert(PredCases[i].Value); |
| else { |
| // The default destination is BB, we don't need explicit targets. |
| std::swap(PredCases[i], PredCases.back()); |
| |
| if (PredHasWeights || SuccHasWeights) { |
| // Increase weight for the default case. |
| Weights[0] += Weights[i + 1]; |
| std::swap(Weights[i + 1], Weights.back()); |
| Weights.pop_back(); |
| } |
| |
| PredCases.pop_back(); |
| --i; |
| --e; |
| } |
| |
| // Reconstruct the new switch statement we will be building. |
| if (PredDefault != BBDefault) { |
| PredDefault->removePredecessor(Pred); |
| if (DTU && PredDefault != BB) |
| Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); |
| PredDefault = BBDefault; |
| ++NewSuccessors[BBDefault]; |
| } |
| |
| unsigned CasesFromPred = Weights.size(); |
| uint64_t ValidTotalSuccWeight = 0; |
| for (unsigned i = 0, e = BBCases.size(); i != e; ++i) |
| if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { |
| PredCases.push_back(BBCases[i]); |
| ++NewSuccessors[BBCases[i].Dest]; |
| if (SuccHasWeights || PredHasWeights) { |
| // The default weight is at index 0, so weight for the ith case |
| // should be at index i+1. Scale the cases from successor by |
| // PredDefaultWeight (Weights[0]). |
| Weights.push_back(Weights[0] * SuccWeights[i + 1]); |
| ValidTotalSuccWeight += SuccWeights[i + 1]; |
| } |
| } |
| |
| if (SuccHasWeights || PredHasWeights) { |
| ValidTotalSuccWeight += SuccWeights[0]; |
| // Scale the cases from predecessor by ValidTotalSuccWeight. |
| for (unsigned i = 1; i < CasesFromPred; ++i) |
| Weights[i] *= ValidTotalSuccWeight; |
| // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). |
| Weights[0] *= SuccWeights[0]; |
| } |
| } else { |
| // If this is not the default destination from PSI, only the edges |
| // in SI that occur in PSI with a destination of BB will be |
| // activated. |
| std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; |
| std::map<ConstantInt *, uint64_t> WeightsForHandled; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].Dest == BB) { |
| PTIHandled.insert(PredCases[i].Value); |
| |
| if (PredHasWeights || SuccHasWeights) { |
| WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; |
| std::swap(Weights[i + 1], Weights.back()); |
| Weights.pop_back(); |
| } |
| |
| std::swap(PredCases[i], PredCases.back()); |
| PredCases.pop_back(); |
| --i; |
| --e; |
| } |
| |
| // Okay, now we know which constants were sent to BB from the |
| // predecessor. Figure out where they will all go now. |
| for (unsigned i = 0, e = BBCases.size(); i != e; ++i) |
| if (PTIHandled.count(BBCases[i].Value)) { |
| // If this is one we are capable of getting... |
| if (PredHasWeights || SuccHasWeights) |
| Weights.push_back(WeightsForHandled[BBCases[i].Value]); |
| PredCases.push_back(BBCases[i]); |
| ++NewSuccessors[BBCases[i].Dest]; |
| PTIHandled.erase(BBCases[i].Value); // This constant is taken care of |
| } |
| |
| // If there are any constants vectored to BB that TI doesn't handle, |
| // they must go to the default destination of TI. |
| for (ConstantInt *I : PTIHandled) { |
| if (PredHasWeights || SuccHasWeights) |
| Weights.push_back(WeightsForHandled[I]); |
| PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); |
| ++NewSuccessors[BBDefault]; |
| } |
| } |
| |
| // Okay, at this point, we know which new successor Pred will get. Make |
| // sure we update the number of entries in the PHI nodes for these |
| // successors. |
| SmallPtrSet<BasicBlock *, 2> SuccsOfPred; |
| if (DTU) { |
| SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; |
| Updates.reserve(Updates.size() + NewSuccessors.size()); |
| } |
| for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : |
| NewSuccessors) { |
| for (auto I : seq(0, NewSuccessor.second)) { |
| (void)I; |
| AddPredecessorToBlock(NewSuccessor.first, Pred, BB); |
| } |
| if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) |
| Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); |
| } |
| |
| Builder.SetInsertPoint(PTI); |
| // Convert pointer to int before we switch. |
| if (CV->getType()->isPointerTy()) { |
| CV = |
| Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); |
| } |
| |
| // Now that the successors are updated, create the new Switch instruction. |
| SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); |
| NewSI->setDebugLoc(PTI->getDebugLoc()); |
| for (ValueEqualityComparisonCase &V : PredCases) |
| NewSI->addCase(V.Value, V.Dest); |
| |
| if (PredHasWeights || SuccHasWeights) { |
| // Halve the weights if any of them cannot fit in an uint32_t |
| FitWeights(Weights); |
| |
| SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); |
| |
| setBranchWeights(NewSI, MDWeights); |
| } |
| |
| EraseTerminatorAndDCECond(PTI); |
| |
| // Okay, last check. If BB is still a successor of PSI, then we must |
| // have an infinite loop case. If so, add an infinitely looping block |
| // to handle the case to preserve the behavior of the code. |
| BasicBlock *InfLoopBlock = nullptr; |
| for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) |
| if (NewSI->getSuccessor(i) == BB) { |
| if (!InfLoopBlock) { |
| // Insert it at the end of the function, because it's either code, |
| // or it won't matter if it's hot. :) |
| InfLoopBlock = |
| BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); |
| BranchInst::Create(InfLoopBlock, InfLoopBlock); |
| if (DTU) |
| Updates.push_back( |
| {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); |
| } |
| NewSI->setSuccessor(i, InfLoopBlock); |
| } |
| |
| if (DTU) { |
| if (InfLoopBlock) |
| Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); |
| |
| Updates.push_back({DominatorTree::Delete, Pred, BB}); |
| |
| DTU->applyUpdates(Updates); |
| } |
| |
| ++NumFoldValueComparisonIntoPredecessors; |
| return true; |
| } |
| |
| /// The specified terminator is a value equality comparison instruction |
| /// (either a switch or a branch on "X == c"). |
| /// See if any of the predecessors of the terminator block are value comparisons |
| /// on the same value. If so, and if safe to do so, fold them together. |
| bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, |
| IRBuilder<> &Builder) { |
| BasicBlock *BB = TI->getParent(); |
| Value *CV = isValueEqualityComparison(TI); // CondVal |
| assert(CV && "Not a comparison?"); |
| |
| bool Changed = false; |
| |
| SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); |
| while (!Preds.empty()) { |
| BasicBlock *Pred = Preds.pop_back_val(); |
| Instruction *PTI = Pred->getTerminator(); |
| |
| // Don't try to fold into itself. |
| if (Pred == BB) |
| continue; |
| |
| // See if the predecessor is a comparison with the same value. |
| Value *PCV = isValueEqualityComparison(PTI); // PredCondVal |
| if (PCV != CV) |
| continue; |
| |
| SmallSetVector<BasicBlock *, 4> FailBlocks; |
| if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { |
| for (auto *Succ : FailBlocks) { |
| if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) |
| return false; |
| } |
| } |
| |
| PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| // If we would need to insert a select that uses the value of this invoke |
| // (comments in HoistThenElseCodeToIf explain why we would need to do this), we |
| // can't hoist the invoke, as there is nowhere to put the select in this case. |
| static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, |
| Instruction *I1, Instruction *I2) { |
| for (BasicBlock *Succ : successors(BB1)) { |
| for (const PHINode &PN : Succ->phis()) { |
| Value *BB1V = PN.getIncomingValueForBlock(BB1); |
| Value *BB2V = PN.getIncomingValueForBlock(BB2); |
| if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| // Get interesting characteristics of instructions that `HoistThenElseCodeToIf` |
| // didn't hoist. They restrict what kind of instructions can be reordered |
| // across. |
| enum SkipFlags { |
| SkipReadMem = 1, |
| SkipSideEffect = 2, |
| SkipImplicitControlFlow = 4 |
| }; |
| |
| static unsigned skippedInstrFlags(Instruction *I) { |
| unsigned Flags = 0; |
| if (I->mayReadFromMemory()) |
| Flags |= SkipReadMem; |
| // We can't arbitrarily move around allocas, e.g. moving allocas (especially |
| // inalloca) across stacksave/stackrestore boundaries. |
| if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) |
| Flags |= SkipSideEffect; |
| if (!isGuaranteedToTransferExecutionToSuccessor(I)) |
| Flags |= SkipImplicitControlFlow; |
| return Flags; |
| } |
| |
| // Returns true if it is safe to reorder an instruction across preceding |
| // instructions in a basic block. |
| static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { |
| // Don't reorder a store over a load. |
| if ((Flags & SkipReadMem) && I->mayWriteToMemory()) |
| return false; |
| |
| // If we have seen an instruction with side effects, it's unsafe to reorder an |
| // instruction which reads memory or itself has side effects. |
| if ((Flags & SkipSideEffect) && |
| (I->mayReadFromMemory() || I->mayHaveSideEffects())) |
| return false; |
| |
| // Reordering across an instruction which does not necessarily transfer |
| // control to the next instruction is speculation. |
| if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) |
| return false; |
| |
| // Hoisting of llvm.deoptimize is only legal together with the next return |
| // instruction, which this pass is not always able to do. |
| if (auto *CB = dyn_cast<CallBase>(I)) |
| if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) |
| return false; |
| |
| // It's also unsafe/illegal to hoist an instruction above its instruction |
| // operands |
| BasicBlock *BB = I->getParent(); |
| for (Value *Op : I->operands()) { |
| if (auto *J = dyn_cast<Instruction>(Op)) |
| if (J->getParent() == BB) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); |
| |
| /// Given a conditional branch that goes to BB1 and BB2, hoist any common code |
| /// in the two blocks up into the branch block. The caller of this function |
| /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, |
| /// only perform hoisting in case both blocks only contain a terminator. In that |
| /// case, only the original BI will be replaced and selects for PHIs are added. |
| bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, |
| const TargetTransformInfo &TTI, |
| bool EqTermsOnly) { |
| // This does very trivial matching, with limited scanning, to find identical |
| // instructions in the two blocks. In particular, we don't want to get into |
| // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As |
| // such, we currently just scan for obviously identical instructions in an |
| // identical order, possibly separated by the same number of non-identical |
| // instructions. |
| BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. |
| BasicBlock *BB2 = BI->getSuccessor(1); // The false destination |
| |
| // If either of the blocks has it's address taken, then we can't do this fold, |
| // because the code we'd hoist would no longer run when we jump into the block |
| // by it's address. |
| if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) |
| return false; |
| |
| BasicBlock::iterator BB1_Itr = BB1->begin(); |
| BasicBlock::iterator BB2_Itr = BB2->begin(); |
| |
| Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; |
| // Skip debug info if it is not identical. |
| DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); |
| DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); |
| if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { |
| while (isa<DbgInfoIntrinsic>(I1)) |
| I1 = &*BB1_Itr++; |
| while (isa<DbgInfoIntrinsic>(I2)) |
| I2 = &*BB2_Itr++; |
| } |
| if (isa<PHINode>(I1)) |
| return false; |
| |
| BasicBlock *BIParent = BI->getParent(); |
| |
| bool Changed = false; |
| |
| auto _ = make_scope_exit([&]() { |
| if (Changed) |
| ++NumHoistCommonCode; |
| }); |
| |
| // Check if only hoisting terminators is allowed. This does not add new |
| // instructions to the hoist location. |
| if (EqTermsOnly) { |
| // Skip any debug intrinsics, as they are free to hoist. |
| auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); |
| auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); |
| if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) |
| return false; |
| if (!I1NonDbg->isTerminator()) |
| return false; |
| // Now we know that we only need to hoist debug intrinsics and the |
| // terminator. Let the loop below handle those 2 cases. |
| } |
| |
| // Count how many instructions were not hoisted so far. There's a limit on how |
| // many instructions we skip, serving as a compilation time control as well as |
| // preventing excessive increase of life ranges. |
| unsigned NumSkipped = 0; |
| |
| // Record any skipped instuctions that may read memory, write memory or have |
| // side effects, or have implicit control flow. |
| unsigned SkipFlagsBB1 = 0; |
| unsigned SkipFlagsBB2 = 0; |
| |
| for (;;) { |
| // If we are hoisting the terminator instruction, don't move one (making a |
| // broken BB), instead clone it, and remove BI. |
| if (I1->isTerminator() || I2->isTerminator()) { |
| // If any instructions remain in the block, we cannot hoist terminators. |
| if (NumSkipped || !I1->isIdenticalToWhenDefined(I2)) |
| return Changed; |
| goto HoistTerminator; |
| } |
| |
| if (I1->isIdenticalToWhenDefined(I2)) { |
| // Even if the instructions are identical, it may not be safe to hoist |
| // them if we have skipped over instructions with side effects or their |
| // operands weren't hoisted. |
| if (!isSafeToHoistInstr(I1, SkipFlagsBB1) || |
| !isSafeToHoistInstr(I2, SkipFlagsBB2)) |
| return Changed; |
| |
| // If we're going to hoist a call, make sure that the two instructions |
| // we're commoning/hoisting are both marked with musttail, or neither of |
| // them is marked as such. Otherwise, we might end up in a situation where |
| // we hoist from a block where the terminator is a `ret` to a block where |
| // the terminator is a `br`, and `musttail` calls expect to be followed by |
| // a return. |
| auto *C1 = dyn_cast<CallInst>(I1); |
| auto *C2 = dyn_cast<CallInst>(I2); |
| if (C1 && C2) |
| if (C1->isMustTailCall() != C2->isMustTailCall()) |
| return Changed; |
| |
| if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) |
| return Changed; |
| |
| // If any of the two call sites has nomerge attribute, stop hoisting. |
| if (const auto *CB1 = dyn_cast<CallBase>(I1)) |
| if (CB1->cannotMerge()) |
| return Changed; |
| if (const auto *CB2 = dyn_cast<CallBase>(I2)) |
| if (CB2->cannotMerge()) |
| return Changed; |
| |
| if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { |
| assert(isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); |
| // The debug location is an integral part of a debug info intrinsic |
| // and can't be separated from it or replaced. Instead of attempting |
| // to merge locations, simply hoist both copies of the intrinsic. |
| BIParent->splice(BI->getIterator(), BB1, I1->getIterator()); |
| BIParent->splice(BI->getIterator(), BB2, I2->getIterator()); |
| } else { |
| // For a normal instruction, we just move one to right before the |
| // branch, then replace all uses of the other with the first. Finally, |
| // we remove the now redundant second instruction. |
| BIParent->splice(BI->getIterator(), BB1, I1->getIterator()); |
| if (!I2->use_empty()) |
| I2->replaceAllUsesWith(I1); |
| I1->andIRFlags(I2); |
| unsigned KnownIDs[] = {LLVMContext::MD_tbaa, |
| LLVMContext::MD_range, |
| LLVMContext::MD_fpmath, |
| LLVMContext::MD_invariant_load, |
| LLVMContext::MD_nonnull, |
| LLVMContext::MD_invariant_group, |
| LLVMContext::MD_align, |
| LLVMContext::MD_dereferenceable, |
| LLVMContext::MD_dereferenceable_or_null, |
| LLVMContext::MD_mem_parallel_loop_access, |
| LLVMContext::MD_access_group, |
| LLVMContext::MD_preserve_access_index}; |
| combineMetadata(I1, I2, KnownIDs, true); |
| |
| // I1 and I2 are being combined into a single instruction. Its debug |
| // location is the merged locations of the original instructions. |
| I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); |
| |
| I2->eraseFromParent(); |
| } |
| Changed = true; |
| ++NumHoistCommonInstrs; |
| } else { |
| if (NumSkipped >= HoistCommonSkipLimit) |
| return Changed; |
| // We are about to skip over a pair of non-identical instructions. Record |
| // if any have characteristics that would prevent reordering instructions |
| // across them. |
| SkipFlagsBB1 |= skippedInstrFlags(I1); |
| SkipFlagsBB2 |= skippedInstrFlags(I2); |
| ++NumSkipped; |
| } |
| |
| I1 = &*BB1_Itr++; |
| I2 = &*BB2_Itr++; |
| // Skip debug info if it is not identical. |
| DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); |
| DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); |
| if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { |
| while (isa<DbgInfoIntrinsic>(I1)) |
| I1 = &*BB1_Itr++; |
| while (isa<DbgInfoIntrinsic>(I2)) |
| I2 = &*BB2_Itr++; |
| } |
| } |
| |
| return Changed; |
| |
| HoistTerminator: |
| // It may not be possible to hoist an invoke. |
| // FIXME: Can we define a safety predicate for CallBr? |
| if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) |
| return Changed; |
| |
| // TODO: callbr hoisting currently disabled pending further study. |
| if (isa<CallBrInst>(I1)) |
| return Changed; |
| |
| for (BasicBlock *Succ : successors(BB1)) { |
| for (PHINode &PN : Succ->phis()) { |
| Value *BB1V = PN.getIncomingValueForBlock(BB1); |
| Value *BB2V = PN.getIncomingValueForBlock(BB2); |
| if (BB1V == BB2V) |
| continue; |
| |
| // Check for passingValueIsAlwaysUndefined here because we would rather |
| // eliminate undefined control flow then converting it to a select. |
| if (passingValueIsAlwaysUndefined(BB1V, &PN) || |
| passingValueIsAlwaysUndefined(BB2V, &PN)) |
| return Changed; |
| } |
| } |
| |
| // Okay, it is safe to hoist the terminator. |
| Instruction *NT = I1->clone(); |
| NT->insertInto(BIParent, BI->getIterator()); |
| if (!NT->getType()->isVoidTy()) { |
| I1->replaceAllUsesWith(NT); |
| I2->replaceAllUsesWith(NT); |
| NT->takeName(I1); |
| } |
| Changed = true; |
| ++NumHoistCommonInstrs; |
| |
| // Ensure terminator gets a debug location, even an unknown one, in case |
| // it involves inlinable calls. |
| NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); |
| |
| // PHIs created below will adopt NT's merged DebugLoc. |
| IRBuilder<NoFolder> Builder(NT); |
| |
| // Hoisting one of the terminators from our successor is a great thing. |
| // Unfortunately, the successors of the if/else blocks may have PHI nodes in |
| // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI |
| // nodes, so we insert select instruction to compute the final result. |
| std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; |
| for (BasicBlock *Succ : successors(BB1)) { |
| for (PHINode &PN : Succ->phis()) { |
| Value *BB1V = PN.getIncomingValueForBlock(BB1); |
| Value *BB2V = PN.getIncomingValueForBlock(BB2); |
| if (BB1V == BB2V) |
| continue; |
| |
| // These values do not agree. Insert a select instruction before NT |
| // that determines the right value. |
| SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; |
| if (!SI) { |
| // Propagate fast-math-flags from phi node to its replacement select. |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| if (isa<FPMathOperator>(PN)) |
| Builder.setFastMathFlags(PN.getFastMathFlags()); |
| |
| SI = cast<SelectInst>( |
| Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, |
| BB1V->getName() + "." + BB2V->getName(), BI)); |
| } |
| |
| // Make the PHI node use the select for all incoming values for BB1/BB2 |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) |
| PN.setIncomingValue(i, SI); |
| } |
| } |
| |
| SmallVector<DominatorTree::UpdateType, 4> Updates; |
| |
| // Update any PHI nodes in our new successors. |
| for (BasicBlock *Succ : successors(BB1)) { |
| AddPredecessorToBlock(Succ, BIParent, BB1); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, BIParent, Succ}); |
| } |
| |
| if (DTU) |
| for (BasicBlock *Succ : successors(BI)) |
| Updates.push_back({DominatorTree::Delete, BIParent, Succ}); |
| |
| EraseTerminatorAndDCECond(BI); |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| return Changed; |
| } |
| |
| // Check lifetime markers. |
| static bool isLifeTimeMarker(const Instruction *I) { |
| if (auto II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // TODO: Refine this. This should avoid cases like turning constant memcpy sizes |
| // into variables. |
| static bool replacingOperandWithVariableIsCheap(const Instruction *I, |
| int OpIdx) { |
| return !isa<IntrinsicInst>(I); |
| } |
| |
| // All instructions in Insts belong to different blocks that all unconditionally |
| // branch to a common successor. Analyze each instruction and return true if it |
| // would be possible to sink them into their successor, creating one common |
| // instruction instead. For every value that would be required to be provided by |
| // PHI node (because an operand varies in each input block), add to PHIOperands. |
| static bool canSinkInstructions( |
| ArrayRef<Instruction *> Insts, |
| DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { |
| // Prune out obviously bad instructions to move. Each instruction must have |
| // exactly zero or one use, and we check later that use is by a single, common |
| // PHI instruction in the successor. |
| bool HasUse = !Insts.front()->user_empty(); |
| for (auto *I : Insts) { |
| // These instructions may change or break semantics if moved. |
| if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || |
| I->getType()->isTokenTy()) |
| return false; |
| |
| // Do not try to sink an instruction in an infinite loop - it can cause |
| // this algorithm to infinite loop. |
| if (I->getParent()->getSingleSuccessor() == I->getParent()) |
| return false; |
| |
| // Conservatively return false if I is an inline-asm instruction. Sinking |
| // and merging inline-asm instructions can potentially create arguments |
| // that cannot satisfy the inline-asm constraints. |
| // If the instruction has nomerge attribute, return false. |
| if (const auto *C = dyn_cast<CallBase>(I)) |
| if (C->isInlineAsm() || C->cannotMerge()) |
| return false; |
| |
| // Each instruction must have zero or one use. |
| if (HasUse && !I->hasOneUse()) |
| return false; |
| if (!HasUse && !I->user_empty()) |
| return false; |
| } |
| |
| const Instruction *I0 = Insts.front(); |
| for (auto *I : Insts) |
| if (!I->isSameOperationAs(I0)) |
| return false; |
| |
| // All instructions in Insts are known to be the same opcode. If they have a |
| // use, check that the only user is a PHI or in the same block as the |
| // instruction, because if a user is in the same block as an instruction we're |
| // contemplating sinking, it must already be determined to be sinkable. |
| if (HasUse) { |
| auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); |
| auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); |
| if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { |
| auto *U = cast<Instruction>(*I->user_begin()); |
| return (PNUse && |
| PNUse->getParent() == Succ && |
| PNUse->getIncomingValueForBlock(I->getParent()) == I) || |
| U->getParent() == I->getParent(); |
| })) |
| return false; |
| } |
| |
| // Because SROA can't handle speculating stores of selects, try not to sink |
| // loads, stores or lifetime markers of allocas when we'd have to create a |
| // PHI for the address operand. Also, because it is likely that loads or |
| // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink |
| // them. |
| // This can cause code churn which can have unintended consequences down |
| // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. |
| // FIXME: This is a workaround for a deficiency in SROA - see |
| // https://llvm.org/bugs/show_bug.cgi?id=30188 |
| if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { |
| return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); |
| })) |
| return false; |
| if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { |
| return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); |
| })) |
| return false; |
| if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { |
| return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); |
| })) |
| return false; |
| |
| // For calls to be sinkable, they must all be indirect, or have same callee. |
| // I.e. if we have two direct calls to different callees, we don't want to |
| // turn that into an indirect call. Likewise, if we have an indirect call, |
| // and a direct call, we don't actually want to have a single indirect call. |
| if (isa<CallBase>(I0)) { |
| auto IsIndirectCall = [](const Instruction *I) { |
| return cast<CallBase>(I)->isIndirectCall(); |
| }; |
| bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); |
| bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); |
| if (HaveIndirectCalls) { |
| if (!AllCallsAreIndirect) |
| return false; |
| } else { |
| // All callees must be identical. |
| Value *Callee = nullptr; |
| for (const Instruction *I : Insts) { |
| Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); |
| if (!Callee) |
| Callee = CurrCallee; |
| else if (Callee != CurrCallee) |
| return false; |
| } |
| } |
| } |
| |
| for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { |
| Value *Op = I0->getOperand(OI); |
| if (Op->getType()->isTokenTy()) |
| // Don't touch any operand of token type. |
| return false; |
| |
| auto SameAsI0 = [&I0, OI](const Instruction *I) { |
| assert(I->getNumOperands() == I0->getNumOperands()); |
| return I->getOperand(OI) == I0->getOperand(OI); |
| }; |
| if (!all_of(Insts, SameAsI0)) { |
| if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || |
| !canReplaceOperandWithVariable(I0, OI)) |
| // We can't create a PHI from this GEP. |
| return false; |
| for (auto *I : Insts) |
| PHIOperands[I].push_back(I->getOperand(OI)); |
| } |
| } |
| return true; |
| } |
| |
| // Assuming canSinkInstructions(Blocks) has returned true, sink the last |
| // instruction of every block in Blocks to their common successor, commoning |
| // into one instruction. |
| static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { |
| auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); |
| |
| // canSinkInstructions returning true guarantees that every block has at |
| // least one non-terminator instruction. |
| SmallVector<Instruction*,4> Insts; |
| for (auto *BB : Blocks) { |
| Instruction *I = BB->getTerminator(); |
| do { |
| I = I->getPrevNode(); |
| } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); |
| if (!isa<DbgInfoIntrinsic>(I)) |
| Insts.push_back(I); |
| } |
| |
| // The only checking we need to do now is that all users of all instructions |
| // are the same PHI node. canSinkInstructions should have checked this but |
| // it is slightly over-aggressive - it gets confused by commutative |
| // instructions so double-check it here. |
| Instruction *I0 = Insts.front(); |
| if (!I0->user_empty()) { |
| auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); |
| if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { |
| auto *U = cast<Instruction>(*I->user_begin()); |
| return U == PNUse; |
| })) |
| return false; |
| } |
| |
| // We don't need to do any more checking here; canSinkInstructions should |
| // have done it all for us. |
| SmallVector<Value*, 4> NewOperands; |
| for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { |
| // This check is different to that in canSinkInstructions. There, we |
| // cared about the global view once simplifycfg (and instcombine) have |
| // completed - it takes into account PHIs that become trivially |
| // simplifiable. However here we need a more local view; if an operand |
| // differs we create a PHI and rely on instcombine to clean up the very |
| // small mess we may make. |
| bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { |
| return I->getOperand(O) != I0->getOperand(O); |
| }); |
| if (!NeedPHI) { |
| NewOperands.push_back(I0->getOperand(O)); |
| continue; |
| } |
| |
| // Create a new PHI in the successor block and populate it. |
| auto *Op = I0->getOperand(O); |
| assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); |
| auto *PN = PHINode::Create(Op->getType(), Insts.size(), |
| Op->getName() + ".sink", &BBEnd->front()); |
| for (auto *I : Insts) |
| PN->addIncoming(I->getOperand(O), I->getParent()); |
| NewOperands.push_back(PN); |
| } |
| |
| // Arbitrarily use I0 as the new "common" instruction; remap its operands |
| // and move it to the start of the successor block. |
| for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) |
| I0->getOperandUse(O).set(NewOperands[O]); |
| I0->moveBefore(&*BBEnd->getFirstInsertionPt()); |
| |
| // Update metadata and IR flags, and merge debug locations. |
| for (auto *I : Insts) |
| if (I != I0) { |
| // The debug location for the "common" instruction is the merged locations |
| // of all the commoned instructions. We start with the original location |
| // of the "common" instruction and iteratively merge each location in the |
| // loop below. |
| // This is an N-way merge, which will be inefficient if I0 is a CallInst. |
| // However, as N-way merge for CallInst is rare, so we use simplified API |
| // instead of using complex API for N-way merge. |
| I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); |
| combineMetadataForCSE(I0, I, true); |
| I0->andIRFlags(I); |
| } |
| |
| if (!I0->user_empty()) { |
| // canSinkLastInstruction checked that all instructions were used by |
| // one and only one PHI node. Find that now, RAUW it to our common |
| // instruction and nuke it. |
| auto *PN = cast<PHINode>(*I0->user_begin()); |
| PN->replaceAllUsesWith(I0); |
| PN->eraseFromParent(); |
| } |
| |
| // Finally nuke all instructions apart from the common instruction. |
| for (auto *I : Insts) { |
| if (I == I0) |
| continue; |
| // The remaining uses are debug users, replace those with the common inst. |
| // In most (all?) cases this just introduces a use-before-def. |
| assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); |
| I->replaceAllUsesWith(I0); |
| I->eraseFromParent(); |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| |
| // LockstepReverseIterator - Iterates through instructions |
| // in a set of blocks in reverse order from the first non-terminator. |
| // For example (assume all blocks have size n): |
| // LockstepReverseIterator I([B1, B2, B3]); |
| // *I-- = [B1[n], B2[n], B3[n]]; |
| // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; |
| // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; |
| // ... |
| class LockstepReverseIterator { |
| ArrayRef<BasicBlock*> Blocks; |
| SmallVector<Instruction*,4> Insts; |
| bool Fail; |
| |
| public: |
| LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { |
| reset(); |
| } |
| |
| void reset() { |
| Fail = false; |
| Insts.clear(); |
| for (auto *BB : Blocks) { |
| Instruction *Inst = BB->getTerminator(); |
| for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) |
| Inst = Inst->getPrevNode(); |
| if (!Inst) { |
| // Block wasn't big enough. |
| Fail = true; |
| return; |
| } |
| Insts.push_back(Inst); |
| } |
| } |
| |
| bool isValid() const { |
| return !Fail; |
| } |
| |
| void operator--() { |
| if (Fail) |
| return; |
| for (auto *&Inst : Insts) { |
| for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) |
| Inst = Inst->getPrevNode(); |
| // Already at beginning of block. |
| if (!Inst) { |
| Fail = true; |
| return; |
| } |
| } |
| } |
| |
| void operator++() { |
| if (Fail) |
| return; |
| for (auto *&Inst : Insts) { |
| for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) |
| Inst = Inst->getNextNode(); |
| // Already at end of block. |
| if (!Inst) { |
| Fail = true; |
| return; |
| } |
| } |
| } |
| |
| ArrayRef<Instruction*> operator * () const { |
| return Insts; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check whether BB's predecessors end with unconditional branches. If it is |
| /// true, sink any common code from the predecessors to BB. |
| static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, |
| DomTreeUpdater *DTU) { |
| // We support two situations: |
| // (1) all incoming arcs are unconditional |
| // (2) there are non-unconditional incoming arcs |
| // |
| // (2) is very common in switch defaults and |
| // else-if patterns; |
| // |
| // if (a) f(1); |
| // else if (b) f(2); |
| // |
| // produces: |
| // |
| // [if] |
| // / \ |
| // [f(1)] [if] |
| // | | \ |
| // | | | |
| // | [f(2)]| |
| // \ | / |
| // [ end ] |
| // |
| // [end] has two unconditional predecessor arcs and one conditional. The |
| // conditional refers to the implicit empty 'else' arc. This conditional |
| // arc can also be caused by an empty default block in a switch. |
| // |
| // In this case, we attempt to sink code from all *unconditional* arcs. |
| // If we can sink instructions from these arcs (determined during the scan |
| // phase below) we insert a common successor for all unconditional arcs and |
| // connect that to [end], to enable sinking: |
| // |
| // [if] |
| // / \ |
| // [x(1)] [if] |
| // | | \ |
| // | | \ |
| // | [x(2)] | |
| // \ / | |
| // [sink.split] | |
| // \ / |
| // [ end ] |
| // |
| SmallVector<BasicBlock*,4> UnconditionalPreds; |
| bool HaveNonUnconditionalPredecessors = false; |
| for (auto *PredBB : predecessors(BB)) { |
| auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); |
| if (PredBr && PredBr->isUnconditional()) |
| UnconditionalPreds.push_back(PredBB); |
| else |
| HaveNonUnconditionalPredecessors = true; |
| } |
| if (UnconditionalPreds.size() < 2) |
| return false; |
| |
| // We take a two-step approach to tail sinking. First we scan from the end of |
| // each block upwards in lockstep. If the n'th instruction from the end of each |
| // block can be sunk, those instructions are added to ValuesToSink and we |
| // carry on. If we can sink an instruction but need to PHI-merge some operands |
| // (because they're not identical in each instruction) we add these to |
| // PHIOperands. |
| int ScanIdx = 0; |
| SmallPtrSet<Value*,4> InstructionsToSink; |
| DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; |
| LockstepReverseIterator LRI(UnconditionalPreds); |
| while (LRI.isValid() && |
| canSinkInstructions(*LRI, PHIOperands)) { |
| LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] |
| << "\n"); |
| InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); |
| ++ScanIdx; |
| --LRI; |
| } |
| |
| // If no instructions can be sunk, early-return. |
| if (ScanIdx == 0) |
| return false; |
| |
| bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); |
| |
| if (!followedByDeoptOrUnreachable) { |
| // Okay, we *could* sink last ScanIdx instructions. But how many can we |
| // actually sink before encountering instruction that is unprofitable to |
| // sink? |
| auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { |
| unsigned NumPHIdValues = 0; |
| for (auto *I : *LRI) |
| for (auto *V : PHIOperands[I]) { |
| if (!InstructionsToSink.contains(V)) |
| ++NumPHIdValues; |
| // FIXME: this check is overly optimistic. We may end up not sinking |
| // said instruction, due to the very same profitability check. |
| // See @creating_too_many_phis in sink-common-code.ll. |
| } |
| LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); |
| unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); |
| if ((NumPHIdValues % UnconditionalPreds.size()) != 0) |
| NumPHIInsts++; |
| |
| return NumPHIInsts <= 1; |
| }; |
| |
| // We've determined that we are going to sink last ScanIdx instructions, |
| // and recorded them in InstructionsToSink. Now, some instructions may be |
| // unprofitable to sink. But that determination depends on the instructions |
| // that we are going to sink. |
| |
| // First, forward scan: find the first instruction unprofitable to sink, |
| // recording all the ones that are profitable to sink. |
| // FIXME: would it be better, after we detect that not all are profitable. |
| // to either record the profitable ones, or erase the unprofitable ones? |
| // Maybe we need to choose (at runtime) the one that will touch least |
| // instrs? |
| LRI.reset(); |
| int Idx = 0; |
| SmallPtrSet<Value *, 4> InstructionsProfitableToSink; |
| while (Idx < ScanIdx) { |
| if (!ProfitableToSinkInstruction(LRI)) { |
| // Too many PHIs would be created. |
| LLVM_DEBUG( |
| dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); |
| break; |
| } |
| InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); |
| --LRI; |
| ++Idx; |
| } |
| |
| // If no instructions can be sunk, early-return. |
| if (Idx == 0) |
| return false; |
| |
| // Did we determine that (only) some instructions are unprofitable to sink? |
| if (Idx < ScanIdx) { |
| // Okay, some instructions are unprofitable. |
| ScanIdx = Idx; |
| InstructionsToSink = InstructionsProfitableToSink; |
| |
| // But, that may make other instructions unprofitable, too. |
| // So, do a backward scan, do any earlier instructions become |
| // unprofitable? |
| assert( |
| !ProfitableToSinkInstruction(LRI) && |
| "We already know that the last instruction is unprofitable to sink"); |
| ++LRI; |
| --Idx; |
| while (Idx >= 0) { |
| // If we detect that an instruction becomes unprofitable to sink, |
| // all earlier instructions won't be sunk either, |
| // so preemptively keep InstructionsProfitableToSink in sync. |
| // FIXME: is this the most performant approach? |
| for (auto *I : *LRI) |
| InstructionsProfitableToSink.erase(I); |
| if (!ProfitableToSinkInstruction(LRI)) { |
| // Everything starting with this instruction won't be sunk. |
| ScanIdx = Idx; |
| InstructionsToSink = InstructionsProfitableToSink; |
| } |
| ++LRI; |
| --Idx; |
| } |
| } |
| |
| // If no instructions can be sunk, early-return. |
| if (ScanIdx == 0) |
| return false; |
| } |
| |
| bool Changed = false; |
| |
| if (HaveNonUnconditionalPredecessors) { |
| if (!followedByDeoptOrUnreachable) { |
| // It is always legal to sink common instructions from unconditional |
| // predecessors. However, if not all predecessors are unconditional, |
| // this transformation might be pessimizing. So as a rule of thumb, |
| // don't do it unless we'd sink at least one non-speculatable instruction. |
| // See https://bugs.llvm.org/show_bug.cgi?id=30244 |
| LRI.reset(); |
| int Idx = 0; |
| bool Profitable = false; |
| while (Idx < ScanIdx) { |
| if (!isSafeToSpeculativelyExecute((*LRI)[0])) { |
| Profitable = true; |
| break; |
| } |
| --LRI; |
| ++Idx; |
| } |
| if (!Profitable) |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); |
| // We have a conditional edge and we're going to sink some instructions. |
| // Insert a new block postdominating all blocks we're going to sink from. |
| if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) |
| // Edges couldn't be split. |
| return false; |
| Changed = true; |
| } |
| |
| // Now that we've analyzed all potential sinking candidates, perform the |
| // actual sink. We iteratively sink the last non-terminator of the source |
| // blocks into their common successor unless doing so would require too |
| // many PHI instructions to be generated (currently only one PHI is allowed |
| // per sunk instruction). |
| // |
| // We can use InstructionsToSink to discount values needing PHI-merging that will |
| // actually be sunk in a later iteration. This allows us to be more |
| // aggressive in what we sink. This does allow a false positive where we |
| // sink presuming a later value will also be sunk, but stop half way through |
| // and never actually sink it which means we produce more PHIs than intended. |
| // This is unlikely in practice though. |
| int SinkIdx = 0; |
| for (; SinkIdx != ScanIdx; ++SinkIdx) { |
| LLVM_DEBUG(dbgs() << "SINK: Sink: " |
| << *UnconditionalPreds[0]->getTerminator()->getPrevNode() |
| << "\n"); |
| |
| // Because we've sunk every instruction in turn, the current instruction to |
| // sink is always at index 0. |
| LRI.reset(); |
| |
| if (!sinkLastInstruction(UnconditionalPreds)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "SINK: stopping here, failed to actually sink instruction!\n"); |
| break; |
| } |
| |
| NumSinkCommonInstrs++; |
| Changed = true; |
| } |
| if (SinkIdx != 0) |
| ++NumSinkCommonCode; |
| return Changed; |
| } |
| |
| namespace { |
| |
| struct CompatibleSets { |
| using SetTy = SmallVector<InvokeInst *, 2>; |
| |
| SmallVector<SetTy, 1> Sets; |
| |
| static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); |
| |
| SetTy &getCompatibleSet(InvokeInst *II); |
| |
| void insert(InvokeInst *II); |
| }; |
| |
| CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { |
| // Perform a linear scan over all the existing sets, see if the new `invoke` |
| // is compatible with any particular set. Since we know that all the `invokes` |
| // within a set are compatible, only check the first `invoke` in each set. |
| // WARNING: at worst, this has quadratic complexity. |
| for (CompatibleSets::SetTy &Set : Sets) { |
| if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) |
| return Set; |
| } |
| |
| // Otherwise, we either had no sets yet, or this invoke forms a new set. |
| return Sets.emplace_back(); |
| } |
| |
| void CompatibleSets::insert(InvokeInst *II) { |
| getCompatibleSet(II).emplace_back(II); |
| } |
| |
| bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { |
| assert(Invokes.size() == 2 && "Always called with exactly two candidates."); |
| |
| // Can we theoretically merge these `invoke`s? |
| auto IsIllegalToMerge = [](InvokeInst *II) { |
| return II->cannotMerge() || II->isInlineAsm(); |
| }; |
| if (any_of(Invokes, IsIllegalToMerge)) |
| return false; |
| |
| // Either both `invoke`s must be direct, |
| // or both `invoke`s must be indirect. |
| auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; |
| bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); |
| bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); |
| if (HaveIndirectCalls) { |
| if (!AllCallsAreIndirect) |
| return false; |
| } else { |
| // All callees must be identical. |
| Value *Callee = nullptr; |
| for (InvokeInst *II : Invokes) { |
| Value *CurrCallee = II->getCalledOperand(); |
| assert(CurrCallee && "There is always a called operand."); |
| if (!Callee) |
| Callee = CurrCallee; |
| else if (Callee != CurrCallee) |
| return false; |
| } |
| } |
| |
| // Either both `invoke`s must not have a normal destination, |
| // or both `invoke`s must have a normal destination, |
| auto HasNormalDest = [](InvokeInst *II) { |
| return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); |
| }; |
| if (any_of(Invokes, HasNormalDest)) { |
| // Do not merge `invoke` that does not have a normal destination with one |
| // that does have a normal destination, even though doing so would be legal. |
| if (!all_of(Invokes, HasNormalDest)) |
| return false; |
| |
| // All normal destinations must be identical. |
| BasicBlock *NormalBB = nullptr; |
| for (InvokeInst *II : Invokes) { |
| BasicBlock *CurrNormalBB = II->getNormalDest(); |
| assert(CurrNormalBB && "There is always a 'continue to' basic block."); |
| if (!NormalBB) |
| NormalBB = CurrNormalBB; |
| else if (NormalBB != CurrNormalBB) |
| return false; |
| } |
| |
| // In the normal destination, the incoming values for these two `invoke`s |
| // must be compatible. |
| SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); |
| if (!IncomingValuesAreCompatible( |
| NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, |
| &EquivalenceSet)) |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| // All unwind destinations must be identical. |
| // We know that because we have started from said unwind destination. |
| BasicBlock *UnwindBB = nullptr; |
| for (InvokeInst *II : Invokes) { |
| BasicBlock *CurrUnwindBB = II->getUnwindDest(); |
| assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); |
| if (!UnwindBB) |
| UnwindBB = CurrUnwindBB; |
| else |
| assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); |
| } |
| #endif |
| |
| // In the unwind destination, the incoming values for these two `invoke`s |
| // must be compatible. |
| if (!IncomingValuesAreCompatible( |
| Invokes.front()->getUnwindDest(), |
| {Invokes[0]->getParent(), Invokes[1]->getParent()})) |
| return false; |
| |
| // Ignoring arguments, these `invoke`s must be identical, |
| // including operand bundles. |
| const InvokeInst *II0 = Invokes.front(); |
| for (auto *II : Invokes.drop_front()) |
| if (!II->isSameOperationAs(II0)) |
| return false; |
| |
| // Can we theoretically form the data operands for the merged `invoke`? |
| auto IsIllegalToMergeArguments = [](auto Ops) { |
| Use &U0 = std::get<0>(Ops); |
| Use &U1 = std::get<1>(Ops); |
| if (U0 == U1) |
| return false; |
| return U0->getType()->isTokenTy() || |
| !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), |
| U0.getOperandNo()); |
| }; |
| assert(Invokes.size() == 2 && "Always called with exactly two candidates."); |
| if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), |
| IsIllegalToMergeArguments)) |
| return false; |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| // Merge all invokes in the provided set, all of which are compatible |
| // as per the `CompatibleSets::shouldBelongToSameSet()`. |
| static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, |
| DomTreeUpdater *DTU) { |
| assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); |
| |
| SmallVector<DominatorTree::UpdateType, 8> Updates; |
| if (DTU) |
| Updates.reserve(2 + 3 * Invokes.size()); |
| |
| bool HasNormalDest = |
| !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); |
| |
| // Clone one of the invokes into a new basic block. |
| // Since they are all compatible, it doesn't matter which invoke is cloned. |
| InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { |
| InvokeInst *II0 = Invokes.front(); |
| BasicBlock *II0BB = II0->getParent(); |
| BasicBlock *InsertBeforeBlock = |
| II0->getParent()->getIterator()->getNextNode(); |
| Function *Func = II0BB->getParent(); |
| LLVMContext &Ctx = II0->getContext(); |
| |
| BasicBlock *MergedInvokeBB = BasicBlock::Create( |
| Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); |
| |
| auto *MergedInvoke = cast<InvokeInst>(II0->clone()); |
| // NOTE: all invokes have the same attributes, so no handling needed. |
| MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); |
| |
| if (!HasNormalDest) { |
| // This set does not have a normal destination, |
| // so just form a new block with unreachable terminator. |
| BasicBlock *MergedNormalDest = BasicBlock::Create( |
| Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); |
| new UnreachableInst(Ctx, MergedNormalDest); |
| MergedInvoke->setNormalDest(MergedNormalDest); |
| } |
| |
| // The unwind destination, however, remainds identical for all invokes here. |
| |
| return MergedInvoke; |
| }(); |
| |
| if (DTU) { |
| // Predecessor blocks that contained these invokes will now branch to |
| // the new block that contains the merged invoke, ... |
| for (InvokeInst *II : Invokes) |
| Updates.push_back( |
| {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); |
| |
| // ... which has the new `unreachable` block as normal destination, |
| // or unwinds to the (same for all `invoke`s in this set) `landingpad`, |
| for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) |
| Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), |
| SuccBBOfMergedInvoke}); |
| |
| // Since predecessor blocks now unconditionally branch to a new block, |
| // they no longer branch to their original successors. |
| for (InvokeInst *II : Invokes) |
| for (BasicBlock *SuccOfPredBB : successors(II->getParent())) |
| Updates.push_back( |
| {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); |
| } |
| |
| bool IsIndirectCall = Invokes[0]->isIndirectCall(); |
| |
| // Form the merged operands for the merged invoke. |
| for (Use &U : MergedInvoke->operands()) { |
| // Only PHI together the indirect callees and data operands. |
| if (MergedInvoke->isCallee(&U)) { |
| if (!IsIndirectCall) |
| continue; |
| } else if (!MergedInvoke->isDataOperand(&U)) |
| continue; |
| |
| // Don't create trivial PHI's with all-identical incoming values. |
| bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { |
| return II->getOperand(U.getOperandNo()) != U.get(); |
| }); |
| if (!NeedPHI) |
| continue; |
| |
| // Form a PHI out of all the data ops under this index. |
| PHINode *PN = PHINode::Create( |
| U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); |
| for (InvokeInst *II : Invokes) |
| PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); |
| |
| U.set(PN); |
| } |
| |
| // We've ensured that each PHI node has compatible (identical) incoming values |
| // when coming from each of the `invoke`s in the current merge set, |
| // so update the PHI nodes accordingly. |
| for (BasicBlock *Succ : successors(MergedInvoke)) |
| AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), |
| /*ExistPred=*/Invokes.front()->getParent()); |
| |
| // And finally, replace the original `invoke`s with an unconditional branch |
| // to the block with the merged `invoke`. Also, give that merged `invoke` |
| // the merged debugloc of all the original `invoke`s. |
| const DILocation *MergedDebugLoc = nullptr; |
| for (InvokeInst *II : Invokes) { |
| // Compute the debug location common to all the original `invoke`s. |
| if (!MergedDebugLoc) |
| MergedDebugLoc = II->getDebugLoc(); |
| else |
| MergedDebugLoc = |
| DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); |
| |
| // And replace the old `invoke` with an unconditionally branch |
| // to the block with the merged `invoke`. |
| for (BasicBlock *OrigSuccBB : successors(II->getParent())) |
| OrigSuccBB->removePredecessor(II->getParent()); |
| BranchInst::Create(MergedInvoke->getParent(), II->getParent()); |
| II->replaceAllUsesWith(MergedInvoke); |
| II->eraseFromParent(); |
| ++NumInvokesMerged; |
| } |
| MergedInvoke->setDebugLoc(MergedDebugLoc); |
| ++NumInvokeSetsFormed; |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| } |
| |
| /// If this block is a `landingpad` exception handling block, categorize all |
| /// the predecessor `invoke`s into sets, with all `invoke`s in each set |
| /// being "mergeable" together, and then merge invokes in each set together. |
| /// |
| /// This is a weird mix of hoisting and sinking. Visually, it goes from: |
| /// [...] [...] |
| /// | | |
| /// [invoke0] [invoke1] |
| /// / \ / \ |
| /// [cont0] [landingpad] [cont1] |
| /// to: |
| /// [...] [...] |
| /// \ / |
| /// [invoke] |
| /// / \ |
| /// [cont] [landingpad] |
| /// |
| /// But of course we can only do that if the invokes share the `landingpad`, |
| /// edges invoke0->cont0 and invoke1->cont1 are "compatible", |
| /// and the invoked functions are "compatible". |
| static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { |
| if (!EnableMergeCompatibleInvokes) |
| return false; |
| |
| bool Changed = false; |
| |
| // FIXME: generalize to all exception handling blocks? |
| if (!BB->isLandingPad()) |
| return Changed; |
| |
| CompatibleSets Grouper; |
| |
| // Record all the predecessors of this `landingpad`. As per verifier, |
| // the only allowed predecessor is the unwind edge of an `invoke`. |
| // We want to group "compatible" `invokes` into the same set to be merged. |
| for (BasicBlock *PredBB : predecessors(BB)) |
| Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); |
| |
| // And now, merge `invoke`s that were grouped togeter. |
| for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { |
| if (Invokes.size() < 2) |
| continue; |
| Changed = true; |
| MergeCompatibleInvokesImpl(Invokes, DTU); |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| /// Track ephemeral values, which should be ignored for cost-modelling |
| /// purposes. Requires walking instructions in reverse order. |
| class EphemeralValueTracker { |
| SmallPtrSet<const Instruction *, 32> EphValues; |
| |
| bool isEphemeral(const Instruction *I) { |
| if (isa<AssumeInst>(I)) |
| return true; |
| return !I->mayHaveSideEffects() && !I->isTerminator() && |
| all_of(I->users(), [&](const User *U) { |
| return EphValues.count(cast<Instruction>(U)); |
| }); |
| } |
| |
| public: |
| bool track(const Instruction *I) { |
| if (isEphemeral(I)) { |
| EphValues.insert(I); |
| return true; |
| } |
| return false; |
| } |
| |
| bool contains(const Instruction *I) const { return EphValues.contains(I); } |
| }; |
| } // namespace |
| |
| /// Determine if we can hoist sink a sole store instruction out of a |
| /// conditional block. |
| /// |
| /// We are looking for code like the following: |
| /// BrBB: |
| /// store i32 %add, i32* %arrayidx2 |
| /// ... // No other stores or function calls (we could be calling a memory |
| /// ... // function). |
| /// %cmp = icmp ult %x, %y |
| /// br i1 %cmp, label %EndBB, label %ThenBB |
| /// ThenBB: |
| /// store i32 %add5, i32* %arrayidx2 |
| /// br label EndBB |
| /// EndBB: |
| /// ... |
| /// We are going to transform this into: |
| /// BrBB: |
| /// store i32 %add, i32* %arrayidx2 |
| /// ... // |
| /// %cmp = icmp ult %x, %y |
| /// %add.add5 = select i1 %cmp, i32 %add, %add5 |
| /// store i32 %add.add5, i32* %arrayidx2 |
| /// ... |
| /// |
| /// \return The pointer to the value of the previous store if the store can be |
| /// hoisted into the predecessor block. 0 otherwise. |
| static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, |
| BasicBlock *StoreBB, BasicBlock *EndBB) { |
| StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); |
| if (!StoreToHoist) |
| return nullptr; |
| |
| // Volatile or atomic. |
| if (!StoreToHoist->isSimple()) |
| return nullptr; |
| |
| Value *StorePtr = StoreToHoist->getPointerOperand(); |
| Type *StoreTy = StoreToHoist->getValueOperand()->getType(); |
| |
| // Look for a store to the same pointer in BrBB. |
| unsigned MaxNumInstToLookAt = 9; |
| // Skip pseudo probe intrinsic calls which are not really killing any memory |
| // accesses. |
| for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { |
| if (!MaxNumInstToLookAt) |
| break; |
| --MaxNumInstToLookAt; |
| |
| // Could be calling an instruction that affects memory like free(). |
| if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) |
| return nullptr; |
| |
| if (auto *SI = dyn_cast<StoreInst>(&CurI)) { |
| // Found the previous store to same location and type. Make sure it is |
| // simple, to avoid introducing a spurious non-atomic write after an |
| // atomic write. |
| if (SI->getPointerOperand() == StorePtr && |
| SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) |
| // Found the previous store, return its value operand. |
| return SI->getValueOperand(); |
| return nullptr; // Unknown store. |
| } |
| |
| if (auto *LI = dyn_cast<LoadInst>(&CurI)) { |
| if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && |
| LI->isSimple()) { |
| // Local objects (created by an `alloca` instruction) are always |
| // writable, so once we are past a read from a location it is valid to |
| // also write to that same location. |
| // If the address of the local object never escapes the function, that |
| // means it's never concurrently read or written, hence moving the store |
| // from under the condition will not introduce a data race. |
| auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); |
| if (AI && !PointerMayBeCaptured(AI, false, true)) |
| // Found a previous load, return it. |
| return LI; |
| } |
| // The load didn't work out, but we may still find a store. |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Estimate the cost of the insertion(s) and check that the PHI nodes can be |
| /// converted to selects. |
| static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, |
| BasicBlock *EndBB, |
| unsigned &SpeculatedInstructions, |
| InstructionCost &Cost, |
| const TargetTransformInfo &TTI) { |
| TargetTransformInfo::TargetCostKind CostKind = |
| BB->getParent()->hasMinSize() |
| ? TargetTransformInfo::TCK_CodeSize |
| : TargetTransformInfo::TCK_SizeAndLatency; |
| |
| bool HaveRewritablePHIs = false; |
| for (PHINode &PN : EndBB->phis()) { |
| Value *OrigV = PN.getIncomingValueForBlock(BB); |
| Value *ThenV = PN.getIncomingValueForBlock(ThenBB); |
| |
| // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. |
| // Skip PHIs which are trivial. |
| if (ThenV == OrigV) |
| continue; |
| |
| Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, |
| CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| |
| // Don't convert to selects if we could remove undefined behavior instead. |
| if (passingValueIsAlwaysUndefined(OrigV, &PN) || |
| passingValueIsAlwaysUndefined(ThenV, &PN)) |
| return false; |
| |
| HaveRewritablePHIs = true; |
| ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); |
| ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); |
| if (!OrigCE && !ThenCE) |
| continue; // Known cheap (FIXME: Maybe not true for aggregates). |
| |
| InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; |
| InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; |
| InstructionCost MaxCost = |
| 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; |
| if (OrigCost + ThenCost > MaxCost) |
| return false; |
| |
| // Account for the cost of an unfolded ConstantExpr which could end up |
| // getting expanded into Instructions. |
| // FIXME: This doesn't account for how many operations are combined in the |
| // constant expression. |
| ++SpeculatedInstructions; |
| if (SpeculatedInstructions > 1) |
| return false; |
| } |
| |
| return HaveRewritablePHIs; |
| } |
| |
| /// Speculate a conditional basic block flattening the CFG. |
| /// |
| /// Note that this is a very risky transform currently. Speculating |
| /// instructions like this is most often not desirable. Instead, there is an MI |
| /// pass which can do it with full awareness of the resource constraints. |
| /// However, some cases are "obvious" and we should do directly. An example of |
| /// this is speculating a single, reasonably cheap instruction. |
| /// |
| /// There is only one distinct advantage to flattening the CFG at the IR level: |
| /// it makes very common but simplistic optimizations such as are common in |
| /// instcombine and the DAG combiner more powerful by removing CFG edges and |
| /// modeling their effects with easier to reason about SSA value graphs. |
| /// |
| /// |
| /// An illustration of this transform is turning this IR: |
| /// \code |
| /// BB: |
| /// %cmp = icmp ult %x, %y |
| /// br i1 %cmp, label %EndBB, label %ThenBB |
| /// ThenBB: |
| /// %sub = sub %x, %y |
| /// br label BB2 |
| /// EndBB: |
| /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] |
| /// ... |
| /// \endcode |
| /// |
| /// Into this IR: |
| /// \code |
| /// BB: |
| /// %cmp = icmp ult %x, %y |
| /// %sub = sub %x, %y |
| /// %cond = select i1 %cmp, 0, %sub |
| /// ... |
| /// \endcode |
| /// |
| /// \returns true if the conditional block is removed. |
| bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, |
| const TargetTransformInfo &TTI) { |
| // Be conservative for now. FP select instruction can often be expensive. |
| Value *BrCond = BI->getCondition(); |
| if (isa<FCmpInst>(BrCond)) |
| return false; |
| |
| BasicBlock *BB = BI->getParent(); |
| BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); |
| InstructionCost Budget = |
| PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; |
| |
| // If ThenBB is actually on the false edge of the conditional branch, remember |
| // to swap the select operands later. |
| bool Invert = false; |
| if (ThenBB != BI->getSuccessor(0)) { |
| assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); |
| Invert = true; |
| } |
| assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); |
| |
| // If the branch is non-unpredictable, and is predicted to *not* branch to |
| // the `then` block, then avoid speculating it. |
| if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { |
| uint64_t TWeight, FWeight; |
| if (extractBranchWeights(*BI, TWeight, FWeight) && |
| (TWeight + FWeight) != 0) { |
| uint64_t EndWeight = Invert ? TWeight : FWeight; |
| BranchProbability BIEndProb = |
| BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); |
| BranchProbability Likely = TTI.getPredictableBranchThreshold(); |
| if (BIEndProb >= Likely) |
| return false; |
| } |
| } |
| |
| // Keep a count of how many times instructions are used within ThenBB when |
| // they are candidates for sinking into ThenBB. Specifically: |
| // - They are defined in BB, and |
| // - They have no side effects, and |
| // - All of their uses are in ThenBB. |
| SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; |
| |
| SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; |
| |
| unsigned SpeculatedInstructions = 0; |
| Value *SpeculatedStoreValue = nullptr; |
| StoreInst *SpeculatedStore = nullptr; |
| EphemeralValueTracker EphTracker; |
| for (Instruction &I : reverse(drop_end(*ThenBB))) { |
| // Skip debug info. |
| if (isa<DbgInfoIntrinsic>(I)) { |
| SpeculatedDbgIntrinsics.push_back(&I); |
| continue; |
| } |
| |
| // Skip pseudo probes. The consequence is we lose track of the branch |
| // probability for ThenBB, which is fine since the optimization here takes |
| // place regardless of the branch probability. |
| if (isa<PseudoProbeInst>(I)) { |
| // The probe should be deleted so that it will not be over-counted when |
| // the samples collected on the non-conditional path are counted towards |
| // the conditional path. We leave it for the counts inference algorithm to |
| // figure out a proper count for an unknown probe. |
| SpeculatedDbgIntrinsics.push_back(&I); |
| continue; |
| } |
| |
| // Ignore ephemeral values, they will be dropped by the transform. |
| if (EphTracker.track(&I)) |
| continue; |
| |
| // Only speculatively execute a single instruction (not counting the |
| // terminator) for now. |
| ++SpeculatedInstructions; |
| if (SpeculatedInstructions > 1) |
| return false; |
| |
| // Don't hoist the instruction if it's unsafe or expensive. |
| if (!isSafeToSpeculativelyExecute(&I) && |
| !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( |
| &I, BB, ThenBB, EndBB)))) |
| return false; |
| if (!SpeculatedStoreValue && |
| computeSpeculationCost(&I, TTI) > |
| PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) |
| return false; |
| |
| // Store the store speculation candidate. |
| if (SpeculatedStoreValue) |
| SpeculatedStore = cast<StoreInst>(&I); |
| |
| // Do not hoist the instruction if any of its operands are defined but not |
| // used in BB. The transformation will prevent the operand from |
| // being sunk into the use block. |
| for (Use &Op : I.operands()) { |
| Instruction *OpI = dyn_cast<Instruction>(Op); |
| if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) |
| continue; // Not a candidate for sinking. |
| |
| ++SinkCandidateUseCounts[OpI]; |
| } |
| } |
| |
| // Consider any sink candidates which are only used in ThenBB as costs for |
| // speculation. Note, while we iterate over a DenseMap here, we are summing |
| // and so iteration order isn't significant. |
| for (const auto &[Inst, Count] : SinkCandidateUseCounts) |
| if (Inst->hasNUses(Count)) { |
| ++SpeculatedInstructions; |
| if (SpeculatedInstructions > 1) |
| return false; |
| } |
| |
| // Check that we can insert the selects and that it's not too expensive to do |
| // so. |
| bool Convert = SpeculatedStore != nullptr; |
| InstructionCost Cost = 0; |
| Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, |
| SpeculatedInstructions, |
| Cost, TTI); |
| if (!Convert || Cost > Budget) |
| return false; |
| |
| // If we get here, we can hoist the instruction and if-convert. |
| LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); |
| |
| // Insert a select of the value of the speculated store. |
| if (SpeculatedStoreValue) { |
| IRBuilder<NoFolder> Builder(BI); |
| Value *OrigV = SpeculatedStore->getValueOperand(); |
| Value *TrueV = SpeculatedStore->getValueOperand(); |
| Value *FalseV = SpeculatedStoreValue; |
| if (Invert) |
| std::swap(TrueV, FalseV); |
| Value *S = Builder.CreateSelect( |
| BrCond, TrueV, FalseV, "spec.store.select", BI); |
| SpeculatedStore->setOperand(0, S); |
| SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), |
| SpeculatedStore->getDebugLoc()); |
| // The value stored is still conditional, but the store itself is now |
| // unconditonally executed, so we must be sure that any linked dbg.assign |
| // intrinsics are tracking the new stored value (the result of the |
| // select). If we don't, and the store were to be removed by another pass |
| // (e.g. DSE), then we'd eventually end up emitting a location describing |
| // the conditional value, unconditionally. |
| // |
| // === Before this transformation === |
| // pred: |
| // store %one, %x.dest, !DIAssignID !1 |
| // dbg.assign %one, "x", ..., !1, ... |
| // br %cond if.then |
| // |
| // if.then: |
| // store %two, %x.dest, !DIAssignID !2 |
| // dbg.assign %two, "x", ..., !2, ... |
| // |
| // === After this transformation === |
| // pred: |
| // store %one, %x.dest, !DIAssignID !1 |
| // dbg.assign %one, "x", ..., !1 |
| /// ... |
| // %merge = select %cond, %two, %one |
| // store %merge, %x.dest, !DIAssignID !2 |
| // dbg.assign %merge, "x", ..., !2 |
| for (auto *DAI : at::getAssignmentMarkers(SpeculatedStore)) { |
| if (any_of(DAI->location_ops(), [&](Value *V) { return V == OrigV; })) |
| DAI->replaceVariableLocationOp(OrigV, S); |
| } |
| } |
| |
| // Metadata can be dependent on the condition we are hoisting above. |
| // Conservatively strip all metadata on the instruction. Drop the debug loc |
| // to avoid making it appear as if the condition is a constant, which would |
| // be misleading while debugging. |
| // Similarly strip attributes that maybe dependent on condition we are |
| // hoisting above. |
| for (auto &I : make_early_inc_range(*ThenBB)) { |
| if (!SpeculatedStoreValue || &I != SpeculatedStore) { |
| // Don't update the DILocation of dbg.assign intrinsics. |
| if (!isa<DbgAssignIntrinsic>(&I)) |
| I.setDebugLoc(DebugLoc()); |
| } |
| I.dropUndefImplyingAttrsAndUnknownMetadata(); |
| |
| // Drop ephemeral values. |
| if (EphTracker.contains(&I)) { |
| I.replaceAllUsesWith(PoisonValue::get(I.getType())); |
| I.eraseFromParent(); |
| } |
| } |
| |
| // Hoist the instructions. |
| BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), |
| std::prev(ThenBB->end())); |
| |
| // Insert selects and rewrite the PHI operands. |
| IRBuilder<NoFolder> Builder(BI); |
| for (PHINode &PN : EndBB->phis()) { |
| unsigned OrigI = PN.getBasicBlockIndex(BB); |
| unsigned ThenI = PN.getBasicBlockIndex(ThenBB); |
| Value *OrigV = PN.getIncomingValue(OrigI); |
| Value *ThenV = PN.getIncomingValue(ThenI); |
| |
| // Skip PHIs which are trivial. |
| if (OrigV == ThenV) |
| continue; |
| |
| // Create a select whose true value is the speculatively executed value and |
| // false value is the pre-existing value. Swap them if the branch |
| // destinations were inverted. |
| Value *TrueV = ThenV, *FalseV = OrigV; |
| if (Invert) |
| std::swap(TrueV, FalseV); |
| Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); |
| PN.setIncomingValue(OrigI, V); |
| PN.setIncomingValue(ThenI, V); |
| } |
| |
| // Remove speculated dbg intrinsics. |
| // FIXME: Is it possible to do this in a more elegant way? Moving/merging the |
| // dbg value for the different flows and inserting it after the select. |
| for (Instruction *I : SpeculatedDbgIntrinsics) { |
| // We still want to know that an assignment took place so don't remove |
| // dbg.assign intrinsics. |
| if (!isa<DbgAssignIntrinsic>(I)) |
| I->eraseFromParent(); |
| } |
| |
| ++NumSpeculations; |
| return true; |
| } |
| |
| /// Return true if we can thread a branch across this block. |
| static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { |
| int Size = 0; |
| EphemeralValueTracker EphTracker; |
| |
| // Walk the loop in reverse so that we can identify ephemeral values properly |
| // (values only feeding assumes). |
| for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { |
| // Can't fold blocks that contain noduplicate or convergent calls. |
| if (CallInst *CI = dyn_cast<CallInst>(&I)) |
| if (CI->cannotDuplicate() || CI->isConvergent()) |
| return false; |
| |
| // Ignore ephemeral values which are deleted during codegen. |
| // We will delete Phis while threading, so Phis should not be accounted in |
| // block's size. |
| if (!EphTracker.track(&I) && !isa<PHINode>(I)) { |
| if (Size++ > MaxSmallBlockSize) |
| return false; // Don't clone large BB's. |
| } |
| |
| // We can only support instructions that do not define values that are |
| // live outside of the current basic block. |
| for (User *U : I.users()) { |
| Instruction *UI = cast<Instruction>(U); |
| if (UI->getParent() != BB || isa<PHINode>(UI)) |
| return false; |
| } |
| |
| // Looks ok, continue checking. |
| } |
| |
| return true; |
| } |
| |
| static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, |
| BasicBlock *To) { |
| // Don't look past the block defining the value, we might get the value from |
| // a previous loop iteration. |
| auto *I = dyn_cast<Instruction>(V); |
| if (I && I->getParent() == To) |
| return nullptr; |
| |
| // We know the value if the From block branches on it. |
| auto *BI = dyn_cast<BranchInst>(From->getTerminator()); |
| if (BI && BI->isConditional() && BI->getCondition() == V && |
| BI->getSuccessor(0) != BI->getSuccessor(1)) |
| return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) |
| : ConstantInt::getFalse(BI->getContext()); |
| |
| return nullptr; |
| } |
| |
| /// If we have a conditional branch on something for which we know the constant |
| /// value in predecessors (e.g. a phi node in the current block), thread edges |
| /// from the predecessor to their ultimate destination. |
| static std::optional<bool> |
| FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, |
| const DataLayout &DL, |
| AssumptionCache *AC) { |
| SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; |
| BasicBlock *BB = BI->getParent(); |
| Value *Cond = BI->getCondition(); |
| PHINode *PN = dyn_cast<PHINode>(Cond); |
| if (PN && PN->getParent() == BB) { |
| // Degenerate case of a single entry PHI. |
| if (PN->getNumIncomingValues() == 1) { |
| FoldSingleEntryPHINodes(PN->getParent()); |
| return true; |
| } |
| |
| for (Use &U : PN->incoming_values()) |
| if (auto *CB = dyn_cast<ConstantInt>(U)) |
| KnownValues[CB].insert(PN->getIncomingBlock(U)); |
| } else { |
| for (BasicBlock *Pred : predecessors(BB)) { |
| if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) |
| KnownValues[CB].insert(Pred); |
| } |
| } |
| |
| if (KnownValues.empty()) |
| return false; |
| |
| // Now we know that this block has multiple preds and two succs. |
| // Check that the block is small enough and values defined in the block are |
| // not used outside of it. |
| if (!BlockIsSimpleEnoughToThreadThrough(BB)) |
| return false; |
| |
| for (const auto &Pair : KnownValues) { |
| // Okay, we now know that all edges from PredBB should be revectored to |
| // branch to RealDest. |
| ConstantInt *CB = Pair.first; |
| ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); |
| BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); |
| |
| if (RealDest == BB) |
| continue; // Skip self loops. |
| |
| // Skip if the predecessor's terminator is an indirect branch. |
| if (any_of(PredBBs, [](BasicBlock *PredBB) { |
| return isa<IndirectBrInst>(PredBB->getTerminator()); |
| })) |
| continue; |
| |
| LLVM_DEBUG({ |
| dbgs() << "Condition " << *Cond << " in " << BB->getName() |
| << " has value " << *Pair.first << " in predecessors:\n"; |
| for (const BasicBlock *PredBB : Pair.second) |
| dbgs() << " " << PredBB->getName() << "\n"; |
| dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; |
| }); |
| |
| // Split the predecessors we are threading into a new edge block. We'll |
| // clone the instructions into this block, and then redirect it to RealDest. |
| BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); |
| |
| // TODO: These just exist to reduce test diff, we can drop them if we like. |
| EdgeBB->setName(RealDest->getName() + ".critedge"); |
| EdgeBB->moveBefore(RealDest); |
| |
| // Update PHI nodes. |
| AddPredecessorToBlock(RealDest, EdgeBB, BB); |
| |
| // BB may have instructions that are being threaded over. Clone these |
| // instructions into EdgeBB. We know that there will be no uses of the |
| // cloned instructions outside of EdgeBB. |
| BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); |
| DenseMap<Value *, Value *> TranslateMap; // Track translated values. |
| TranslateMap[Cond] = CB; |
| for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) { |
| TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); |
| continue; |
| } |
| // Clone the instruction. |
| Instruction *N = BBI->clone(); |
| if (BBI->hasName()) |
| N->setName(BBI->getName() + ".c"); |
| |
| // Update operands due to translation. |
| for (Use &Op : N->operands()) { |
| DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); |
| if (PI != TranslateMap.end()) |
| Op = PI->second; |
| } |
| |
| // Check for trivial simplification. |
| if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { |
| if (!BBI->use_empty()) |
| TranslateMap[&*BBI] = V; |
| if (!N->mayHaveSideEffects()) { |
| N->deleteValue(); // Instruction folded away, don't need actual inst |
| N = nullptr; |
| } |
| } else { |
| if (!BBI->use_empty()) |
| TranslateMap[&*BBI] = N; |
| } |
| if (N) { |
| // Insert the new instruction into its new home. |
| N->insertInto(EdgeBB, InsertPt); |
| |
| // Register the new instruction with the assumption cache if necessary. |
| if (auto *Assume = dyn_cast<AssumeInst>(N)) |
| if (AC) |
| AC->registerAssumption(Assume); |
| } |
| } |
| |
| BB->removePredecessor(EdgeBB); |
| BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); |
| EdgeBI->setSuccessor(0, RealDest); |
| EdgeBI->setDebugLoc(BI->getDebugLoc()); |
| |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); |
| Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| // For simplicity, we created a separate basic block for the edge. Merge |
| // it back into the predecessor if possible. This not only avoids |
| // unnecessary SimplifyCFG iterations, but also makes sure that we don't |
| // bypass the check for trivial cycles above. |
| MergeBlockIntoPredecessor(EdgeBB, DTU); |
| |
| // Signal repeat, simplifying any other constants. |
| return std::nullopt; |
| } |
| |
| return false; |
| } |
| |
| static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, |
| DomTreeUpdater *DTU, |
| const DataLayout &DL, |
| AssumptionCache *AC) { |
| std::optional<bool> Result; |
| bool EverChanged = false; |
| do { |
| // Note that None means "we changed things, but recurse further." |
| Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); |
| EverChanged |= Result == std::nullopt || *Result; |
| } while (Result == std::nullopt); |
| return EverChanged; |
| } |
| |
| /// Given a BB that starts with the specified two-entry PHI node, |
| /// see if we can eliminate it. |
| static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, |
| DomTreeUpdater *DTU, const DataLayout &DL) { |
| // Ok, this is a two entry PHI node. Check to see if this is a simple "if |
| // statement", which has a very simple dominance structure. Basically, we |
| // are trying to find the condition that is being branched on, which |
| // subsequently causes this merge to happen. We really want control |
| // dependence information for this check, but simplifycfg can't keep it up |
| // to date, and this catches most of the cases we care about anyway. |
| BasicBlock *BB = PN->getParent(); |
| |
| BasicBlock *IfTrue, *IfFalse; |
| BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); |
| if (!DomBI) |
| return false; |
| Value *IfCond = DomBI->getCondition(); |
| // Don't bother if the branch will be constant folded trivially. |
| if (isa<ConstantInt>(IfCond)) |
| return false; |
| |
| BasicBlock *DomBlock = DomBI->getParent(); |
| SmallVector<BasicBlock *, 2> IfBlocks; |
| llvm::copy_if( |
| PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { |
| return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); |
| }); |
| assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && |
| "Will have either one or two blocks to speculate."); |
| |
| // If the branch is non-unpredictable, see if we either predictably jump to |
| // the merge bb (if we have only a single 'then' block), or if we predictably |
| // jump to one specific 'then' block (if we have two of them). |
| // It isn't beneficial to speculatively execute the code |
| // from the block that we know is predictably not entered. |
| if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { |
| uint64_t TWeight, FWeight; |
| if (extractBranchWeights(*DomBI, TWeight, FWeight) && |
| (TWeight + FWeight) != 0) { |
| BranchProbability BITrueProb = |
| BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); |
| BranchProbability Likely = TTI.getPredictableBranchThreshold(); |
| BranchProbability BIFalseProb = BITrueProb.getCompl(); |
| if (IfBlocks.size() == 1) { |
| BranchProbability BIBBProb = |
| DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; |
| if (BIBBProb >= Likely) |
| return false; |
| } else { |
| if (BITrueProb >= Likely || BIFalseProb >= Likely) |
| return false; |
| } |
| } |
| } |
| |
| // Don't try to fold an unreachable block. For example, the phi node itself |
| // can't be the candidate if-condition for a select that we want to form. |
| if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) |
| if (IfCondPhiInst->getParent() == BB) |
| return false; |
| |
| // Okay, we found that we can merge this two-entry phi node into a select. |
| // Doing so would require us to fold *all* two entry phi nodes in this block. |
| // At some point this becomes non-profitable (particularly if the target |
| // doesn't support cmov's). Only do this transformation if there are two or |
| // fewer PHI nodes in this block. |
| unsigned NumPhis = 0; |
| for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) |
| if (NumPhis > 2) |
| return false; |
| |
| // Loop over the PHI's seeing if we can promote them all to select |
| // instructions. While we are at it, keep track of the instructions |
| // that need to be moved to the dominating block. |
| SmallPtrSet<Instruction *, 4> AggressiveInsts; |
| InstructionCost Cost = 0; |
| InstructionCost Budget = |
| TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; |
| |
| bool Changed = false; |
| for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { |
| PHINode *PN = cast<PHINode>(II++); |
| if (Value *V = simplifyInstruction(PN, {DL, PN})) { |
| PN->replaceAllUsesWith(V); |
| PN->eraseFromParent(); |
| Changed = true; |
| continue; |
| } |
| |
| if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, |
| Cost, Budget, TTI) || |
| !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, |
| Cost, Budget, TTI)) |
| return Changed; |
| } |
| |
| // If we folded the first phi, PN dangles at this point. Refresh it. If |
| // we ran out of PHIs then we simplified them all. |
| PN = dyn_cast<PHINode>(BB->begin()); |
| if (!PN) |
| return true; |
| |
| // Return true if at least one of these is a 'not', and another is either |
| // a 'not' too, or a constant. |
| auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { |
| if (!match(V0, m_Not(m_Value()))) |
| std::swap(V0, V1); |
| auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); |
| return match(V0, m_Not(m_Value())) && match(V1, Invertible); |
| }; |
| |
| // Don't fold i1 branches on PHIs which contain binary operators or |
| // (possibly inverted) select form of or/ands, unless one of |
| // the incoming values is an 'not' and another one is freely invertible. |
| // These can often be turned into switches and other things. |
| auto IsBinOpOrAnd = [](Value *V) { |
| return match( |
| V, m_CombineOr( |
| m_BinOp(), |
| m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), |
| m_Select(m_Value(), m_Value(), m_ImmConstant())))); |
| }; |
| if (PN->getType()->isIntegerTy(1) && |
| (IsBinOpOrAnd(PN->getIncomingValue(0)) || |
| IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && |
| !CanHoistNotFromBothValues(PN->getIncomingValue(0), |
| PN->getIncomingValue(1))) |
| return Changed; |
| |
| // If all PHI nodes are promotable, check to make sure that all instructions |
| // in the predecessor blocks can be promoted as well. If not, we won't be able |
| // to get rid of the control flow, so it's not worth promoting to select |
| // instructions. |
| for (BasicBlock *IfBlock : IfBlocks) |
| for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) |
| if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { |
| // This is not an aggressive instruction that we can promote. |
| // Because of this, we won't be able to get rid of the control flow, so |
| // the xform is not worth it. |
| return Changed; |
| } |
| |
| // If either of the blocks has it's address taken, we can't do this fold. |
| if (any_of(IfBlocks, |
| [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) |
| return Changed; |
| |
| LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond |
| << " T: " << IfTrue->getName() |
| << " F: " << IfFalse->getName() << "\n"); |
| |
| // If we can still promote the PHI nodes after this gauntlet of tests, |
| // do all of the PHI's now. |
| |
| // Move all 'aggressive' instructions, which are defined in the |
| // conditional parts of the if's up to the dominating block. |
| for (BasicBlock *IfBlock : IfBlocks) |
| hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); |
| |
| IRBuilder<NoFolder> Builder(DomBI); |
| // Propagate fast-math-flags from phi nodes to replacement selects. |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { |
| if (isa<FPMathOperator>(PN)) |
| Builder.setFastMathFlags(PN->getFastMathFlags()); |
| |
| // Change the PHI node into a select instruction. |
| Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); |
| Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); |
| |
| Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); |
| PN->replaceAllUsesWith(Sel); |
| Sel->takeName(PN); |
| PN->eraseFromParent(); |
| } |
| |
| // At this point, all IfBlocks are empty, so our if statement |
| // has been flattened. Change DomBlock to jump directly to our new block to |
| // avoid other simplifycfg's kicking in on the diamond. |
| Builder.CreateBr(BB); |
| |
| SmallVector<DominatorTree::UpdateType, 3> Updates; |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, DomBlock, BB}); |
| for (auto *Successor : successors(DomBlock)) |
| Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); |
| } |
| |
| DomBI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| return true; |
| } |
| |
| static Value *createLogicalOp(IRBuilderBase &Builder, |
| Instruction::BinaryOps Opc, Value *LHS, |
| Value *RHS, const Twine &Name = "") { |
| // Try to relax logical op to binary op. |
| if (impliesPoison(RHS, LHS)) |
| return Builder.CreateBinOp(Opc, LHS, RHS, Name); |
| if (Opc == Instruction::And) |
| return Builder.CreateLogicalAnd(LHS, RHS, Name); |
| if (Opc == Instruction::Or) |
| return Builder.CreateLogicalOr(LHS, RHS, Name); |
| llvm_unreachable("Invalid logical opcode"); |
| } |
| |
| /// Return true if either PBI or BI has branch weight available, and store |
| /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does |
| /// not have branch weight, use 1:1 as its weight. |
| static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, |
| uint64_t &PredTrueWeight, |
| uint64_t &PredFalseWeight, |
| uint64_t &SuccTrueWeight, |
| uint64_t &SuccFalseWeight) { |
| bool PredHasWeights = |
| extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); |
| bool SuccHasWeights = |
| extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); |
| if (PredHasWeights || SuccHasWeights) { |
| if (!PredHasWeights) |
| PredTrueWeight = PredFalseWeight = 1; |
| if (!SuccHasWeights) |
| SuccTrueWeight = SuccFalseWeight = 1; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /// Determine if the two branches share a common destination and deduce a glue |
| /// that joins the branches' conditions to arrive at the common destination if |
| /// that would be profitable. |
| static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> |
| shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, |
| const TargetTransformInfo *TTI) { |
| assert(BI && PBI && BI->isConditional() && PBI->isConditional() && |
| "Both blocks must end with a conditional branches."); |
| assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && |
| "PredBB must be a predecessor of BB."); |
| |
| // We have the potential to fold the conditions together, but if the |
| // predecessor branch is predictable, we may not want to merge them. |
| uint64_t PTWeight, PFWeight; |
| BranchProbability PBITrueProb, Likely; |
| if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && |
| extractBranchWeights(*PBI, PTWeight, PFWeight) && |
| (PTWeight + PFWeight) != 0) { |
| PBITrueProb = |
| BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); |
| Likely = TTI->getPredictableBranchThreshold(); |
| } |
| |
| if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { |
| // Speculate the 2nd condition unless the 1st is probably true. |
| if (PBITrueProb.isUnknown() || PBITrueProb < Likely) |
| return {{BI->getSuccessor(0), Instruction::Or, false}}; |
| } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { |
| // Speculate the 2nd condition unless the 1st is probably false. |
| if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) |
| return {{BI->getSuccessor(1), Instruction::And, false}}; |
| } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { |
| // Speculate the 2nd condition unless the 1st is probably true. |
| if (PBITrueProb.isUnknown() || PBITrueProb < Likely) |
| return {{BI->getSuccessor(1), Instruction::And, true}}; |
| } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { |
| // Speculate the 2nd condition unless the 1st is probably false. |
| if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) |
| return {{BI->getSuccessor(0), Instruction::Or, true}}; |
| } |
| return std::nullopt; |
| } |
| |
| static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, |
| DomTreeUpdater *DTU, |
| MemorySSAUpdater *MSSAU, |
| const TargetTransformInfo *TTI) { |
| BasicBlock *BB = BI->getParent(); |
| BasicBlock *PredBlock = PBI->getParent(); |
| |
| // Determine if the two branches share a common destination. |
| BasicBlock *CommonSucc; |
| Instruction::BinaryOps Opc; |
| bool InvertPredCond; |
| std::tie(CommonSucc, Opc, InvertPredCond) = |
| *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); |
| |
| LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); |
| |
| IRBuilder<> Builder(PBI); |
| // The builder is used to create instructions to eliminate the branch in BB. |
| // If BB's terminator has !annotation metadata, add it to the new |
| // instructions. |
| Builder.CollectMetadataToCopy(BB->getTerminator(), |
| {LLVMContext::MD_annotation}); |
| |
| // If we need to invert the condition in the pred block to match, do so now. |
| if (InvertPredCond) { |
| Value *NewCond = PBI->getCondition(); |
| if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { |
| CmpInst *CI = cast<CmpInst>(NewCond); |
| CI->setPredicate(CI->getInversePredicate()); |
| } else { |
| NewCond = |
| Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); |
| } |
| |
| PBI->setCondition(NewCond); |
| PBI->swapSuccessors(); |
| } |
| |
| BasicBlock *UniqueSucc = |
| PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); |
| |
| // Before cloning instructions, notify the successor basic block that it |
| // is about to have a new predecessor. This will update PHI nodes, |
| // which will allow us to update live-out uses of bonus instructions. |
| AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); |
| |
| // Try to update branch weights. |
| uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; |
| if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, |
| SuccTrueWeight, SuccFalseWeight)) { |
| SmallVector<uint64_t, 8> NewWeights; |
| |
| if (PBI->getSuccessor(0) == BB) { |
| // PBI: br i1 %x, BB, FalseDest |
| // BI: br i1 %y, UniqueSucc, FalseDest |
| // TrueWeight is TrueWeight for PBI * TrueWeight for BI. |
| NewWeights.push_back(PredTrueWeight * SuccTrueWeight); |
| // FalseWeight is FalseWeight for PBI * TotalWeight for BI + |
| // TrueWeight for PBI * FalseWeight for BI. |
| // We assume that total weights of a BranchInst can fit into 32 bits. |
| // Therefore, we will not have overflow using 64-bit arithmetic. |
| NewWeights.push_back(PredFalseWeight * |
| (SuccFalseWeight + SuccTrueWeight) + |
| PredTrueWeight * SuccFalseWeight); |
| } else { |
| // PBI: br i1 %x, TrueDest, BB |
| // BI: br i1 %y, TrueDest, UniqueSucc |
| // TrueWeight is TrueWeight for PBI * TotalWeight for BI + |
| // FalseWeight for PBI * TrueWeight for BI. |
| NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + |
| PredFalseWeight * SuccTrueWeight); |
| // FalseWeight is FalseWeight for PBI * FalseWeight for BI. |
| NewWeights.push_back(PredFalseWeight * SuccFalseWeight); |
| } |
| |
| // Halve the weights if any of them cannot fit in an uint32_t |
| FitWeights(NewWeights); |
| |
| SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); |
| setBranchWeights(PBI, MDWeights[0], MDWeights[1]); |
| |
| // TODO: If BB is reachable from all paths through PredBlock, then we |
| // could replace PBI's branch probabilities with BI's. |
| } else |
| PBI->setMetadata(LLVMContext::MD_prof, nullptr); |
| |
| // Now, update the CFG. |
| PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); |
| |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, |
| {DominatorTree::Delete, PredBlock, BB}}); |
| |
| // If BI was a loop latch, it may have had associated loop metadata. |
| // We need to copy it to the new latch, that is, PBI. |
| if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) |
| PBI->setMetadata(LLVMContext::MD_loop, LoopMD); |
| |
| ValueToValueMapTy VMap; // maps original values to cloned values |
| CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); |
| |
| // Now that the Cond was cloned into the predecessor basic block, |
| // or/and the two conditions together. |
| Value *BICond = VMap[BI->getCondition()]; |
| PBI->setCondition( |
| createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); |
| |
| // Copy any debug value intrinsics into the end of PredBlock. |
| for (Instruction &I : *BB) { |
| if (isa<DbgInfoIntrinsic>(I)) { |
| Instruction *NewI = I.clone(); |
| RemapInstruction(NewI, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| NewI->insertBefore(PBI); |
| } |
| } |
| |
| ++NumFoldBranchToCommonDest; |
| return true; |
| } |
| |
| /// Return if an instruction's type or any of its operands' types are a vector |
| /// type. |
| static bool isVectorOp(Instruction &I) { |
| return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { |
| return U->getType()->isVectorTy(); |
| }); |
| } |
| |
| /// If this basic block is simple enough, and if a predecessor branches to us |
| /// and one of our successors, fold the block into the predecessor and use |
| /// logical operations to pick the right destination. |
| bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, |
| MemorySSAUpdater *MSSAU, |
| const TargetTransformInfo *TTI, |
| unsigned BonusInstThreshold) { |
| // If this block ends with an unconditional branch, |
| // let SpeculativelyExecuteBB() deal with it. |
| if (!BI->isConditional()) |
| return false; |
| |
| BasicBlock *BB = BI->getParent(); |
| TargetTransformInfo::TargetCostKind CostKind = |
| BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize |
| : TargetTransformInfo::TCK_SizeAndLatency; |
| |
| Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); |
| |
| if (!Cond || |
| (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && |
| !isa<SelectInst>(Cond)) || |
| Cond->getParent() != BB || !Cond->hasOneUse()) |
| return false; |
| |
| // Finally, don't infinitely unroll conditional loops. |
| if (is_contained(successors(BB), BB)) |
| return false; |
| |
| // With which predecessors will we want to deal with? |
| SmallVector<BasicBlock *, 8> Preds; |
| for (BasicBlock *PredBlock : predecessors(BB)) { |
| BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); |
| |
| // Check that we have two conditional branches. If there is a PHI node in |
| // the common successor, verify that the same value flows in from both |
| // blocks. |
| if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) |
| continue; |
| |
| // Determine if the two branches share a common destination. |
| BasicBlock *CommonSucc; |
| Instruction::BinaryOps Opc; |
| bool InvertPredCond; |
| if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) |
| std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; |
| else |
| continue; |
| |
| // Check the cost of inserting the necessary logic before performing the |
| // transformation. |
| if (TTI) { |
| Type *Ty = BI->getCondition()->getType(); |
| InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); |
| if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || |
| !isa<CmpInst>(PBI->getCondition()))) |
| Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); |
| |
| if (Cost > BranchFoldThreshold) |
| continue; |
| } |
| |
| // Ok, we do want to deal with this predecessor. Record it. |
| Preds.emplace_back(PredBlock); |
| } |
| |
| // If there aren't any predecessors into which we can fold, |
| // don't bother checking the cost. |
| if (Preds.empty()) |
| return false; |
| |
| // Only allow this transformation if computing the condition doesn't involve |
| // too many instructions and these involved instructions can be executed |
| // unconditionally. We denote all involved instructions except the condition |
| // as "bonus instructions", and only allow this transformation when the |
| // number of the bonus instructions we'll need to create when cloning into |
| // each predecessor does not exceed a certain threshold. |
| unsigned NumBonusInsts = 0; |
| bool SawVectorOp = false; |
| const unsigned PredCount = Preds.size(); |
| for (Instruction &I : *BB) { |
| // Don't check the branch condition comparison itself. |
| if (&I == Cond) |
| continue; |
| // Ignore dbg intrinsics, and the terminator. |
| if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) |
| continue; |
| // I must be safe to execute unconditionally. |
| if (!isSafeToSpeculativelyExecute(&I)) |
| return false; |
| SawVectorOp |= isVectorOp(I); |
| |
| // Account for the cost of duplicating this instruction into each |
| // predecessor. Ignore free instructions. |
| if (!TTI || TTI->getInstructionCost(&I, CostKind) != |
| TargetTransformInfo::TCC_Free) { |
| NumBonusInsts += PredCount; |
| |
| // Early exits once we reach the limit. |
| if (NumBonusInsts > |
| BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) |
| return false; |
| } |
| |
| auto IsBCSSAUse = [BB, &I](Use &U) { |
| auto *UI = cast<Instruction>(U.getUser()); |
| if (auto *PN = dyn_cast<PHINode>(UI)) |
| return PN->getIncomingBlock(U) == BB; |
| return UI->getParent() == BB && I.comesBefore(UI); |
| }; |
| |
| // Does this instruction require rewriting of uses? |
| if (!all_of(I.uses(), IsBCSSAUse)) |
| return false; |
| } |
| if (NumBonusInsts > |
| BonusInstThreshold * |
| (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) |
| return false; |
| |
| // Ok, we have the budget. Perform the transformation. |
| for (BasicBlock *PredBlock : Preds) { |
| auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); |
| return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); |
| } |
| return false; |
| } |
| |
| // If there is only one store in BB1 and BB2, return it, otherwise return |
| // nullptr. |
| static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { |
| StoreInst *S = nullptr; |
| for (auto *BB : {BB1, BB2}) { |
| if (!BB) |
| continue; |
| for (auto &I : *BB) |
| if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| if (S) |
| // Multiple stores seen. |
| return nullptr; |
| else |
| S = SI; |
| } |
| } |
| return S; |
| } |
| |
| static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, |
| Value *AlternativeV = nullptr) { |
| // PHI is going to be a PHI node that allows the value V that is defined in |
| // BB to be referenced in BB's only successor. |
| // |
| // If AlternativeV is nullptr, the only value we care about in PHI is V. It |
| // doesn't matter to us what the other operand is (it'll never get used). We |
| // could just create a new PHI with an undef incoming value, but that could |
| // increase register pressure if EarlyCSE/InstCombine can't fold it with some |
| // other PHI. So here we directly look for some PHI in BB's successor with V |
| // as an incoming operand. If we find one, we use it, else we create a new |
| // one. |
| // |
| // If AlternativeV is not nullptr, we care about both incoming values in PHI. |
| // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] |
| // where OtherBB is the single other predecessor of BB's only successor. |
| PHINode *PHI = nullptr; |
| BasicBlock *Succ = BB->getSingleSuccessor(); |
| |
| for (auto I = Succ->begin(); isa<PHINode>(I); ++I) |
| if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { |
| PHI = cast<PHINode>(I); |
| if (!AlternativeV) |
| break; |
| |
| assert(Succ->hasNPredecessors(2)); |
| auto PredI = pred_begin(Succ); |
| BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; |
| if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) |
| break; |
| PHI = nullptr; |
| } |
| if (PHI) |
| return PHI; |
| |
| // If V is not an instruction defined in BB, just return it. |
| if (!AlternativeV && |
| (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) |
| return V; |
| |
| PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); |
| PHI->addIncoming(V, BB); |
| for (BasicBlock *PredBB : predecessors(Succ)) |
| if (PredBB != BB) |
| PHI->addIncoming( |
| AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); |
| return PHI; |
| } |
| |
| static bool mergeConditionalStoreToAddress( |
| BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, |
| BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, |
| DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { |
| // For every pointer, there must be exactly two stores, one coming from |
| // PTB or PFB, and the other from QTB or QFB. We don't support more than one |
| // store (to any address) in PTB,PFB or QTB,QFB. |
| // FIXME: We could relax this restriction with a bit more work and performance |
| // testing. |
| StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); |
| StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); |
| if (!PStore || !QStore) |
| return false; |
| |
| // Now check the stores are compatible. |
| if (!QStore->isUnordered() || !PStore->isUnordered() || |
| PStore->getValueOperand()->getType() != |
| QStore->getValueOperand()->getType()) |
| return false; |
| |
| // Check that sinking the store won't cause program behavior changes. Sinking |
| // the store out of the Q blocks won't change any behavior as we're sinking |
| // from a block to its unconditional successor. But we're moving a store from |
| // the P blocks down through the middle block (QBI) and past both QFB and QTB. |
| // So we need to check that there are no aliasing loads or stores in |
| // QBI, QTB and QFB. We also need to check there are no conflicting memory |
| // operations between PStore and the end of its parent block. |
| // |
| // The ideal way to do this is to query AliasAnalysis, but we don't |
| // preserve AA currently so that is dangerous. Be super safe and just |
| // check there are no other memory operations at all. |
| for (auto &I : *QFB->getSinglePredecessor()) |
| if (I.mayReadOrWriteMemory()) |
| return false; |
| for (auto &I : *QFB) |
| if (&I != QStore && I.mayReadOrWriteMemory()) |
| return false; |
| if (QTB) |
| for (auto &I : *QTB) |
| if (&I != QStore && I.mayReadOrWriteMemory()) |
| return false; |
| for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); |
| I != E; ++I) |
| if (&*I != PStore && I->mayReadOrWriteMemory()) |
| return false; |
| |
| // If we're not in aggressive mode, we only optimize if we have some |
| // confidence that by optimizing we'll allow P and/or Q to be if-converted. |
| auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { |
| if (!BB) |
| return true; |
| // Heuristic: if the block can be if-converted/phi-folded and the |
| // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to |
| // thread this store. |
| InstructionCost Cost = 0; |
| InstructionCost Budget = |
| PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; |
| for (auto &I : BB->instructionsWithoutDebug(false)) { |
| // Consider terminator instruction to be free. |
| if (I.isTerminator()) |
| continue; |
| // If this is one the stores that we want to speculate out of this BB, |
| // then don't count it's cost, consider it to be free. |
| if (auto *S = dyn_cast<StoreInst>(&I)) |
| if (llvm::find(FreeStores, S)) |
| continue; |
| // Else, we have a white-list of instructions that we are ak speculating. |
| if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) |
| return false; // Not in white-list - not worthwhile folding. |
| // And finally, if this is a non-free instruction that we are okay |
| // speculating, ensure that we consider the speculation budget. |
| Cost += |
| TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); |
| if (Cost > Budget) |
| return false; // Eagerly refuse to fold as soon as we're out of budget. |
| } |
| assert(Cost <= Budget && |
| "When we run out of budget we will eagerly return from within the " |
| "per-instruction loop."); |
| return true; |
| }; |
| |
| const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; |
| if (!MergeCondStoresAggressively && |
| (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || |
| !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) |
| return false; |
| |
| // If PostBB has more than two predecessors, we need to split it so we can |
| // sink the store. |
| if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { |
| // We know that QFB's only successor is PostBB. And QFB has a single |
| // predecessor. If QTB exists, then its only successor is also PostBB. |
| // If QTB does not exist, then QFB's only predecessor has a conditional |
| // branch to QFB and PostBB. |
| BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); |
| BasicBlock *NewBB = |
| SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); |
| if (!NewBB) |
| return false; |
| PostBB = NewBB; |
| } |
| |
| // OK, we're going to sink the stores to PostBB. The store has to be |
| // conditional though, so first create the predicate. |
| Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) |
| ->getCondition(); |
| Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) |
| ->getCondition(); |
| |
| Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), |
| PStore->getParent()); |
| Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), |
| QStore->getParent(), PPHI); |
| |
| IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); |
| |
| Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); |
| Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); |
| |
| if (InvertPCond) |
| PPred = QB.CreateNot(PPred); |
| if (InvertQCond) |
| QPred = QB.CreateNot(QPred); |
| Value *CombinedPred = QB.CreateOr(PPred, QPred); |
| |
| auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), |
| /*Unreachable=*/false, |
| /*BranchWeights=*/nullptr, DTU); |
| QB.SetInsertPoint(T); |
| StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); |
| SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); |
| // Choose the minimum alignment. If we could prove both stores execute, we |
| // could use biggest one. In this case, though, we only know that one of the |
| // stores executes. And we don't know it's safe to take the alignment from a |
| // store that doesn't execute. |
| SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); |
| |
| QStore->eraseFromParent(); |
| PStore->eraseFromParent(); |
| |
| return true; |
| } |
| |
| static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, |
| DomTreeUpdater *DTU, const DataLayout &DL, |
| const TargetTransformInfo &TTI) { |
| // The intention here is to find diamonds or triangles (see below) where each |
| // conditional block contains a store to the same address. Both of these |
| // stores are conditional, so they can't be unconditionally sunk. But it may |
| // be profitable to speculatively sink the stores into one merged store at the |
| // end, and predicate the merged store on the union of the two conditions of |
| // PBI and QBI. |
| // |
| // This can reduce the number of stores executed if both of the conditions are |
| // true, and can allow the blocks to become small enough to be if-converted. |
| // This optimization will also chain, so that ladders of test-and-set |
| // sequences can be if-converted away. |
| // |
| // We only deal with simple diamonds or triangles: |
| // |
| // PBI or PBI or a combination of the two |
| // / \ | \ |
| // PTB PFB | PFB |
| // \ / | / |
| // QBI QBI |
| // / \ | \ |
| // QTB QFB | QFB |
| // \ / | / |
| // PostBB PostBB |
| // |
| // We model triangles as a type of diamond with a nullptr "true" block. |
| // Triangles are canonicalized so that the fallthrough edge is represented by |
| // a true condition, as in the diagram above. |
| BasicBlock *PTB = PBI->getSuccessor(0); |
| BasicBlock *PFB = PBI->getSuccessor(1); |
| BasicBlock *QTB = QBI->getSuccessor(0); |
| BasicBlock *QFB = QBI->getSuccessor(1); |
| BasicBlock *PostBB = QFB->getSingleSuccessor(); |
| |
| // Make sure we have a good guess for PostBB. If QTB's only successor is |
| // QFB, then QFB is a better PostBB. |
| if (QTB->getSingleSuccessor() == QFB) |
| PostBB = QFB; |
| |
| // If we couldn't find a good PostBB, stop. |
| if (!PostBB) |
| return false; |
| |
| bool InvertPCond = false, InvertQCond = false; |
| // Canonicalize fallthroughs to the true branches. |
| if (PFB == QBI->getParent()) { |
| std::swap(PFB, PTB); |
| InvertPCond = true; |
| } |
| if (QFB == PostBB) { |
| std::swap(QFB, QTB); |
| InvertQCond = true; |
| } |
| |
| // From this point on we can assume PTB or QTB may be fallthroughs but PFB |
| // and QFB may not. Model fallthroughs as a nullptr block. |
| if (PTB == QBI->getParent()) |
| PTB = nullptr; |
| if (QTB == PostBB) |
| QTB = nullptr; |
| |
| // Legality bailouts. We must have at least the non-fallthrough blocks and |
| // the post-dominating block, and the non-fallthroughs must only have one |
| // predecessor. |
| auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { |
| return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; |
| }; |
| if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || |
| !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) |
| return false; |
| if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || |
| (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) |
| return false; |
| if (!QBI->getParent()->hasNUses(2)) |
| return false; |
| |
| // OK, this is a sequence of two diamonds or triangles. |
| // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. |
| SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; |
| for (auto *BB : {PTB, PFB}) { |
| if (!BB) |
| continue; |
| for (auto &I : *BB) |
| if (StoreInst *SI = dyn_cast<StoreInst>(&I)) |
| PStoreAddresses.insert(SI->getPointerOperand()); |
| } |
| for (auto *BB : {QTB, QFB}) { |
| if (!BB) |
| continue; |
| for (auto &I : *BB) |
| if (StoreInst *SI = dyn_cast<StoreInst>(&I)) |
| QStoreAddresses.insert(SI->getPointerOperand()); |
| } |
| |
| set_intersect(PStoreAddresses, QStoreAddresses); |
| // set_intersect mutates PStoreAddresses in place. Rename it here to make it |
| // clear what it contains. |
| auto &CommonAddresses = PStoreAddresses; |
| |
| bool Changed = false; |
| for (auto *Address : CommonAddresses) |
| Changed |= |
| mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, |
| InvertPCond, InvertQCond, DTU, DL, TTI); |
| return Changed; |
| } |
| |
| /// If the previous block ended with a widenable branch, determine if reusing |
| /// the target block is profitable and legal. This will have the effect of |
| /// "widening" PBI, but doesn't require us to reason about hosting safety. |
| static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, |
| DomTreeUpdater *DTU) { |
| // TODO: This can be generalized in two important ways: |
| // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input |
| // values from the PBI edge. |
| // 2) We can sink side effecting instructions into BI's fallthrough |
| // successor provided they doesn't contribute to computation of |
| // BI's condition. |
| Value *CondWB, *WC; |
| BasicBlock *IfTrueBB, *IfFalseBB; |
| if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || |
| IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) |
| return false; |
| if (!IfFalseBB->phis().empty()) |
| return false; // TODO |
| // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which |
| // may undo the transform done here. |
| // TODO: There might be a more fine-grained solution to this. |
| if (!llvm::succ_empty(IfFalseBB)) |
| return false; |
| // Use lambda to lazily compute expensive condition after cheap ones. |
| auto NoSideEffects = [](BasicBlock &BB) { |
| return llvm::none_of(BB, [](const Instruction &I) { |
| return I.mayWriteToMemory() || I.mayHaveSideEffects(); |
| }); |
| }; |
| if (BI->getSuccessor(1) != IfFalseBB && // no inf looping |
| BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability |
| NoSideEffects(*BI->getParent())) { |
| auto *OldSuccessor = BI->getSuccessor(1); |
| OldSuccessor->removePredecessor(BI->getParent()); |
| BI->setSuccessor(1, IfFalseBB); |
| if (DTU) |
| DTU->applyUpdates( |
| {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, |
| {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); |
| return true; |
| } |
| if (BI->getSuccessor(0) != IfFalseBB && // no inf looping |
| BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability |
| NoSideEffects(*BI->getParent())) { |
| auto *OldSuccessor = BI->getSuccessor(0); |
| OldSuccessor->removePredecessor(BI->getParent()); |
| BI->setSuccessor(0, IfFalseBB); |
| if (DTU) |
| DTU->applyUpdates( |
| {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, |
| {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); |
| return true; |
| } |
| return false; |
| } |
| |
| /// If we have a conditional branch as a predecessor of another block, |
| /// this function tries to simplify it. We know |
| /// that PBI and BI are both conditional branches, and BI is in one of the |
| /// successor blocks of PBI - PBI branches to BI. |
| static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, |
| DomTreeUpdater *DTU, |
| const DataLayout &DL, |
| const TargetTransformInfo &TTI) { |
| assert(PBI->isConditional() && BI->isConditional()); |
| BasicBlock *BB = BI->getParent(); |
| |
| // If this block ends with a branch instruction, and if there is a |
| // predecessor that ends on a branch of the same condition, make |
| // this conditional branch redundant. |
| if (PBI->getCondition() == BI->getCondition() && |
| PBI->getSuccessor(0) != PBI->getSuccessor(1)) { |
| // Okay, the outcome of this conditional branch is statically |
| // knowable. If this block had a single pred, handle specially, otherwise |
| // FoldCondBranchOnValueKnownInPredecessor() will handle it. |
| if (BB->getSinglePredecessor()) { |
| // Turn this into a branch on constant. |
| bool CondIsTrue = PBI->getSuccessor(0) == BB; |
| BI->setCondition( |
| ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); |
| return true; // Nuke the branch on constant. |
| } |
| } |
| |
| // If the previous block ended with a widenable branch, determine if reusing |
| // the target block is profitable and legal. This will have the effect of |
| // "widening" PBI, but doesn't require us to reason about hosting safety. |
| if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) |
| return true; |
| |
| // If both branches are conditional and both contain stores to the same |
| // address, remove the stores from the conditionals and create a conditional |
| // merged store at the end. |
| if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) |
| return true; |
| |
| // If this is a conditional branch in an empty block, and if any |
| // predecessors are a conditional branch to one of our destinations, |
| // fold the conditions into logical ops and one cond br. |
| |
| // Ignore dbg intrinsics. |
| if (&*BB->instructionsWithoutDebug(false).begin() != BI) |
| return false; |
| |
| int PBIOp, BIOp; |
| if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { |
| PBIOp = 0; |
| BIOp = 0; |
| } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { |
| PBIOp = 0; |
| BIOp = 1; |
| } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { |
| PBIOp = 1; |
| BIOp = 0; |
| } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { |
| PBIOp = 1; |
| BIOp = 1; |
| } else { |
| return false; |
| } |
| |
| // Check to make sure that the other destination of this branch |
| // isn't BB itself. If so, this is an infinite loop that will |
| // keep getting unwound. |
| if (PBI->getSuccessor(PBIOp) == BB) |
| return false; |
| |
| // Do not perform this transformation if it would require |
| // insertion of a large number of select instructions. For targets |
| // without predication/cmovs, this is a big pessimization. |
| |
| BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); |
| BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); |
| unsigned NumPhis = 0; |
| for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); |
| ++II, ++NumPhis) { |
| if (NumPhis > 2) // Disable this xform. |
| return false; |
| } |
| |
| // Finally, if everything is ok, fold the branches to logical ops. |
| BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); |
| |
| LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() |
| << "AND: " << *BI->getParent()); |
| |
| SmallVector<DominatorTree::UpdateType, 5> Updates; |
| |
| // If OtherDest *is* BB, then BB is a basic block with a single conditional |
| // branch in it, where one edge (OtherDest) goes back to itself but the other |
| // exits. We don't *know* that the program avoids the infinite loop |
| // (even though that seems likely). If we do this xform naively, we'll end up |
| // recursively unpeeling the loop. Since we know that (after the xform is |
| // done) that the block *is* infinite if reached, we just make it an obviously |
| // infinite loop with no cond branch. |
| if (OtherDest == BB) { |
| // Insert it at the end of the function, because it's either code, |
| // or it won't matter if it's hot. :) |
| BasicBlock *InfLoopBlock = |
| BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); |
| BranchInst::Create(InfLoopBlock, InfLoopBlock); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); |
| OtherDest = InfLoopBlock; |
| } |
| |
| LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); |
| |
| // BI may have other predecessors. Because of this, we leave |
| // it alone, but modify PBI. |
| |
| // Make sure we get to CommonDest on True&True directions. |
| Value *PBICond = PBI->getCondition(); |
| IRBuilder<NoFolder> Builder(PBI); |
| if (PBIOp) |
| PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); |
| |
| Value *BICond = BI->getCondition(); |
| if (BIOp) |
| BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); |
| |
| // Merge the conditions. |
| Value *Cond = |
| createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); |
| |
| // Modify PBI to branch on the new condition to the new dests. |
| PBI->setCondition(Cond); |
| PBI->setSuccessor(0, CommonDest); |
| PBI->setSuccessor(1, OtherDest); |
| |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); |
| Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); |
| |
| DTU->applyUpdates(Updates); |
| } |
| |
| // Update branch weight for PBI. |
| uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; |
| uint64_t PredCommon, PredOther, SuccCommon, SuccOther; |
| bool HasWeights = |
| extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, |
| SuccTrueWeight, SuccFalseWeight); |
| if (HasWeights) { |
| PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; |
| PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; |
| SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; |
| SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; |
| // The weight to CommonDest should be PredCommon * SuccTotal + |
| // PredOther * SuccCommon. |
| // The weight to OtherDest should be PredOther * SuccOther. |
| uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + |
| PredOther * SuccCommon, |
| PredOther * SuccOther}; |
| // Halve the weights if any of them cannot fit in an uint32_t |
| FitWeights(NewWeights); |
| |
| setBranchWeights(PBI, NewWeights[0], NewWeights[1]); |
| } |
| |
| // OtherDest may have phi nodes. If so, add an entry from PBI's |
| // block that are identical to the entries for BI's block. |
| AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); |
| |
| // We know that the CommonDest already had an edge from PBI to |
| // it. If it has PHIs though, the PHIs may have different |
| // entries for BB and PBI's BB. If so, insert a select to make |
| // them agree. |
| for (PHINode &PN : CommonDest->phis()) { |
| Value *BIV = PN.getIncomingValueForBlock(BB); |
| unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); |
| Value *PBIV = PN.getIncomingValue(PBBIdx); |
| if (BIV != PBIV) { |
| // Insert a select in PBI to pick the right value. |
| SelectInst *NV = cast<SelectInst>( |
| Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); |
| PN.setIncomingValue(PBBIdx, NV); |
| // Although the select has the same condition as PBI, the original branch |
| // weights for PBI do not apply to the new select because the select's |
| // 'logical' edges are incoming edges of the phi that is eliminated, not |
| // the outgoing edges of PBI. |
| if (HasWeights) { |
| uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; |
| uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; |
| uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; |
| uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; |
| // The weight to PredCommonDest should be PredCommon * SuccTotal. |
| // The weight to PredOtherDest should be PredOther * SuccCommon. |
| uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), |
| PredOther * SuccCommon}; |
| |
| FitWeights(NewWeights); |
| |
| setBranchWeights(NV, NewWeights[0], NewWeights[1]); |
| } |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); |
| LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); |
| |
| // This basic block is probably dead. We know it has at least |
| // one fewer predecessor. |
| return true; |
| } |
| |
| // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is |
| // true or to FalseBB if Cond is false. |
| // Takes care of updating the successors and removing the old terminator. |
| // Also makes sure not to introduce new successors by assuming that edges to |
| // non-successor TrueBBs and FalseBBs aren't reachable. |
| bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, |
| Value *Cond, BasicBlock *TrueBB, |
| BasicBlock *FalseBB, |
| uint32_t TrueWeight, |
| uint32_t FalseWeight) { |
| auto *BB = OldTerm->getParent(); |
| // Remove any superfluous successor edges from the CFG. |
| // First, figure out which successors to preserve. |
| // If TrueBB and FalseBB are equal, only try to preserve one copy of that |
| // successor. |
| BasicBlock *KeepEdge1 = TrueBB; |
| BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; |
| |
| SmallSetVector<BasicBlock *, 2> RemovedSuccessors; |
| |
| // Then remove the rest. |
| for (BasicBlock *Succ : successors(OldTerm)) { |
| // Make sure only to keep exactly one copy of each edge. |
| if (Succ == KeepEdge1) |
| KeepEdge1 = nullptr; |
| else if (Succ == KeepEdge2) |
| KeepEdge2 = nullptr; |
| else { |
| Succ->removePredecessor(BB, |
| /*KeepOneInputPHIs=*/true); |
| |
| if (Succ != TrueBB && Succ != FalseBB) |
| RemovedSuccessors.insert(Succ); |
| } |
| } |
| |
| IRBuilder<> Builder(OldTerm); |
| Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); |
| |
| // Insert an appropriate new terminator. |
| if (!KeepEdge1 && !KeepEdge2) { |
| if (TrueBB == FalseBB) { |
| // We were only looking for one successor, and it was present. |
| // Create an unconditional branch to it. |
| Builder.CreateBr(TrueBB); |
| } else { |
| // We found both of the successors we were looking for. |
| // Create a conditional branch sharing the condition of the select. |
| BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); |
| if (TrueWeight != FalseWeight) |
| setBranchWeights(NewBI, TrueWeight, FalseWeight); |
| } |
| } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { |
| // Neither of the selected blocks were successors, so this |
| // terminator must be unreachable. |
| new UnreachableInst(OldTerm->getContext(), OldTerm); |
| } else { |
| // One of the selected values was a successor, but the other wasn't. |
| // Insert an unconditional branch to the one that was found; |
| // the edge to the one that wasn't must be unreachable. |
| if (!KeepEdge1) { |
| // Only TrueBB was found. |
| Builder.CreateBr(TrueBB); |
| } else { |
| // Only FalseBB was found. |
| Builder.CreateBr(FalseBB); |
| } |
| } |
| |
| EraseTerminatorAndDCECond(OldTerm); |
| |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| Updates.reserve(RemovedSuccessors.size()); |
| for (auto *RemovedSuccessor : RemovedSuccessors) |
| Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| return true; |
| } |
| |
| // Replaces |
| // (switch (select cond, X, Y)) on constant X, Y |
| // with a branch - conditional if X and Y lead to distinct BBs, |
| // unconditional otherwise. |
| bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, |
| SelectInst *Select) { |
| // Check for constant integer values in the select. |
| ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); |
| ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); |
| if (!TrueVal || !FalseVal) |
| return false; |
| |
| // Find the relevant condition and destinations. |
| Value *Condition = Select->getCondition(); |
| BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); |
| BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); |
| |
| // Get weight for TrueBB and FalseBB. |
| uint32_t TrueWeight = 0, FalseWeight = 0; |
| SmallVector<uint64_t, 8> Weights; |
| bool HasWeights = hasBranchWeightMD(*SI); |
| if (HasWeights) { |
| GetBranchWeights(SI, Weights); |
| if (Weights.size() == 1 + SI->getNumCases()) { |
| TrueWeight = |
| (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; |
| FalseWeight = |
| (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; |
| } |
| } |
| |
| // Perform the actual simplification. |
| return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, |
| FalseWeight); |
| } |
| |
| // Replaces |
| // (indirectbr (select cond, blockaddress(@fn, BlockA), |
| // blockaddress(@fn, BlockB))) |
| // with |
| // (br cond, BlockA, BlockB). |
| bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, |
| SelectInst *SI) { |
| // Check that both operands of the select are block addresses. |
| BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); |
| BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); |
| if (!TBA || !FBA) |
| return false; |
| |
| // Extract the actual blocks. |
| BasicBlock *TrueBB = TBA->getBasicBlock(); |
| BasicBlock *FalseBB = FBA->getBasicBlock(); |
| |
| // Perform the actual simplification. |
| return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, |
| 0); |
| } |
| |
| /// This is called when we find an icmp instruction |
| /// (a seteq/setne with a constant) as the only instruction in a |
| /// block that ends with an uncond branch. We are looking for a very specific |
| /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In |
| /// this case, we merge the first two "or's of icmp" into a switch, but then the |
| /// default value goes to an uncond block with a seteq in it, we get something |
| /// like: |
| /// |
| /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] |
| /// DEFAULT: |
| /// %tmp = icmp eq i8 %A, 92 |
| /// br label %end |
| /// end: |
| /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] |
| /// |
| /// We prefer to split the edge to 'end' so that there is a true/false entry to |
| /// the PHI, merging the third icmp into the switch. |
| bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( |
| ICmpInst *ICI, IRBuilder<> &Builder) { |
| BasicBlock *BB = ICI->getParent(); |
| |
| // If the block has any PHIs in it or the icmp has multiple uses, it is too |
| // complex. |
| if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) |
| return false; |
| |
| Value *V = ICI->getOperand(0); |
| ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); |
| |
| // The pattern we're looking for is where our only predecessor is a switch on |
| // 'V' and this block is the default case for the switch. In this case we can |
| // fold the compared value into the switch to simplify things. |
| BasicBlock *Pred = BB->getSinglePredecessor(); |
| if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) |
| return false; |
| |
| SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); |
| if (SI->getCondition() != V) |
| return false; |
| |
| // If BB is reachable on a non-default case, then we simply know the value of |
| // V in this block. Substitute it and constant fold the icmp instruction |
| // away. |
| if (SI->getDefaultDest() != BB) { |
| ConstantInt *VVal = SI->findCaseDest(BB); |
| assert(VVal && "Should have a unique destination value"); |
| ICI->setOperand(0, VVal); |
| |
| if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { |
| ICI->replaceAllUsesWith(V); |
| ICI->eraseFromParent(); |
| } |
| // BB is now empty, so it is likely to simplify away. |
| return requestResimplify(); |
| } |
| |
| // Ok, the block is reachable from the default dest. If the constant we're |
| // comparing exists in one of the other edges, then we can constant fold ICI |
| // and zap it. |
| if (SI->findCaseValue(Cst) != SI->case_default()) { |
| Value *V; |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| V = ConstantInt::getFalse(BB->getContext()); |
| else |
| V = ConstantInt::getTrue(BB->getContext()); |
| |
| ICI->replaceAllUsesWith(V); |
| ICI->eraseFromParent(); |
| // BB is now empty, so it is likely to simplify away. |
| return requestResimplify(); |
| } |
| |
| // The use of the icmp has to be in the 'end' block, by the only PHI node in |
| // the block. |
| BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); |
| PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); |
| if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || |
| isa<PHINode>(++BasicBlock::iterator(PHIUse))) |
| return false; |
| |
| // If the icmp is a SETEQ, then the default dest gets false, the new edge gets |
| // true in the PHI. |
| Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); |
| Constant *NewCst = ConstantInt::getFalse(BB->getContext()); |
| |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| std::swap(DefaultCst, NewCst); |
| |
| // Replace ICI (which is used by the PHI for the default value) with true or |
| // false depending on if it is EQ or NE. |
| ICI->replaceAllUsesWith(DefaultCst); |
| ICI->eraseFromParent(); |
| |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| |
| // Okay, the switch goes to this block on a default value. Add an edge from |
| // the switch to the merge point on the compared value. |
| BasicBlock *NewBB = |
| BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); |
| { |
| SwitchInstProfUpdateWrapper SIW(*SI); |
| auto W0 = SIW.getSuccessorWeight(0); |
| SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; |
| if (W0) { |
| NewW = ((uint64_t(*W0) + 1) >> 1); |
| SIW.setSuccessorWeight(0, *NewW); |
| } |
| SIW.addCase(Cst, NewBB, NewW); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, Pred, NewBB}); |
| } |
| |
| // NewBB branches to the phi block, add the uncond branch and the phi entry. |
| Builder.SetInsertPoint(NewBB); |
| Builder.SetCurrentDebugLocation(SI->getDebugLoc()); |
| Builder.CreateBr(SuccBlock); |
| PHIUse->addIncoming(NewCst, NewBB); |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); |
| DTU->applyUpdates(Updates); |
| } |
| return true; |
| } |
| |
| /// The specified branch is a conditional branch. |
| /// Check to see if it is branching on an or/and chain of icmp instructions, and |
| /// fold it into a switch instruction if so. |
| bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, |
| IRBuilder<> &Builder, |
| const DataLayout &DL) { |
| Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); |
| if (!Cond) |
| return false; |
| |
| // Change br (X == 0 | X == 1), T, F into a switch instruction. |
| // If this is a bunch of seteq's or'd together, or if it's a bunch of |
| // 'setne's and'ed together, collect them. |
| |
| // Try to gather values from a chain of and/or to be turned into a switch |
| ConstantComparesGatherer ConstantCompare(Cond, DL); |
| // Unpack the result |
| SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; |
| Value *CompVal = ConstantCompare.CompValue; |
| unsigned UsedICmps = ConstantCompare.UsedICmps; |
| Value *ExtraCase = ConstantCompare.Extra; |
| |
| // If we didn't have a multiply compared value, fail. |
| if (!CompVal) |
| return false; |
| |
| // Avoid turning single icmps into a switch. |
| if (UsedICmps <= 1) |
| return false; |
| |
| bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); |
| |
| // There might be duplicate constants in the list, which the switch |
| // instruction can't handle, remove them now. |
| array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); |
| Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); |
| |
| // If Extra was used, we require at least two switch values to do the |
| // transformation. A switch with one value is just a conditional branch. |
| if (ExtraCase && Values.size() < 2) |
| return false; |
| |
| // TODO: Preserve branch weight metadata, similarly to how |
| // FoldValueComparisonIntoPredecessors preserves it. |
| |
| // Figure out which block is which destination. |
| BasicBlock *DefaultBB = BI->getSuccessor(1); |
| BasicBlock *EdgeBB = BI->getSuccessor(0); |
| if (!TrueWhenEqual) |
| std::swap(DefaultBB, EdgeBB); |
| |
| BasicBlock *BB = BI->getParent(); |
| |
| LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() |
| << " cases into SWITCH. BB is:\n" |
| << *BB); |
| |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| |
| // If there are any extra values that couldn't be folded into the switch |
| // then we evaluate them with an explicit branch first. Split the block |
| // right before the condbr to handle it. |
| if (ExtraCase) { |
| BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, |
| /*MSSAU=*/nullptr, "switch.early.test"); |
| |
| // Remove the uncond branch added to the old block. |
| Instruction *OldTI = BB->getTerminator(); |
| Builder.SetInsertPoint(OldTI); |
| |
| // There can be an unintended UB if extra values are Poison. Before the |
| // transformation, extra values may not be evaluated according to the |
| // condition, and it will not raise UB. But after transformation, we are |
| // evaluating extra values before checking the condition, and it will raise |
| // UB. It can be solved by adding freeze instruction to extra values. |
| AssumptionCache *AC = Options.AC; |
| |
| if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) |
| ExtraCase = Builder.CreateFreeze(ExtraCase); |
| |
| if (TrueWhenEqual) |
| Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); |
| else |
| Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); |
| |
| OldTI->eraseFromParent(); |
| |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); |
| |
| // If there are PHI nodes in EdgeBB, then we need to add a new entry to them |
| // for the edge we just added. |
| AddPredecessorToBlock(EdgeBB, BB, NewBB); |
| |
| LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase |
| << "\nEXTRABB = " << *BB); |
| BB = NewBB; |
| } |
| |
| Builder.SetInsertPoint(BI); |
| // Convert pointer to int before we switch. |
| if (CompVal->getType()->isPointerTy()) { |
| CompVal = Builder.CreatePtrToInt( |
| CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); |
| } |
| |
| // Create the new switch instruction now. |
| SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); |
| |
| // Add all of the 'cases' to the switch instruction. |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) |
| New->addCase(Values[i], EdgeBB); |
| |
| // We added edges from PI to the EdgeBB. As such, if there were any |
| // PHI nodes in EdgeBB, they need entries to be added corresponding to |
| // the number of edges added. |
| for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { |
| PHINode *PN = cast<PHINode>(BBI); |
| Value *InVal = PN->getIncomingValueForBlock(BB); |
| for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) |
| PN->addIncoming(InVal, BB); |
| } |
| |
| // Erase the old branch instruction. |
| EraseTerminatorAndDCECond(BI); |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); |
| return true; |
| } |
| |
| bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { |
| if (isa<PHINode>(RI->getValue())) |
| return simplifyCommonResume(RI); |
| else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && |
| RI->getValue() == RI->getParent()->getFirstNonPHI()) |
| // The resume must unwind the exception that caused control to branch here. |
| return simplifySingleResume(RI); |
| |
| return false; |
| } |
| |
| // Check if cleanup block is empty |
| static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { |
| for (Instruction &I : R) { |
| auto *II = dyn_cast<IntrinsicInst>(&I); |
| if (!II) |
| return false; |
| |
| Intrinsic::ID IntrinsicID = II->getIntrinsicID(); |
| switch (IntrinsicID) { |
| case Intrinsic::dbg_declare: |
| case Intrinsic::dbg_value: |
| case Intrinsic::dbg_label: |
| case Intrinsic::lifetime_end: |
| break; |
| default: |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Simplify resume that is shared by several landing pads (phi of landing pad). |
| bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { |
| BasicBlock *BB = RI->getParent(); |
| |
| // Check that there are no other instructions except for debug and lifetime |
| // intrinsics between the phi's and resume instruction. |
| if (!isCleanupBlockEmpty( |
| make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) |
| return false; |
| |
| SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; |
| auto *PhiLPInst = cast<PHINode>(RI->getValue()); |
| |
| // Check incoming blocks to see if any of them are trivial. |
| for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; |
| Idx++) { |
| auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); |
| auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); |
| |
| // If the block has other successors, we can not delete it because |
| // it has other dependents. |
| if (IncomingBB->getUniqueSuccessor() != BB) |
| continue; |
| |
| auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); |
| // Not the landing pad that caused the control to branch here. |
| if (IncomingValue != LandingPad) |
| continue; |
| |
| if (isCleanupBlockEmpty( |
| make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) |
| TrivialUnwindBlocks.insert(IncomingBB); |
| } |
| |
| // If no trivial unwind blocks, don't do any simplifications. |
| if (TrivialUnwindBlocks.empty()) |
| return false; |
| |
| // Turn all invokes that unwind here into calls. |
| for (auto *TrivialBB : TrivialUnwindBlocks) { |
| // Blocks that will be simplified should be removed from the phi node. |
| // Note there could be multiple edges to the resume block, and we need |
| // to remove them all. |
| while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) |
| BB->removePredecessor(TrivialBB, true); |
| |
| for (BasicBlock *Pred : |
| llvm::make_early_inc_range(predecessors(TrivialBB))) { |
| removeUnwindEdge(Pred, DTU); |
| ++NumInvokes; |
| } |
| |
| // In each SimplifyCFG run, only the current processed block can be erased. |
| // Otherwise, it will break the iteration of SimplifyCFG pass. So instead |
| // of erasing TrivialBB, we only remove the branch to the common resume |
| // block so that we can later erase the resume block since it has no |
| // predecessors. |
| TrivialBB->getTerminator()->eraseFromParent(); |
| new UnreachableInst(RI->getContext(), TrivialBB); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); |
| } |
| |
| // Delete the resume block if all its predecessors have been removed. |
| if (pred_empty(BB)) |
| DeleteDeadBlock(BB, DTU); |
| |
| return !TrivialUnwindBlocks.empty(); |
| } |
| |
| // Simplify resume that is only used by a single (non-phi) landing pad. |
| bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { |
| BasicBlock *BB = RI->getParent(); |
| auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); |
| assert(RI->getValue() == LPInst && |
| "Resume must unwind the exception that caused control to here"); |
| |
| // Check that there are no other instructions except for debug intrinsics. |
| if (!isCleanupBlockEmpty( |
| make_range<Instruction *>(LPInst->getNextNode(), RI))) |
| return false; |
| |
| // Turn all invokes that unwind here into calls and delete the basic block. |
| for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { |
| removeUnwindEdge(Pred, DTU); |
| ++NumInvokes; |
| } |
| |
| // The landingpad is now unreachable. Zap it. |
| DeleteDeadBlock(BB, DTU); |
| return true; |
| } |
| |
| static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { |
| // If this is a trivial cleanup pad that executes no instructions, it can be |
| // eliminated. If the cleanup pad continues to the caller, any predecessor |
| // that is an EH pad will be updated to continue to the caller and any |
| // predecessor that terminates with an invoke instruction will have its invoke |
| // instruction converted to a call instruction. If the cleanup pad being |
| // simplified does not continue to the caller, each predecessor will be |
| // updated to continue to the unwind destination of the cleanup pad being |
| // simplified. |
| BasicBlock *BB = RI->getParent(); |
| CleanupPadInst *CPInst = RI->getCleanupPad(); |
| if (CPInst->getParent() != BB) |
| // This isn't an empty cleanup. |
| return false; |
| |
| // We cannot kill the pad if it has multiple uses. This typically arises |
| // from unreachable basic blocks. |
| if (!CPInst->hasOneUse()) |
| return false; |
| |
| // Check that there are no other instructions except for benign intrinsics. |
| if (!isCleanupBlockEmpty( |
| make_range<Instruction *>(CPInst->getNextNode(), RI))) |
| return false; |
| |
| // If the cleanup return we are simplifying unwinds to the caller, this will |
| // set UnwindDest to nullptr. |
| BasicBlock *UnwindDest = RI->getUnwindDest(); |
| Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; |
| |
| // We're about to remove BB from the control flow. Before we do, sink any |
| // PHINodes into the unwind destination. Doing this before changing the |
| // control flow avoids some potentially slow checks, since we can currently |
| // be certain that UnwindDest and BB have no common predecessors (since they |
| // are both EH pads). |
| if (UnwindDest) { |
| // First, go through the PHI nodes in UnwindDest and update any nodes that |
| // reference the block we are removing |
| for (PHINode &DestPN : UnwindDest->phis()) { |
| int Idx = DestPN.getBasicBlockIndex(BB); |
| // Since BB unwinds to UnwindDest, it has to be in the PHI node. |
| assert(Idx != -1); |
| // This PHI node has an incoming value that corresponds to a control |
| // path through the cleanup pad we are removing. If the incoming |
| // value is in the cleanup pad, it must be a PHINode (because we |
| // verified above that the block is otherwise empty). Otherwise, the |
| // value is either a constant or a value that dominates the cleanup |
| // pad being removed. |
| // |
| // Because BB and UnwindDest are both EH pads, all of their |
| // predecessors must unwind to these blocks, and since no instruction |
| // can have multiple unwind destinations, there will be no overlap in |
| // incoming blocks between SrcPN and DestPN. |
| Value *SrcVal = DestPN.getIncomingValue(Idx); |
| PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); |
| |
| bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; |
| for (auto *Pred : predecessors(BB)) { |
| Value *Incoming = |
| NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; |
| DestPN.addIncoming(Incoming, Pred); |
| } |
| } |
| |
| // Sink any remaining PHI nodes directly into UnwindDest. |
| Instruction *InsertPt = DestEHPad; |
| for (PHINode &PN : make_early_inc_range(BB->phis())) { |
| if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) |
| // If the PHI node has no uses or all of its uses are in this basic |
| // block (meaning they are debug or lifetime intrinsics), just leave |
| // it. It will be erased when we erase BB below. |
| continue; |
| |
| // Otherwise, sink this PHI node into UnwindDest. |
| // Any predecessors to UnwindDest which are not already represented |
| // must be back edges which inherit the value from the path through |
| // BB. In this case, the PHI value must reference itself. |
| for (auto *pred : predecessors(UnwindDest)) |
| if (pred != BB) |
| PN.addIncoming(&PN, pred); |
| PN.moveBefore(InsertPt); |
| // Also, add a dummy incoming value for the original BB itself, |
| // so that the PHI is well-formed until we drop said predecessor. |
| PN.addIncoming(PoisonValue::get(PN.getType()), BB); |
| } |
| } |
| |
| std::vector<DominatorTree::UpdateType> Updates; |
| |
| // We use make_early_inc_range here because we will remove all predecessors. |
| for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { |
| if (UnwindDest == nullptr) { |
| if (DTU) { |
| DTU->applyUpdates(Updates); |
| Updates.clear(); |
| } |
| removeUnwindEdge(PredBB, DTU); |
| ++NumInvokes; |
| } else { |
| BB->removePredecessor(PredBB); |
| Instruction *TI = PredBB->getTerminator(); |
| TI->replaceUsesOfWith(BB, UnwindDest); |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); |
| Updates.push_back({DominatorTree::Delete, PredBB, BB}); |
| } |
| } |
| } |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| DeleteDeadBlock(BB, DTU); |
| |
| return true; |
| } |
| |
| // Try to merge two cleanuppads together. |
| static bool mergeCleanupPad(CleanupReturnInst *RI) { |
| // Skip any cleanuprets which unwind to caller, there is nothing to merge |
| // with. |
| BasicBlock *UnwindDest = RI->getUnwindDest(); |
| if (!UnwindDest) |
| return false; |
| |
| // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't |
| // be safe to merge without code duplication. |
| if (UnwindDest->getSinglePredecessor() != RI->getParent()) |
| return false; |
| |
| // Verify that our cleanuppad's unwind destination is another cleanuppad. |
| auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); |
| if (!SuccessorCleanupPad) |
| return false; |
| |
| CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); |
| // Replace any uses of the successor cleanupad with the predecessor pad |
| // The only cleanuppad uses should be this cleanupret, it's cleanupret and |
| // funclet bundle operands. |
| SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); |
| // Remove the old cleanuppad. |
| SuccessorCleanupPad->eraseFromParent(); |
| // Now, we simply replace the cleanupret with a branch to the unwind |
| // destination. |
| BranchInst::Create(UnwindDest, RI->getParent()); |
| RI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { |
| // It is possible to transiantly have an undef cleanuppad operand because we |
| // have deleted some, but not all, dead blocks. |
| // Eventually, this block will be deleted. |
| if (isa<UndefValue>(RI->getOperand(0))) |
| return false; |
| |
| if (mergeCleanupPad(RI)) |
| return true; |
| |
| if (removeEmptyCleanup(RI, DTU)) |
| return true; |
| |
| return false; |
| } |
| |
| // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! |
| bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { |
| BasicBlock *BB = UI->getParent(); |
| |
| bool Changed = false; |
| |
| // If there are any instructions immediately before the unreachable that can |
| // be removed, do so. |
| while (UI->getIterator() != BB->begin()) { |
| BasicBlock::iterator BBI = UI->getIterator(); |
| --BBI; |
| |
| if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) |
| break; // Can not drop any more instructions. We're done here. |
| // Otherwise, this instruction can be freely erased, |
| // even if it is not side-effect free. |
| |
| // Note that deleting EH's here is in fact okay, although it involves a bit |
| // of subtle reasoning. If this inst is an EH, all the predecessors of this |
| // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, |
| // and we can therefore guarantee this block will be erased. |
| |
| // Delete this instruction (any uses are guaranteed to be dead) |
| BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); |
| BBI->eraseFromParent(); |
| Changed = true; |
| } |
| |
| // If the unreachable instruction is the first in the block, take a gander |
| // at all of the predecessors of this instruction, and simplify them. |
| if (&BB->front() != UI) |
| return Changed; |
| |
| std::vector<DominatorTree::UpdateType> Updates; |
| |
| SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| auto *Predecessor = Preds[i]; |
| Instruction *TI = Predecessor->getTerminator(); |
| IRBuilder<> Builder(TI); |
| if (auto *BI = dyn_cast<BranchInst>(TI)) { |
| // We could either have a proper unconditional branch, |
| // or a degenerate conditional branch with matching destinations. |
| if (all_of(BI->successors(), |
| [BB](auto *Successor) { return Successor == BB; })) { |
| new UnreachableInst(TI->getContext(), TI); |
| TI->eraseFromParent(); |
| Changed = true; |
| } else { |
| assert(BI->isConditional() && "Can't get here with an uncond branch."); |
| Value* Cond = BI->getCondition(); |
| assert(BI->getSuccessor(0) != BI->getSuccessor(1) && |
| "The destinations are guaranteed to be different here."); |
| if (BI->getSuccessor(0) == BB) { |
| Builder.CreateAssumption(Builder.CreateNot(Cond)); |
| Builder.CreateBr(BI->getSuccessor(1)); |
| } else { |
| assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); |
| Builder.CreateAssumption(Cond); |
| Builder.CreateBr(BI->getSuccessor(0)); |
| } |
| EraseTerminatorAndDCECond(BI); |
| Changed = true; |
| } |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, Predecessor, BB}); |
| } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { |
| SwitchInstProfUpdateWrapper SU(*SI); |
| for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { |
| if (i->getCaseSuccessor() != BB) { |
| ++i; |
| continue; |
| } |
| BB->removePredecessor(SU->getParent()); |
| i = SU.removeCase(i); |
| e = SU->case_end(); |
| Changed = true; |
| } |
| // Note that the default destination can't be removed! |
| if (DTU && SI->getDefaultDest() != BB) |
| Updates.push_back({DominatorTree::Delete, Predecessor, BB}); |
| } else if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| if (II->getUnwindDest() == BB) { |
| if (DTU) { |
| DTU->applyUpdates(Updates); |
| Updates.clear(); |
| } |
| auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); |
| if (!CI->doesNotThrow()) |
| CI->setDoesNotThrow(); |
| Changed = true; |
| } |
| } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { |
| if (CSI->getUnwindDest() == BB) { |
| if (DTU) { |
| DTU->applyUpdates(Updates); |
| Updates.clear(); |
| } |
| removeUnwindEdge(TI->getParent(), DTU); |
| Changed = true; |
| continue; |
| } |
| |
| for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), |
| E = CSI->handler_end(); |
| I != E; ++I) { |
| if (*I == BB) { |
| CSI->removeHandler(I); |
| --I; |
| --E; |
| Changed = true; |
| } |
| } |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, Predecessor, BB}); |
| if (CSI->getNumHandlers() == 0) { |
| if (CSI->hasUnwindDest()) { |
| // Redirect all predecessors of the block containing CatchSwitchInst |
| // to instead branch to the CatchSwitchInst's unwind destination. |
| if (DTU) { |
| for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { |
| Updates.push_back({DominatorTree::Insert, |
| PredecessorOfPredecessor, |
| CSI->getUnwindDest()}); |
| Updates.push_back({DominatorTree::Delete, |
| PredecessorOfPredecessor, Predecessor}); |
| } |
| } |
| Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); |
| } else { |
| // Rewrite all preds to unwind to caller (or from invoke to call). |
| if (DTU) { |
| DTU->applyUpdates(Updates); |
| Updates.clear(); |
| } |
| SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); |
| for (BasicBlock *EHPred : EHPreds) |
| removeUnwindEdge(EHPred, DTU); |
| } |
| // The catchswitch is no longer reachable. |
| new UnreachableInst(CSI->getContext(), CSI); |
| CSI->eraseFromParent(); |
| Changed = true; |
| } |
| } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { |
| (void)CRI; |
| assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && |
| "Expected to always have an unwind to BB."); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, Predecessor, BB}); |
| new UnreachableInst(TI->getContext(), TI); |
| TI->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| // If this block is now dead, remove it. |
| if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { |
| DeleteDeadBlock(BB, DTU); |
| return true; |
| } |
| |
| return Changed; |
| } |
| |
| static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { |
| assert(Cases.size() >= 1); |
| |
| array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); |
| for (size_t I = 1, E = Cases.size(); I != E; ++I) { |
| if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) |
| return false; |
| } |
| return true; |
| } |
| |
| static void createUnreachableSwitchDefault(SwitchInst *Switch, |
| DomTreeUpdater *DTU) { |
| LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); |
| auto *BB = Switch->getParent(); |
| auto *OrigDefaultBlock = Switch->getDefaultDest(); |
| OrigDefaultBlock->removePredecessor(BB); |
| BasicBlock *NewDefaultBlock = BasicBlock::Create( |
| BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), |
| OrigDefaultBlock); |
| new UnreachableInst(Switch->getContext(), NewDefaultBlock); |
| Switch->setDefaultDest(&*NewDefaultBlock); |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 2> Updates; |
| Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); |
| if (!is_contained(successors(BB), OrigDefaultBlock)) |
| Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); |
| DTU->applyUpdates(Updates); |
| } |
| } |
| |
| /// Turn a switch into an integer range comparison and branch. |
| /// Switches with more than 2 destinations are ignored. |
| /// Switches with 1 destination are also ignored. |
| bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, |
| IRBuilder<> &Builder) { |
| assert(SI->getNumCases() > 1 && "Degenerate switch?"); |
| |
| bool HasDefault = |
| !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); |
| |
| auto *BB = SI->getParent(); |
| |
| // Partition the cases into two sets with different destinations. |
| BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; |
| BasicBlock *DestB = nullptr; |
| SmallVector<ConstantInt *, 16> CasesA; |
| SmallVector<ConstantInt *, 16> CasesB; |
| |
| for (auto Case : SI->cases()) { |
| BasicBlock *Dest = Case.getCaseSuccessor(); |
| if (!DestA) |
| DestA = Dest; |
| if (Dest == DestA) { |
| CasesA.push_back(Case.getCaseValue()); |
| continue; |
| } |
| if (!DestB) |
| DestB = Dest; |
| if (Dest == DestB) { |
| CasesB.push_back(Case.getCaseValue()); |
| continue; |
| } |
| return false; // More than two destinations. |
| } |
| if (!DestB) |
| return false; // All destinations are the same and the default is unreachable |
| |
| assert(DestA && DestB && |
| "Single-destination switch should have been folded."); |
| assert(DestA != DestB); |
| assert(DestB != SI->getDefaultDest()); |
| assert(!CasesB.empty() && "There must be non-default cases."); |
| assert(!CasesA.empty() || HasDefault); |
| |
| // Figure out if one of the sets of cases form a contiguous range. |
| SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; |
| BasicBlock *ContiguousDest = nullptr; |
| BasicBlock *OtherDest = nullptr; |
| if (!CasesA.empty() && CasesAreContiguous(CasesA)) { |
| ContiguousCases = &CasesA; |
| ContiguousDest = DestA; |
| OtherDest = DestB; |
| } else if (CasesAreContiguous(CasesB)) { |
| ContiguousCases = &CasesB; |
| ContiguousDest = DestB; |
| OtherDest = DestA; |
| } else |
| return false; |
| |
| // Start building the compare and branch. |
| |
| Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); |
| Constant *NumCases = |
| ConstantInt::get(Offset->getType(), ContiguousCases->size()); |
| |
| Value *Sub = SI->getCondition(); |
| if (!Offset->isNullValue()) |
| Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); |
| |
| Value *Cmp; |
| // If NumCases overflowed, then all possible values jump to the successor. |
| if (NumCases->isNullValue() && !ContiguousCases->empty()) |
| Cmp = ConstantInt::getTrue(SI->getContext()); |
| else |
| Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); |
| BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); |
| |
| // Update weight for the newly-created conditional branch. |
| if (hasBranchWeightMD(*SI)) { |
| SmallVector<uint64_t, 8> Weights; |
| GetBranchWeights(SI, Weights); |
| if (Weights.size() == 1 + SI->getNumCases()) { |
| uint64_t TrueWeight = 0; |
| uint64_t FalseWeight = 0; |
| for (size_t I = 0, E = Weights.size(); I != E; ++I) { |
| if (SI->getSuccessor(I) == ContiguousDest) |
| TrueWeight += Weights[I]; |
| else |
| FalseWeight += Weights[I]; |
| } |
| while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { |
| TrueWeight /= 2; |
| FalseWeight /= 2; |
| } |
| setBranchWeights(NewBI, TrueWeight, FalseWeight); |
| } |
| } |
| |
| // Prune obsolete incoming values off the successors' PHI nodes. |
| for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { |
| unsigned PreviousEdges = ContiguousCases->size(); |
| if (ContiguousDest == SI->getDefaultDest()) |
| ++PreviousEdges; |
| for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) |
| cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); |
| } |
| for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { |
| unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); |
| if (OtherDest == SI->getDefaultDest()) |
| ++PreviousEdges; |
| for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) |
| cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); |
| } |
| |
| // Clean up the default block - it may have phis or other instructions before |
| // the unreachable terminator. |
| if (!HasDefault) |
| createUnreachableSwitchDefault(SI, DTU); |
| |
| auto *UnreachableDefault = SI->getDefaultDest(); |
| |
| // Drop the switch. |
| SI->eraseFromParent(); |
| |
| if (!HasDefault && DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); |
| |
| return true; |
| } |
| |
| /// Compute masked bits for the condition of a switch |
| /// and use it to remove dead cases. |
| static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, |
| AssumptionCache *AC, |
| const DataLayout &DL) { |
| Value *Cond = SI->getCondition(); |
| KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); |
| |
| // We can also eliminate cases by determining that their values are outside of |
| // the limited range of the condition based on how many significant (non-sign) |
| // bits are in the condition value. |
| unsigned MaxSignificantBitsInCond = |
| ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); |
| |
| // Gather dead cases. |
| SmallVector<ConstantInt *, 8> DeadCases; |
| SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; |
| SmallVector<BasicBlock *, 8> UniqueSuccessors; |
| for (const auto &Case : SI->cases()) { |
| auto *Successor = Case.getCaseSuccessor(); |
| if (DTU) { |
| if (!NumPerSuccessorCases.count(Successor)) |
| UniqueSuccessors.push_back(Successor); |
| ++NumPerSuccessorCases[Successor]; |
| } |
| const APInt &CaseVal = Case.getCaseValue()->getValue(); |
| if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || |
| (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { |
| DeadCases.push_back(Case.getCaseValue()); |
| if (DTU) |
| --NumPerSuccessorCases[Successor]; |
| LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal |
| << " is dead.\n"); |
| } |
| } |
| |
| // If we can prove that the cases must cover all possible values, the |
| // default destination becomes dead and we can remove it. If we know some |
| // of the bits in the value, we can use that to more precisely compute the |
| // number of possible unique case values. |
| bool HasDefault = |
| !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); |
| const unsigned NumUnknownBits = |
| Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); |
| assert(NumUnknownBits <= Known.getBitWidth()); |
| if (HasDefault && DeadCases.empty() && |
| NumUnknownBits < 64 /* avoid overflow */ && |
| SI->getNumCases() == (1ULL << NumUnknownBits)) { |
| createUnreachableSwitchDefault(SI, DTU); |
| return true; |
| } |
| |
| if (DeadCases.empty()) |
| return false; |
| |
| SwitchInstProfUpdateWrapper SIW(*SI); |
| for (ConstantInt *DeadCase : DeadCases) { |
| SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); |
| assert(CaseI != SI->case_default() && |
| "Case was not found. Probably mistake in DeadCases forming."); |
| // Prune unused values from PHI nodes. |
| CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); |
| SIW.removeCase(CaseI); |
| } |
| |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| for (auto *Successor : UniqueSuccessors) |
| if (NumPerSuccessorCases[Successor] == 0) |
| Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| return true; |
| } |
| |
| /// If BB would be eligible for simplification by |
| /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated |
| /// by an unconditional branch), look at the phi node for BB in the successor |
| /// block and see if the incoming value is equal to CaseValue. If so, return |
| /// the phi node, and set PhiIndex to BB's index in the phi node. |
| static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, |
| BasicBlock *BB, int *PhiIndex) { |
| if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) |
| return nullptr; // BB must be empty to be a candidate for simplification. |
| if (!BB->getSinglePredecessor()) |
| return nullptr; // BB must be dominated by the switch. |
| |
| BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!Branch || !Branch->isUnconditional()) |
| return nullptr; // Terminator must be unconditional branch. |
| |
| BasicBlock *Succ = Branch->getSuccessor(0); |
| |
| for (PHINode &PHI : Succ->phis()) { |
| int Idx = PHI.getBasicBlockIndex(BB); |
| assert(Idx >= 0 && "PHI has no entry for predecessor?"); |
| |
| Value *InValue = PHI.getIncomingValue(Idx); |
| if (InValue != CaseValue) |
| continue; |
| |
| *PhiIndex = Idx; |
| return &PHI; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to forward the condition of a switch instruction to a phi node |
| /// dominated by the switch, if that would mean that some of the destination |
| /// blocks of the switch can be folded away. Return true if a change is made. |
| static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { |
| using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; |
| |
| ForwardingNodesMap ForwardingNodes; |
| BasicBlock *SwitchBlock = SI->getParent(); |
| bool Changed = false; |
| for (const auto &Case : SI->cases()) { |
| ConstantInt *CaseValue = Case.getCaseValue(); |
| BasicBlock *CaseDest = Case.getCaseSuccessor(); |
| |
| // Replace phi operands in successor blocks that are using the constant case |
| // value rather than the switch condition variable: |
| // switchbb: |
| // switch i32 %x, label %default [ |
| // i32 17, label %succ |
| // ... |
| // succ: |
| // %r = phi i32 ... [ 17, %switchbb ] ... |
| // --> |
| // %r = phi i32 ... [ %x, %switchbb ] ... |
| |
| for (PHINode &Phi : CaseDest->phis()) { |
| // This only works if there is exactly 1 incoming edge from the switch to |
| // a phi. If there is >1, that means multiple cases of the switch map to 1 |
| // value in the phi, and that phi value is not the switch condition. Thus, |
| // this transform would not make sense (the phi would be invalid because |
| // a phi can't have different incoming values from the same block). |
| int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); |
| if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && |
| count(Phi.blocks(), SwitchBlock) == 1) { |
| Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); |
| Changed = true; |
| } |
| } |
| |
| // Collect phi nodes that are indirectly using this switch's case constants. |
| int PhiIdx; |
| if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) |
| ForwardingNodes[Phi].push_back(PhiIdx); |
| } |
| |
| for (auto &ForwardingNode : ForwardingNodes) { |
| PHINode *Phi = ForwardingNode.first; |
| SmallVectorImpl<int> &Indexes = ForwardingNode.second; |
| if (Indexes.size() < 2) |
| continue; |
| |
| for (int Index : Indexes) |
| Phi->setIncomingValue(Index, SI->getCondition()); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| /// Return true if the backend will be able to handle |
| /// initializing an array of constants like C. |
| static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { |
| if (C->isThreadDependent()) |
| return false; |
| if (C->isDLLImportDependent()) |
| return false; |
| |
| if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && |
| !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && |
| !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) |
| return false; |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| // Pointer casts and in-bounds GEPs will not prohibit the backend from |
| // materializing the array of constants. |
| Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); |
| if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) |
| return false; |
| } |
| |
| if (!TTI.shouldBuildLookupTablesForConstant(C)) |
| return false; |
| |
| return true; |
| } |
| |
| /// If V is a Constant, return it. Otherwise, try to look up |
| /// its constant value in ConstantPool, returning 0 if it's not there. |
| static Constant * |
| LookupConstant(Value *V, |
| const SmallDenseMap<Value *, Constant *> &ConstantPool) { |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C; |
| return ConstantPool.lookup(V); |
| } |
| |
| /// Try to fold instruction I into a constant. This works for |
| /// simple instructions such as binary operations where both operands are |
| /// constant or can be replaced by constants from the ConstantPool. Returns the |
| /// resulting constant on success, 0 otherwise. |
| static Constant * |
| ConstantFold(Instruction *I, const DataLayout &DL, |
| const SmallDenseMap<Value *, Constant *> &ConstantPool) { |
| if (SelectInst *Select = dyn_cast<SelectInst>(I)) { |
| Constant *A = LookupConstant(Select->getCondition(), ConstantPool); |
| if (!A) |
| return nullptr; |
| if (A->isAllOnesValue()) |
| return LookupConstant(Select->getTrueValue(), ConstantPool); |
| if (A->isNullValue()) |
| return LookupConstant(Select->getFalseValue(), ConstantPool); |
| return nullptr; |
| } |
| |
| SmallVector<Constant *, 4> COps; |
| for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { |
| if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) |
| COps.push_back(A); |
| else |
| return nullptr; |
| } |
| |
| return ConstantFoldInstOperands(I, COps, DL); |
| } |
| |
| /// Try to determine the resulting constant values in phi nodes |
| /// at the common destination basic block, *CommonDest, for one of the case |
| /// destionations CaseDest corresponding to value CaseVal (0 for the default |
| /// case), of a switch instruction SI. |
| static bool |
| getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, |
| BasicBlock **CommonDest, |
| SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, |
| const DataLayout &DL, const TargetTransformInfo &TTI) { |
| // The block from which we enter the common destination. |
| BasicBlock *Pred = SI->getParent(); |
| |
| // If CaseDest is empty except for some side-effect free instructions through |
| // which we can constant-propagate the CaseVal, continue to its successor. |
| SmallDenseMap<Value *, Constant *> ConstantPool; |
| ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); |
| for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { |
| if (I.isTerminator()) { |
| // If the terminator is a simple branch, continue to the next block. |
| if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) |
| return false; |
| Pred = CaseDest; |
| CaseDest = I.getSuccessor(0); |
| } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { |
| // Instruction is side-effect free and constant. |
| |
| // If the instruction has uses outside this block or a phi node slot for |
| // the block, it is not safe to bypass the instruction since it would then |
| // no longer dominate all its uses. |
| for (auto &Use : I.uses()) { |
| User *User = Use.getUser(); |
| if (Instruction *I = dyn_cast<Instruction>(User)) |
| if (I->getParent() == CaseDest) |
| continue; |
| if (PHINode *Phi = dyn_cast<PHINode>(User)) |
| if (Phi->getIncomingBlock(Use) == CaseDest) |
| continue; |
| return false; |
| } |
| |
| ConstantPool.insert(std::make_pair(&I, C)); |
| } else { |
| break; |
| } |
| } |
| |
| // If we did not have a CommonDest before, use the current one. |
| if (!*CommonDest) |
| *CommonDest = CaseDest; |
| // If the destination isn't the common one, abort. |
| if (CaseDest != *CommonDest) |
| return false; |
| |
| // Get the values for this case from phi nodes in the destination block. |
| for (PHINode &PHI : (*CommonDest)->phis()) { |
| int Idx = PHI.getBasicBlockIndex(Pred); |
| if (Idx == -1) |
| continue; |
| |
| Constant *ConstVal = |
| LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); |
| if (!ConstVal) |
| return false; |
| |
| // Be conservative about which kinds of constants we support. |
| if (!ValidLookupTableConstant(ConstVal, TTI)) |
| return false; |
| |
| Res.push_back(std::make_pair(&PHI, ConstVal)); |
| } |
| |
| return Res.size() > 0; |
| } |
| |
| // Helper function used to add CaseVal to the list of cases that generate |
| // Result. Returns the updated number of cases that generate this result. |
| static size_t mapCaseToResult(ConstantInt *CaseVal, |
| SwitchCaseResultVectorTy &UniqueResults, |
| Constant *Result) { |
| for (auto &I : UniqueResults) { |
| if (I.first == Result) { |
| I.second.push_back(CaseVal); |
| return I.second.size(); |
| } |
| } |
| UniqueResults.push_back( |
| std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); |
| return 1; |
| } |
| |
| // Helper function that initializes a map containing |
| // results for the PHI node of the common destination block for a switch |
| // instruction. Returns false if multiple PHI nodes have been found or if |
| // there is not a common destination block for the switch. |
| static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, |
| BasicBlock *&CommonDest, |
| SwitchCaseResultVectorTy &UniqueResults, |
| Constant *&DefaultResult, |
| const DataLayout &DL, |
| const TargetTransformInfo &TTI, |
| uintptr_t MaxUniqueResults) { |
| for (const auto &I : SI->cases()) { |
| ConstantInt *CaseVal = I.getCaseValue(); |
| |
| // Resulting value at phi nodes for this case value. |
| SwitchCaseResultsTy Results; |
| if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, |
| DL, TTI)) |
| return false; |
| |
| // Only one value per case is permitted. |
| if (Results.size() > 1) |
| return false; |
| |
| // Add the case->result mapping to UniqueResults. |
| const size_t NumCasesForResult = |
| mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); |
| |
| // Early out if there are too many cases for this result. |
| if (NumCasesForResult > MaxSwitchCasesPerResult) |
| return false; |
| |
| // Early out if there are too many unique results. |
| if (UniqueResults.size() > MaxUniqueResults) |
| return false; |
| |
| // Check the PHI consistency. |
| if (!PHI) |
| PHI = Results[0].first; |
| else if (PHI != Results[0].first) |
| return false; |
| } |
| // Find the default result value. |
| SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; |
| BasicBlock *DefaultDest = SI->getDefaultDest(); |
| getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, |
| DL, TTI); |
| // If the default value is not found abort unless the default destination |
| // is unreachable. |
| DefaultResult = |
| DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; |
| if ((!DefaultResult && |
| !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) |
| return false; |
| |
| return true; |
| } |
| |
| // Helper function that checks if it is possible to transform a switch with only |
| // two cases (or two cases + default) that produces a result into a select. |
| // TODO: Handle switches with more than 2 cases that map to the same result. |
| static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, |
| Constant *DefaultResult, Value *Condition, |
| IRBuilder<> &Builder) { |
| // If we are selecting between only two cases transform into a simple |
| // select or a two-way select if default is possible. |
| // Example: |
| // switch (a) { %0 = icmp eq i32 %a, 10 |
| // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 |
| // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 |
| // default: return 4; %3 = select i1 %2, i32 2, i32 %1 |
| // } |
| if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && |
| ResultVector[1].second.size() == 1) { |
| ConstantInt *FirstCase = ResultVector[0].second[0]; |
| ConstantInt *SecondCase = ResultVector[1].second[0]; |
| Value *SelectValue = ResultVector[1].first; |
| if (DefaultResult) { |
| Value *ValueCompare = |
| Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); |
| SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, |
| DefaultResult, "switch.select"); |
| } |
| Value *ValueCompare = |
| Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); |
| return Builder.CreateSelect(ValueCompare, ResultVector[0].first, |
| SelectValue, "switch.select"); |
| } |
| |
| // Handle the degenerate case where two cases have the same result value. |
| if (ResultVector.size() == 1 && DefaultResult) { |
| ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; |
| unsigned CaseCount = CaseValues.size(); |
| // n bits group cases map to the same result: |
| // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default |
| // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default |
| // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default |
| if (isPowerOf2_32(CaseCount)) { |
| ConstantInt *MinCaseVal = CaseValues[0]; |
| // Find mininal value. |
| for (auto *Case : CaseValues) |
| if (Case->getValue().slt(MinCaseVal->getValue())) |
| MinCaseVal = Case; |
| |
| // Mark the bits case number touched. |
| APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); |
| for (auto *Case : CaseValues) |
| BitMask |= (Case->getValue() - MinCaseVal->getValue()); |
| |
| // Check if cases with the same result can cover all number |
| // in touched bits. |
| if (BitMask.countPopulation() == Log2_32(CaseCount)) { |
| if (!MinCaseVal->isNullValue()) |
| Condition = Builder.CreateSub(Condition, MinCaseVal); |
| Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); |
| Value *Cmp = Builder.CreateICmpEQ( |
| And, Constant::getNullValue(And->getType()), "switch.selectcmp"); |
| return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); |
| } |
| } |
| |
| // Handle the degenerate case where two cases have the same value. |
| if (CaseValues.size() == 2) { |
| Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], |
| "switch.selectcmp.case1"); |
| Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], |
| "switch.selectcmp.case2"); |
| Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); |
| return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // Helper function to cleanup a switch instruction that has been converted into |
| // a select, fixing up PHI nodes and basic blocks. |
| static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, |
| Value *SelectValue, |
| IRBuilder<> &Builder, |
| DomTreeUpdater *DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| |
| BasicBlock *SelectBB = SI->getParent(); |
| BasicBlock *DestBB = PHI->getParent(); |
| |
| if (DTU && !is_contained(predecessors(DestBB), SelectBB)) |
| Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); |
| Builder.CreateBr(DestBB); |
| |
| // Remove the switch. |
| |
| while (PHI->getBasicBlockIndex(SelectBB) >= 0) |
| PHI->removeIncomingValue(SelectBB); |
| PHI->addIncoming(SelectValue, SelectBB); |
| |
| SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; |
| for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { |
| BasicBlock *Succ = SI->getSuccessor(i); |
| |
| if (Succ == DestBB) |
| continue; |
| Succ->removePredecessor(SelectBB); |
| if (DTU && RemovedSuccessors.insert(Succ).second) |
| Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); |
| } |
| SI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| } |
| |
| /// If a switch is only used to initialize one or more phi nodes in a common |
| /// successor block with only two different constant values, try to replace the |
| /// switch with a select. Returns true if the fold was made. |
| static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, |
| DomTreeUpdater *DTU, const DataLayout &DL, |
| const TargetTransformInfo &TTI) { |
| Value *const Cond = SI->getCondition(); |
| PHINode *PHI = nullptr; |
| BasicBlock *CommonDest = nullptr; |
| Constant *DefaultResult; |
| SwitchCaseResultVectorTy UniqueResults; |
| // Collect all the cases that will deliver the same value from the switch. |
| if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, |
| DL, TTI, /*MaxUniqueResults*/ 2)) |
| return false; |
| |
| assert(PHI != nullptr && "PHI for value select not found"); |
| Builder.SetInsertPoint(SI); |
| Value *SelectValue = |
| foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); |
| if (!SelectValue) |
| return false; |
| |
| removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); |
| return true; |
| } |
| |
| namespace { |
| |
| /// This class represents a lookup table that can be used to replace a switch. |
| class SwitchLookupTable { |
| public: |
| /// Create a lookup table to use as a switch replacement with the contents |
| /// of Values, using DefaultValue to fill any holes in the table. |
| SwitchLookupTable( |
| Module &M, uint64_t TableSize, ConstantInt *Offset, |
| const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, |
| Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); |
| |
| /// Build instructions with Builder to retrieve the value at |
| /// the position given by Index in the lookup table. |
| Value *BuildLookup(Value *Index, IRBuilder<> &Builder); |
| |
| /// Return true if a table with TableSize elements of |
| /// type ElementType would fit in a target-legal register. |
| static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, |
| Type *ElementType); |
| |
| private: |
| // Depending on the contents of the table, it can be represented in |
| // different ways. |
| enum { |
| // For tables where each element contains the same value, we just have to |
| // store that single value and return it for each lookup. |
| SingleValueKind, |
| |
| // For tables where there is a linear relationship between table index |
| // and values. We calculate the result with a simple multiplication |
| // and addition instead of a table lookup. |
| LinearMapKind, |
| |
| // For small tables with integer elements, we can pack them into a bitmap |
| // that fits into a target-legal register. Values are retrieved by |
| // shift and mask operations. |
| BitMapKind, |
| |
| // The table is stored as an array of values. Values are retrieved by load |
| // instructions from the table. |
| ArrayKind |
| } Kind; |
| |
| // For SingleValueKind, this is the single value. |
| Constant *SingleValue = nullptr; |
| |
| // For BitMapKind, this is the bitmap. |
| ConstantInt *BitMap = nullptr; |
| IntegerType *BitMapElementTy = nullptr; |
| |
| // For LinearMapKind, these are the constants used to derive the value. |
| ConstantInt *LinearOffset = nullptr; |
| ConstantInt *LinearMultiplier = nullptr; |
| |
| // For ArrayKind, this is the array. |
| GlobalVariable *Array = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| SwitchLookupTable::SwitchLookupTable( |
| Module &M, uint64_t TableSize, ConstantInt *Offset, |
| const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, |
| Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { |
| assert(Values.size() && "Can't build lookup table without values!"); |
| assert(TableSize >= Values.size() && "Can't fit values in table!"); |
| |
| // If all values in the table are equal, this is that value. |
| SingleValue = Values.begin()->second; |
| |
| Type *ValueType = Values.begin()->second->getType(); |
| |
| // Build up the table contents. |
| SmallVector<Constant *, 64> TableContents(TableSize); |
| for (size_t I = 0, E = Values.size(); I != E; ++I) { |
| ConstantInt *CaseVal = Values[I].first; |
| Constant *CaseRes = Values[I].second; |
| assert(CaseRes->getType() == ValueType); |
| |
| uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); |
| TableContents[Idx] = CaseRes; |
| |
| if (CaseRes != SingleValue) |
| SingleValue = nullptr; |
| } |
| |
| // Fill in any holes in the table with the default result. |
| if (Values.size() < TableSize) { |
| assert(DefaultValue && |
| "Need a default value to fill the lookup table holes."); |
| assert(DefaultValue->getType() == ValueType); |
| for (uint64_t I = 0; I < TableSize; ++I) { |
| if (!TableContents[I]) |
| TableContents[I] = DefaultValue; |
| } |
| |
| if (DefaultValue != SingleValue) |
| SingleValue = nullptr; |
| } |
| |
| // If each element in the table contains the same value, we only need to store |
| // that single value. |
| if (SingleValue) { |
| Kind = SingleValueKind; |
| return; |
| } |
| |
| // Check if we can derive the value with a linear transformation from the |
| // table index. |
| if (isa<IntegerType>(ValueType)) { |
| bool LinearMappingPossible = true; |
| APInt PrevVal; |
| APInt DistToPrev; |
| assert(TableSize >= 2 && "Should be a SingleValue table."); |
| // Check if there is the same distance between two consecutive values. |
| for (uint64_t I = 0; I < TableSize; ++I) { |
| ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); |
| if (!ConstVal) { |
| // This is an undef. We could deal with it, but undefs in lookup tables |
| // are very seldom. It's probably not worth the additional complexity. |
| LinearMappingPossible = false; |
| break; |
| } |
| const APInt &Val = ConstVal->getValue(); |
| if (I != 0) { |
| APInt Dist = Val - PrevVal; |
| if (I == 1) { |
| DistToPrev = Dist; |
| } else if (Dist != DistToPrev) { |
| LinearMappingPossible = false; |
| break; |
| } |
| } |
| PrevVal = Val; |
| } |
| if (LinearMappingPossible) { |
| LinearOffset = cast<ConstantInt>(TableContents[0]); |
| LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); |
| Kind = LinearMapKind; |
| ++NumLinearMaps; |
| return; |
| } |
| } |
| |
| // If the type is integer and the table fits in a register, build a bitmap. |
| if (WouldFitInRegister(DL, TableSize, ValueType)) { |
| IntegerType *IT = cast<IntegerType>(ValueType); |
| APInt TableInt(TableSize * IT->getBitWidth(), 0); |
| for (uint64_t I = TableSize; I > 0; --I) { |
| TableInt <<= IT->getBitWidth(); |
| // Insert values into the bitmap. Undef values are set to zero. |
| if (!isa<UndefValue>(TableContents[I - 1])) { |
| ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); |
| TableInt |= Val->getValue().zext(TableInt.getBitWidth()); |
| } |
| } |
| BitMap = ConstantInt::get(M.getContext(), TableInt); |
| BitMapElementTy = IT; |
| Kind = BitMapKind; |
| ++NumBitMaps; |
| return; |
| } |
| |
| // Store the table in an array. |
| ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); |
| Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); |
| |
| Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, |
| GlobalVariable::PrivateLinkage, Initializer, |
| "switch.table." + FuncName); |
| Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| // Set the alignment to that of an array items. We will be only loading one |
| // value out of it. |
| Array->setAlignment(DL.getPrefTypeAlign(ValueType)); |
| Kind = ArrayKind; |
| } |
| |
| Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { |
| switch (Kind) { |
| case SingleValueKind: |
| return SingleValue; |
| case LinearMapKind: { |
| // Derive the result value from the input value. |
| Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), |
| false, "switch.idx.cast"); |
| if (!LinearMultiplier->isOne()) |
| Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); |
| if (!LinearOffset->isZero()) |
| Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); |
| return Result; |
| } |
| case BitMapKind: { |
| // Type of the bitmap (e.g. i59). |
| IntegerType *MapTy = BitMap->getType(); |
| |
| // Cast Index to the same type as the bitmap. |
| // Note: The Index is <= the number of elements in the table, so |
| // truncating it to the width of the bitmask is safe. |
| Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); |
| |
| // Multiply the shift amount by the element width. |
| ShiftAmt = Builder.CreateMul( |
| ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), |
| "switch.shiftamt"); |
| |
| // Shift down. |
| Value *DownShifted = |
| Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); |
| // Mask off. |
| return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); |
| } |
| case ArrayKind: { |
| // Make sure the table index will not overflow when treated as signed. |
| IntegerType *IT = cast<IntegerType>(Index->getType()); |
| uint64_t TableSize = |
| Array->getInitializer()->getType()->getArrayNumElements(); |
| if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) |
| Index = Builder.CreateZExt( |
| Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), |
| "switch.tableidx.zext"); |
| |
| Value *GEPIndices[] = {Builder.getInt32(0), Index}; |
| Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, |
| GEPIndices, "switch.gep"); |
| return Builder.CreateLoad( |
| cast<ArrayType>(Array->getValueType())->getElementType(), GEP, |
| "switch.load"); |
| } |
| } |
| llvm_unreachable("Unknown lookup table kind!"); |
| } |
| |
| bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, |
| uint64_t TableSize, |
| Type *ElementType) { |
| auto *IT = dyn_cast<IntegerType>(ElementType); |
| if (!IT) |
| return false; |
| // FIXME: If the type is wider than it needs to be, e.g. i8 but all values |
| // are <= 15, we could try to narrow the type. |
| |
| // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. |
| if (TableSize >= UINT_MAX / IT->getBitWidth()) |
| return false; |
| return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); |
| } |
| |
| static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, |
| const DataLayout &DL) { |
| // Allow any legal type. |
| if (TTI.isTypeLegal(Ty)) |
| return true; |
| |
| auto *IT = dyn_cast<IntegerType>(Ty); |
| if (!IT) |
| return false; |
| |
| // Also allow power of 2 integer types that have at least 8 bits and fit in |
| // a register. These types are common in frontend languages and targets |
| // usually support loads of these types. |
| // TODO: We could relax this to any integer that fits in a register and rely |
| // on ABI alignment and padding in the table to allow the load to be widened. |
| // Or we could widen the constants and truncate the load. |
| unsigned BitWidth = IT->getBitWidth(); |
| return BitWidth >= 8 && isPowerOf2_32(BitWidth) && |
| DL.fitsInLegalInteger(IT->getBitWidth()); |
| } |
| |
| static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { |
| // 40% is the default density for building a jump table in optsize/minsize |
| // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this |
| // function was based on. |
| const uint64_t MinDensity = 40; |
| |
| if (CaseRange >= UINT64_MAX / 100) |
| return false; // Avoid multiplication overflows below. |
| |
| return NumCases * 100 >= CaseRange * MinDensity; |
| } |
| |
| static bool isSwitchDense(ArrayRef<int64_t> Values) { |
| uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); |
| uint64_t Range = Diff + 1; |
| if (Range < Diff) |
| return false; // Overflow. |
| |
| return isSwitchDense(Values.size(), Range); |
| } |
| |
| /// Determine whether a lookup table should be built for this switch, based on |
| /// the number of cases, size of the table, and the types of the results. |
| // TODO: We could support larger than legal types by limiting based on the |
| // number of loads required and/or table size. If the constants are small we |
| // could use smaller table entries and extend after the load. |
| static bool |
| ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, |
| const TargetTransformInfo &TTI, const DataLayout &DL, |
| const SmallDenseMap<PHINode *, Type *> &ResultTypes) { |
| if (SI->getNumCases() > TableSize) |
| return false; // TableSize overflowed. |
| |
| bool AllTablesFitInRegister = true; |
| bool HasIllegalType = false; |
| for (const auto &I : ResultTypes) { |
| Type *Ty = I.second; |
| |
| // Saturate this flag to true. |
| HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); |
| |
| // Saturate this flag to false. |
| AllTablesFitInRegister = |
| AllTablesFitInRegister && |
| SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); |
| |
| // If both flags saturate, we're done. NOTE: This *only* works with |
| // saturating flags, and all flags have to saturate first due to the |
| // non-deterministic behavior of iterating over a dense map. |
| if (HasIllegalType && !AllTablesFitInRegister) |
| break; |
| } |
| |
| // If each table would fit in a register, we should build it anyway. |
| if (AllTablesFitInRegister) |
| return true; |
| |
| // Don't build a table that doesn't fit in-register if it has illegal types. |
| if (HasIllegalType) |
| return false; |
| |
| return isSwitchDense(SI->getNumCases(), TableSize); |
| } |
| |
| static bool ShouldUseSwitchConditionAsTableIndex( |
| ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, |
| bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, |
| const DataLayout &DL, const TargetTransformInfo &TTI) { |
| if (MinCaseVal.isNullValue()) |
| return true; |
| if (MinCaseVal.isNegative() || |
| MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || |
| !HasDefaultResults) |
| return false; |
| return all_of(ResultTypes, [&](const auto &KV) { |
| return SwitchLookupTable::WouldFitInRegister( |
| DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, |
| KV.second /* ResultType */); |
| }); |
| } |
| |
| /// Try to reuse the switch table index compare. Following pattern: |
| /// \code |
| /// if (idx < tablesize) |
| /// r = table[idx]; // table does not contain default_value |
| /// else |
| /// r = default_value; |
| /// if (r != default_value) |
| /// ... |
| /// \endcode |
| /// Is optimized to: |
| /// \code |
| /// cond = idx < tablesize; |
| /// if (cond) |
| /// r = table[idx]; |
| /// else |
| /// r = default_value; |
| /// if (cond) |
| /// ... |
| /// \endcode |
| /// Jump threading will then eliminate the second if(cond). |
| static void reuseTableCompare( |
| User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, |
| Constant *DefaultValue, |
| const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { |
| ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); |
| if (!CmpInst) |
| return; |
| |
| // We require that the compare is in the same block as the phi so that jump |
| // threading can do its work afterwards. |
| if (CmpInst->getParent() != PhiBlock) |
| return; |
| |
| Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); |
| if (!CmpOp1) |
| return; |
| |
| Value *RangeCmp = RangeCheckBranch->getCondition(); |
| Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); |
| Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); |
| |
| // Check if the compare with the default value is constant true or false. |
| Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), |
| DefaultValue, CmpOp1, true); |
| if (DefaultConst != TrueConst && DefaultConst != FalseConst) |
| return; |
| |
| // Check if the compare with the case values is distinct from the default |
| // compare result. |
| for (auto ValuePair : Values) { |
| Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), |
| ValuePair.second, CmpOp1, true); |
| if (!CaseConst || CaseConst == DefaultConst || |
| (CaseConst != TrueConst && CaseConst != FalseConst)) |
| return; |
| } |
| |
| // Check if the branch instruction dominates the phi node. It's a simple |
| // dominance check, but sufficient for our needs. |
| // Although this check is invariant in the calling loops, it's better to do it |
| // at this late stage. Practically we do it at most once for a switch. |
| BasicBlock *BranchBlock = RangeCheckBranch->getParent(); |
| for (BasicBlock *Pred : predecessors(PhiBlock)) { |
| if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) |
| return; |
| } |
| |
| if (DefaultConst == FalseConst) { |
| // The compare yields the same result. We can replace it. |
| CmpInst->replaceAllUsesWith(RangeCmp); |
| ++NumTableCmpReuses; |
| } else { |
| // The compare yields the same result, just inverted. We can replace it. |
| Value *InvertedTableCmp = BinaryOperator::CreateXor( |
| RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", |
| RangeCheckBranch); |
| CmpInst->replaceAllUsesWith(InvertedTableCmp); |
| ++NumTableCmpReuses; |
| } |
| } |
| |
| /// If the switch is only used to initialize one or more phi nodes in a common |
| /// successor block with different constant values, replace the switch with |
| /// lookup tables. |
| static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, |
| DomTreeUpdater *DTU, const DataLayout &DL, |
| const TargetTransformInfo &TTI) { |
| assert(SI->getNumCases() > 1 && "Degenerate switch?"); |
| |
| BasicBlock *BB = SI->getParent(); |
| Function *Fn = BB->getParent(); |
| // Only build lookup table when we have a target that supports it or the |
| // attribute is not set. |
| if (!TTI.shouldBuildLookupTables() || |
| (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) |
| return false; |
| |
| // FIXME: If the switch is too sparse for a lookup table, perhaps we could |
| // split off a dense part and build a lookup table for that. |
| |
| // FIXME: This creates arrays of GEPs to constant strings, which means each |
| // GEP needs a runtime relocation in PIC code. We should just build one big |
| // string and lookup indices into that. |
| |
| // Ignore switches with less than three cases. Lookup tables will not make |
| // them faster, so we don't analyze them. |
| if (SI->getNumCases() < 3) |
| return false; |
| |
| // Figure out the corresponding result for each case value and phi node in the |
| // common destination, as well as the min and max case values. |
| assert(!SI->cases().empty()); |
| SwitchInst::CaseIt CI = SI->case_begin(); |
| ConstantInt *MinCaseVal = CI->getCaseValue(); |
| ConstantInt *MaxCaseVal = CI->getCaseValue(); |
| |
| BasicBlock *CommonDest = nullptr; |
| |
| using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; |
| SmallDenseMap<PHINode *, ResultListTy> ResultLists; |
| |
| SmallDenseMap<PHINode *, Constant *> DefaultResults; |
| SmallDenseMap<PHINode *, Type *> ResultTypes; |
| SmallVector<PHINode *, 4> PHIs; |
| |
| for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { |
| ConstantInt *CaseVal = CI->getCaseValue(); |
| if (CaseVal->getValue().slt(MinCaseVal->getValue())) |
| MinCaseVal = CaseVal; |
| if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) |
| MaxCaseVal = CaseVal; |
| |
| // Resulting value at phi nodes for this case value. |
| using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; |
| ResultsTy Results; |
| if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, |
| Results, DL, TTI)) |
| return false; |
| |
| // Append the result from this case to the list for each phi. |
| for (const auto &I : Results) { |
| PHINode *PHI = I.first; |
| Constant *Value = I.second; |
| if (!ResultLists.count(PHI)) |
| PHIs.push_back(PHI); |
| ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); |
| } |
| } |
| |
| // Keep track of the result types. |
| for (PHINode *PHI : PHIs) { |
| ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); |
| } |
| |
| uint64_t NumResults = ResultLists[PHIs[0]].size(); |
| |
| // If the table has holes, we need a constant result for the default case |
| // or a bitmask that fits in a register. |
| SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; |
| bool HasDefaultResults = |
| getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, |
| DefaultResultsList, DL, TTI); |
| |
| for (const auto &I : DefaultResultsList) { |
| PHINode *PHI = I.first; |
| Constant *Result = I.second; |
| DefaultResults[PHI] = Result; |
| } |
| |
| bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex( |
| *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); |
| uint64_t TableSize; |
| if (UseSwitchConditionAsTableIndex) |
| TableSize = MaxCaseVal->getLimitedValue() + 1; |
| else |
| TableSize = |
| (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; |
| |
| bool TableHasHoles = (NumResults < TableSize); |
| bool NeedMask = (TableHasHoles && !HasDefaultResults); |
| if (NeedMask) { |
| // As an extra penalty for the validity test we require more cases. |
| if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). |
| return false; |
| if (!DL.fitsInLegalInteger(TableSize)) |
| return false; |
| } |
| |
| if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) |
| return false; |
| |
| std::vector<DominatorTree::UpdateType> Updates; |
| |
| // Create the BB that does the lookups. |
| Module &Mod = *CommonDest->getParent()->getParent(); |
| BasicBlock *LookupBB = BasicBlock::Create( |
| Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); |
| |
| // Compute the table index value. |
| Builder.SetInsertPoint(SI); |
| Value *TableIndex; |
| ConstantInt *TableIndexOffset; |
| if (UseSwitchConditionAsTableIndex) { |
| TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0); |
| TableIndex = SI->getCondition(); |
| } else { |
| TableIndexOffset = MinCaseVal; |
| TableIndex = |
| Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx"); |
| } |
| |
| // Compute the maximum table size representable by the integer type we are |
| // switching upon. |
| unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); |
| uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; |
| assert(MaxTableSize >= TableSize && |
| "It is impossible for a switch to have more entries than the max " |
| "representable value of its input integer type's size."); |
| |
| // If the default destination is unreachable, or if the lookup table covers |
| // all values of the conditional variable, branch directly to the lookup table |
| // BB. Otherwise, check that the condition is within the case range. |
| const bool DefaultIsReachable = |
| !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); |
| const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); |
| BranchInst *RangeCheckBranch = nullptr; |
| |
| if (!DefaultIsReachable || GeneratingCoveredLookupTable) { |
| Builder.CreateBr(LookupBB); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, BB, LookupBB}); |
| // Note: We call removeProdecessor later since we need to be able to get the |
| // PHI value for the default case in case we're using a bit mask. |
| } else { |
| Value *Cmp = Builder.CreateICmpULT( |
| TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); |
| RangeCheckBranch = |
| Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, BB, LookupBB}); |
| } |
| |
| // Populate the BB that does the lookups. |
| Builder.SetInsertPoint(LookupBB); |
| |
| if (NeedMask) { |
| // Before doing the lookup, we do the hole check. The LookupBB is therefore |
| // re-purposed to do the hole check, and we create a new LookupBB. |
| BasicBlock *MaskBB = LookupBB; |
| MaskBB->setName("switch.hole_check"); |
| LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", |
| CommonDest->getParent(), CommonDest); |
| |
| // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid |
| // unnecessary illegal types. |
| uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); |
| APInt MaskInt(TableSizePowOf2, 0); |
| APInt One(TableSizePowOf2, 1); |
| // Build bitmask; fill in a 1 bit for every case. |
| const ResultListTy &ResultList = ResultLists[PHIs[0]]; |
| for (size_t I = 0, E = ResultList.size(); I != E; ++I) { |
| uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) |
| .getLimitedValue(); |
| MaskInt |= One << Idx; |
| } |
| ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); |
| |
| // Get the TableIndex'th bit of the bitmask. |
| // If this bit is 0 (meaning hole) jump to the default destination, |
| // else continue with table lookup. |
| IntegerType *MapTy = TableMask->getType(); |
| Value *MaskIndex = |
| Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); |
| Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); |
| Value *LoBit = Builder.CreateTrunc( |
| Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); |
| Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); |
| Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); |
| } |
| Builder.SetInsertPoint(LookupBB); |
| AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); |
| } |
| |
| if (!DefaultIsReachable || GeneratingCoveredLookupTable) { |
| // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, |
| // do not delete PHINodes here. |
| SI->getDefaultDest()->removePredecessor(BB, |
| /*KeepOneInputPHIs=*/true); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); |
| } |
| |
| for (PHINode *PHI : PHIs) { |
| const ResultListTy &ResultList = ResultLists[PHI]; |
| |
| // If using a bitmask, use any value to fill the lookup table holes. |
| Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; |
| StringRef FuncName = Fn->getName(); |
| SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, |
| DL, FuncName); |
| |
| Value *Result = Table.BuildLookup(TableIndex, Builder); |
| |
| // Do a small peephole optimization: re-use the switch table compare if |
| // possible. |
| if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { |
| BasicBlock *PhiBlock = PHI->getParent(); |
| // Search for compare instructions which use the phi. |
| for (auto *User : PHI->users()) { |
| reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); |
| } |
| } |
| |
| PHI->addIncoming(Result, LookupBB); |
| } |
| |
| Builder.CreateBr(CommonDest); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); |
| |
| // Remove the switch. |
| SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; |
| for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { |
| BasicBlock *Succ = SI->getSuccessor(i); |
| |
| if (Succ == SI->getDefaultDest()) |
| continue; |
| Succ->removePredecessor(BB); |
| if (DTU && RemovedSuccessors.insert(Succ).second) |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| SI->eraseFromParent(); |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| ++NumLookupTables; |
| if (NeedMask) |
| ++NumLookupTablesHoles; |
| return true; |
| } |
| |
| /// Try to transform a switch that has "holes" in it to a contiguous sequence |
| /// of cases. |
| /// |
| /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be |
| /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. |
| /// |
| /// This converts a sparse switch into a dense switch which allows better |
| /// lowering and could also allow transforming into a lookup table. |
| static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, |
| const DataLayout &DL, |
| const TargetTransformInfo &TTI) { |
| auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); |
| if (CondTy->getIntegerBitWidth() > 64 || |
| !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) |
| return false; |
| // Only bother with this optimization if there are more than 3 switch cases; |
| // SDAG will only bother creating jump tables for 4 or more cases. |
| if (SI->getNumCases() < 4) |
| return false; |
| |
| // This transform is agnostic to the signedness of the input or case values. We |
| // can treat the case values as signed or unsigned. We can optimize more common |
| // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values |
| // as signed. |
| SmallVector<int64_t,4> Values; |
| for (const auto &C : SI->cases()) |
| Values.push_back(C.getCaseValue()->getValue().getSExtValue()); |
| llvm::sort(Values); |
| |
| // If the switch is already dense, there's nothing useful to do here. |
| if (isSwitchDense(Values)) |
| return false; |
| |
| // First, transform the values such that they start at zero and ascend. |
| int64_t Base = Values[0]; |
| for (auto &V : Values) |
| V -= (uint64_t)(Base); |
| |
| // Now we have signed numbers that have been shifted so that, given enough |
| // precision, there are no negative values. Since the rest of the transform |
| // is bitwise only, we switch now to an unsigned representation. |
| |
| // This transform can be done speculatively because it is so cheap - it |
| // results in a single rotate operation being inserted. |
| // FIXME: It's possible that optimizing a switch on powers of two might also |
| // be beneficial - flag values are often powers of two and we could use a CLZ |
| // as the key function. |
| |
| // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than |
| // one element and LLVM disallows duplicate cases, Shift is guaranteed to be |
| // less than 64. |
| unsigned Shift = 64; |
| for (auto &V : Values) |
| Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); |
| assert(Shift < 64); |
| if (Shift > 0) |
| for (auto &V : Values) |
| V = (int64_t)((uint64_t)V >> Shift); |
| |
| if (!isSwitchDense(Values)) |
| // Transform didn't create a dense switch. |
| return false; |
| |
| // The obvious transform is to shift the switch condition right and emit a |
| // check that the condition actually cleanly divided by GCD, i.e. |
| // C & (1 << Shift - 1) == 0 |
| // inserting a new CFG edge to handle the case where it didn't divide cleanly. |
| // |
| // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the |
| // shift and puts the shifted-off bits in the uppermost bits. If any of these |
| // are nonzero then the switch condition will be very large and will hit the |
| // default case. |
| |
| auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); |
| Builder.SetInsertPoint(SI); |
| auto *ShiftC = ConstantInt::get(Ty, Shift); |
| auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); |
| auto *LShr = Builder.CreateLShr(Sub, ShiftC); |
| auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); |
| auto *Rot = Builder.CreateOr(LShr, Shl); |
| SI->replaceUsesOfWith(SI->getCondition(), Rot); |
| |
| for (auto Case : SI->cases()) { |
| auto *Orig = Case.getCaseValue(); |
| auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); |
| Case.setValue( |
| cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); |
| } |
| return true; |
| } |
| |
| bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { |
| BasicBlock *BB = SI->getParent(); |
| |
| if (isValueEqualityComparison(SI)) { |
| // If we only have one predecessor, and if it is a branch on this value, |
| // see if that predecessor totally determines the outcome of this switch. |
| if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) |
| if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) |
| return requestResimplify(); |
| |
| Value *Cond = SI->getCondition(); |
| if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) |
| if (SimplifySwitchOnSelect(SI, Select)) |
| return requestResimplify(); |
| |
| // If the block only contains the switch, see if we can fold the block |
| // away into any preds. |
| if (SI == &*BB->instructionsWithoutDebug(false).begin()) |
| if (FoldValueComparisonIntoPredecessors(SI, Builder)) |
| return requestResimplify(); |
| } |
| |
| // Try to transform the switch into an icmp and a branch. |
| // The conversion from switch to comparison may lose information on |
| // impossible switch values, so disable it early in the pipeline. |
| if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) |
| return requestResimplify(); |
| |
| // Remove unreachable cases. |
| if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) |
| return requestResimplify(); |
| |
| if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) |
| return requestResimplify(); |
| |
| if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) |
| return requestResimplify(); |
| |
| // The conversion from switch to lookup tables results in difficult-to-analyze |
| // code and makes pruning branches much harder. This is a problem if the |
| // switch expression itself can still be restricted as a result of inlining or |
| // CVP. Therefore, only apply this transformation during late stages of the |
| // optimisation pipeline. |
| if (Options.ConvertSwitchToLookupTable && |
| SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) |
| return requestResimplify(); |
| |
| if (ReduceSwitchRange(SI, Builder, DL, TTI)) |
| return requestResimplify(); |
| |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { |
| BasicBlock *BB = IBI->getParent(); |
| bool Changed = false; |
| |
| // Eliminate redundant destinations. |
| SmallPtrSet<Value *, 8> Succs; |
| SmallSetVector<BasicBlock *, 8> RemovedSuccs; |
| for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| BasicBlock *Dest = IBI->getDestination(i); |
| if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { |
| if (!Dest->hasAddressTaken()) |
| RemovedSuccs.insert(Dest); |
| Dest->removePredecessor(BB); |
| IBI->removeDestination(i); |
| --i; |
| --e; |
| Changed = true; |
| } |
| } |
| |
| if (DTU) { |
| std::vector<DominatorTree::UpdateType> Updates; |
| Updates.reserve(RemovedSuccs.size()); |
| for (auto *RemovedSucc : RemovedSuccs) |
| Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| if (IBI->getNumDestinations() == 0) { |
| // If the indirectbr has no successors, change it to unreachable. |
| new UnreachableInst(IBI->getContext(), IBI); |
| EraseTerminatorAndDCECond(IBI); |
| return true; |
| } |
| |
| if (IBI->getNumDestinations() == 1) { |
| // If the indirectbr has one successor, change it to a direct branch. |
| BranchInst::Create(IBI->getDestination(0), IBI); |
| EraseTerminatorAndDCECond(IBI); |
| return true; |
| } |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { |
| if (SimplifyIndirectBrOnSelect(IBI, SI)) |
| return requestResimplify(); |
| } |
| return Changed; |
| } |
| |
| /// Given an block with only a single landing pad and a unconditional branch |
| /// try to find another basic block which this one can be merged with. This |
| /// handles cases where we have multiple invokes with unique landing pads, but |
| /// a shared handler. |
| /// |
| /// We specifically choose to not worry about merging non-empty blocks |
| /// here. That is a PRE/scheduling problem and is best solved elsewhere. In |
| /// practice, the optimizer produces empty landing pad blocks quite frequently |
| /// when dealing with exception dense code. (see: instcombine, gvn, if-else |
| /// sinking in this file) |
| /// |
| /// This is primarily a code size optimization. We need to avoid performing |
| /// any transform which might inhibit optimization (such as our ability to |
| /// specialize a particular handler via tail commoning). We do this by not |
| /// merging any blocks which require us to introduce a phi. Since the same |
| /// values are flowing through both blocks, we don't lose any ability to |
| /// specialize. If anything, we make such specialization more likely. |
| /// |
| /// TODO - This transformation could remove entries from a phi in the target |
| /// block when the inputs in the phi are the same for the two blocks being |
| /// merged. In some cases, this could result in removal of the PHI entirely. |
| static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, |
| BasicBlock *BB, DomTreeUpdater *DTU) { |
| auto Succ = BB->getUniqueSuccessor(); |
| assert(Succ); |
| // If there's a phi in the successor block, we'd likely have to introduce |
| // a phi into the merged landing pad block. |
| if (isa<PHINode>(*Succ->begin())) |
| return false; |
| |
| for (BasicBlock *OtherPred : predecessors(Succ)) { |
| if (BB == OtherPred) |
| continue; |
| BasicBlock::iterator I = OtherPred->begin(); |
| LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); |
| if (!LPad2 || !LPad2->isIdenticalTo(LPad)) |
| continue; |
| for (++I; isa<DbgInfoIntrinsic>(I); ++I) |
| ; |
| BranchInst *BI2 = dyn_cast<BranchInst>(I); |
| if (!BI2 || !BI2->isIdenticalTo(BI)) |
| continue; |
| |
| std::vector<DominatorTree::UpdateType> Updates; |
| |
| // We've found an identical block. Update our predecessors to take that |
| // path instead and make ourselves dead. |
| SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); |
| for (BasicBlock *Pred : UniquePreds) { |
| InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); |
| assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && |
| "unexpected successor"); |
| II->setUnwindDest(OtherPred); |
| if (DTU) { |
| Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); |
| Updates.push_back({DominatorTree::Delete, Pred, BB}); |
| } |
| } |
| |
| // The debug info in OtherPred doesn't cover the merged control flow that |
| // used to go through BB. We need to delete it or update it. |
| for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) |
| if (isa<DbgInfoIntrinsic>(Inst)) |
| Inst.eraseFromParent(); |
| |
| SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); |
| for (BasicBlock *Succ : UniqueSuccs) { |
| Succ->removePredecessor(BB); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| |
| IRBuilder<> Builder(BI); |
| Builder.CreateUnreachable(); |
| BI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { |
| return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) |
| : simplifyCondBranch(Branch, Builder); |
| } |
| |
| bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, |
| IRBuilder<> &Builder) { |
| BasicBlock *BB = BI->getParent(); |
| BasicBlock *Succ = BI->getSuccessor(0); |
| |
| // If the Terminator is the only non-phi instruction, simplify the block. |
| // If LoopHeader is provided, check if the block or its successor is a loop |
| // header. (This is for early invocations before loop simplify and |
| // vectorization to keep canonical loop forms for nested loops. These blocks |
| // can be eliminated when the pass is invoked later in the back-end.) |
| // Note that if BB has only one predecessor then we do not introduce new |
| // backedge, so we can eliminate BB. |
| bool NeedCanonicalLoop = |
| Options.NeedCanonicalLoop && |
| (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && |
| (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); |
| BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); |
| if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && |
| !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) |
| return true; |
| |
| // If the only instruction in the block is a seteq/setne comparison against a |
| // constant, try to simplify the block. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) |
| if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { |
| for (++I; isa<DbgInfoIntrinsic>(I); ++I) |
| ; |
| if (I->isTerminator() && |
| tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) |
| return true; |
| } |
| |
| // See if we can merge an empty landing pad block with another which is |
| // equivalent. |
| if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { |
| for (++I; isa<DbgInfoIntrinsic>(I); ++I) |
| ; |
| if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) |
| return true; |
| } |
| |
| // If this basic block is ONLY a compare and a branch, and if a predecessor |
| // branches to us and our successor, fold the comparison into the |
| // predecessor and use logical operations to update the incoming value |
| // for PHI nodes in common successor. |
| if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, |
| Options.BonusInstThreshold)) |
| return requestResimplify(); |
| return false; |
| } |
| |
| static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { |
| BasicBlock *PredPred = nullptr; |
| for (auto *P : predecessors(BB)) { |
| BasicBlock *PPred = P->getSinglePredecessor(); |
| if (!PPred || (PredPred && PredPred != PPred)) |
| return nullptr; |
| PredPred = PPred; |
| } |
| return PredPred; |
| } |
| |
| bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { |
| assert( |
| !isa<ConstantInt>(BI->getCondition()) && |
| BI->getSuccessor(0) != BI->getSuccessor(1) && |
| "Tautological conditional branch should have been eliminated already."); |
| |
| BasicBlock *BB = BI->getParent(); |
| if (!Options.SimplifyCondBranch) |
| return false; |
| |
| // Conditional branch |
| if (isValueEqualityComparison(BI)) { |
| // If we only have one predecessor, and if it is a branch on this value, |
| // see if that predecessor totally determines the outcome of this |
| // switch. |
| if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) |
| if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) |
| return requestResimplify(); |
| |
| // This block must be empty, except for the setcond inst, if it exists. |
| // Ignore dbg and pseudo intrinsics. |
| auto I = BB->instructionsWithoutDebug(true).begin(); |
| if (&*I == BI) { |
| if (FoldValueComparisonIntoPredecessors(BI, Builder)) |
| return requestResimplify(); |
| } else if (&*I == cast<Instruction>(BI->getCondition())) { |
| ++I; |
| if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) |
| return requestResimplify(); |
| } |
| } |
| |
| // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. |
| if (SimplifyBranchOnICmpChain(BI, Builder, DL)) |
| return true; |
| |
| // If this basic block has dominating predecessor blocks and the dominating |
| // blocks' conditions imply BI's condition, we know the direction of BI. |
| std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); |
| if (Imp) { |
| // Turn this into a branch on constant. |
| auto *OldCond = BI->getCondition(); |
| ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) |
| : ConstantInt::getFalse(BB->getContext()); |
| BI->setCondition(TorF); |
| RecursivelyDeleteTriviallyDeadInstructions(OldCond); |
| return requestResimplify(); |
| } |
| |
| // If this basic block is ONLY a compare and a branch, and if a predecessor |
| // branches to us and one of our successors, fold the comparison into the |
| // predecessor and use logical operations to pick the right destination. |
| if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, |
| Options.BonusInstThreshold)) |
| return requestResimplify(); |
| |
| // We have a conditional branch to two blocks that are only reachable |
| // from BI. We know that the condbr dominates the two blocks, so see if |
| // there is any identical code in the "then" and "else" blocks. If so, we |
| // can hoist it up to the branching block. |
| if (BI->getSuccessor(0)->getSinglePredecessor()) { |
| if (BI->getSuccessor(1)->getSinglePredecessor()) { |
| if (HoistCommon && |
| HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) |
| return requestResimplify(); |
| } else { |
| // If Successor #1 has multiple preds, we may be able to conditionally |
| // execute Successor #0 if it branches to Successor #1. |
| Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); |
| if (Succ0TI->getNumSuccessors() == 1 && |
| Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) |
| if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) |
| return requestResimplify(); |
| } |
| } else if (BI->getSuccessor(1)->getSinglePredecessor()) { |
| // If Successor #0 has multiple preds, we may be able to conditionally |
| // execute Successor #1 if it branches to Successor #0. |
| Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); |
| if (Succ1TI->getNumSuccessors() == 1 && |
| Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) |
| if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) |
| return requestResimplify(); |
| } |
| |
| // If this is a branch on something for which we know the constant value in |
| // predecessors (e.g. a phi node in the current block), thread control |
| // through this block. |
| if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) |
| return requestResimplify(); |
| |
| // Scan predecessor blocks for conditional branches. |
| for (BasicBlock *Pred : predecessors(BB)) |
| if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) |
| if (PBI != BI && PBI->isConditional()) |
| if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) |
| return requestResimplify(); |
| |
| // Look for diamond patterns. |
| if (MergeCondStores) |
| if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) |
| if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) |
| if (PBI != BI && PBI->isConditional()) |
| if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) |
| return requestResimplify(); |
| |
| return false; |
| } |
| |
| /// Check if passing a value to an instruction will cause undefined behavior. |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return false; |
| |
| if (I->use_empty()) |
| return false; |
| |
| if (C->isNullValue() || isa<UndefValue>(C)) { |
| // Only look at the first use, avoid hurting compile time with long uselists |
| auto *Use = cast<Instruction>(*I->user_begin()); |
| // Bail out if Use is not in the same BB as I or Use == I or Use comes |
| // before I in the block. The latter two can be the case if Use is a PHI |
| // node. |
| if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) |
| return false; |
| |
| // Now make sure that there are no instructions in between that can alter |
| // control flow (eg. calls) |
| auto InstrRange = |
| make_range(std::next(I->getIterator()), Use->getIterator()); |
| if (any_of(InstrRange, [](Instruction &I) { |
| return !isGuaranteedToTransferExecutionToSuccessor(&I); |
| })) |
| return false; |
| |
| // Look through GEPs. A load from a GEP derived from NULL is still undefined |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) |
| if (GEP->getPointerOperand() == I) { |
| if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) |
| PtrValueMayBeModified = true; |
| return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); |
| } |
| |
| // Look through bitcasts. |
| if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) |
| return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); |
| |
| // Load from null is undefined. |
| if (LoadInst *LI = dyn_cast<LoadInst>(Use)) |
| if (!LI->isVolatile()) |
| return !NullPointerIsDefined(LI->getFunction(), |
| LI->getPointerAddressSpace()); |
| |
| // Store to null is undefined. |
| if (StoreInst *SI = dyn_cast<StoreInst>(Use)) |
| if (!SI->isVolatile()) |
| return (!NullPointerIsDefined(SI->getFunction(), |
| SI->getPointerAddressSpace())) && |
| SI->getPointerOperand() == I; |
| |
| if (auto *CB = dyn_cast<CallBase>(Use)) { |
| if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) |
| return false; |
| // A call to null is undefined. |
| if (CB->getCalledOperand() == I) |
| return true; |
| |
| if (C->isNullValue()) { |
| for (const llvm::Use &Arg : CB->args()) |
| if (Arg == I) { |
| unsigned ArgIdx = CB->getArgOperandNo(&Arg); |
| if (CB->isPassingUndefUB(ArgIdx) && |
| CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { |
| // Passing null to a nonnnull+noundef argument is undefined. |
| return !PtrValueMayBeModified; |
| } |
| } |
| } else if (isa<UndefValue>(C)) { |
| // Passing undef to a noundef argument is undefined. |
| for (const llvm::Use &Arg : CB->args()) |
| if (Arg == I) { |
| unsigned ArgIdx = CB->getArgOperandNo(&Arg); |
| if (CB->isPassingUndefUB(ArgIdx)) { |
| // Passing undef to a noundef argument is undefined. |
| return true; |
| } |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// If BB has an incoming value that will always trigger undefined behavior |
| /// (eg. null pointer dereference), remove the branch leading here. |
| static bool removeUndefIntroducingPredecessor(BasicBlock *BB, |
| DomTreeUpdater *DTU) { |
| for (PHINode &PHI : BB->phis()) |
| for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) |
| if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { |
| BasicBlock *Predecessor = PHI.getIncomingBlock(i); |
| Instruction *T = Predecessor->getTerminator(); |
| IRBuilder<> Builder(T); |
| if (BranchInst *BI = dyn_cast<BranchInst>(T)) { |
| BB->removePredecessor(Predecessor); |
| // Turn unconditional branches into unreachables and remove the dead |
| // destination from conditional branches. |
| if (BI->isUnconditional()) |
| Builder.CreateUnreachable(); |
| else { |
| // Preserve guarding condition in assume, because it might not be |
| // inferrable from any dominating condition. |
| Value *Cond = BI->getCondition(); |
| if (BI->getSuccessor(0) == BB) |
| Builder.CreateAssumption(Builder.CreateNot(Cond)); |
| else |
| Builder.CreateAssumption(Cond); |
| Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) |
| : BI->getSuccessor(0)); |
| } |
| BI->eraseFromParent(); |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); |
| return true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { |
| // Redirect all branches leading to UB into |
| // a newly created unreachable block. |
| BasicBlock *Unreachable = BasicBlock::Create( |
| Predecessor->getContext(), "unreachable", BB->getParent(), BB); |
| Builder.SetInsertPoint(Unreachable); |
| // The new block contains only one instruction: Unreachable |
| Builder.CreateUnreachable(); |
| for (const auto &Case : SI->cases()) |
| if (Case.getCaseSuccessor() == BB) { |
| BB->removePredecessor(Predecessor); |
| Case.setSuccessor(Unreachable); |
| } |
| if (SI->getDefaultDest() == BB) { |
| BB->removePredecessor(Predecessor); |
| SI->setDefaultDest(Unreachable); |
| } |
| |
| if (DTU) |
| DTU->applyUpdates( |
| { { DominatorTree::Insert, Predecessor, Unreachable }, |
| { DominatorTree::Delete, Predecessor, BB } }); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { |
| bool Changed = false; |
| |
| assert(BB && BB->getParent() && "Block not embedded in function!"); |
| assert(BB->getTerminator() && "Degenerate basic block encountered!"); |
| |
| // Remove basic blocks that have no predecessors (except the entry block)... |
| // or that just have themself as a predecessor. These are unreachable. |
| if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || |
| BB->getSinglePredecessor() == BB) { |
| LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); |
| DeleteDeadBlock(BB, DTU); |
| return true; |
| } |
| |
| // Check to see if we can constant propagate this terminator instruction |
| // away... |
| Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, |
| /*TLI=*/nullptr, DTU); |
| |
| // Check for and eliminate duplicate PHI nodes in this block. |
| Changed |= EliminateDuplicatePHINodes(BB); |
| |
| // Check for and remove branches that will always cause undefined behavior. |
| if (removeUndefIntroducingPredecessor(BB, DTU)) |
| return requestResimplify(); |
| |
| // Merge basic blocks into their predecessor if there is only one distinct |
| // pred, and if there is only one distinct successor of the predecessor, and |
| // if there are no PHI nodes. |
| if (MergeBlockIntoPredecessor(BB, DTU)) |
| return true; |
| |
| if (SinkCommon && Options.SinkCommonInsts) |
| if (SinkCommonCodeFromPredecessors(BB, DTU) || |
| MergeCompatibleInvokes(BB, DTU)) { |
| // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, |
| // so we may now how duplicate PHI's. |
| // Let's rerun EliminateDuplicatePHINodes() first, |
| // before FoldTwoEntryPHINode() potentially converts them into select's, |
| // after which we'd need a whole EarlyCSE pass run to cleanup them. |
| return true; |
| } |
| |
| IRBuilder<> Builder(BB); |
| |
| if (Options.FoldTwoEntryPHINode) { |
| // If there is a trivial two-entry PHI node in this basic block, and we can |
| // eliminate it, do so now. |
| if (auto *PN = dyn_cast<PHINode>(BB->begin())) |
| if (PN->getNumIncomingValues() == 2) |
| if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) |
| return true; |
| } |
| |
| Instruction *Terminator = BB->getTerminator(); |
| Builder.SetInsertPoint(Terminator); |
| switch (Terminator->getOpcode()) { |
| case Instruction::Br: |
| Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); |
| break; |
| case Instruction::Resume: |
| Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); |
| break; |
| case Instruction::CleanupRet: |
| Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); |
| break; |
| case Instruction::Switch: |
| Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); |
| break; |
| case Instruction::Unreachable: |
| Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); |
| break; |
| case Instruction::IndirectBr: |
| Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); |
| break; |
| } |
| |
| return Changed; |
| } |
| |
| bool SimplifyCFGOpt::run(BasicBlock *BB) { |
| bool Changed = false; |
| |
| // Repeated simplify BB as long as resimplification is requested. |
| do { |
| Resimplify = false; |
| |
| // Perform one round of simplifcation. Resimplify flag will be set if |
| // another iteration is requested. |
| Changed |= simplifyOnce(BB); |
| } while (Resimplify); |
| |
| return Changed; |
| } |
| |
| bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, |
| DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, |
| ArrayRef<WeakVH> LoopHeaders) { |
| return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, |
| Options) |
| .run(BB); |
| } |