| // This file is part of ICU4X. For terms of use, please see the file |
| // called LICENSE at the top level of the ICU4X source tree |
| // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). |
| |
| use crate::store::*; |
| use alloc::borrow::Borrow; |
| use alloc::vec::Vec; |
| use core::cmp::Ordering; |
| use core::iter::FromIterator; |
| use core::marker::PhantomData; |
| use core::mem; |
| use core::ops::{Index, IndexMut}; |
| |
| /// A simple "flat" map based on a sorted vector |
| /// |
| /// See the [module level documentation][super] for why one should use this. |
| /// |
| /// The API is roughly similar to that of [`std::collections::BTreeMap`]. |
| #[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] |
| #[cfg_attr(feature = "yoke", derive(yoke::Yokeable))] |
| pub struct LiteMap<K: ?Sized, V: ?Sized, S = alloc::vec::Vec<(K, V)>> { |
| pub(crate) values: S, |
| pub(crate) _key_type: PhantomData<K>, |
| pub(crate) _value_type: PhantomData<V>, |
| } |
| |
| impl<K, V> LiteMap<K, V> { |
| /// Construct a new [`LiteMap`] backed by Vec |
| pub const fn new_vec() -> Self { |
| Self { |
| values: alloc::vec::Vec::new(), |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| } |
| } |
| } |
| |
| impl<K, V, S> LiteMap<K, V, S> { |
| /// Construct a new [`LiteMap`] using the given values |
| /// |
| /// The store must be sorted and have no duplicate keys. |
| pub const fn from_sorted_store_unchecked(values: S) -> Self { |
| Self { |
| values, |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| } |
| } |
| } |
| |
| impl<K, V> LiteMap<K, V, Vec<(K, V)>> { |
| /// Convert a [`LiteMap`] into a sorted `Vec<(K, V)>`. |
| #[inline] |
| pub fn into_tuple_vec(self) -> Vec<(K, V)> { |
| self.values |
| } |
| } |
| |
| impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S> |
| where |
| S: StoreConstEmpty<K, V>, |
| { |
| /// Create a new empty [`LiteMap`] |
| pub const fn new() -> Self { |
| Self { |
| values: S::EMPTY, |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| } |
| } |
| } |
| |
| impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S> |
| where |
| S: Store<K, V>, |
| { |
| /// The number of elements in the [`LiteMap`] |
| pub fn len(&self) -> usize { |
| self.values.lm_len() |
| } |
| |
| /// Whether the [`LiteMap`] is empty |
| pub fn is_empty(&self) -> bool { |
| self.values.lm_is_empty() |
| } |
| |
| /// Get the key-value pair residing at a particular index |
| /// |
| /// In most cases, prefer [`LiteMap::get()`] over this method. |
| #[inline] |
| pub fn get_indexed(&self, index: usize) -> Option<(&K, &V)> { |
| self.values.lm_get(index) |
| } |
| } |
| |
| impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: Store<K, V>, |
| { |
| /// Get the value associated with `key`, if it exists. |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// assert_eq!(map.get(&1), Some(&"one")); |
| /// assert_eq!(map.get(&3), None); |
| /// ``` |
| pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V> |
| where |
| K: Borrow<Q>, |
| Q: Ord, |
| { |
| match self.find_index(key) { |
| #[allow(clippy::unwrap_used)] // find_index returns a valid index |
| Ok(found) => Some(self.values.lm_get(found).unwrap().1), |
| Err(_) => None, |
| } |
| } |
| |
| /// Binary search the map with `predicate` to find a key, returning the value. |
| pub fn get_by(&self, predicate: impl FnMut(&K) -> Ordering) -> Option<&V> { |
| let index = self.values.lm_binary_search_by(predicate).ok()?; |
| self.values.lm_get(index).map(|(_, v)| v) |
| } |
| |
| /// Returns whether `key` is contained in this map |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// assert!(map.contains_key(&1)); |
| /// assert!(!map.contains_key(&3)); |
| /// ``` |
| pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool |
| where |
| K: Borrow<Q>, |
| Q: Ord, |
| { |
| self.find_index(key).is_ok() |
| } |
| |
| /// Get the lowest-rank key/value pair from the `LiteMap`, if it exists. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map: LiteMap<i32, &str, Vec<_>> = |
| /// LiteMap::from_iter([(1, "uno"), (3, "tres")].into_iter()); |
| /// |
| /// assert_eq!(map.first(), Some((&1, &"uno"))); |
| /// ``` |
| #[inline] |
| pub fn first(&self) -> Option<(&K, &V)> { |
| self.values.lm_get(0).map(|(k, v)| (k, v)) |
| } |
| |
| /// Get the highest-rank key/value pair from the `LiteMap`, if it exists. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map: LiteMap<i32, &str, Vec<_>> = |
| /// LiteMap::from_iter([(1, "uno"), (3, "tres")].into_iter()); |
| /// |
| /// assert_eq!(map.last(), Some((&3, &"tres"))); |
| /// ``` |
| #[inline] |
| pub fn last(&self) -> Option<(&K, &V)> { |
| self.values.lm_get(self.len() - 1).map(|(k, v)| (k, v)) |
| } |
| |
| /// Obtain the index for a given key, or if the key is not found, the index |
| /// at which it would be inserted. |
| /// |
| /// (The return value works equivalently to [`slice::binary_search_by()`]) |
| /// |
| /// The indices returned can be used with [`Self::get_indexed()`]. Prefer using |
| /// [`Self::get()`] directly where possible. |
| #[inline] |
| pub fn find_index<Q: ?Sized>(&self, key: &Q) -> Result<usize, usize> |
| where |
| K: Borrow<Q>, |
| Q: Ord, |
| { |
| self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) |
| } |
| } |
| |
| impl<K, V, S> LiteMap<K, V, S> |
| where |
| S: StoreMut<K, V>, |
| { |
| /// Construct a new [`LiteMap`] with a given capacity |
| pub fn with_capacity(capacity: usize) -> Self { |
| Self { |
| values: S::lm_with_capacity(capacity), |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| } |
| } |
| |
| /// Remove all elements from the [`LiteMap`] |
| pub fn clear(&mut self) { |
| self.values.lm_clear() |
| } |
| |
| /// Reserve capacity for `additional` more elements to be inserted into |
| /// the [`LiteMap`] to avoid frequent reallocations. |
| /// |
| /// See [`Vec::reserve()`] for more information. |
| /// |
| /// [`Vec::reserve()`]: alloc::vec::Vec::reserve |
| pub fn reserve(&mut self, additional: usize) { |
| self.values.lm_reserve(additional) |
| } |
| } |
| |
| impl<K, V, S> LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: StoreMut<K, V>, |
| { |
| /// Get the value associated with `key`, if it exists, as a mutable reference. |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// if let Some(mut v) = map.get_mut(&1) { |
| /// *v = "uno"; |
| /// } |
| /// assert_eq!(map.get(&1), Some(&"uno")); |
| /// ``` |
| pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V> |
| where |
| K: Borrow<Q>, |
| Q: Ord, |
| { |
| match self.find_index(key) { |
| #[allow(clippy::unwrap_used)] // find_index returns a valid index |
| Ok(found) => Some(self.values.lm_get_mut(found).unwrap().1), |
| Err(_) => None, |
| } |
| } |
| |
| /// Appends `value` with `key` to the end of the underlying vector, returning |
| /// `key` and `value` _if it failed_. Useful for extending with an existing |
| /// sorted list. |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// assert!(map.try_append(1, "uno").is_none()); |
| /// assert!(map.try_append(3, "tres").is_none()); |
| /// |
| /// assert!( |
| /// matches!(map.try_append(3, "tres-updated"), Some((3, "tres-updated"))), |
| /// "append duplicate of last key", |
| /// ); |
| /// |
| /// assert!( |
| /// matches!(map.try_append(2, "dos"), Some((2, "dos"))), |
| /// "append out of order" |
| /// ); |
| /// |
| /// assert_eq!(map.get(&1), Some(&"uno")); |
| /// |
| /// // contains the original value for the key: 3 |
| /// assert_eq!(map.get(&3), Some(&"tres")); |
| /// |
| /// // not appended since it wasn't in order |
| /// assert_eq!(map.get(&2), None); |
| /// ``` |
| #[must_use] |
| pub fn try_append(&mut self, key: K, value: V) -> Option<(K, V)> { |
| if let Some(last) = self.values.lm_last() { |
| if last.0 >= &key { |
| return Some((key, value)); |
| } |
| } |
| |
| self.values.lm_push(key, value); |
| None |
| } |
| |
| /// Insert `value` with `key`, returning the existing value if it exists. |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// assert_eq!(map.get(&1), Some(&"one")); |
| /// assert_eq!(map.get(&3), None); |
| /// ``` |
| pub fn insert(&mut self, key: K, value: V) -> Option<V> { |
| self.insert_save_key(key, value).map(|(_, v)| v) |
| } |
| |
| /// Version of [`Self::insert()`] that returns both the key and the old value. |
| fn insert_save_key(&mut self, key: K, value: V) -> Option<(K, V)> { |
| match self.values.lm_binary_search_by(|k| k.cmp(&key)) { |
| #[allow(clippy::unwrap_used)] // Index came from binary_search |
| Ok(found) => Some(( |
| key, |
| mem::replace(self.values.lm_get_mut(found).unwrap().1, value), |
| )), |
| Err(ins) => { |
| self.values.lm_insert(ins, key, value); |
| None |
| } |
| } |
| } |
| |
| /// Attempts to insert a unique entry into the map. |
| /// |
| /// If `key` is not already in the map, inserts it with the corresponding `value` |
| /// and returns `None`. |
| /// |
| /// If `key` is already in the map, no change is made to the map, and the key and value |
| /// are returned back to the caller. |
| /// |
| /// ``` |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(3, "three"); |
| /// |
| /// // 2 is not yet in the map... |
| /// assert_eq!(map.try_insert(2, "two"), None); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // ...but now it is. |
| /// assert_eq!(map.try_insert(2, "TWO"), Some((2, "TWO"))); |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| pub fn try_insert(&mut self, key: K, value: V) -> Option<(K, V)> { |
| match self.values.lm_binary_search_by(|k| k.cmp(&key)) { |
| Ok(_) => Some((key, value)), |
| Err(ins) => { |
| self.values.lm_insert(ins, key, value); |
| None |
| } |
| } |
| } |
| |
| /// Remove the value at `key`, returning it if it exists. |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// assert_eq!(map.remove(&1), Some("one")); |
| /// assert_eq!(map.get(&1), None); |
| /// ``` |
| pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> |
| where |
| K: Borrow<Q>, |
| Q: Ord, |
| { |
| match self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) { |
| Ok(found) => Some(self.values.lm_remove(found).1), |
| Err(_) => None, |
| } |
| } |
| } |
| |
| impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: StoreIterableMut<'a, K, V> + StoreFromIterator<K, V>, |
| { |
| /// Insert all elements from `other` into this `LiteMap`. |
| /// |
| /// If `other` contains keys that already exist in `self`, the values in `other` replace the |
| /// corresponding ones in `self`, and the rejected items from `self` are returned as a new |
| /// `LiteMap`. Otherwise, `None` is returned. |
| /// |
| /// The implementation of this function is optimized if `self` and `other` have no overlap. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map1 = LiteMap::new_vec(); |
| /// map1.insert(1, "one"); |
| /// map1.insert(2, "two"); |
| /// |
| /// let mut map2 = LiteMap::new_vec(); |
| /// map2.insert(2, "TWO"); |
| /// map2.insert(4, "FOUR"); |
| /// |
| /// let leftovers = map1.extend_from_litemap(map2); |
| /// |
| /// assert_eq!(map1.len(), 3); |
| /// assert_eq!(map1.get(&1), Some("one").as_ref()); |
| /// assert_eq!(map1.get(&2), Some("TWO").as_ref()); |
| /// assert_eq!(map1.get(&4), Some("FOUR").as_ref()); |
| /// |
| /// let map3 = leftovers.expect("Duplicate keys"); |
| /// assert_eq!(map3.len(), 1); |
| /// assert_eq!(map3.get(&2), Some("two").as_ref()); |
| /// ``` |
| pub fn extend_from_litemap(&mut self, other: Self) -> Option<Self> { |
| if self.is_empty() { |
| self.values = other.values; |
| return None; |
| } |
| if other.is_empty() { |
| return None; |
| } |
| if self.last().map(|(k, _)| k) < other.first().map(|(k, _)| k) { |
| // append other to self |
| self.values.lm_extend_end(other.values); |
| None |
| } else if self.first().map(|(k, _)| k) > other.last().map(|(k, _)| k) { |
| // prepend other to self |
| self.values.lm_extend_start(other.values); |
| None |
| } else { |
| // insert every element |
| let leftover_tuples = other |
| .values |
| .lm_into_iter() |
| .filter_map(|(k, v)| self.insert_save_key(k, v)) |
| .collect(); |
| let ret = LiteMap { |
| values: leftover_tuples, |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| }; |
| if ret.is_empty() { |
| None |
| } else { |
| Some(ret) |
| } |
| } |
| } |
| } |
| |
| impl<K, V, S> Default for LiteMap<K, V, S> |
| where |
| S: Store<K, V> + Default, |
| { |
| fn default() -> Self { |
| Self { |
| values: S::default(), |
| _key_type: PhantomData, |
| _value_type: PhantomData, |
| } |
| } |
| } |
| impl<K, V, S> Index<&'_ K> for LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: Store<K, V>, |
| { |
| type Output = V; |
| fn index(&self, key: &K) -> &V { |
| #[allow(clippy::panic)] // documented |
| match self.get(key) { |
| Some(v) => v, |
| None => panic!("no entry found for key"), |
| } |
| } |
| } |
| impl<K, V, S> IndexMut<&'_ K> for LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: StoreMut<K, V>, |
| { |
| fn index_mut(&mut self, key: &K) -> &mut V { |
| #[allow(clippy::panic)] // documented |
| match self.get_mut(key) { |
| Some(v) => v, |
| None => panic!("no entry found for key"), |
| } |
| } |
| } |
| impl<K, V, S> FromIterator<(K, V)> for LiteMap<K, V, S> |
| where |
| K: Ord, |
| S: StoreFromIterable<K, V>, |
| { |
| fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self { |
| let values = S::lm_sort_from_iter(iter); |
| Self::from_sorted_store_unchecked(values) |
| } |
| } |
| |
| impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S> |
| where |
| S: StoreIterable<'a, K, V>, |
| { |
| /// Produce an ordered iterator over key-value pairs |
| pub fn iter(&'a self) -> impl Iterator<Item = (&'a K, &'a V)> + DoubleEndedIterator { |
| self.values.lm_iter() |
| } |
| |
| /// Produce an ordered iterator over keys |
| pub fn iter_keys(&'a self) -> impl Iterator<Item = &'a K> + DoubleEndedIterator { |
| self.values.lm_iter().map(|val| val.0) |
| } |
| |
| /// Produce an iterator over values, ordered by their keys |
| pub fn iter_values(&'a self) -> impl Iterator<Item = &'a V> + DoubleEndedIterator { |
| self.values.lm_iter().map(|val| val.1) |
| } |
| } |
| |
| impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S> |
| where |
| S: StoreIterableMut<'a, K, V>, |
| { |
| /// Produce an ordered mutable iterator over key-value pairs |
| pub fn iter_mut( |
| &'a mut self, |
| ) -> impl Iterator<Item = (&'a K, &'a mut V)> + DoubleEndedIterator { |
| self.values.lm_iter_mut() |
| } |
| } |
| |
| impl<K, V, S> LiteMap<K, V, S> |
| where |
| S: StoreMut<K, V>, |
| { |
| /// Retains only the elements specified by the predicate. |
| /// |
| /// In other words, remove all elements such that `f((&k, &v))` returns `false`. |
| /// |
| /// # Example |
| /// |
| /// ```rust |
| /// use litemap::LiteMap; |
| /// |
| /// let mut map = LiteMap::new_vec(); |
| /// map.insert(1, "one"); |
| /// map.insert(2, "two"); |
| /// map.insert(3, "three"); |
| /// |
| /// // Retain elements with odd keys |
| /// map.retain(|k, _| k % 2 == 1); |
| /// |
| /// assert_eq!(map.get(&1), Some(&"one")); |
| /// assert_eq!(map.get(&2), None); |
| /// ``` |
| #[inline] |
| pub fn retain<F>(&mut self, predicate: F) |
| where |
| F: FnMut(&K, &V) -> bool, |
| { |
| self.values.lm_retain(predicate) |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use crate::LiteMap; |
| |
| #[test] |
| fn from_iterator() { |
| let mut expected = LiteMap::with_capacity(4); |
| expected.insert(1, "updated-one"); |
| expected.insert(2, "original-two"); |
| expected.insert(3, "original-three"); |
| expected.insert(4, "updated-four"); |
| |
| let actual = vec![ |
| (1, "original-one"), |
| (2, "original-two"), |
| (4, "original-four"), |
| (4, "updated-four"), |
| (1, "updated-one"), |
| (3, "original-three"), |
| ] |
| .into_iter() |
| .collect::<LiteMap<_, _>>(); |
| |
| assert_eq!(expected, actual); |
| } |
| fn make_13() -> LiteMap<usize, &'static str> { |
| let mut result = LiteMap::new(); |
| result.insert(1, "one"); |
| result.insert(3, "three"); |
| result |
| } |
| |
| fn make_24() -> LiteMap<usize, &'static str> { |
| let mut result = LiteMap::new(); |
| result.insert(2, "TWO"); |
| result.insert(4, "FOUR"); |
| result |
| } |
| |
| fn make_46() -> LiteMap<usize, &'static str> { |
| let mut result = LiteMap::new(); |
| result.insert(4, "four"); |
| result.insert(6, "six"); |
| result |
| } |
| |
| #[test] |
| fn extend_from_litemap_append() { |
| let mut map = LiteMap::new(); |
| map.extend_from_litemap(make_13()) |
| .ok_or(()) |
| .expect_err("Append to empty map"); |
| map.extend_from_litemap(make_46()) |
| .ok_or(()) |
| .expect_err("Append to lesser map"); |
| assert_eq!(map.len(), 4); |
| } |
| |
| #[test] |
| fn extend_from_litemap_prepend() { |
| let mut map = LiteMap::new(); |
| map.extend_from_litemap(make_46()) |
| .ok_or(()) |
| .expect_err("Prepend to empty map"); |
| map.extend_from_litemap(make_13()) |
| .ok_or(()) |
| .expect_err("Prepend to lesser map"); |
| assert_eq!(map.len(), 4); |
| } |
| |
| #[test] |
| fn extend_from_litemap_insert() { |
| let mut map = LiteMap::new(); |
| map.extend_from_litemap(make_13()) |
| .ok_or(()) |
| .expect_err("Append to empty map"); |
| map.extend_from_litemap(make_24()) |
| .ok_or(()) |
| .expect_err("Insert with no conflict"); |
| map.extend_from_litemap(make_46()) |
| .ok_or(()) |
| .expect("Insert with conflict"); |
| assert_eq!(map.len(), 5); |
| } |
| } |