| // This file is part of ICU4X. For terms of use, please see the file |
| // called LICENSE at the top level of the ICU4X source tree |
| // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). |
| |
| use crate::ule::*; |
| use crate::varzerovec::VarZeroVecFormat; |
| use crate::{VarZeroSlice, VarZeroVec, ZeroSlice, ZeroVec}; |
| use alloc::borrow::{Cow, ToOwned}; |
| use alloc::boxed::Box; |
| use alloc::string::String; |
| use alloc::vec::Vec; |
| use core::mem; |
| |
| /// Allows types to be encoded as VarULEs. This is highly useful for implementing VarULE on |
| /// custom DSTs where the type cannot be obtained as a reference to some other type. |
| /// |
| /// [`Self::encode_var_ule_as_slices()`] should be implemented by providing an encoded slice for each field |
| /// of the VarULE type to the callback, in order. For an implementation to be safe, the slices |
| /// to the callback must, when concatenated, be a valid instance of the VarULE type. |
| /// |
| /// See the [custom VarULEdocumentation](crate::ule::custom) for examples. |
| /// |
| /// [`Self::encode_var_ule_as_slices()`] is only used to provide default implementations for [`Self::encode_var_ule_write()`] |
| /// and [`Self::encode_var_ule_len()`]. If you override the default implementations it is totally valid to |
| /// replace [`Self::encode_var_ule_as_slices()`]'s body with `unreachable!()`. This can be done for cases where |
| /// it is not possible to implement [`Self::encode_var_ule_as_slices()`] but the other methods still work. |
| /// |
| /// A typical implementation will take each field in the order found in the [`VarULE`] type, |
| /// convert it to ULE, call [`ULE::as_byte_slice()`] on them, and pass the slices to `cb` in order. |
| /// A trailing [`ZeroVec`](crate::ZeroVec) or [`VarZeroVec`](crate::VarZeroVec) can have their underlying |
| /// byte representation passed through. |
| /// |
| /// In case the compiler is not optimizing [`Self::encode_var_ule_len()`], it can be overridden. A typical |
| /// implementation will add up the sizes of each field on the [`VarULE`] type and then add in the byte length of the |
| /// dynamically-sized part. |
| /// |
| /// # Safety |
| /// |
| /// The safety invariants of [`Self::encode_var_ule_as_slices()`] are: |
| /// - It must call `cb` (only once) |
| /// - The slices passed to `cb`, if concatenated, should be a valid instance of the `T` [`VarULE`] type |
| /// (i.e. if fed to [`VarULE::validate_byte_slice()`] they must produce a successful result) |
| /// - It must return the return value of `cb` to the caller |
| /// |
| /// One or more of [`Self::encode_var_ule_len()`] and [`Self::encode_var_ule_write()`] may be provided. |
| /// If both are, then `zerovec` code is guaranteed to not call [`Self::encode_var_ule_as_slices()`], and it may be replaced |
| /// with `unreachable!()`. |
| /// |
| /// The safety invariants of [`Self::encode_var_ule_len()`] are: |
| /// - It must return the length of the corresponding VarULE type |
| /// |
| /// The safety invariants of [`Self::encode_var_ule_write()`] are: |
| /// - The slice written to `dst` must be a valid instance of the `T` [`VarULE`] type |
| pub unsafe trait EncodeAsVarULE<T: VarULE + ?Sized> { |
| /// Calls `cb` with a piecewise list of byte slices that when concatenated |
| /// produce the memory pattern of the corresponding instance of `T`. |
| /// |
| /// Do not call this function directly; instead use the other two. Some implementors |
| /// may define this function to panic. |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R; |
| |
| /// Return the length, in bytes, of the corresponding [`VarULE`] type |
| fn encode_var_ule_len(&self) -> usize { |
| self.encode_var_ule_as_slices(|slices| slices.iter().map(|s| s.len()).sum()) |
| } |
| |
| /// Write the corresponding [`VarULE`] type to the `dst` buffer. `dst` should |
| /// be the size of [`Self::encode_var_ule_len()`] |
| fn encode_var_ule_write(&self, mut dst: &mut [u8]) { |
| debug_assert_eq!(self.encode_var_ule_len(), dst.len()); |
| self.encode_var_ule_as_slices(move |slices| { |
| #[allow(clippy::indexing_slicing)] // by debug_assert |
| for slice in slices { |
| dst[..slice.len()].copy_from_slice(slice); |
| dst = &mut dst[slice.len()..]; |
| } |
| }); |
| } |
| } |
| |
| /// Given an [`EncodeAsVarULE`] type `S`, encode it into a `Box<T>` |
| /// |
| /// This is primarily useful for generating `Deserialize` impls for VarULE types |
| pub fn encode_varule_to_box<S: EncodeAsVarULE<T>, T: VarULE + ?Sized>(x: &S) -> Box<T> { |
| let mut vec: Vec<u8> = Vec::new(); |
| // zero-fill the vector to avoid uninitialized data UB |
| vec.resize(x.encode_var_ule_len(), 0); |
| x.encode_var_ule_write(&mut vec); |
| let boxed = vec.into_boxed_slice(); |
| unsafe { |
| // Safety: `ptr` is a box, and `T` is a VarULE which guarantees it has the same memory layout as `[u8]` |
| // and can be recouped via from_byte_slice_unchecked() |
| let ptr: *mut T = T::from_byte_slice_unchecked(&boxed) as *const T as *mut T; |
| mem::forget(boxed); |
| |
| // Safety: we can construct an owned version since we have mem::forgotten the older owner |
| Box::from_raw(ptr) |
| } |
| } |
| |
| unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for T { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[T::as_byte_slice(self)]) |
| } |
| } |
| |
| unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for &'_ T { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[T::as_byte_slice(self)]) |
| } |
| } |
| |
| unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Cow<'_, T> |
| where |
| T: ToOwned, |
| { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[T::as_byte_slice(self.as_ref())]) |
| } |
| } |
| |
| unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Box<T> { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[T::as_byte_slice(self)]) |
| } |
| } |
| |
| unsafe impl EncodeAsVarULE<str> for String { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[self.as_bytes()]) |
| } |
| } |
| |
| // Note: This impl could technically use `T: AsULE`, but we want users to prefer `ZeroSlice<T>` |
| // for cases where T is not a ULE. Therefore, we can use the more efficient `memcpy` impl here. |
| unsafe impl<T> EncodeAsVarULE<[T]> for Vec<T> |
| where |
| T: ULE, |
| { |
| fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| cb(&[<[T] as VarULE>::as_byte_slice(self)]) |
| } |
| } |
| |
| unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for &'_ [T] |
| where |
| T: AsULE + 'static, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unreachable!() |
| } |
| |
| #[inline] |
| fn encode_var_ule_len(&self) -> usize { |
| self.len() * core::mem::size_of::<T::ULE>() |
| } |
| |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| #[allow(non_snake_case)] |
| let S = core::mem::size_of::<T::ULE>(); |
| debug_assert_eq!(self.len() * S, dst.len()); |
| for (item, ref mut chunk) in self.iter().zip(dst.chunks_mut(S)) { |
| let ule = item.to_unaligned(); |
| chunk.copy_from_slice(ULE::as_byte_slice(core::slice::from_ref(&ule))); |
| } |
| } |
| } |
| |
| unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for Vec<T> |
| where |
| T: AsULE + 'static, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unreachable!() |
| } |
| |
| #[inline] |
| fn encode_var_ule_len(&self) -> usize { |
| self.as_slice().encode_var_ule_len() |
| } |
| |
| #[inline] |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| self.as_slice().encode_var_ule_write(dst) |
| } |
| } |
| |
| unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for ZeroVec<'_, T> |
| where |
| T: AsULE + 'static, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unreachable!() |
| } |
| |
| #[inline] |
| fn encode_var_ule_len(&self) -> usize { |
| self.as_bytes().len() |
| } |
| |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| debug_assert_eq!(self.as_bytes().len(), dst.len()); |
| dst.copy_from_slice(self.as_bytes()); |
| } |
| } |
| |
| unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for &'_ [E] |
| where |
| T: VarULE + ?Sized, |
| E: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unimplemented!() |
| } |
| |
| #[allow(clippy::unwrap_used)] // TODO(#1410): Rethink length errors in VZV. |
| fn encode_var_ule_len(&self) -> usize { |
| crate::varzerovec::components::compute_serializable_len::<T, E, F>(self).unwrap() as usize |
| } |
| |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| crate::varzerovec::components::write_serializable_bytes::<T, E, F>(self, dst) |
| } |
| } |
| |
| unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for Vec<E> |
| where |
| T: VarULE + ?Sized, |
| E: EncodeAsVarULE<T>, |
| F: VarZeroVecFormat, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unreachable!() |
| } |
| |
| #[inline] |
| fn encode_var_ule_len(&self) -> usize { |
| <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_len(&self.as_slice()) |
| } |
| |
| #[inline] |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_write(&self.as_slice(), dst) |
| } |
| } |
| |
| unsafe impl<T, F> EncodeAsVarULE<VarZeroSlice<T, F>> for VarZeroVec<'_, T, F> |
| where |
| T: VarULE + ?Sized, |
| F: VarZeroVecFormat, |
| { |
| fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| // unnecessary if the other two are implemented |
| unreachable!() |
| } |
| |
| #[inline] |
| fn encode_var_ule_len(&self) -> usize { |
| self.as_bytes().len() |
| } |
| |
| #[inline] |
| fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| debug_assert_eq!(self.as_bytes().len(), dst.len()); |
| dst.copy_from_slice(self.as_bytes()); |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| |
| const STRING_ARRAY: [&str; 2] = ["hello", "world"]; |
| |
| const STRING_SLICE: &[&str] = &STRING_ARRAY; |
| |
| const U8_ARRAY: [u8; 8] = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07]; |
| |
| const U8_2D_ARRAY: [&[u8]; 2] = [&U8_ARRAY, &U8_ARRAY]; |
| |
| const U8_2D_SLICE: &[&[u8]] = &[&U8_ARRAY, &U8_ARRAY]; |
| |
| const U8_3D_ARRAY: [&[&[u8]]; 2] = [U8_2D_SLICE, U8_2D_SLICE]; |
| |
| const U8_3D_SLICE: &[&[&[u8]]] = &[U8_2D_SLICE, U8_2D_SLICE]; |
| |
| const U32_ARRAY: [u32; 4] = [0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F]; |
| |
| const U32_2D_ARRAY: [&[u32]; 2] = [&U32_ARRAY, &U32_ARRAY]; |
| |
| const U32_2D_SLICE: &[&[u32]] = &[&U32_ARRAY, &U32_ARRAY]; |
| |
| const U32_3D_ARRAY: [&[&[u32]]; 2] = [U32_2D_SLICE, U32_2D_SLICE]; |
| |
| const U32_3D_SLICE: &[&[&[u32]]] = &[U32_2D_SLICE, U32_2D_SLICE]; |
| |
| #[test] |
| fn test_vzv_from() { |
| type VZV<'a, T> = VarZeroVec<'a, T>; |
| type ZS<T> = ZeroSlice<T>; |
| type VZS<T> = VarZeroSlice<T>; |
| |
| let u8_zerovec: ZeroVec<u8> = ZeroVec::from_slice_or_alloc(&U8_ARRAY); |
| let u8_2d_zerovec: [ZeroVec<u8>; 2] = [u8_zerovec.clone(), u8_zerovec.clone()]; |
| let u8_2d_vec: Vec<Vec<u8>> = vec![U8_ARRAY.into(), U8_ARRAY.into()]; |
| let u8_3d_vec: Vec<Vec<Vec<u8>>> = vec![u8_2d_vec.clone(), u8_2d_vec.clone()]; |
| |
| let u32_zerovec: ZeroVec<u32> = ZeroVec::from_slice_or_alloc(&U32_ARRAY); |
| let u32_2d_zerovec: [ZeroVec<u32>; 2] = [u32_zerovec.clone(), u32_zerovec.clone()]; |
| let u32_2d_vec: Vec<Vec<u32>> = vec![U32_ARRAY.into(), U32_ARRAY.into()]; |
| let u32_3d_vec: Vec<Vec<Vec<u32>>> = vec![u32_2d_vec.clone(), u32_2d_vec.clone()]; |
| |
| let a: VZV<str> = VarZeroVec::from(&STRING_ARRAY); |
| let b: VZV<str> = VarZeroVec::from(STRING_SLICE); |
| let c: VZV<str> = VarZeroVec::from(&Vec::from(STRING_SLICE)); |
| assert_eq!(a, STRING_SLICE); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| |
| let a: VZV<[u8]> = VarZeroVec::from(&U8_2D_ARRAY); |
| let b: VZV<[u8]> = VarZeroVec::from(U8_2D_SLICE); |
| let c: VZV<[u8]> = VarZeroVec::from(&u8_2d_vec); |
| assert_eq!(a, U8_2D_SLICE); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| let u8_3d_vzv_brackets = &[a.clone(), a.clone()]; |
| |
| let a: VZV<ZS<u8>> = VarZeroVec::from(&U8_2D_ARRAY); |
| let b: VZV<ZS<u8>> = VarZeroVec::from(U8_2D_SLICE); |
| let c: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_vec); |
| let d: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_zerovec); |
| assert_eq!(a, U8_2D_SLICE); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| assert_eq!(a, d); |
| let u8_3d_vzv_zeroslice = &[a.clone(), a.clone()]; |
| |
| let a: VZV<VZS<[u8]>> = VarZeroVec::from(&U8_3D_ARRAY); |
| let b: VZV<VZS<[u8]>> = VarZeroVec::from(U8_3D_SLICE); |
| let c: VZV<VZS<[u8]>> = VarZeroVec::from(&u8_3d_vec); |
| let d: VZV<VZS<[u8]>> = VarZeroVec::from(u8_3d_vzv_brackets); |
| assert_eq!( |
| a.iter() |
| .map(|x| x.iter().map(|y| y.to_vec()).collect::<Vec<Vec<u8>>>()) |
| .collect::<Vec<Vec<Vec<u8>>>>(), |
| u8_3d_vec |
| ); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| assert_eq!(a, d); |
| |
| let a: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&U8_3D_ARRAY); |
| let b: VZV<VZS<ZS<u8>>> = VarZeroVec::from(U8_3D_SLICE); |
| let c: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&u8_3d_vec); |
| let d: VZV<VZS<ZS<u8>>> = VarZeroVec::from(u8_3d_vzv_zeroslice); |
| assert_eq!( |
| a.iter() |
| .map(|x| x |
| .iter() |
| .map(|y| y.iter().collect::<Vec<u8>>()) |
| .collect::<Vec<Vec<u8>>>()) |
| .collect::<Vec<Vec<Vec<u8>>>>(), |
| u8_3d_vec |
| ); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| assert_eq!(a, d); |
| |
| let a: VZV<ZS<u32>> = VarZeroVec::from(&U32_2D_ARRAY); |
| let b: VZV<ZS<u32>> = VarZeroVec::from(U32_2D_SLICE); |
| let c: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_vec); |
| let d: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_zerovec); |
| assert_eq!(a, u32_2d_zerovec); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| assert_eq!(a, d); |
| let u32_3d_vzv = &[a.clone(), a.clone()]; |
| |
| let a: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&U32_3D_ARRAY); |
| let b: VZV<VZS<ZS<u32>>> = VarZeroVec::from(U32_3D_SLICE); |
| let c: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&u32_3d_vec); |
| let d: VZV<VZS<ZS<u32>>> = VarZeroVec::from(u32_3d_vzv); |
| assert_eq!( |
| a.iter() |
| .map(|x| x |
| .iter() |
| .map(|y| y.iter().collect::<Vec<u32>>()) |
| .collect::<Vec<Vec<u32>>>()) |
| .collect::<Vec<Vec<Vec<u32>>>>(), |
| u32_3d_vec |
| ); |
| assert_eq!(a, b); |
| assert_eq!(a, c); |
| assert_eq!(a, d); |
| } |
| } |