| //! Mono Item Collection |
| //! ==================== |
| //! |
| //! This module is responsible for discovering all items that will contribute |
| //! to code generation of the crate. The important part here is that it not only |
| //! needs to find syntax-level items (functions, structs, etc) but also all |
| //! their monomorphized instantiations. Every non-generic, non-const function |
| //! maps to one LLVM artifact. Every generic function can produce |
| //! from zero to N artifacts, depending on the sets of type arguments it |
| //! is instantiated with. |
| //! This also applies to generic items from other crates: A generic definition |
| //! in crate X might produce monomorphizations that are compiled into crate Y. |
| //! We also have to collect these here. |
| //! |
| //! The following kinds of "mono items" are handled here: |
| //! |
| //! - Functions |
| //! - Methods |
| //! - Closures |
| //! - Statics |
| //! - Drop glue |
| //! |
| //! The following things also result in LLVM artifacts, but are not collected |
| //! here, since we instantiate them locally on demand when needed in a given |
| //! codegen unit: |
| //! |
| //! - Constants |
| //! - VTables |
| //! - Object Shims |
| //! |
| //! |
| //! General Algorithm |
| //! ----------------- |
| //! Let's define some terms first: |
| //! |
| //! - A "mono item" is something that results in a function or global in |
| //! the LLVM IR of a codegen unit. Mono items do not stand on their |
| //! own, they can reference other mono items. For example, if function |
| //! `foo()` calls function `bar()` then the mono item for `foo()` |
| //! references the mono item for function `bar()`. In general, the |
| //! definition for mono item A referencing a mono item B is that |
| //! the LLVM artifact produced for A references the LLVM artifact produced |
| //! for B. |
| //! |
| //! - Mono items and the references between them form a directed graph, |
| //! where the mono items are the nodes and references form the edges. |
| //! Let's call this graph the "mono item graph". |
| //! |
| //! - The mono item graph for a program contains all mono items |
| //! that are needed in order to produce the complete LLVM IR of the program. |
| //! |
| //! The purpose of the algorithm implemented in this module is to build the |
| //! mono item graph for the current crate. It runs in two phases: |
| //! |
| //! 1. Discover the roots of the graph by traversing the HIR of the crate. |
| //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR |
| //! representation of the item corresponding to a given node, until no more |
| //! new nodes are found. |
| //! |
| //! ### Discovering roots |
| //! |
| //! The roots of the mono item graph correspond to the public non-generic |
| //! syntactic items in the source code. We find them by walking the HIR of the |
| //! crate, and whenever we hit upon a public function, method, or static item, |
| //! we create a mono item consisting of the items DefId and, since we only |
| //! consider non-generic items, an empty type-substitution set. (In eager |
| //! collection mode, during incremental compilation, all non-generic functions |
| //! are considered as roots, as well as when the `-Clink-dead-code` option is |
| //! specified. Functions marked `#[no_mangle]` and functions called by inlinable |
| //! functions also always act as roots.) |
| //! |
| //! ### Finding neighbor nodes |
| //! Given a mono item node, we can discover neighbors by inspecting its |
| //! MIR. We walk the MIR and any time we hit upon something that signifies a |
| //! reference to another mono item, we have found a neighbor. Since the |
| //! mono item we are currently at is always monomorphic, we also know the |
| //! concrete type arguments of its neighbors, and so all neighbors again will be |
| //! monomorphic. The specific forms a reference to a neighboring node can take |
| //! in MIR are quite diverse. Here is an overview: |
| //! |
| //! #### Calling Functions/Methods |
| //! The most obvious form of one mono item referencing another is a |
| //! function or method call (represented by a CALL terminator in MIR). But |
| //! calls are not the only thing that might introduce a reference between two |
| //! function mono items, and as we will see below, they are just a |
| //! specialization of the form described next, and consequently will not get any |
| //! special treatment in the algorithm. |
| //! |
| //! #### Taking a reference to a function or method |
| //! A function does not need to actually be called in order to be a neighbor of |
| //! another function. It suffices to just take a reference in order to introduce |
| //! an edge. Consider the following example: |
| //! |
| //! ``` |
| //! # use core::fmt::Display; |
| //! fn print_val<T: Display>(x: T) { |
| //! println!("{}", x); |
| //! } |
| //! |
| //! fn call_fn(f: &dyn Fn(i32), x: i32) { |
| //! f(x); |
| //! } |
| //! |
| //! fn main() { |
| //! let print_i32 = print_val::<i32>; |
| //! call_fn(&print_i32, 0); |
| //! } |
| //! ``` |
| //! The MIR of none of these functions will contain an explicit call to |
| //! `print_val::<i32>`. Nonetheless, in order to mono this program, we need |
| //! an instance of this function. Thus, whenever we encounter a function or |
| //! method in operand position, we treat it as a neighbor of the current |
| //! mono item. Calls are just a special case of that. |
| //! |
| //! #### Drop glue |
| //! Drop glue mono items are introduced by MIR drop-statements. The |
| //! generated mono item will again have drop-glue item neighbors if the |
| //! type to be dropped contains nested values that also need to be dropped. It |
| //! might also have a function item neighbor for the explicit `Drop::drop` |
| //! implementation of its type. |
| //! |
| //! #### Unsizing Casts |
| //! A subtle way of introducing neighbor edges is by casting to a trait object. |
| //! Since the resulting fat-pointer contains a reference to a vtable, we need to |
| //! instantiate all object-safe methods of the trait, as we need to store |
| //! pointers to these functions even if they never get called anywhere. This can |
| //! be seen as a special case of taking a function reference. |
| //! |
| //! #### Boxes |
| //! Since `Box` expression have special compiler support, no explicit calls to |
| //! `exchange_malloc()` and `box_free()` may show up in MIR, even if the |
| //! compiler will generate them. We have to observe `Rvalue::Box` expressions |
| //! and Box-typed drop-statements for that purpose. |
| //! |
| //! |
| //! Interaction with Cross-Crate Inlining |
| //! ------------------------------------- |
| //! The binary of a crate will not only contain machine code for the items |
| //! defined in the source code of that crate. It will also contain monomorphic |
| //! instantiations of any extern generic functions and of functions marked with |
| //! `#[inline]`. |
| //! The collection algorithm handles this more or less mono. If it is |
| //! about to create a mono item for something with an external `DefId`, |
| //! it will take a look if the MIR for that item is available, and if so just |
| //! proceed normally. If the MIR is not available, it assumes that the item is |
| //! just linked to and no node is created; which is exactly what we want, since |
| //! no machine code should be generated in the current crate for such an item. |
| //! |
| //! Eager and Lazy Collection Mode |
| //! ------------------------------ |
| //! Mono item collection can be performed in one of two modes: |
| //! |
| //! - Lazy mode means that items will only be instantiated when actually |
| //! referenced. The goal is to produce the least amount of machine code |
| //! possible. |
| //! |
| //! - Eager mode is meant to be used in conjunction with incremental compilation |
| //! where a stable set of mono items is more important than a minimal |
| //! one. Thus, eager mode will instantiate drop-glue for every drop-able type |
| //! in the crate, even if no drop call for that type exists (yet). It will |
| //! also instantiate default implementations of trait methods, something that |
| //! otherwise is only done on demand. |
| //! |
| //! |
| //! Open Issues |
| //! ----------- |
| //! Some things are not yet fully implemented in the current version of this |
| //! module. |
| //! |
| //! ### Const Fns |
| //! Ideally, no mono item should be generated for const fns unless there |
| //! is a call to them that cannot be evaluated at compile time. At the moment |
| //! this is not implemented however: a mono item will be produced |
| //! regardless of whether it is actually needed or not. |
| |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::sync::{par_for_each_in, MTLock, MTRef}; |
| use rustc_hir as hir; |
| use rustc_hir::def::DefKind; |
| use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId}; |
| use rustc_hir::lang_items::LangItem; |
| use rustc_index::bit_set::GrowableBitSet; |
| use rustc_middle::mir::interpret::{AllocId, ConstValue}; |
| use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar}; |
| use rustc_middle::mir::mono::{InstantiationMode, MonoItem}; |
| use rustc_middle::mir::visit::Visitor as MirVisitor; |
| use rustc_middle::mir::{self, Local, Location}; |
| use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast}; |
| use rustc_middle::ty::print::with_no_trimmed_paths; |
| use rustc_middle::ty::query::TyCtxtAt; |
| use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts}; |
| use rustc_middle::ty::{ |
| self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitable, VtblEntry, |
| }; |
| use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext}; |
| use rustc_session::config::EntryFnType; |
| use rustc_session::lint::builtin::LARGE_ASSIGNMENTS; |
| use rustc_session::Limit; |
| use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP}; |
| use rustc_target::abi::Size; |
| use std::ops::Range; |
| use std::path::PathBuf; |
| |
| use crate::errors::{LargeAssignmentsLint, RecursionLimit, TypeLengthLimit}; |
| |
| #[derive(PartialEq)] |
| pub enum MonoItemCollectionMode { |
| Eager, |
| Lazy, |
| } |
| |
| /// Maps every mono item to all mono items it references in its |
| /// body. |
| pub struct InliningMap<'tcx> { |
| // Maps a source mono item to the range of mono items |
| // accessed by it. |
| // The range selects elements within the `targets` vecs. |
| index: FxHashMap<MonoItem<'tcx>, Range<usize>>, |
| targets: Vec<MonoItem<'tcx>>, |
| |
| // Contains one bit per mono item in the `targets` field. That bit |
| // is true if that mono item needs to be inlined into every CGU. |
| inlines: GrowableBitSet<usize>, |
| } |
| |
| /// Struct to store mono items in each collecting and if they should |
| /// be inlined. We call `instantiation_mode` to get their inlining |
| /// status when inserting new elements, which avoids calling it in |
| /// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation |
| /// below. |
| struct MonoItems<'tcx> { |
| // If this is false, we do not need to compute whether items |
| // will need to be inlined. |
| compute_inlining: bool, |
| |
| // The TyCtxt used to determine whether the a item should |
| // be inlined. |
| tcx: TyCtxt<'tcx>, |
| |
| // The collected mono items. The bool field in each element |
| // indicates whether this element should be inlined. |
| items: Vec<(Spanned<MonoItem<'tcx>>, bool /*inlined*/)>, |
| } |
| |
| impl<'tcx> MonoItems<'tcx> { |
| #[inline] |
| fn push(&mut self, item: Spanned<MonoItem<'tcx>>) { |
| self.extend([item]); |
| } |
| |
| #[inline] |
| fn extend<T: IntoIterator<Item = Spanned<MonoItem<'tcx>>>>(&mut self, iter: T) { |
| self.items.extend(iter.into_iter().map(|mono_item| { |
| let inlined = if !self.compute_inlining { |
| false |
| } else { |
| mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy |
| }; |
| (mono_item, inlined) |
| })) |
| } |
| } |
| |
| impl<'tcx> InliningMap<'tcx> { |
| fn new() -> InliningMap<'tcx> { |
| InliningMap { |
| index: FxHashMap::default(), |
| targets: Vec::new(), |
| inlines: GrowableBitSet::with_capacity(1024), |
| } |
| } |
| |
| fn record_accesses<'a>( |
| &mut self, |
| source: MonoItem<'tcx>, |
| new_targets: &'a [(Spanned<MonoItem<'tcx>>, bool)], |
| ) where |
| 'tcx: 'a, |
| { |
| let start_index = self.targets.len(); |
| let new_items_count = new_targets.len(); |
| let new_items_count_total = new_items_count + self.targets.len(); |
| |
| self.targets.reserve(new_items_count); |
| self.inlines.ensure(new_items_count_total); |
| |
| for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() { |
| self.targets.push(*mono_item); |
| if *inlined { |
| self.inlines.insert(i + start_index); |
| } |
| } |
| |
| let end_index = self.targets.len(); |
| assert!(self.index.insert(source, start_index..end_index).is_none()); |
| } |
| |
| /// Internally iterate over all items referenced by `source` which will be |
| /// made available for inlining. |
| pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F) |
| where |
| F: FnMut(MonoItem<'tcx>), |
| { |
| if let Some(range) = self.index.get(&source) { |
| for (i, candidate) in self.targets[range.clone()].iter().enumerate() { |
| if self.inlines.contains(range.start + i) { |
| f(*candidate); |
| } |
| } |
| } |
| } |
| |
| /// Internally iterate over all items and the things each accesses. |
| pub fn iter_accesses<F>(&self, mut f: F) |
| where |
| F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]), |
| { |
| for (&accessor, range) in &self.index { |
| f(accessor, &self.targets[range.clone()]) |
| } |
| } |
| } |
| |
| #[instrument(skip(tcx, mode), level = "debug")] |
| pub fn collect_crate_mono_items( |
| tcx: TyCtxt<'_>, |
| mode: MonoItemCollectionMode, |
| ) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) { |
| let _prof_timer = tcx.prof.generic_activity("monomorphization_collector"); |
| |
| let roots = |
| tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode)); |
| |
| debug!("building mono item graph, beginning at roots"); |
| |
| let mut visited = MTLock::new(FxHashSet::default()); |
| let mut inlining_map = MTLock::new(InliningMap::new()); |
| let recursion_limit = tcx.recursion_limit(); |
| |
| { |
| let visited: MTRef<'_, _> = &mut visited; |
| let inlining_map: MTRef<'_, _> = &mut inlining_map; |
| |
| tcx.sess.time("monomorphization_collector_graph_walk", || { |
| par_for_each_in(roots, |root| { |
| let mut recursion_depths = DefIdMap::default(); |
| collect_items_rec( |
| tcx, |
| dummy_spanned(root), |
| visited, |
| &mut recursion_depths, |
| recursion_limit, |
| inlining_map, |
| ); |
| }); |
| }); |
| } |
| |
| (visited.into_inner(), inlining_map.into_inner()) |
| } |
| |
| // Find all non-generic items by walking the HIR. These items serve as roots to |
| // start monomorphizing from. |
| #[instrument(skip(tcx, mode), level = "debug")] |
| fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> { |
| debug!("collecting roots"); |
| let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() }; |
| |
| { |
| let entry_fn = tcx.entry_fn(()); |
| |
| debug!("collect_roots: entry_fn = {:?}", entry_fn); |
| |
| let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots }; |
| |
| let crate_items = tcx.hir_crate_items(()); |
| |
| for id in crate_items.items() { |
| collector.process_item(id); |
| } |
| |
| for id in crate_items.impl_items() { |
| collector.process_impl_item(id); |
| } |
| |
| collector.push_extra_entry_roots(); |
| } |
| |
| // We can only codegen items that are instantiable - items all of |
| // whose predicates hold. Luckily, items that aren't instantiable |
| // can't actually be used, so we can just skip codegenning them. |
| roots |
| .items |
| .into_iter() |
| .filter_map(|(Spanned { node: mono_item, .. }, _)| { |
| mono_item.is_instantiable(tcx).then_some(mono_item) |
| }) |
| .collect() |
| } |
| |
| /// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a |
| /// post-monorphization error is encountered during a collection step. |
| #[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")] |
| fn collect_items_rec<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| starting_point: Spanned<MonoItem<'tcx>>, |
| visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>, |
| recursion_depths: &mut DefIdMap<usize>, |
| recursion_limit: Limit, |
| inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>, |
| ) { |
| if !visited.lock_mut().insert(starting_point.node) { |
| // We've been here already, no need to search again. |
| return; |
| } |
| |
| let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() }; |
| let recursion_depth_reset; |
| |
| // |
| // Post-monomorphization errors MVP |
| // |
| // We can encounter errors while monomorphizing an item, but we don't have a good way of |
| // showing a complete stack of spans ultimately leading to collecting the erroneous one yet. |
| // (It's also currently unclear exactly which diagnostics and information would be interesting |
| // to report in such cases) |
| // |
| // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be |
| // shown with just a spanned piece of code causing the error, without information on where |
| // it was called from. This is especially obscure if the erroneous mono item is in a |
| // dependency. See for example issue #85155, where, before minimization, a PME happened two |
| // crates downstream from libcore's stdarch, without a way to know which dependency was the |
| // cause. |
| // |
| // If such an error occurs in the current crate, its span will be enough to locate the |
| // source. If the cause is in another crate, the goal here is to quickly locate which mono |
| // item in the current crate is ultimately responsible for causing the error. |
| // |
| // To give at least _some_ context to the user: while collecting mono items, we check the |
| // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the |
| // current step of mono items collection. |
| // |
| // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do. |
| let error_count = tcx.sess.diagnostic().err_count(); |
| |
| match starting_point.node { |
| MonoItem::Static(def_id) => { |
| let instance = Instance::mono(tcx, def_id); |
| |
| // Sanity check whether this ended up being collected accidentally |
| debug_assert!(should_codegen_locally(tcx, &instance)); |
| |
| let ty = instance.ty(tcx, ty::ParamEnv::reveal_all()); |
| visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors); |
| |
| recursion_depth_reset = None; |
| |
| if let Ok(alloc) = tcx.eval_static_initializer(def_id) { |
| for &id in alloc.inner().provenance().ptrs().values() { |
| collect_miri(tcx, id, &mut neighbors); |
| } |
| } |
| } |
| MonoItem::Fn(instance) => { |
| // Sanity check whether this ended up being collected accidentally |
| debug_assert!(should_codegen_locally(tcx, &instance)); |
| |
| // Keep track of the monomorphization recursion depth |
| recursion_depth_reset = Some(check_recursion_limit( |
| tcx, |
| instance, |
| starting_point.span, |
| recursion_depths, |
| recursion_limit, |
| )); |
| check_type_length_limit(tcx, instance); |
| |
| rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| collect_neighbours(tcx, instance, &mut neighbors); |
| }); |
| } |
| MonoItem::GlobalAsm(item_id) => { |
| recursion_depth_reset = None; |
| |
| let item = tcx.hir().item(item_id); |
| if let hir::ItemKind::GlobalAsm(asm) = item.kind { |
| for (op, op_sp) in asm.operands { |
| match op { |
| hir::InlineAsmOperand::Const { .. } => { |
| // Only constants which resolve to a plain integer |
| // are supported. Therefore the value should not |
| // depend on any other items. |
| } |
| hir::InlineAsmOperand::SymFn { anon_const } => { |
| let fn_ty = |
| tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id); |
| visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors); |
| } |
| hir::InlineAsmOperand::SymStatic { path: _, def_id } => { |
| let instance = Instance::mono(tcx, *def_id); |
| if should_codegen_locally(tcx, &instance) { |
| trace!("collecting static {:?}", def_id); |
| neighbors.push(dummy_spanned(MonoItem::Static(*def_id))); |
| } |
| } |
| hir::InlineAsmOperand::In { .. } |
| | hir::InlineAsmOperand::Out { .. } |
| | hir::InlineAsmOperand::InOut { .. } |
| | hir::InlineAsmOperand::SplitInOut { .. } => { |
| span_bug!(*op_sp, "invalid operand type for global_asm!") |
| } |
| } |
| } |
| } else { |
| span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type") |
| } |
| } |
| } |
| |
| // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the |
| // mono item graph. |
| if tcx.sess.diagnostic().err_count() > error_count |
| && starting_point.node.is_generic_fn() |
| && starting_point.node.is_user_defined() |
| { |
| let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string()); |
| tcx.sess.span_note_without_error( |
| starting_point.span, |
| &format!("the above error was encountered while instantiating `{}`", formatted_item), |
| ); |
| } |
| inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items); |
| |
| for (neighbour, _) in neighbors.items { |
| collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map); |
| } |
| |
| if let Some((def_id, depth)) = recursion_depth_reset { |
| recursion_depths.insert(def_id, depth); |
| } |
| } |
| |
| /// Format instance name that is already known to be too long for rustc. |
| /// Show only the first 2 types if it is longer than 32 characters to avoid blasting |
| /// the user's terminal with thousands of lines of type-name. |
| /// |
| /// If the type name is longer than before+after, it will be written to a file. |
| fn shrunk_instance_name<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: &Instance<'tcx>, |
| ) -> (String, Option<PathBuf>) { |
| let s = instance.to_string(); |
| |
| // Only use the shrunk version if it's really shorter. |
| // This also avoids the case where before and after slices overlap. |
| if s.chars().nth(33).is_some() { |
| let shrunk = format!("{}", ty::ShortInstance(instance, 4)); |
| if shrunk == s { |
| return (s, None); |
| } |
| |
| let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None); |
| let written_to_path = std::fs::write(&path, s).ok().map(|_| path); |
| |
| (shrunk, written_to_path) |
| } else { |
| (s, None) |
| } |
| } |
| |
| fn check_recursion_limit<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| span: Span, |
| recursion_depths: &mut DefIdMap<usize>, |
| recursion_limit: Limit, |
| ) -> (DefId, usize) { |
| let def_id = instance.def_id(); |
| let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0); |
| debug!(" => recursion depth={}", recursion_depth); |
| |
| let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() { |
| // HACK: drop_in_place creates tight monomorphization loops. Give |
| // it more margin. |
| recursion_depth / 4 |
| } else { |
| recursion_depth |
| }; |
| |
| // Code that needs to instantiate the same function recursively |
| // more than the recursion limit is assumed to be causing an |
| // infinite expansion. |
| if !recursion_limit.value_within_limit(adjusted_recursion_depth) { |
| let def_span = tcx.def_span(def_id); |
| let def_path_str = tcx.def_path_str(def_id); |
| let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance); |
| let mut path = PathBuf::new(); |
| let was_written = if written_to_path.is_some() { |
| path = written_to_path.unwrap(); |
| Some(()) |
| } else { |
| None |
| }; |
| tcx.sess.emit_fatal(RecursionLimit { |
| span, |
| shrunk, |
| def_span, |
| def_path_str, |
| was_written, |
| path, |
| }); |
| } |
| |
| recursion_depths.insert(def_id, recursion_depth + 1); |
| |
| (def_id, recursion_depth) |
| } |
| |
| fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) { |
| let type_length = instance |
| .substs |
| .iter() |
| .flat_map(|arg| arg.walk()) |
| .filter(|arg| match arg.unpack() { |
| GenericArgKind::Type(_) | GenericArgKind::Const(_) => true, |
| GenericArgKind::Lifetime(_) => false, |
| }) |
| .count(); |
| debug!(" => type length={}", type_length); |
| |
| // Rust code can easily create exponentially-long types using only a |
| // polynomial recursion depth. Even with the default recursion |
| // depth, you can easily get cases that take >2^60 steps to run, |
| // which means that rustc basically hangs. |
| // |
| // Bail out in these cases to avoid that bad user experience. |
| if !tcx.type_length_limit().value_within_limit(type_length) { |
| let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance); |
| let span = tcx.def_span(instance.def_id()); |
| let mut path = PathBuf::new(); |
| let was_written = if written_to_path.is_some() { |
| path = written_to_path.unwrap(); |
| Some(()) |
| } else { |
| None |
| }; |
| tcx.sess.emit_fatal(TypeLengthLimit { span, shrunk, was_written, path, type_length }); |
| } |
| } |
| |
| struct MirNeighborCollector<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| body: &'a mir::Body<'tcx>, |
| output: &'a mut MonoItems<'tcx>, |
| instance: Instance<'tcx>, |
| } |
| |
| impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> { |
| pub fn monomorphize<T>(&self, value: T) -> T |
| where |
| T: TypeFoldable<'tcx>, |
| { |
| debug!("monomorphize: self.instance={:?}", self.instance); |
| self.instance.subst_mir_and_normalize_erasing_regions( |
| self.tcx, |
| ty::ParamEnv::reveal_all(), |
| value, |
| ) |
| } |
| } |
| |
| impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { |
| fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { |
| debug!("visiting rvalue {:?}", *rvalue); |
| |
| let span = self.body.source_info(location).span; |
| |
| match *rvalue { |
| // When doing an cast from a regular pointer to a fat pointer, we |
| // have to instantiate all methods of the trait being cast to, so we |
| // can build the appropriate vtable. |
| mir::Rvalue::Cast( |
| mir::CastKind::Pointer(PointerCast::Unsize), |
| ref operand, |
| target_ty, |
| ) |
| | mir::Rvalue::Cast(mir::CastKind::DynStar, ref operand, target_ty) => { |
| let target_ty = self.monomorphize(target_ty); |
| let source_ty = operand.ty(self.body, self.tcx); |
| let source_ty = self.monomorphize(source_ty); |
| let (source_ty, target_ty) = |
| find_vtable_types_for_unsizing(self.tcx.at(span), source_ty, target_ty); |
| // This could also be a different Unsize instruction, like |
| // from a fixed sized array to a slice. But we are only |
| // interested in things that produce a vtable. |
| if (target_ty.is_trait() && !source_ty.is_trait()) |
| || (target_ty.is_dyn_star() && !source_ty.is_dyn_star()) |
| { |
| create_mono_items_for_vtable_methods( |
| self.tcx, |
| target_ty, |
| source_ty, |
| span, |
| self.output, |
| ); |
| } |
| } |
| mir::Rvalue::Cast( |
| mir::CastKind::Pointer(PointerCast::ReifyFnPointer), |
| ref operand, |
| _, |
| ) => { |
| let fn_ty = operand.ty(self.body, self.tcx); |
| let fn_ty = self.monomorphize(fn_ty); |
| visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output); |
| } |
| mir::Rvalue::Cast( |
| mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)), |
| ref operand, |
| _, |
| ) => { |
| let source_ty = operand.ty(self.body, self.tcx); |
| let source_ty = self.monomorphize(source_ty); |
| match *source_ty.kind() { |
| ty::Closure(def_id, substs) => { |
| let instance = Instance::resolve_closure( |
| self.tcx, |
| def_id, |
| substs, |
| ty::ClosureKind::FnOnce, |
| ) |
| .expect("failed to normalize and resolve closure during codegen"); |
| if should_codegen_locally(self.tcx, &instance) { |
| self.output.push(create_fn_mono_item(self.tcx, instance, span)); |
| } |
| } |
| _ => bug!(), |
| } |
| } |
| mir::Rvalue::ThreadLocalRef(def_id) => { |
| assert!(self.tcx.is_thread_local_static(def_id)); |
| let instance = Instance::mono(self.tcx, def_id); |
| if should_codegen_locally(self.tcx, &instance) { |
| trace!("collecting thread-local static {:?}", def_id); |
| self.output.push(respan(span, MonoItem::Static(def_id))); |
| } |
| } |
| _ => { /* not interesting */ } |
| } |
| |
| self.super_rvalue(rvalue, location); |
| } |
| |
| /// This does not walk the constant, as it has been handled entirely here and trying |
| /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily |
| /// work, as some constants cannot be represented in the type system. |
| #[instrument(skip(self), level = "debug")] |
| fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) { |
| let literal = self.monomorphize(constant.literal); |
| let val = match literal { |
| mir::ConstantKind::Val(val, _) => val, |
| mir::ConstantKind::Ty(ct) => match ct.kind() { |
| ty::ConstKind::Value(val) => self.tcx.valtree_to_const_val((ct.ty(), val)), |
| ty::ConstKind::Unevaluated(ct) => { |
| debug!(?ct); |
| let param_env = ty::ParamEnv::reveal_all(); |
| match self.tcx.const_eval_resolve(param_env, ct.expand(), None) { |
| // The `monomorphize` call should have evaluated that constant already. |
| Ok(val) => val, |
| Err(ErrorHandled::Reported(_)) => return, |
| Err(ErrorHandled::TooGeneric) => span_bug!( |
| self.body.source_info(location).span, |
| "collection encountered polymorphic constant: {:?}", |
| literal |
| ), |
| } |
| } |
| _ => return, |
| }, |
| mir::ConstantKind::Unevaluated(uv, _) => { |
| let param_env = ty::ParamEnv::reveal_all(); |
| match self.tcx.const_eval_resolve(param_env, uv, None) { |
| // The `monomorphize` call should have evaluated that constant already. |
| Ok(val) => val, |
| Err(ErrorHandled::Reported(_)) => return, |
| Err(ErrorHandled::TooGeneric) => span_bug!( |
| self.body.source_info(location).span, |
| "collection encountered polymorphic constant: {:?}", |
| literal |
| ), |
| } |
| } |
| }; |
| collect_const_value(self.tcx, val, self.output); |
| MirVisitor::visit_ty(self, literal.ty(), TyContext::Location(location)); |
| } |
| |
| fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) { |
| debug!("visiting terminator {:?} @ {:?}", terminator, location); |
| let source = self.body.source_info(location).span; |
| |
| let tcx = self.tcx; |
| match terminator.kind { |
| mir::TerminatorKind::Call { ref func, .. } => { |
| let callee_ty = func.ty(self.body, tcx); |
| let callee_ty = self.monomorphize(callee_ty); |
| visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output) |
| } |
| mir::TerminatorKind::Drop { ref place, .. } |
| | mir::TerminatorKind::DropAndReplace { ref place, .. } => { |
| let ty = place.ty(self.body, self.tcx).ty; |
| let ty = self.monomorphize(ty); |
| visit_drop_use(self.tcx, ty, true, source, self.output); |
| } |
| mir::TerminatorKind::InlineAsm { ref operands, .. } => { |
| for op in operands { |
| match *op { |
| mir::InlineAsmOperand::SymFn { ref value } => { |
| let fn_ty = self.monomorphize(value.literal.ty()); |
| visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output); |
| } |
| mir::InlineAsmOperand::SymStatic { def_id } => { |
| let instance = Instance::mono(self.tcx, def_id); |
| if should_codegen_locally(self.tcx, &instance) { |
| trace!("collecting asm sym static {:?}", def_id); |
| self.output.push(respan(source, MonoItem::Static(def_id))); |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| mir::TerminatorKind::Assert { ref msg, .. } => { |
| let lang_item = match msg { |
| mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck, |
| _ => LangItem::Panic, |
| }; |
| let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source))); |
| if should_codegen_locally(tcx, &instance) { |
| self.output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| mir::TerminatorKind::Abort { .. } => { |
| let instance = Instance::mono( |
| tcx, |
| tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)), |
| ); |
| if should_codegen_locally(tcx, &instance) { |
| self.output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| mir::TerminatorKind::Goto { .. } |
| | mir::TerminatorKind::SwitchInt { .. } |
| | mir::TerminatorKind::Resume |
| | mir::TerminatorKind::Return |
| | mir::TerminatorKind::Unreachable => {} |
| mir::TerminatorKind::GeneratorDrop |
| | mir::TerminatorKind::Yield { .. } |
| | mir::TerminatorKind::FalseEdge { .. } |
| | mir::TerminatorKind::FalseUnwind { .. } => bug!(), |
| } |
| |
| self.super_terminator(terminator, location); |
| } |
| |
| fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) { |
| self.super_operand(operand, location); |
| let limit = self.tcx.move_size_limit().0; |
| if limit == 0 { |
| return; |
| } |
| let limit = Size::from_bytes(limit); |
| let ty = operand.ty(self.body, self.tcx); |
| let ty = self.monomorphize(ty); |
| let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty)); |
| if let Ok(layout) = layout { |
| if layout.size > limit { |
| debug!(?layout); |
| let source_info = self.body.source_info(location); |
| debug!(?source_info); |
| let lint_root = source_info.scope.lint_root(&self.body.source_scopes); |
| debug!(?lint_root); |
| let Some(lint_root) = lint_root else { |
| // This happens when the issue is in a function from a foreign crate that |
| // we monomorphized in the current crate. We can't get a `HirId` for things |
| // in other crates. |
| // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root |
| // but correct span? This would make the lint at least accept crate-level lint attributes. |
| return; |
| }; |
| self.tcx.emit_spanned_lint( |
| LARGE_ASSIGNMENTS, |
| lint_root, |
| source_info.span, |
| LargeAssignmentsLint { |
| span: source_info.span, |
| size: layout.size.bytes(), |
| limit: limit.bytes(), |
| }, |
| ) |
| } |
| } |
| } |
| |
| fn visit_local( |
| &mut self, |
| _place_local: Local, |
| _context: mir::visit::PlaceContext, |
| _location: Location, |
| ) { |
| } |
| } |
| |
| fn visit_drop_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| let instance = Instance::resolve_drop_in_place(tcx, ty); |
| visit_instance_use(tcx, instance, is_direct_call, source, output); |
| } |
| |
| fn visit_fn_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| if let ty::FnDef(def_id, substs) = *ty.kind() { |
| let instance = if is_direct_call { |
| ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap() |
| } else { |
| ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs) |
| .unwrap() |
| }; |
| visit_instance_use(tcx, instance, is_direct_call, source, output); |
| } |
| } |
| |
| fn visit_instance_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: ty::Instance<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call); |
| if !should_codegen_locally(tcx, &instance) { |
| return; |
| } |
| |
| match instance.def { |
| ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => { |
| if !is_direct_call { |
| bug!("{:?} being reified", instance); |
| } |
| } |
| ty::InstanceDef::DropGlue(_, None) => { |
| // Don't need to emit noop drop glue if we are calling directly. |
| if !is_direct_call { |
| output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| ty::InstanceDef::DropGlue(_, Some(_)) |
| | ty::InstanceDef::VTableShim(..) |
| | ty::InstanceDef::ReifyShim(..) |
| | ty::InstanceDef::ClosureOnceShim { .. } |
| | ty::InstanceDef::Item(..) |
| | ty::InstanceDef::FnPtrShim(..) |
| | ty::InstanceDef::CloneShim(..) => { |
| output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| } |
| |
| /// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we |
| /// can just link to the upstream crate and therefore don't need a mono item. |
| fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool { |
| let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else { |
| return true; |
| }; |
| |
| if tcx.is_foreign_item(def_id) { |
| // Foreign items are always linked against, there's no way of instantiating them. |
| return false; |
| } |
| |
| if def_id.is_local() { |
| // Local items cannot be referred to locally without monomorphizing them locally. |
| return true; |
| } |
| |
| if tcx.is_reachable_non_generic(def_id) |
| || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some() |
| { |
| // We can link to the item in question, no instance needed in this crate. |
| return false; |
| } |
| |
| if let DefKind::Static(_) = tcx.def_kind(def_id) { |
| // We cannot monomorphize statics from upstream crates. |
| return false; |
| } |
| |
| if !tcx.is_mir_available(def_id) { |
| bug!("no MIR available for {:?}", def_id); |
| } |
| |
| true |
| } |
| |
| /// For a given pair of source and target type that occur in an unsizing coercion, |
| /// this function finds the pair of types that determines the vtable linking |
| /// them. |
| /// |
| /// For example, the source type might be `&SomeStruct` and the target type |
| /// might be `&dyn SomeTrait` in a cast like: |
| /// |
| /// ```rust,ignore (not real code) |
| /// let src: &SomeStruct = ...; |
| /// let target = src as &dyn SomeTrait; |
| /// ``` |
| /// |
| /// Then the output of this function would be (SomeStruct, SomeTrait) since for |
| /// constructing the `target` fat-pointer we need the vtable for that pair. |
| /// |
| /// Things can get more complicated though because there's also the case where |
| /// the unsized type occurs as a field: |
| /// |
| /// ```rust |
| /// struct ComplexStruct<T: ?Sized> { |
| /// a: u32, |
| /// b: f64, |
| /// c: T |
| /// } |
| /// ``` |
| /// |
| /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T` |
| /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is |
| /// for the pair of `T` (which is a trait) and the concrete type that `T` was |
| /// originally coerced from: |
| /// |
| /// ```rust,ignore (not real code) |
| /// let src: &ComplexStruct<SomeStruct> = ...; |
| /// let target = src as &ComplexStruct<dyn SomeTrait>; |
| /// ``` |
| /// |
| /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair |
| /// `(SomeStruct, SomeTrait)`. |
| /// |
| /// Finally, there is also the case of custom unsizing coercions, e.g., for |
| /// smart pointers such as `Rc` and `Arc`. |
| fn find_vtable_types_for_unsizing<'tcx>( |
| tcx: TyCtxtAt<'tcx>, |
| source_ty: Ty<'tcx>, |
| target_ty: Ty<'tcx>, |
| ) -> (Ty<'tcx>, Ty<'tcx>) { |
| let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| { |
| let param_env = ty::ParamEnv::reveal_all(); |
| let type_has_metadata = |ty: Ty<'tcx>| -> bool { |
| if ty.is_sized(tcx.tcx, param_env) { |
| return false; |
| } |
| let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env); |
| match tail.kind() { |
| ty::Foreign(..) => false, |
| ty::Str | ty::Slice(..) | ty::Dynamic(..) => true, |
| _ => bug!("unexpected unsized tail: {:?}", tail), |
| } |
| }; |
| if type_has_metadata(inner_source) { |
| (inner_source, inner_target) |
| } else { |
| tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env) |
| } |
| }; |
| |
| match (&source_ty.kind(), &target_ty.kind()) { |
| (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) |
| | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => { |
| ptr_vtable(*a, *b) |
| } |
| (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => { |
| ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty()) |
| } |
| |
| // T as dyn* Trait |
| (_, &ty::Dynamic(_, _, ty::DynStar)) => ptr_vtable(source_ty, target_ty), |
| |
| (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => { |
| assert_eq!(source_adt_def, target_adt_def); |
| |
| let CustomCoerceUnsized::Struct(coerce_index) = |
| crate::custom_coerce_unsize_info(tcx, source_ty, target_ty); |
| |
| let source_fields = &source_adt_def.non_enum_variant().fields; |
| let target_fields = &target_adt_def.non_enum_variant().fields; |
| |
| assert!( |
| coerce_index < source_fields.len() && source_fields.len() == target_fields.len() |
| ); |
| |
| find_vtable_types_for_unsizing( |
| tcx, |
| source_fields[coerce_index].ty(*tcx, source_substs), |
| target_fields[coerce_index].ty(*tcx, target_substs), |
| ) |
| } |
| _ => bug!( |
| "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", |
| source_ty, |
| target_ty |
| ), |
| } |
| } |
| |
| #[instrument(skip(tcx), level = "debug", ret)] |
| fn create_fn_mono_item<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| source: Span, |
| ) -> Spanned<MonoItem<'tcx>> { |
| let def_id = instance.def_id(); |
| if tcx.sess.opts.unstable_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id) { |
| crate::util::dump_closure_profile(tcx, instance); |
| } |
| |
| respan(source, MonoItem::Fn(instance.polymorphize(tcx))) |
| } |
| |
| /// Creates a `MonoItem` for each method that is referenced by the vtable for |
| /// the given trait/impl pair. |
| fn create_mono_items_for_vtable_methods<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ty: Ty<'tcx>, |
| impl_ty: Ty<'tcx>, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars()); |
| |
| if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() { |
| if let Some(principal) = trait_ty.principal() { |
| let poly_trait_ref = principal.with_self_ty(tcx, impl_ty); |
| assert!(!poly_trait_ref.has_escaping_bound_vars()); |
| |
| // Walk all methods of the trait, including those of its supertraits |
| let entries = tcx.vtable_entries(poly_trait_ref); |
| let methods = entries |
| .iter() |
| .filter_map(|entry| match entry { |
| VtblEntry::MetadataDropInPlace |
| | VtblEntry::MetadataSize |
| | VtblEntry::MetadataAlign |
| | VtblEntry::Vacant => None, |
| VtblEntry::TraitVPtr(_) => { |
| // all super trait items already covered, so skip them. |
| None |
| } |
| VtblEntry::Method(instance) => { |
| Some(*instance).filter(|instance| should_codegen_locally(tcx, instance)) |
| } |
| }) |
| .map(|item| create_fn_mono_item(tcx, item, source)); |
| output.extend(methods); |
| } |
| |
| // Also add the destructor. |
| visit_drop_use(tcx, impl_ty, false, source, output); |
| } |
| } |
| |
| //=----------------------------------------------------------------------------- |
| // Root Collection |
| //=----------------------------------------------------------------------------- |
| |
| struct RootCollector<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| mode: MonoItemCollectionMode, |
| output: &'a mut MonoItems<'tcx>, |
| entry_fn: Option<(DefId, EntryFnType)>, |
| } |
| |
| impl<'v> RootCollector<'_, 'v> { |
| fn process_item(&mut self, id: hir::ItemId) { |
| match self.tcx.def_kind(id.owner_id) { |
| DefKind::Enum | DefKind::Struct | DefKind::Union => { |
| let item = self.tcx.hir().item(id); |
| match item.kind { |
| hir::ItemKind::Enum(_, ref generics) |
| | hir::ItemKind::Struct(_, ref generics) |
| | hir::ItemKind::Union(_, ref generics) => { |
| if generics.params.is_empty() { |
| if self.mode == MonoItemCollectionMode::Eager { |
| debug!( |
| "RootCollector: ADT drop-glue for {}", |
| self.tcx.def_path_str(item.owner_id.to_def_id()) |
| ); |
| |
| let ty = Instance::new( |
| item.owner_id.to_def_id(), |
| InternalSubsts::empty(), |
| ) |
| .ty(self.tcx, ty::ParamEnv::reveal_all()); |
| visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output); |
| } |
| } |
| } |
| _ => bug!(), |
| } |
| } |
| DefKind::GlobalAsm => { |
| debug!( |
| "RootCollector: ItemKind::GlobalAsm({})", |
| self.tcx.def_path_str(id.owner_id.to_def_id()) |
| ); |
| self.output.push(dummy_spanned(MonoItem::GlobalAsm(id))); |
| } |
| DefKind::Static(..) => { |
| debug!( |
| "RootCollector: ItemKind::Static({})", |
| self.tcx.def_path_str(id.owner_id.to_def_id()) |
| ); |
| self.output.push(dummy_spanned(MonoItem::Static(id.owner_id.to_def_id()))); |
| } |
| DefKind::Const => { |
| // const items only generate mono items if they are |
| // actually used somewhere. Just declaring them is insufficient. |
| |
| // but even just declaring them must collect the items they refer to |
| if let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id()) { |
| collect_const_value(self.tcx, val, &mut self.output); |
| } |
| } |
| DefKind::Impl => { |
| if self.mode == MonoItemCollectionMode::Eager { |
| let item = self.tcx.hir().item(id); |
| create_mono_items_for_default_impls(self.tcx, item, self.output); |
| } |
| } |
| DefKind::Fn => { |
| self.push_if_root(id.owner_id.def_id); |
| } |
| _ => {} |
| } |
| } |
| |
| fn process_impl_item(&mut self, id: hir::ImplItemId) { |
| if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) { |
| self.push_if_root(id.owner_id.def_id); |
| } |
| } |
| |
| fn is_root(&self, def_id: LocalDefId) -> bool { |
| !item_requires_monomorphization(self.tcx, def_id) |
| && match self.mode { |
| MonoItemCollectionMode::Eager => true, |
| MonoItemCollectionMode::Lazy => { |
| self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id) |
| || self.tcx.is_reachable_non_generic(def_id) |
| || self |
| .tcx |
| .codegen_fn_attrs(def_id) |
| .flags |
| .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) |
| } |
| } |
| } |
| |
| /// If `def_id` represents a root, pushes it onto the list of |
| /// outputs. (Note that all roots must be monomorphic.) |
| #[instrument(skip(self), level = "debug")] |
| fn push_if_root(&mut self, def_id: LocalDefId) { |
| if self.is_root(def_id) { |
| debug!("found root"); |
| |
| let instance = Instance::mono(self.tcx, def_id.to_def_id()); |
| self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP)); |
| } |
| } |
| |
| /// As a special case, when/if we encounter the |
| /// `main()` function, we also have to generate a |
| /// monomorphized copy of the start lang item based on |
| /// the return type of `main`. This is not needed when |
| /// the user writes their own `start` manually. |
| fn push_extra_entry_roots(&mut self) { |
| let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else { |
| return; |
| }; |
| |
| let start_def_id = self.tcx.require_lang_item(LangItem::Start, None); |
| let main_ret_ty = self.tcx.fn_sig(main_def_id).output(); |
| |
| // Given that `main()` has no arguments, |
| // then its return type cannot have |
| // late-bound regions, since late-bound |
| // regions must appear in the argument |
| // listing. |
| let main_ret_ty = self.tcx.normalize_erasing_regions( |
| ty::ParamEnv::reveal_all(), |
| main_ret_ty.no_bound_vars().unwrap(), |
| ); |
| |
| let start_instance = Instance::resolve( |
| self.tcx, |
| ty::ParamEnv::reveal_all(), |
| start_def_id, |
| self.tcx.intern_substs(&[main_ret_ty.into()]), |
| ) |
| .unwrap() |
| .unwrap(); |
| |
| self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP)); |
| } |
| } |
| |
| fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { |
| let generics = tcx.generics_of(def_id); |
| generics.requires_monomorphization(tcx) |
| } |
| |
| fn create_mono_items_for_default_impls<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| item: &'tcx hir::Item<'tcx>, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| match item.kind { |
| hir::ItemKind::Impl(ref impl_) => { |
| if matches!(impl_.polarity, hir::ImplPolarity::Negative(_)) { |
| return; |
| } |
| |
| for param in impl_.generics.params { |
| match param.kind { |
| hir::GenericParamKind::Lifetime { .. } => {} |
| hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => { |
| return; |
| } |
| } |
| } |
| |
| debug!( |
| "create_mono_items_for_default_impls(item={})", |
| tcx.def_path_str(item.owner_id.to_def_id()) |
| ); |
| |
| if let Some(trait_ref) = tcx.impl_trait_ref(item.owner_id) { |
| let param_env = ty::ParamEnv::reveal_all(); |
| let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref); |
| let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id); |
| for method in tcx.provided_trait_methods(trait_ref.def_id) { |
| if overridden_methods.contains_key(&method.def_id) { |
| continue; |
| } |
| |
| if tcx.generics_of(method.def_id).own_requires_monomorphization() { |
| continue; |
| } |
| |
| let substs = |
| InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind { |
| GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), |
| GenericParamDefKind::Type { .. } |
| | GenericParamDefKind::Const { .. } => { |
| trait_ref.substs[param.index as usize] |
| } |
| }); |
| let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs) |
| .unwrap() |
| .unwrap(); |
| |
| let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP); |
| if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance) |
| { |
| output.push(mono_item); |
| } |
| } |
| } |
| } |
| _ => bug!(), |
| } |
| } |
| |
| /// Scans the miri alloc in order to find function calls, closures, and drop-glue. |
| fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) { |
| match tcx.global_alloc(alloc_id) { |
| GlobalAlloc::Static(def_id) => { |
| assert!(!tcx.is_thread_local_static(def_id)); |
| let instance = Instance::mono(tcx, def_id); |
| if should_codegen_locally(tcx, &instance) { |
| trace!("collecting static {:?}", def_id); |
| output.push(dummy_spanned(MonoItem::Static(def_id))); |
| } |
| } |
| GlobalAlloc::Memory(alloc) => { |
| trace!("collecting {:?} with {:#?}", alloc_id, alloc); |
| for &inner in alloc.inner().provenance().ptrs().values() { |
| rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| collect_miri(tcx, inner, output); |
| }); |
| } |
| } |
| GlobalAlloc::Function(fn_instance) => { |
| if should_codegen_locally(tcx, &fn_instance) { |
| trace!("collecting {:?} with {:#?}", alloc_id, fn_instance); |
| output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP)); |
| } |
| } |
| GlobalAlloc::VTable(ty, trait_ref) => { |
| let alloc_id = tcx.vtable_allocation((ty, trait_ref)); |
| collect_miri(tcx, alloc_id, output) |
| } |
| } |
| } |
| |
| /// Scans the MIR in order to find function calls, closures, and drop-glue. |
| #[instrument(skip(tcx, output), level = "debug")] |
| fn collect_neighbours<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| let body = tcx.instance_mir(instance.def); |
| MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body); |
| } |
| |
| #[instrument(skip(tcx, output), level = "debug")] |
| fn collect_const_value<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| value: ConstValue<'tcx>, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| match value { |
| ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output), |
| ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => { |
| for &id in alloc.inner().provenance().ptrs().values() { |
| collect_miri(tcx, id, output); |
| } |
| } |
| _ => {} |
| } |
| } |