| use crate::common::CodegenCx; |
| use crate::coverageinfo; |
| use crate::llvm; |
| |
| use llvm::coverageinfo::CounterMappingRegion; |
| use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression, FunctionCoverage}; |
| use rustc_codegen_ssa::traits::ConstMethods; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; |
| use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE}; |
| use rustc_llvm::RustString; |
| use rustc_middle::mir::coverage::CodeRegion; |
| use rustc_middle::ty::{Instance, TyCtxt}; |
| use rustc_span::Symbol; |
| |
| use std::ffi::CString; |
| |
| use tracing::debug; |
| |
| /// Generates and exports the Coverage Map. |
| /// |
| /// This Coverage Map complies with Coverage Mapping Format version 4 (zero-based encoded as 3), |
| /// as defined at [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/11.0-2020-10-12/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format) |
| /// and published in Rust's current (November 2020) fork of LLVM. This version is supported by the |
| /// LLVM coverage tools (`llvm-profdata` and `llvm-cov`) bundled with Rust's fork of LLVM. |
| /// |
| /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with |
| /// version 3. Clang's implementation of Coverage Map generation was referenced when implementing |
| /// this Rust version, and though the format documentation is very explicit and detailed, some |
| /// undocumented details in Clang's implementation (that may or may not be important) were also |
| /// replicated for Rust's Coverage Map. |
| pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) { |
| let tcx = cx.tcx; |
| // Ensure LLVM supports Coverage Map Version 4 (encoded as a zero-based value: 3). |
| // If not, the LLVM Version must be less than 11. |
| let version = coverageinfo::mapping_version(); |
| if version != 3 { |
| tcx.sess.fatal("rustc option `-Z instrument-coverage` requires LLVM 11 or higher."); |
| } |
| |
| debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name()); |
| |
| let mut function_coverage_map = match cx.coverage_context() { |
| Some(ctx) => ctx.take_function_coverage_map(), |
| None => return, |
| }; |
| if function_coverage_map.is_empty() { |
| // This module has no functions with coverage instrumentation |
| return; |
| } |
| |
| add_unreachable_coverage(tcx, &mut function_coverage_map); |
| |
| let mut mapgen = CoverageMapGenerator::new(); |
| |
| // Encode coverage mappings and generate function records |
| let mut function_data = Vec::new(); |
| for (instance, function_coverage) in function_coverage_map { |
| debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance); |
| let mangled_function_name = tcx.symbol_name(instance).to_string(); |
| let function_source_hash = function_coverage.source_hash(); |
| let (expressions, counter_regions) = |
| function_coverage.get_expressions_and_counter_regions(); |
| |
| let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| { |
| mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer); |
| }); |
| debug_assert!( |
| coverage_mapping_buffer.len() > 0, |
| "Every `FunctionCoverage` should have at least one counter" |
| ); |
| |
| function_data.push((mangled_function_name, function_source_hash, coverage_mapping_buffer)); |
| } |
| |
| // Encode all filenames referenced by counters/expressions in this module |
| let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| { |
| coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer); |
| }); |
| |
| let filenames_size = filenames_buffer.len(); |
| let filenames_val = cx.const_bytes(&filenames_buffer[..]); |
| let filenames_ref = coverageinfo::hash_bytes(filenames_buffer); |
| |
| // Generate the LLVM IR representation of the coverage map and store it in a well-known global |
| let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val); |
| |
| for (mangled_function_name, function_source_hash, coverage_mapping_buffer) in function_data { |
| save_function_record( |
| cx, |
| mangled_function_name, |
| function_source_hash, |
| filenames_ref, |
| coverage_mapping_buffer, |
| ); |
| } |
| |
| // Save the coverage data value to LLVM IR |
| coverageinfo::save_cov_data_to_mod(cx, cov_data_val); |
| } |
| |
| struct CoverageMapGenerator { |
| filenames: FxIndexSet<CString>, |
| } |
| |
| impl CoverageMapGenerator { |
| fn new() -> Self { |
| Self { filenames: FxIndexSet::default() } |
| } |
| |
| /// Using the `expressions` and `counter_regions` collected for the current function, generate |
| /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use |
| /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into |
| /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format. |
| fn write_coverage_mapping( |
| &mut self, |
| expressions: Vec<CounterExpression>, |
| counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>, |
| coverage_mapping_buffer: &RustString, |
| ) { |
| let mut counter_regions = counter_regions.collect::<Vec<_>>(); |
| if counter_regions.is_empty() { |
| return; |
| } |
| |
| let mut virtual_file_mapping = Vec::new(); |
| let mut mapping_regions = Vec::new(); |
| let mut current_file_name = None; |
| let mut current_file_id = 0; |
| |
| // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted |
| // by filename and position. Capture any new files to compute the `CounterMappingRegion`s |
| // `file_id` (indexing files referenced by the current function), and construct the |
| // function-specific `virtual_file_mapping` from `file_id` to its index in the module's |
| // `filenames` array. |
| counter_regions.sort_unstable_by_key(|(_counter, region)| *region); |
| for (counter, region) in counter_regions { |
| let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region; |
| let same_file = current_file_name.as_ref().map_or(false, |p| *p == file_name); |
| if !same_file { |
| if current_file_name.is_some() { |
| current_file_id += 1; |
| } |
| current_file_name = Some(file_name); |
| let c_filename = CString::new(file_name.to_string()) |
| .expect("null error converting filename to C string"); |
| debug!(" file_id: {} = '{:?}'", current_file_id, c_filename); |
| let (filenames_index, _) = self.filenames.insert_full(c_filename); |
| virtual_file_mapping.push(filenames_index as u32); |
| } |
| debug!("Adding counter {:?} to map for {:?}", counter, region); |
| mapping_regions.push(CounterMappingRegion::code_region( |
| counter, |
| current_file_id, |
| start_line, |
| start_col, |
| end_line, |
| end_col, |
| )); |
| } |
| |
| // Encode and append the current function's coverage mapping data |
| coverageinfo::write_mapping_to_buffer( |
| virtual_file_mapping, |
| expressions, |
| mapping_regions, |
| coverage_mapping_buffer, |
| ); |
| } |
| |
| /// Construct coverage map header and the array of function records, and combine them into the |
| /// coverage map. Save the coverage map data into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn generate_coverage_map( |
| self, |
| cx: &CodegenCx<'ll, 'tcx>, |
| version: u32, |
| filenames_size: usize, |
| filenames_val: &'ll llvm::Value, |
| ) -> &'ll llvm::Value { |
| debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version); |
| |
| // Create the coverage data header (Note, fields 0 and 2 are now always zero, |
| // as of `llvm::coverage::CovMapVersion::Version4`.) |
| let zero_was_n_records_val = cx.const_u32(0); |
| let filenames_size_val = cx.const_u32(filenames_size as u32); |
| let zero_was_coverage_size_val = cx.const_u32(0); |
| let version_val = cx.const_u32(version); |
| let cov_data_header_val = cx.const_struct( |
| &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val], |
| /*packed=*/ false, |
| ); |
| |
| // Create the complete LLVM coverage data value to add to the LLVM IR |
| cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false) |
| } |
| } |
| |
| /// Construct a function record and combine it with the function's coverage mapping data. |
| /// Save the function record into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn save_function_record( |
| cx: &CodegenCx<'ll, 'tcx>, |
| mangled_function_name: String, |
| function_source_hash: u64, |
| filenames_ref: u64, |
| coverage_mapping_buffer: Vec<u8>, |
| ) { |
| // Concatenate the encoded coverage mappings |
| let coverage_mapping_size = coverage_mapping_buffer.len(); |
| let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer[..]); |
| |
| let func_name_hash = coverageinfo::hash_str(&mangled_function_name); |
| let func_name_hash_val = cx.const_u64(func_name_hash); |
| let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32); |
| let func_hash_val = cx.const_u64(function_source_hash); |
| let filenames_ref_val = cx.const_u64(filenames_ref); |
| let func_record_val = cx.const_struct( |
| &[ |
| func_name_hash_val, |
| coverage_mapping_size_val, |
| func_hash_val, |
| filenames_ref_val, |
| coverage_mapping_val, |
| ], |
| /*packed=*/ true, |
| ); |
| |
| // At the present time, the coverage map for Rust assumes every instrumented function `is_used`. |
| // Note that Clang marks functions as "unused" in `CodeGenPGO::emitEmptyCounterMapping`. (See: |
| // https://github.com/rust-lang/llvm-project/blob/de02a75e398415bad4df27b4547c25b896c8bf3b/clang%2Flib%2FCodeGen%2FCodeGenPGO.cpp#L877-L878 |
| // for example.) |
| // |
| // It's not yet clear if or how this may be applied to Rust in the future, but the `is_used` |
| // argument is available and handled similarly. |
| let is_used = true; |
| coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used); |
| } |
| |
| /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for |
| /// the functions that went through codegen; such as public functions and "used" functions |
| /// (functions referenced by other "used" or public items). Any other functions considered unused, |
| /// or "Unreachable" were still parsed and processed through the MIR stage. |
| /// |
| /// We can find the unreachable functions by the set difference of all MIR `DefId`s (`tcx` query |
| /// `mir_keys`) minus the codegenned `DefId`s (`tcx` query `collect_and_partition_mono_items`). |
| /// |
| /// *HOWEVER* the codegenned `DefId`s are partitioned across multiple `CodegenUnit`s (CGUs), and |
| /// this function is processing a `function_coverage_map` for the functions (`Instance`/`DefId`) |
| /// allocated to only one of those CGUs. We must NOT inject any "Unreachable" functions's |
| /// `CodeRegion`s more than once, so we have to pick which CGU's `function_coverage_map` to add |
| /// each "Unreachable" function to. |
| /// |
| /// Some constraints: |
| /// |
| /// 1. The file name of an "Unreachable" function must match the file name of the existing |
| /// codegenned (covered) function to which the unreachable code regions will be added. |
| /// 2. The function to which the unreachable code regions will be added must not be a genaric |
| /// function (must not have type parameters) because the coverage tools will get confused |
| /// if the codegenned function has more than one instantiation and additional `CodeRegion`s |
| /// attached to only one of those instantiations. |
| fn add_unreachable_coverage<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| function_coverage_map: &mut FxHashMap<Instance<'tcx>, FunctionCoverage<'tcx>>, |
| ) { |
| // FIXME(#79622): Can this solution be simplified and/or improved? Are there other sources |
| // of compiler state data that might help (or better sources that could be exposed, but |
| // aren't yet)? |
| |
| // Note: If the crate *only* defines generic functions, there are no codegenerated non-generic |
| // functions to add any unreachable code to. In this case, the unreachable code regions will |
| // have no coverage, instead of having coverage with zero executions. |
| // |
| // This is probably still an improvement over Clang, which does not generate any coverage |
| // for uninstantiated template functions. |
| |
| let has_non_generic_def_ids = |
| function_coverage_map.keys().any(|instance| instance.def.attrs(tcx).len() == 0); |
| |
| if !has_non_generic_def_ids { |
| // There are no non-generic functions to add unreachable `CodeRegion`s to |
| return; |
| } |
| |
| let all_def_ids: DefIdSet = |
| tcx.mir_keys(LOCAL_CRATE).iter().map(|local_def_id| local_def_id.to_def_id()).collect(); |
| |
| let (codegenned_def_ids, _) = tcx.collect_and_partition_mono_items(LOCAL_CRATE); |
| |
| let mut unreachable_def_ids_by_file: FxHashMap<Symbol, Vec<DefId>> = FxHashMap::default(); |
| for &non_codegenned_def_id in all_def_ids.difference(codegenned_def_ids) { |
| // Make sure the non-codegenned (unreachable) function has a file_name |
| if let Some(non_codegenned_file_name) = tcx.covered_file_name(non_codegenned_def_id) { |
| let def_ids = unreachable_def_ids_by_file |
| .entry(*non_codegenned_file_name) |
| .or_insert_with(|| Vec::new()); |
| def_ids.push(non_codegenned_def_id); |
| } |
| } |
| |
| if unreachable_def_ids_by_file.is_empty() { |
| // There are no unreachable functions with file names to add (in any CGU) |
| return; |
| } |
| |
| // Since there may be multiple `CodegenUnit`s, some codegenned_def_ids may be codegenned in a |
| // different CGU, and will be added to the function_coverage_map for each CGU. Determine which |
| // function_coverage_map has the responsibility for publishing unreachable coverage |
| // based on file name: |
| // |
| // For each covered file name, sort ONLY the non-generic codegenned_def_ids, and if |
| // covered_def_ids.contains(the first def_id) for a given file_name, add the unreachable code |
| // region in this function_coverage_map. Otherwise, ignore it and assume another CGU's |
| // function_coverage_map will be adding it (because it will be first for one, and only one, |
| // of them). |
| let mut sorted_codegenned_def_ids: Vec<DefId> = |
| codegenned_def_ids.iter().map(|def_id| *def_id).collect(); |
| sorted_codegenned_def_ids.sort_unstable(); |
| |
| let mut first_covered_def_id_by_file: FxHashMap<Symbol, DefId> = FxHashMap::default(); |
| for &def_id in sorted_codegenned_def_ids.iter() { |
| // Only consider non-generic functions, to potentially add unreachable code regions |
| if tcx.generics_of(def_id).count() == 0 { |
| if let Some(covered_file_name) = tcx.covered_file_name(def_id) { |
| // Only add files known to have unreachable functions |
| if unreachable_def_ids_by_file.contains_key(covered_file_name) { |
| first_covered_def_id_by_file.entry(*covered_file_name).or_insert(def_id); |
| } |
| } |
| } |
| } |
| |
| // Get the set of def_ids with coverage regions, known by *this* CoverageContext. |
| let cgu_covered_def_ids: DefIdSet = |
| function_coverage_map.keys().map(|instance| instance.def.def_id()).collect(); |
| |
| let mut cgu_covered_files: FxHashSet<Symbol> = first_covered_def_id_by_file |
| .iter() |
| .filter_map( |
| |(&file_name, def_id)| { |
| if cgu_covered_def_ids.contains(def_id) { Some(file_name) } else { None } |
| }, |
| ) |
| .collect(); |
| |
| // Find the first covered, non-generic function (instance) for each cgu_covered_file. Take the |
| // unreachable code regions for that file, and add them to the function. |
| // |
| // There are three `for` loops here, but (a) the lists have already been reduced to the minimum |
| // required values, the lists are further reduced (by `remove()` calls) when elements are no |
| // longer needed, and there are several opportunities to branch out of loops early. |
| for (instance, function_coverage) in function_coverage_map.iter_mut() { |
| if instance.def.attrs(tcx).len() > 0 { |
| continue; |
| } |
| // The covered function is not generic... |
| let covered_def_id = instance.def.def_id(); |
| if let Some(covered_file_name) = tcx.covered_file_name(covered_def_id) { |
| if !cgu_covered_files.remove(&covered_file_name) { |
| continue; |
| } |
| // The covered function's file is one of the files with unreachable code regions, so |
| // all of the unreachable code regions for this file will be added to this function. |
| for def_id in |
| unreachable_def_ids_by_file.remove(&covered_file_name).into_iter().flatten() |
| { |
| // Note, this loop adds an unreachable code regions for each MIR-derived region. |
| // Alternatively, we could add a single code region for the maximum span of all |
| // code regions here. |
| // |
| // Observed downsides of this approach are: |
| // |
| // 1. The coverage results will appear inconsistent compared with the same (or |
| // similar) code in a function that is reached. |
| // 2. If the function is unreachable from one crate but reachable when compiling |
| // another referencing crate (such as a cross-crate reference to a |
| // generic function or inlined function), actual coverage regions overlaid |
| // on a single larger code span of `Zero` coverage can appear confusing or |
| // wrong. Chaning the unreachable coverage from a `code_region` to a |
| // `gap_region` can help, but still can look odd with `0` line counts for |
| // lines between executed (> 0) lines (such as for blank lines or comments). |
| for ®ion in tcx.covered_code_regions(def_id) { |
| function_coverage.add_unreachable_region(region.clone()); |
| } |
| } |
| if cgu_covered_files.is_empty() { |
| break; |
| } |
| } |
| } |
| } |