| //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" |
| #include "llvm/CodeGen/GlobalISel/Combiner.h" |
| #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "gi-combiner" |
| |
| using namespace llvm; |
| using namespace MIPatternMatch; |
| |
| // Option to allow testing of the combiner while no targets know about indexed |
| // addressing. |
| static cl::opt<bool> |
| ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), |
| cl::desc("Force all indexed operations to be " |
| "legal for the GlobalISel combiner")); |
| |
| |
| CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, |
| MachineIRBuilder &B, GISelKnownBits *KB, |
| MachineDominatorTree *MDT, |
| const LegalizerInfo *LI) |
| : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), |
| KB(KB), MDT(MDT), LI(LI) { |
| (void)this->KB; |
| } |
| |
| void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, |
| Register ToReg) const { |
| Observer.changingAllUsesOfReg(MRI, FromReg); |
| |
| if (MRI.constrainRegAttrs(ToReg, FromReg)) |
| MRI.replaceRegWith(FromReg, ToReg); |
| else |
| Builder.buildCopy(ToReg, FromReg); |
| |
| Observer.finishedChangingAllUsesOfReg(); |
| } |
| |
| void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, |
| MachineOperand &FromRegOp, |
| Register ToReg) const { |
| assert(FromRegOp.getParent() && "Expected an operand in an MI"); |
| Observer.changingInstr(*FromRegOp.getParent()); |
| |
| FromRegOp.setReg(ToReg); |
| |
| Observer.changedInstr(*FromRegOp.getParent()); |
| } |
| |
| bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { |
| if (matchCombineCopy(MI)) { |
| applyCombineCopy(MI); |
| return true; |
| } |
| return false; |
| } |
| bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { |
| if (MI.getOpcode() != TargetOpcode::COPY) |
| return false; |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| return canReplaceReg(DstReg, SrcReg, MRI); |
| } |
| void CombinerHelper::applyCombineCopy(MachineInstr &MI) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| MI.eraseFromParent(); |
| replaceRegWith(MRI, DstReg, SrcReg); |
| } |
| |
| bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { |
| bool IsUndef = false; |
| SmallVector<Register, 4> Ops; |
| if (matchCombineConcatVectors(MI, IsUndef, Ops)) { |
| applyCombineConcatVectors(MI, IsUndef, Ops); |
| return true; |
| } |
| return false; |
| } |
| |
| bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, |
| SmallVectorImpl<Register> &Ops) { |
| assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && |
| "Invalid instruction"); |
| IsUndef = true; |
| MachineInstr *Undef = nullptr; |
| |
| // Walk over all the operands of concat vectors and check if they are |
| // build_vector themselves or undef. |
| // Then collect their operands in Ops. |
| for (const MachineOperand &MO : MI.uses()) { |
| Register Reg = MO.getReg(); |
| MachineInstr *Def = MRI.getVRegDef(Reg); |
| assert(Def && "Operand not defined"); |
| switch (Def->getOpcode()) { |
| case TargetOpcode::G_BUILD_VECTOR: |
| IsUndef = false; |
| // Remember the operands of the build_vector to fold |
| // them into the yet-to-build flattened concat vectors. |
| for (const MachineOperand &BuildVecMO : Def->uses()) |
| Ops.push_back(BuildVecMO.getReg()); |
| break; |
| case TargetOpcode::G_IMPLICIT_DEF: { |
| LLT OpType = MRI.getType(Reg); |
| // Keep one undef value for all the undef operands. |
| if (!Undef) { |
| Builder.setInsertPt(*MI.getParent(), MI); |
| Undef = Builder.buildUndef(OpType.getScalarType()); |
| } |
| assert(MRI.getType(Undef->getOperand(0).getReg()) == |
| OpType.getScalarType() && |
| "All undefs should have the same type"); |
| // Break the undef vector in as many scalar elements as needed |
| // for the flattening. |
| for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); |
| EltIdx != EltEnd; ++EltIdx) |
| Ops.push_back(Undef->getOperand(0).getReg()); |
| break; |
| } |
| default: |
| return false; |
| } |
| } |
| return true; |
| } |
| void CombinerHelper::applyCombineConcatVectors( |
| MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { |
| // We determined that the concat_vectors can be flatten. |
| // Generate the flattened build_vector. |
| Register DstReg = MI.getOperand(0).getReg(); |
| Builder.setInsertPt(*MI.getParent(), MI); |
| Register NewDstReg = MRI.cloneVirtualRegister(DstReg); |
| |
| // Note: IsUndef is sort of redundant. We could have determine it by |
| // checking that at all Ops are undef. Alternatively, we could have |
| // generate a build_vector of undefs and rely on another combine to |
| // clean that up. For now, given we already gather this information |
| // in tryCombineConcatVectors, just save compile time and issue the |
| // right thing. |
| if (IsUndef) |
| Builder.buildUndef(NewDstReg); |
| else |
| Builder.buildBuildVector(NewDstReg, Ops); |
| MI.eraseFromParent(); |
| replaceRegWith(MRI, DstReg, NewDstReg); |
| } |
| |
| bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { |
| SmallVector<Register, 4> Ops; |
| if (matchCombineShuffleVector(MI, Ops)) { |
| applyCombineShuffleVector(MI, Ops); |
| return true; |
| } |
| return false; |
| } |
| |
| bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, |
| SmallVectorImpl<Register> &Ops) { |
| assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && |
| "Invalid instruction kind"); |
| LLT DstType = MRI.getType(MI.getOperand(0).getReg()); |
| Register Src1 = MI.getOperand(1).getReg(); |
| LLT SrcType = MRI.getType(Src1); |
| // As bizarre as it may look, shuffle vector can actually produce |
| // scalar! This is because at the IR level a <1 x ty> shuffle |
| // vector is perfectly valid. |
| unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; |
| unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; |
| |
| // If the resulting vector is smaller than the size of the source |
| // vectors being concatenated, we won't be able to replace the |
| // shuffle vector into a concat_vectors. |
| // |
| // Note: We may still be able to produce a concat_vectors fed by |
| // extract_vector_elt and so on. It is less clear that would |
| // be better though, so don't bother for now. |
| // |
| // If the destination is a scalar, the size of the sources doesn't |
| // matter. we will lower the shuffle to a plain copy. This will |
| // work only if the source and destination have the same size. But |
| // that's covered by the next condition. |
| // |
| // TODO: If the size between the source and destination don't match |
| // we could still emit an extract vector element in that case. |
| if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) |
| return false; |
| |
| // Check that the shuffle mask can be broken evenly between the |
| // different sources. |
| if (DstNumElts % SrcNumElts != 0) |
| return false; |
| |
| // Mask length is a multiple of the source vector length. |
| // Check if the shuffle is some kind of concatenation of the input |
| // vectors. |
| unsigned NumConcat = DstNumElts / SrcNumElts; |
| SmallVector<int, 8> ConcatSrcs(NumConcat, -1); |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| for (unsigned i = 0; i != DstNumElts; ++i) { |
| int Idx = Mask[i]; |
| // Undef value. |
| if (Idx < 0) |
| continue; |
| // Ensure the indices in each SrcType sized piece are sequential and that |
| // the same source is used for the whole piece. |
| if ((Idx % SrcNumElts != (i % SrcNumElts)) || |
| (ConcatSrcs[i / SrcNumElts] >= 0 && |
| ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) |
| return false; |
| // Remember which source this index came from. |
| ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; |
| } |
| |
| // The shuffle is concatenating multiple vectors together. |
| // Collect the different operands for that. |
| Register UndefReg; |
| Register Src2 = MI.getOperand(2).getReg(); |
| for (auto Src : ConcatSrcs) { |
| if (Src < 0) { |
| if (!UndefReg) { |
| Builder.setInsertPt(*MI.getParent(), MI); |
| UndefReg = Builder.buildUndef(SrcType).getReg(0); |
| } |
| Ops.push_back(UndefReg); |
| } else if (Src == 0) |
| Ops.push_back(Src1); |
| else |
| Ops.push_back(Src2); |
| } |
| return true; |
| } |
| |
| void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, |
| const ArrayRef<Register> Ops) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| Builder.setInsertPt(*MI.getParent(), MI); |
| Register NewDstReg = MRI.cloneVirtualRegister(DstReg); |
| |
| if (Ops.size() == 1) |
| Builder.buildCopy(NewDstReg, Ops[0]); |
| else |
| Builder.buildMerge(NewDstReg, Ops); |
| |
| MI.eraseFromParent(); |
| replaceRegWith(MRI, DstReg, NewDstReg); |
| } |
| |
| namespace { |
| |
| /// Select a preference between two uses. CurrentUse is the current preference |
| /// while *ForCandidate is attributes of the candidate under consideration. |
| PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, |
| const LLT TyForCandidate, |
| unsigned OpcodeForCandidate, |
| MachineInstr *MIForCandidate) { |
| if (!CurrentUse.Ty.isValid()) { |
| if (CurrentUse.ExtendOpcode == OpcodeForCandidate || |
| CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) |
| return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; |
| return CurrentUse; |
| } |
| |
| // We permit the extend to hoist through basic blocks but this is only |
| // sensible if the target has extending loads. If you end up lowering back |
| // into a load and extend during the legalizer then the end result is |
| // hoisting the extend up to the load. |
| |
| // Prefer defined extensions to undefined extensions as these are more |
| // likely to reduce the number of instructions. |
| if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && |
| CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) |
| return CurrentUse; |
| else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && |
| OpcodeForCandidate != TargetOpcode::G_ANYEXT) |
| return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; |
| |
| // Prefer sign extensions to zero extensions as sign-extensions tend to be |
| // more expensive. |
| if (CurrentUse.Ty == TyForCandidate) { |
| if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && |
| OpcodeForCandidate == TargetOpcode::G_ZEXT) |
| return CurrentUse; |
| else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && |
| OpcodeForCandidate == TargetOpcode::G_SEXT) |
| return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; |
| } |
| |
| // This is potentially target specific. We've chosen the largest type |
| // because G_TRUNC is usually free. One potential catch with this is that |
| // some targets have a reduced number of larger registers than smaller |
| // registers and this choice potentially increases the live-range for the |
| // larger value. |
| if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { |
| return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; |
| } |
| return CurrentUse; |
| } |
| |
| /// Find a suitable place to insert some instructions and insert them. This |
| /// function accounts for special cases like inserting before a PHI node. |
| /// The current strategy for inserting before PHI's is to duplicate the |
| /// instructions for each predecessor. However, while that's ok for G_TRUNC |
| /// on most targets since it generally requires no code, other targets/cases may |
| /// want to try harder to find a dominating block. |
| static void InsertInsnsWithoutSideEffectsBeforeUse( |
| MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, |
| std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, |
| MachineOperand &UseMO)> |
| Inserter) { |
| MachineInstr &UseMI = *UseMO.getParent(); |
| |
| MachineBasicBlock *InsertBB = UseMI.getParent(); |
| |
| // If the use is a PHI then we want the predecessor block instead. |
| if (UseMI.isPHI()) { |
| MachineOperand *PredBB = std::next(&UseMO); |
| InsertBB = PredBB->getMBB(); |
| } |
| |
| // If the block is the same block as the def then we want to insert just after |
| // the def instead of at the start of the block. |
| if (InsertBB == DefMI.getParent()) { |
| MachineBasicBlock::iterator InsertPt = &DefMI; |
| Inserter(InsertBB, std::next(InsertPt), UseMO); |
| return; |
| } |
| |
| // Otherwise we want the start of the BB |
| Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); |
| } |
| } // end anonymous namespace |
| |
| bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { |
| PreferredTuple Preferred; |
| if (matchCombineExtendingLoads(MI, Preferred)) { |
| applyCombineExtendingLoads(MI, Preferred); |
| return true; |
| } |
| return false; |
| } |
| |
| bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, |
| PreferredTuple &Preferred) { |
| // We match the loads and follow the uses to the extend instead of matching |
| // the extends and following the def to the load. This is because the load |
| // must remain in the same position for correctness (unless we also add code |
| // to find a safe place to sink it) whereas the extend is freely movable. |
| // It also prevents us from duplicating the load for the volatile case or just |
| // for performance. |
| |
| if (MI.getOpcode() != TargetOpcode::G_LOAD && |
| MI.getOpcode() != TargetOpcode::G_SEXTLOAD && |
| MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) |
| return false; |
| |
| auto &LoadValue = MI.getOperand(0); |
| assert(LoadValue.isReg() && "Result wasn't a register?"); |
| |
| LLT LoadValueTy = MRI.getType(LoadValue.getReg()); |
| if (!LoadValueTy.isScalar()) |
| return false; |
| |
| // Most architectures are going to legalize <s8 loads into at least a 1 byte |
| // load, and the MMOs can only describe memory accesses in multiples of bytes. |
| // If we try to perform extload combining on those, we can end up with |
| // %a(s8) = extload %ptr (load 1 byte from %ptr) |
| // ... which is an illegal extload instruction. |
| if (LoadValueTy.getSizeInBits() < 8) |
| return false; |
| |
| // For non power-of-2 types, they will very likely be legalized into multiple |
| // loads. Don't bother trying to match them into extending loads. |
| if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) |
| return false; |
| |
| // Find the preferred type aside from the any-extends (unless it's the only |
| // one) and non-extending ops. We'll emit an extending load to that type and |
| // and emit a variant of (extend (trunc X)) for the others according to the |
| // relative type sizes. At the same time, pick an extend to use based on the |
| // extend involved in the chosen type. |
| unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD |
| ? TargetOpcode::G_ANYEXT |
| : MI.getOpcode() == TargetOpcode::G_SEXTLOAD |
| ? TargetOpcode::G_SEXT |
| : TargetOpcode::G_ZEXT; |
| Preferred = {LLT(), PreferredOpcode, nullptr}; |
| for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { |
| if (UseMI.getOpcode() == TargetOpcode::G_SEXT || |
| UseMI.getOpcode() == TargetOpcode::G_ZEXT || |
| (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { |
| // Check for legality. |
| if (LI) { |
| LegalityQuery::MemDesc MMDesc; |
| const auto &MMO = **MI.memoperands_begin(); |
| MMDesc.SizeInBits = MMO.getSizeInBits(); |
| MMDesc.AlignInBits = MMO.getAlign().value() * 8; |
| MMDesc.Ordering = MMO.getOrdering(); |
| LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); |
| LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); |
| if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != |
| LegalizeActions::Legal) |
| continue; |
| } |
| Preferred = ChoosePreferredUse(Preferred, |
| MRI.getType(UseMI.getOperand(0).getReg()), |
| UseMI.getOpcode(), &UseMI); |
| } |
| } |
| |
| // There were no extends |
| if (!Preferred.MI) |
| return false; |
| // It should be impossible to chose an extend without selecting a different |
| // type since by definition the result of an extend is larger. |
| assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); |
| |
| LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); |
| return true; |
| } |
| |
| void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, |
| PreferredTuple &Preferred) { |
| // Rewrite the load to the chosen extending load. |
| Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); |
| |
| // Inserter to insert a truncate back to the original type at a given point |
| // with some basic CSE to limit truncate duplication to one per BB. |
| DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; |
| auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, |
| MachineBasicBlock::iterator InsertBefore, |
| MachineOperand &UseMO) { |
| MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); |
| if (PreviouslyEmitted) { |
| Observer.changingInstr(*UseMO.getParent()); |
| UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); |
| Observer.changedInstr(*UseMO.getParent()); |
| return; |
| } |
| |
| Builder.setInsertPt(*InsertIntoBB, InsertBefore); |
| Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); |
| MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); |
| EmittedInsns[InsertIntoBB] = NewMI; |
| replaceRegOpWith(MRI, UseMO, NewDstReg); |
| }; |
| |
| Observer.changingInstr(MI); |
| MI.setDesc( |
| Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT |
| ? TargetOpcode::G_SEXTLOAD |
| : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT |
| ? TargetOpcode::G_ZEXTLOAD |
| : TargetOpcode::G_LOAD)); |
| |
| // Rewrite all the uses to fix up the types. |
| auto &LoadValue = MI.getOperand(0); |
| SmallVector<MachineOperand *, 4> Uses; |
| for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) |
| Uses.push_back(&UseMO); |
| |
| for (auto *UseMO : Uses) { |
| MachineInstr *UseMI = UseMO->getParent(); |
| |
| // If the extend is compatible with the preferred extend then we should fix |
| // up the type and extend so that it uses the preferred use. |
| if (UseMI->getOpcode() == Preferred.ExtendOpcode || |
| UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { |
| Register UseDstReg = UseMI->getOperand(0).getReg(); |
| MachineOperand &UseSrcMO = UseMI->getOperand(1); |
| const LLT UseDstTy = MRI.getType(UseDstReg); |
| if (UseDstReg != ChosenDstReg) { |
| if (Preferred.Ty == UseDstTy) { |
| // If the use has the same type as the preferred use, then merge |
| // the vregs and erase the extend. For example: |
| // %1:_(s8) = G_LOAD ... |
| // %2:_(s32) = G_SEXT %1(s8) |
| // %3:_(s32) = G_ANYEXT %1(s8) |
| // ... = ... %3(s32) |
| // rewrites to: |
| // %2:_(s32) = G_SEXTLOAD ... |
| // ... = ... %2(s32) |
| replaceRegWith(MRI, UseDstReg, ChosenDstReg); |
| Observer.erasingInstr(*UseMO->getParent()); |
| UseMO->getParent()->eraseFromParent(); |
| } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { |
| // If the preferred size is smaller, then keep the extend but extend |
| // from the result of the extending load. For example: |
| // %1:_(s8) = G_LOAD ... |
| // %2:_(s32) = G_SEXT %1(s8) |
| // %3:_(s64) = G_ANYEXT %1(s8) |
| // ... = ... %3(s64) |
| /// rewrites to: |
| // %2:_(s32) = G_SEXTLOAD ... |
| // %3:_(s64) = G_ANYEXT %2:_(s32) |
| // ... = ... %3(s64) |
| replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); |
| } else { |
| // If the preferred size is large, then insert a truncate. For |
| // example: |
| // %1:_(s8) = G_LOAD ... |
| // %2:_(s64) = G_SEXT %1(s8) |
| // %3:_(s32) = G_ZEXT %1(s8) |
| // ... = ... %3(s32) |
| /// rewrites to: |
| // %2:_(s64) = G_SEXTLOAD ... |
| // %4:_(s8) = G_TRUNC %2:_(s32) |
| // %3:_(s64) = G_ZEXT %2:_(s8) |
| // ... = ... %3(s64) |
| InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, |
| InsertTruncAt); |
| } |
| continue; |
| } |
| // The use is (one of) the uses of the preferred use we chose earlier. |
| // We're going to update the load to def this value later so just erase |
| // the old extend. |
| Observer.erasingInstr(*UseMO->getParent()); |
| UseMO->getParent()->eraseFromParent(); |
| continue; |
| } |
| |
| // The use isn't an extend. Truncate back to the type we originally loaded. |
| // This is free on many targets. |
| InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); |
| } |
| |
| MI.getOperand(0).setReg(ChosenDstReg); |
| Observer.changedInstr(MI); |
| } |
| |
| bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, |
| const MachineInstr &UseMI) { |
| assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && |
| "shouldn't consider debug uses"); |
| assert(DefMI.getParent() == UseMI.getParent()); |
| if (&DefMI == &UseMI) |
| return false; |
| |
| // Loop through the basic block until we find one of the instructions. |
| MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); |
| for (; &*I != &DefMI && &*I != &UseMI; ++I) |
| return &*I == &DefMI; |
| |
| llvm_unreachable("Block must contain instructions"); |
| } |
| |
| bool CombinerHelper::dominates(const MachineInstr &DefMI, |
| const MachineInstr &UseMI) { |
| assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && |
| "shouldn't consider debug uses"); |
| if (MDT) |
| return MDT->dominates(&DefMI, &UseMI); |
| else if (DefMI.getParent() != UseMI.getParent()) |
| return false; |
| |
| return isPredecessor(DefMI, UseMI); |
| } |
| |
| bool CombinerHelper::matchSextAlreadyExtended(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| unsigned SrcSignBits = KB->computeNumSignBits(SrcReg); |
| unsigned NumSextBits = |
| MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits() - |
| MI.getOperand(2).getImm(); |
| return SrcSignBits >= NumSextBits; |
| } |
| |
| bool CombinerHelper::applySextAlreadyExtended(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); |
| MachineIRBuilder MIB(MI); |
| MIB.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, |
| Register &Base, Register &Offset) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| |
| #ifndef NDEBUG |
| unsigned Opcode = MI.getOpcode(); |
| assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || |
| Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); |
| #endif |
| |
| Base = MI.getOperand(1).getReg(); |
| MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); |
| if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); |
| |
| for (auto &Use : MRI.use_nodbg_instructions(Base)) { |
| if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) |
| continue; |
| |
| Offset = Use.getOperand(2).getReg(); |
| if (!ForceLegalIndexing && |
| !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { |
| LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " |
| << Use); |
| continue; |
| } |
| |
| // Make sure the offset calculation is before the potentially indexed op. |
| // FIXME: we really care about dependency here. The offset calculation might |
| // be movable. |
| MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); |
| if (!OffsetDef || !dominates(*OffsetDef, MI)) { |
| LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " |
| << Use); |
| continue; |
| } |
| |
| // FIXME: check whether all uses of Base are load/store with foldable |
| // addressing modes. If so, using the normal addr-modes is better than |
| // forming an indexed one. |
| |
| bool MemOpDominatesAddrUses = true; |
| for (auto &PtrAddUse : |
| MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { |
| if (!dominates(MI, PtrAddUse)) { |
| MemOpDominatesAddrUses = false; |
| break; |
| } |
| } |
| |
| if (!MemOpDominatesAddrUses) { |
| LLVM_DEBUG( |
| dbgs() << " Ignoring candidate as memop does not dominate uses: " |
| << Use); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << " Found match: " << Use); |
| Addr = Use.getOperand(0).getReg(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, |
| Register &Base, Register &Offset) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| |
| #ifndef NDEBUG |
| unsigned Opcode = MI.getOpcode(); |
| assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || |
| Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); |
| #endif |
| |
| Addr = MI.getOperand(1).getReg(); |
| MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); |
| if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) |
| return false; |
| |
| Base = AddrDef->getOperand(1).getReg(); |
| Offset = AddrDef->getOperand(2).getReg(); |
| |
| LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); |
| |
| if (!ForceLegalIndexing && |
| !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { |
| LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); |
| return false; |
| } |
| |
| MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); |
| if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); |
| return false; |
| } |
| |
| if (MI.getOpcode() == TargetOpcode::G_STORE) { |
| // Would require a copy. |
| if (Base == MI.getOperand(0).getReg()) { |
| LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); |
| return false; |
| } |
| |
| // We're expecting one use of Addr in MI, but it could also be the |
| // value stored, which isn't actually dominated by the instruction. |
| if (MI.getOperand(0).getReg() == Addr) { |
| LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); |
| return false; |
| } |
| } |
| |
| // FIXME: check whether all uses of the base pointer are constant PtrAdds. |
| // That might allow us to end base's liveness here by adjusting the constant. |
| |
| for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { |
| if (!dominates(MI, UseMI)) { |
| LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { |
| IndexedLoadStoreMatchInfo MatchInfo; |
| if (matchCombineIndexedLoadStore(MI, MatchInfo)) { |
| applyCombineIndexedLoadStore(MI, MatchInfo); |
| return true; |
| } |
| return false; |
| } |
| |
| bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { |
| unsigned Opcode = MI.getOpcode(); |
| if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && |
| Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) |
| return false; |
| |
| MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, |
| MatchInfo.Offset); |
| if (!MatchInfo.IsPre && |
| !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, |
| MatchInfo.Offset)) |
| return false; |
| |
| return true; |
| } |
| |
| void CombinerHelper::applyCombineIndexedLoadStore( |
| MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { |
| MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); |
| MachineIRBuilder MIRBuilder(MI); |
| unsigned Opcode = MI.getOpcode(); |
| bool IsStore = Opcode == TargetOpcode::G_STORE; |
| unsigned NewOpcode; |
| switch (Opcode) { |
| case TargetOpcode::G_LOAD: |
| NewOpcode = TargetOpcode::G_INDEXED_LOAD; |
| break; |
| case TargetOpcode::G_SEXTLOAD: |
| NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; |
| break; |
| case TargetOpcode::G_ZEXTLOAD: |
| NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; |
| break; |
| case TargetOpcode::G_STORE: |
| NewOpcode = TargetOpcode::G_INDEXED_STORE; |
| break; |
| default: |
| llvm_unreachable("Unknown load/store opcode"); |
| } |
| |
| auto MIB = MIRBuilder.buildInstr(NewOpcode); |
| if (IsStore) { |
| MIB.addDef(MatchInfo.Addr); |
| MIB.addUse(MI.getOperand(0).getReg()); |
| } else { |
| MIB.addDef(MI.getOperand(0).getReg()); |
| MIB.addDef(MatchInfo.Addr); |
| } |
| |
| MIB.addUse(MatchInfo.Base); |
| MIB.addUse(MatchInfo.Offset); |
| MIB.addImm(MatchInfo.IsPre); |
| MI.eraseFromParent(); |
| AddrDef.eraseFromParent(); |
| |
| LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); |
| } |
| |
| bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { |
| if (MI.getOpcode() != TargetOpcode::G_BR) |
| return false; |
| |
| // Try to match the following: |
| // bb1: |
| // %c(s32) = G_ICMP pred, %a, %b |
| // %c1(s1) = G_TRUNC %c(s32) |
| // G_BRCOND %c1, %bb2 |
| // G_BR %bb3 |
| // bb2: |
| // ... |
| // bb3: |
| |
| // The above pattern does not have a fall through to the successor bb2, always |
| // resulting in a branch no matter which path is taken. Here we try to find |
| // and replace that pattern with conditional branch to bb3 and otherwise |
| // fallthrough to bb2. |
| |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineBasicBlock::iterator BrIt(MI); |
| if (BrIt == MBB->begin()) |
| return false; |
| assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); |
| |
| MachineInstr *BrCond = &*std::prev(BrIt); |
| if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) |
| return false; |
| |
| // Check that the next block is the conditional branch target. |
| if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) |
| return false; |
| |
| MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); |
| if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || |
| !MRI.hasOneNonDBGUse(CmpMI->getOperand(0).getReg())) |
| return false; |
| return true; |
| } |
| |
| bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { |
| if (!matchElideBrByInvertingCond(MI)) |
| return false; |
| applyElideBrByInvertingCond(MI); |
| return true; |
| } |
| |
| void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { |
| MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); |
| MachineBasicBlock::iterator BrIt(MI); |
| MachineInstr *BrCond = &*std::prev(BrIt); |
| MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); |
| |
| CmpInst::Predicate InversePred = CmpInst::getInversePredicate( |
| (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); |
| |
| // Invert the G_ICMP condition. |
| Observer.changingInstr(*CmpMI); |
| CmpMI->getOperand(1).setPredicate(InversePred); |
| Observer.changedInstr(*CmpMI); |
| |
| // Change the conditional branch target. |
| Observer.changingInstr(*BrCond); |
| BrCond->getOperand(1).setMBB(BrTarget); |
| Observer.changedInstr(*BrCond); |
| MI.eraseFromParent(); |
| } |
| |
| static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { |
| // On Darwin, -Os means optimize for size without hurting performance, so |
| // only really optimize for size when -Oz (MinSize) is used. |
| if (MF.getTarget().getTargetTriple().isOSDarwin()) |
| return MF.getFunction().hasMinSize(); |
| return MF.getFunction().hasOptSize(); |
| } |
| |
| // Returns a list of types to use for memory op lowering in MemOps. A partial |
| // port of findOptimalMemOpLowering in TargetLowering. |
| static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, |
| unsigned Limit, const MemOp &Op, |
| unsigned DstAS, unsigned SrcAS, |
| const AttributeList &FuncAttributes, |
| const TargetLowering &TLI) { |
| if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) |
| return false; |
| |
| LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); |
| |
| if (Ty == LLT()) { |
| // Use the largest scalar type whose alignment constraints are satisfied. |
| // We only need to check DstAlign here as SrcAlign is always greater or |
| // equal to DstAlign (or zero). |
| Ty = LLT::scalar(64); |
| if (Op.isFixedDstAlign()) |
| while (Op.getDstAlign() < Ty.getSizeInBytes() && |
| !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) |
| Ty = LLT::scalar(Ty.getSizeInBytes()); |
| assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); |
| // FIXME: check for the largest legal type we can load/store to. |
| } |
| |
| unsigned NumMemOps = 0; |
| uint64_t Size = Op.size(); |
| while (Size) { |
| unsigned TySize = Ty.getSizeInBytes(); |
| while (TySize > Size) { |
| // For now, only use non-vector load / store's for the left-over pieces. |
| LLT NewTy = Ty; |
| // FIXME: check for mem op safety and legality of the types. Not all of |
| // SDAGisms map cleanly to GISel concepts. |
| if (NewTy.isVector()) |
| NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); |
| NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); |
| unsigned NewTySize = NewTy.getSizeInBytes(); |
| assert(NewTySize > 0 && "Could not find appropriate type"); |
| |
| // If the new LLT cannot cover all of the remaining bits, then consider |
| // issuing a (or a pair of) unaligned and overlapping load / store. |
| bool Fast; |
| // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). |
| MVT VT = getMVTForLLT(Ty); |
| if (NumMemOps && Op.allowOverlap() && NewTySize < Size && |
| TLI.allowsMisalignedMemoryAccesses( |
| VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, |
| MachineMemOperand::MONone, &Fast) && |
| Fast) |
| TySize = Size; |
| else { |
| Ty = NewTy; |
| TySize = NewTySize; |
| } |
| } |
| |
| if (++NumMemOps > Limit) |
| return false; |
| |
| MemOps.push_back(Ty); |
| Size -= TySize; |
| } |
| |
| return true; |
| } |
| |
| static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { |
| if (Ty.isVector()) |
| return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), |
| Ty.getNumElements()); |
| return IntegerType::get(C, Ty.getSizeInBits()); |
| } |
| |
| // Get a vectorized representation of the memset value operand, GISel edition. |
| static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| unsigned NumBits = Ty.getScalarSizeInBits(); |
| auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); |
| if (!Ty.isVector() && ValVRegAndVal) { |
| unsigned KnownVal = ValVRegAndVal->Value; |
| APInt Scalar = APInt(8, KnownVal); |
| APInt SplatVal = APInt::getSplat(NumBits, Scalar); |
| return MIB.buildConstant(Ty, SplatVal).getReg(0); |
| } |
| |
| // Extend the byte value to the larger type, and then multiply by a magic |
| // value 0x010101... in order to replicate it across every byte. |
| // Unless it's zero, in which case just emit a larger G_CONSTANT 0. |
| if (ValVRegAndVal && ValVRegAndVal->Value == 0) { |
| return MIB.buildConstant(Ty, 0).getReg(0); |
| } |
| |
| LLT ExtType = Ty.getScalarType(); |
| auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); |
| if (NumBits > 8) { |
| APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); |
| auto MagicMI = MIB.buildConstant(ExtType, Magic); |
| Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); |
| } |
| |
| // For vector types create a G_BUILD_VECTOR. |
| if (Ty.isVector()) |
| Val = MIB.buildSplatVector(Ty, Val).getReg(0); |
| |
| return Val; |
| } |
| |
| bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, |
| Register Val, unsigned KnownLen, |
| Align Alignment, bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memset length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| |
| auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); |
| bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; |
| |
| if (!findGISelOptimalMemOpLowering(MemOps, Limit, |
| MemOp::Set(KnownLen, DstAlignCanChange, |
| Alignment, |
| /*IsZeroMemset=*/IsZeroVal, |
| /*IsVolatile=*/IsVolatile), |
| DstPtrInfo.getAddrSpace(), ~0u, |
| MF.getFunction().getAttributes(), TLI)) |
| return false; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| MachineIRBuilder MIB(MI); |
| // Find the largest store and generate the bit pattern for it. |
| LLT LargestTy = MemOps[0]; |
| for (unsigned i = 1; i < MemOps.size(); i++) |
| if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) |
| LargestTy = MemOps[i]; |
| |
| // The memset stored value is always defined as an s8, so in order to make it |
| // work with larger store types we need to repeat the bit pattern across the |
| // wider type. |
| Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); |
| |
| if (!MemSetValue) |
| return false; |
| |
| // Generate the stores. For each store type in the list, we generate the |
| // matching store of that type to the destination address. |
| LLT PtrTy = MRI.getType(Dst); |
| unsigned DstOff = 0; |
| unsigned Size = KnownLen; |
| for (unsigned I = 0; I < MemOps.size(); I++) { |
| LLT Ty = MemOps[I]; |
| unsigned TySize = Ty.getSizeInBytes(); |
| if (TySize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(I == MemOps.size() - 1 && I != 0); |
| DstOff -= TySize - Size; |
| } |
| |
| // If this store is smaller than the largest store see whether we can get |
| // the smaller value for free with a truncate. |
| Register Value = MemSetValue; |
| if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { |
| MVT VT = getMVTForLLT(Ty); |
| MVT LargestVT = getMVTForLLT(LargestTy); |
| if (!LargestTy.isVector() && !Ty.isVector() && |
| TLI.isTruncateFree(LargestVT, VT)) |
| Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); |
| else |
| Value = getMemsetValue(Val, Ty, MIB); |
| if (!Value) |
| return false; |
| } |
| |
| auto *StoreMMO = |
| MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); |
| |
| Register Ptr = Dst; |
| if (DstOff != 0) { |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); |
| Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); |
| } |
| |
| MIB.buildStore(Value, Ptr, *StoreMMO); |
| DstOff += Ty.getSizeInBytes(); |
| Size -= TySize; |
| } |
| |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, |
| Register Src, unsigned KnownLen, |
| Align DstAlign, Align SrcAlign, |
| bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memcpy length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| Align Alignment = commonAlignment(DstAlign, SrcAlign); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| // FIXME: infer better src pointer alignment like SelectionDAG does here. |
| // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining |
| // if the memcpy is in a tail call position. |
| |
| unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| const auto &SrcMMO = **std::next(MI.memoperands_begin()); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); |
| |
| if (!findGISelOptimalMemOpLowering( |
| MemOps, Limit, |
| MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, |
| IsVolatile), |
| DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), |
| MF.getFunction().getAttributes(), TLI)) |
| return false; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TRI->needsStackRealignment(MF)) |
| while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign = NewAlign / 2; |
| |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); |
| |
| MachineIRBuilder MIB(MI); |
| // Now we need to emit a pair of load and stores for each of the types we've |
| // collected. I.e. for each type, generate a load from the source pointer of |
| // that type width, and then generate a corresponding store to the dest buffer |
| // of that value loaded. This can result in a sequence of loads and stores |
| // mixed types, depending on what the target specifies as good types to use. |
| unsigned CurrOffset = 0; |
| LLT PtrTy = MRI.getType(Src); |
| unsigned Size = KnownLen; |
| for (auto CopyTy : MemOps) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| if (CopyTy.getSizeInBytes() > Size) |
| CurrOffset -= CopyTy.getSizeInBytes() - Size; |
| |
| // Construct MMOs for the accesses. |
| auto *LoadMMO = |
| MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| auto *StoreMMO = |
| MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| // Create the load. |
| Register LoadPtr = Src; |
| Register Offset; |
| if (CurrOffset != 0) { |
| Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) |
| .getReg(0); |
| LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); |
| } |
| auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); |
| |
| // Create the store. |
| Register StorePtr = |
| CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); |
| MIB.buildStore(LdVal, StorePtr, *StoreMMO); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| Size -= CopyTy.getSizeInBytes(); |
| } |
| |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, |
| Register Src, unsigned KnownLen, |
| Align DstAlign, Align SrcAlign, |
| bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memmove length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| Align Alignment = commonAlignment(DstAlign, SrcAlign); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| const auto &SrcMMO = **std::next(MI.memoperands_begin()); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); |
| |
| // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due |
| // to a bug in it's findOptimalMemOpLowering implementation. For now do the |
| // same thing here. |
| if (!findGISelOptimalMemOpLowering( |
| MemOps, Limit, |
| MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, |
| /*IsVolatile*/ true), |
| DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), |
| MF.getFunction().getAttributes(), TLI)) |
| return false; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TRI->needsStackRealignment(MF)) |
| while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign = NewAlign / 2; |
| |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); |
| |
| MachineIRBuilder MIB(MI); |
| // Memmove requires that we perform the loads first before issuing the stores. |
| // Apart from that, this loop is pretty much doing the same thing as the |
| // memcpy codegen function. |
| unsigned CurrOffset = 0; |
| LLT PtrTy = MRI.getType(Src); |
| SmallVector<Register, 16> LoadVals; |
| for (auto CopyTy : MemOps) { |
| // Construct MMO for the load. |
| auto *LoadMMO = |
| MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| // Create the load. |
| Register LoadPtr = Src; |
| if (CurrOffset != 0) { |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); |
| LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); |
| } |
| LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| } |
| |
| CurrOffset = 0; |
| for (unsigned I = 0; I < MemOps.size(); ++I) { |
| LLT CopyTy = MemOps[I]; |
| // Now store the values loaded. |
| auto *StoreMMO = |
| MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| Register StorePtr = Dst; |
| if (CurrOffset != 0) { |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); |
| StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); |
| } |
| MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| } |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { |
| // This combine is fairly complex so it's not written with a separate |
| // matcher function. |
| assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); |
| Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); |
| assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || |
| ID == Intrinsic::memset) && |
| "Expected a memcpy like intrinsic"); |
| |
| auto MMOIt = MI.memoperands_begin(); |
| const MachineMemOperand *MemOp = *MMOIt; |
| bool IsVolatile = MemOp->isVolatile(); |
| // Don't try to optimize volatile. |
| if (IsVolatile) |
| return false; |
| |
| Align DstAlign = MemOp->getBaseAlign(); |
| Align SrcAlign; |
| Register Dst = MI.getOperand(1).getReg(); |
| Register Src = MI.getOperand(2).getReg(); |
| Register Len = MI.getOperand(3).getReg(); |
| |
| if (ID != Intrinsic::memset) { |
| assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); |
| MemOp = *(++MMOIt); |
| SrcAlign = MemOp->getBaseAlign(); |
| } |
| |
| // See if this is a constant length copy |
| auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); |
| if (!LenVRegAndVal) |
| return false; // Leave it to the legalizer to lower it to a libcall. |
| unsigned KnownLen = LenVRegAndVal->Value; |
| |
| if (KnownLen == 0) { |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| if (MaxLen && KnownLen > MaxLen) |
| return false; |
| |
| if (ID == Intrinsic::memcpy) |
| return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); |
| if (ID == Intrinsic::memmove) |
| return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); |
| if (ID == Intrinsic::memset) |
| return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); |
| return false; |
| } |
| |
| bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, |
| PtrAddChain &MatchInfo) { |
| // We're trying to match the following pattern: |
| // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 |
| // %root = G_PTR_ADD %t1, G_CONSTANT imm2 |
| // --> |
| // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) |
| |
| if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) |
| return false; |
| |
| Register Add2 = MI.getOperand(1).getReg(); |
| Register Imm1 = MI.getOperand(2).getReg(); |
| auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); |
| if (!MaybeImmVal) |
| return false; |
| |
| MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); |
| if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) |
| return false; |
| |
| Register Base = Add2Def->getOperand(1).getReg(); |
| Register Imm2 = Add2Def->getOperand(2).getReg(); |
| auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); |
| if (!MaybeImm2Val) |
| return false; |
| |
| // Pass the combined immediate to the apply function. |
| MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; |
| MatchInfo.Base = Base; |
| return true; |
| } |
| |
| bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, |
| PtrAddChain &MatchInfo) { |
| assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); |
| MachineIRBuilder MIB(MI); |
| LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); |
| auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); |
| Observer.changingInstr(MI); |
| MI.getOperand(1).setReg(MatchInfo.Base); |
| MI.getOperand(2).setReg(NewOffset.getReg(0)); |
| Observer.changedInstr(MI); |
| return true; |
| } |
| |
| bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, |
| unsigned &ShiftVal) { |
| assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); |
| auto MaybeImmVal = |
| getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); |
| if (!MaybeImmVal || !isPowerOf2_64(MaybeImmVal->Value)) |
| return false; |
| ShiftVal = Log2_64(MaybeImmVal->Value); |
| return true; |
| } |
| |
| bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, |
| unsigned &ShiftVal) { |
| assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); |
| MachineIRBuilder MIB(MI); |
| LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); |
| auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); |
| Observer.changingInstr(MI); |
| MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); |
| MI.getOperand(2).setReg(ShiftCst.getReg(0)); |
| Observer.changedInstr(MI); |
| return true; |
| } |
| |
| bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, |
| unsigned TargetShiftSize, |
| unsigned &ShiftVal) { |
| assert((MI.getOpcode() == TargetOpcode::G_SHL || |
| MI.getOpcode() == TargetOpcode::G_LSHR || |
| MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); |
| |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| if (Ty.isVector()) // TODO: |
| return false; |
| |
| // Don't narrow further than the requested size. |
| unsigned Size = Ty.getSizeInBits(); |
| if (Size <= TargetShiftSize) |
| return false; |
| |
| auto MaybeImmVal = |
| getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); |
| if (!MaybeImmVal) |
| return false; |
| |
| ShiftVal = MaybeImmVal->Value; |
| return ShiftVal >= Size / 2 && ShiftVal < Size; |
| } |
| |
| bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, |
| const unsigned &ShiftVal) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT Ty = MRI.getType(SrcReg); |
| unsigned Size = Ty.getSizeInBits(); |
| unsigned HalfSize = Size / 2; |
| assert(ShiftVal >= HalfSize); |
| |
| LLT HalfTy = LLT::scalar(HalfSize); |
| |
| Builder.setInstr(MI); |
| auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); |
| unsigned NarrowShiftAmt = ShiftVal - HalfSize; |
| |
| if (MI.getOpcode() == TargetOpcode::G_LSHR) { |
| Register Narrowed = Unmerge.getReg(1); |
| |
| // dst = G_LSHR s64:x, C for C >= 32 |
| // => |
| // lo, hi = G_UNMERGE_VALUES x |
| // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 |
| |
| if (NarrowShiftAmt != 0) { |
| Narrowed = Builder.buildLShr(HalfTy, Narrowed, |
| Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); |
| } |
| |
| auto Zero = Builder.buildConstant(HalfTy, 0); |
| Builder.buildMerge(DstReg, { Narrowed, Zero }); |
| } else if (MI.getOpcode() == TargetOpcode::G_SHL) { |
| Register Narrowed = Unmerge.getReg(0); |
| // dst = G_SHL s64:x, C for C >= 32 |
| // => |
| // lo, hi = G_UNMERGE_VALUES x |
| // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) |
| if (NarrowShiftAmt != 0) { |
| Narrowed = Builder.buildShl(HalfTy, Narrowed, |
| Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); |
| } |
| |
| auto Zero = Builder.buildConstant(HalfTy, 0); |
| Builder.buildMerge(DstReg, { Zero, Narrowed }); |
| } else { |
| assert(MI.getOpcode() == TargetOpcode::G_ASHR); |
| auto Hi = Builder.buildAShr( |
| HalfTy, Unmerge.getReg(1), |
| Builder.buildConstant(HalfTy, HalfSize - 1)); |
| |
| if (ShiftVal == HalfSize) { |
| // (G_ASHR i64:x, 32) -> |
| // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) |
| Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); |
| } else if (ShiftVal == Size - 1) { |
| // Don't need a second shift. |
| // (G_ASHR i64:x, 63) -> |
| // %narrowed = (G_ASHR hi_32(x), 31) |
| // G_MERGE_VALUES %narrowed, %narrowed |
| Builder.buildMerge(DstReg, { Hi, Hi }); |
| } else { |
| auto Lo = Builder.buildAShr( |
| HalfTy, Unmerge.getReg(1), |
| Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); |
| |
| // (G_ASHR i64:x, C) ->, for C >= 32 |
| // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) |
| Builder.buildMerge(DstReg, { Lo, Hi }); |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, |
| unsigned TargetShiftAmount) { |
| unsigned ShiftAmt; |
| if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { |
| applyCombineShiftToUnmerge(MI, ShiftAmt); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { |
| return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { |
| return MO.isReg() && |
| getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); |
| }); |
| } |
| |
| bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { |
| return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { |
| return !MO.isReg() || |
| getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); |
| }); |
| } |
| |
| bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| return all_of(Mask, [](int Elt) { return Elt < 0; }); |
| } |
| |
| bool CombinerHelper::matchUndefStore(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_STORE); |
| return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), |
| MRI); |
| } |
| |
| bool CombinerHelper::eraseInst(MachineInstr &MI) { |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, |
| const MachineOperand &MOP2) { |
| if (!MOP1.isReg() || !MOP2.isReg()) |
| return false; |
| MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); |
| if (!I1) |
| return false; |
| MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); |
| if (!I2) |
| return false; |
| |
| // Handle a case like this: |
| // |
| // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) |
| // |
| // Even though %0 and %1 are produced by the same instruction they are not |
| // the same values. |
| if (I1 == I2) |
| return MOP1.getReg() == MOP2.getReg(); |
| |
| // If we have an instruction which loads or stores, we can't guarantee that |
| // it is identical. |
| // |
| // For example, we may have |
| // |
| // %x1 = G_LOAD %addr (load N from @somewhere) |
| // ... |
| // call @foo |
| // ... |
| // %x2 = G_LOAD %addr (load N from @somewhere) |
| // ... |
| // %or = G_OR %x1, %x2 |
| // |
| // It's possible that @foo will modify whatever lives at the address we're |
| // loading from. To be safe, let's just assume that all loads and stores |
| // are different (unless we have something which is guaranteed to not |
| // change.) |
| if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) |
| return false; |
| |
| // Check for physical registers on the instructions first to avoid cases |
| // like this: |
| // |
| // %a = COPY $physreg |
| // ... |
| // SOMETHING implicit-def $physreg |
| // ... |
| // %b = COPY $physreg |
| // |
| // These copies are not equivalent. |
| if (any_of(I1->uses(), [](const MachineOperand &MO) { |
| return MO.isReg() && MO.getReg().isPhysical(); |
| })) { |
| // Check if we have a case like this: |
| // |
| // %a = COPY $physreg |
| // %b = COPY %a |
| // |
| // In this case, I1 and I2 will both be equal to %a = COPY $physreg. |
| // From that, we know that they must have the same value, since they must |
| // have come from the same COPY. |
| return I1->isIdenticalTo(*I2); |
| } |
| |
| // We don't have any physical registers, so we don't necessarily need the |
| // same vreg defs. |
| // |
| // On the off-chance that there's some target instruction feeding into the |
| // instruction, let's use produceSameValue instead of isIdenticalTo. |
| return Builder.getTII().produceSameValue(*I1, *I2, &MRI); |
| } |
| |
| bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { |
| if (!MOP.isReg()) |
| return false; |
| // MIPatternMatch doesn't let us look through G_ZEXT etc. |
| auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); |
| return ValAndVReg && ValAndVReg->Value == C; |
| } |
| |
| bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, |
| unsigned OpIdx) { |
| assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); |
| Register OldReg = MI.getOperand(0).getReg(); |
| Register Replacement = MI.getOperand(OpIdx).getReg(); |
| assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); |
| MI.eraseFromParent(); |
| replaceRegWith(MRI, OldReg, Replacement); |
| return true; |
| } |
| |
| bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_SELECT); |
| // Match (cond ? x : x) |
| return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && |
| canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), |
| MRI); |
| } |
| |
| bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { |
| return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && |
| canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), |
| MRI); |
| } |
| |
| bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { |
| return matchConstantOp(MI.getOperand(OpIdx), 0) && |
| canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), |
| MRI); |
| } |
| |
| bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { |
| assert(MI.getNumDefs() == 1 && "Expected only one def?"); |
| Builder.setInstr(MI); |
| Builder.buildFConstant(MI.getOperand(0), C); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { |
| assert(MI.getNumDefs() == 1 && "Expected only one def?"); |
| Builder.setInstr(MI); |
| Builder.buildConstant(MI.getOperand(0), C); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { |
| assert(MI.getNumDefs() == 1 && "Expected only one def?"); |
| Builder.setInstr(MI); |
| Builder.buildUndef(MI.getOperand(0)); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::matchSimplifyAddToSub( |
| MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { |
| Register LHS = MI.getOperand(1).getReg(); |
| Register RHS = MI.getOperand(2).getReg(); |
| Register &NewLHS = std::get<0>(MatchInfo); |
| Register &NewRHS = std::get<1>(MatchInfo); |
| |
| // Helper lambda to check for opportunities for |
| // ((0-A) + B) -> B - A |
| // (A + (0-B)) -> A - B |
| auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { |
| int64_t Cst; |
| if (!mi_match(MaybeSub, MRI, m_GSub(m_ICst(Cst), m_Reg(NewRHS))) || |
| Cst != 0) |
| return false; |
| NewLHS = MaybeNewLHS; |
| return true; |
| }; |
| |
| return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); |
| } |
| |
| bool CombinerHelper::applySimplifyAddToSub( |
| MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { |
| Builder.setInstr(MI); |
| Register SubLHS, SubRHS; |
| std::tie(SubLHS, SubRHS) = MatchInfo; |
| Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool CombinerHelper::tryCombine(MachineInstr &MI) { |
| if (tryCombineCopy(MI)) |
| return true; |
| if (tryCombineExtendingLoads(MI)) |
| return true; |
| if (tryCombineIndexedLoadStore(MI)) |
| return true; |
| return false; |
| } |