blob: 1172b22effa0f2437c16c2ec93286efe0f65de5e [file] [log] [blame]
//! This module defines x86_64-specific machine instruction types.
use crate::binemit::{CodeOffset, StackMap};
use crate::ir::{types, ExternalName, Opcode, SourceLoc, TrapCode, Type};
use crate::isa::x64::settings as x64_settings;
use crate::machinst::*;
use crate::{settings, settings::Flags, CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc::{
PrettyPrint, PrettyPrintSized, RealRegUniverse, Reg, RegClass, RegUsageCollector,
RegUsageMapper, SpillSlot, VirtualReg, Writable,
};
use smallvec::SmallVec;
use std::fmt;
use std::string::{String, ToString};
pub mod args;
mod emit;
#[cfg(test)]
mod emit_tests;
pub mod regs;
pub mod unwind;
use args::*;
use regs::{create_reg_universe_systemv, show_ireg_sized};
//=============================================================================
// Instructions (top level): definition
// Don't build these directly. Instead use the Inst:: functions to create them.
/// Instructions. Destinations are on the RIGHT (a la AT&T syntax).
#[derive(Clone)]
pub enum Inst {
/// Nops of various sizes, including zero.
Nop { len: u8 },
// =====================================
// Integer instructions.
/// Integer arithmetic/bit-twiddling: (add sub and or xor mul adc? sbb?) (32 64) (reg addr imm) reg
AluRmiR {
is_64: bool,
op: AluRmiROpcode,
src: RegMemImm,
dst: Writable<Reg>,
},
/// Instructions on GPR that only read src and defines dst (dst is not modified): bsr, etc.
UnaryRmR {
size: u8, // 2, 4 or 8
op: UnaryRmROpcode,
src: RegMem,
dst: Writable<Reg>,
},
/// Bitwise not
Not {
size: u8, // 1, 2, 4 or 8
src: Writable<Reg>,
},
/// Integer negation
Neg {
size: u8, // 1, 2, 4 or 8
src: Writable<Reg>,
},
/// Integer quotient and remainder: (div idiv) $rax $rdx (reg addr)
Div {
size: u8, // 1, 2, 4 or 8
signed: bool,
divisor: RegMem,
},
/// The high bits (RDX) of a (un)signed multiply: RDX:RAX := RAX * rhs.
MulHi { size: u8, signed: bool, rhs: RegMem },
/// A synthetic sequence to implement the right inline checks for remainder and division,
/// assuming the dividend is in %rax.
/// Puts the result back into %rax if is_div, %rdx if !is_div, to mimic what the div
/// instruction does.
/// The generated code sequence is described in the emit's function match arm for this
/// instruction.
///
/// Note: %rdx is marked as modified by this instruction, to avoid an early clobber problem
/// with the temporary and divisor registers. Make sure to zero %rdx right before this
/// instruction, or you might run into regalloc failures where %rdx is live before its first
/// def!
CheckedDivOrRemSeq {
kind: DivOrRemKind,
size: u8,
/// The divisor operand. Note it's marked as modified so that it gets assigned a register
/// different from the temporary.
divisor: Writable<Reg>,
tmp: Option<Writable<Reg>>,
},
/// Do a sign-extend based on the sign of the value in rax into rdx: (cwd cdq cqo)
/// or al into ah: (cbw)
SignExtendData {
size: u8, // 1, 2, 4 or 8
},
/// Constant materialization: (imm32 imm64) reg.
/// Either: movl $imm32, %reg32 or movabsq $imm64, %reg32.
Imm {
dst_is_64: bool,
simm64: u64,
dst: Writable<Reg>,
},
/// GPR to GPR move: mov (64 32) reg reg.
MovRR {
is_64: bool,
src: Reg,
dst: Writable<Reg>,
},
/// Zero-extended loads, except for 64 bits: movz (bl bq wl wq lq) addr reg.
/// Note that the lq variant doesn't really exist since the default zero-extend rule makes it
/// unnecessary. For that case we emit the equivalent "movl AM, reg32".
MovzxRmR {
ext_mode: ExtMode,
src: RegMem,
dst: Writable<Reg>,
},
/// A plain 64-bit integer load, since MovZX_RM_R can't represent that.
Mov64MR {
src: SyntheticAmode,
dst: Writable<Reg>,
},
/// Loads the memory address of addr into dst.
LoadEffectiveAddress {
addr: SyntheticAmode,
dst: Writable<Reg>,
},
/// Sign-extended loads and moves: movs (bl bq wl wq lq) addr reg.
MovsxRmR {
ext_mode: ExtMode,
src: RegMem,
dst: Writable<Reg>,
},
/// Integer stores: mov (b w l q) reg addr.
MovRM {
size: u8, // 1, 2, 4 or 8.
src: Reg,
dst: SyntheticAmode,
},
/// Arithmetic shifts: (shl shr sar) (b w l q) imm reg.
ShiftR {
size: u8, // 1, 2, 4 or 8
kind: ShiftKind,
/// shift count: Some(0 .. #bits-in-type - 1), or None to mean "%cl".
num_bits: Option<u8>,
dst: Writable<Reg>,
},
/// Arithmetic SIMD shifts.
XmmRmiReg {
opcode: SseOpcode,
src: RegMemImm,
dst: Writable<Reg>,
},
/// Integer comparisons/tests: cmp (b w l q) (reg addr imm) reg.
CmpRmiR {
size: u8, // 1, 2, 4 or 8
src: RegMemImm,
dst: Reg,
},
/// Materializes the requested condition code in the destination reg.
Setcc { cc: CC, dst: Writable<Reg> },
/// Integer conditional move.
/// Overwrites the destination register.
Cmove {
/// Possible values are 2, 4 or 8. Checked in the related factory.
size: u8,
cc: CC,
src: RegMem,
dst: Writable<Reg>,
},
// =====================================
// Stack manipulation.
/// pushq (reg addr imm)
Push64 { src: RegMemImm },
/// popq reg
Pop64 { dst: Writable<Reg> },
// =====================================
// Floating-point operations.
/// XMM (scalar or vector) binary op: (add sub and or xor mul adc? sbb?) (32 64) (reg addr) reg
XmmRmR {
op: SseOpcode,
src: RegMem,
dst: Writable<Reg>,
},
/// XMM (scalar or vector) unary op: mov between XMM registers (32 64) (reg addr) reg, sqrt,
/// etc.
///
/// This differs from XMM_RM_R in that the dst register of XmmUnaryRmR is not used in the
/// computation of the instruction dst value and so does not have to be a previously valid
/// value. This is characteristic of mov instructions.
XmmUnaryRmR {
op: SseOpcode,
src: RegMem,
dst: Writable<Reg>,
},
/// XMM (scalar or vector) unary op (from xmm to reg/mem): stores, movd, movq
XmmMovRM {
op: SseOpcode,
src: Reg,
dst: SyntheticAmode,
},
/// XMM (vector) unary op (to move a constant value into an xmm register): movups
XmmLoadConst {
src: VCodeConstant,
dst: Writable<Reg>,
ty: Type,
},
/// XMM (scalar) unary op (from xmm to integer reg): movd, movq, cvtts{s,d}2si
XmmToGpr {
op: SseOpcode,
src: Reg,
dst: Writable<Reg>,
dst_size: OperandSize,
},
/// XMM (scalar) unary op (from integer to float reg): movd, movq, cvtsi2s{s,d}
GprToXmm {
op: SseOpcode,
src: RegMem,
dst: Writable<Reg>,
src_size: OperandSize,
},
/// Converts an unsigned int64 to a float32/float64.
CvtUint64ToFloatSeq {
/// Is the target a 64-bits or 32-bits register?
to_f64: bool,
/// A copy of the source register, fed by lowering. It is marked as modified during
/// register allocation to make sure that the temporary registers differ from the src
/// register, since both registers are live at the same time in the generated code
/// sequence.
src: Writable<Reg>,
dst: Writable<Reg>,
tmp_gpr1: Writable<Reg>,
tmp_gpr2: Writable<Reg>,
},
/// Converts a scalar xmm to a signed int32/int64.
CvtFloatToSintSeq {
dst_size: OperandSize,
src_size: OperandSize,
is_saturating: bool,
/// A copy of the source register, fed by lowering. It is marked as modified during
/// register allocation to make sure that the temporary xmm register differs from the src
/// register, since both registers are live at the same time in the generated code
/// sequence.
src: Writable<Reg>,
dst: Writable<Reg>,
tmp_gpr: Writable<Reg>,
tmp_xmm: Writable<Reg>,
},
/// Converts a scalar xmm to an unsigned int32/int64.
CvtFloatToUintSeq {
src_size: OperandSize,
dst_size: OperandSize,
is_saturating: bool,
/// A copy of the source register, fed by lowering, reused as a temporary. It is marked as
/// modified during register allocation to make sure that the temporary xmm register
/// differs from the src register, since both registers are live at the same time in the
/// generated code sequence.
src: Writable<Reg>,
dst: Writable<Reg>,
tmp_gpr: Writable<Reg>,
tmp_xmm: Writable<Reg>,
},
/// A sequence to compute min/max with the proper NaN semantics for xmm registers.
XmmMinMaxSeq {
size: OperandSize,
is_min: bool,
lhs: Reg,
rhs_dst: Writable<Reg>,
},
/// XMM (scalar) conditional move.
/// Overwrites the destination register if cc is set.
XmmCmove {
/// Whether the cmove is moving either 32 or 64 bits.
is_64: bool,
cc: CC,
src: RegMem,
dst: Writable<Reg>,
},
/// Float comparisons/tests: cmp (b w l q) (reg addr imm) reg.
XmmCmpRmR {
op: SseOpcode,
src: RegMem,
dst: Reg,
},
/// A binary XMM instruction with an 8-bit immediate: e.g. cmp (ps pd) imm (reg addr) reg
XmmRmRImm {
op: SseOpcode,
src: RegMem,
dst: Writable<Reg>,
imm: u8,
is64: bool,
},
// =====================================
// Control flow instructions.
/// Direct call: call simm32.
CallKnown {
dest: ExternalName,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: Opcode,
},
/// Indirect call: callq (reg mem).
CallUnknown {
dest: RegMem,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: Opcode,
},
/// Return.
Ret,
/// A placeholder instruction, generating no code, meaning that a function epilogue must be
/// inserted there.
EpiloguePlaceholder,
/// Jump to a known target: jmp simm32.
JmpKnown { dst: MachLabel },
/// One-way conditional branch: jcond cond target.
///
/// This instruction is useful when we have conditional jumps depending on more than two
/// conditions, see for instance the lowering of Brz/brnz with Fcmp inputs.
///
/// A note of caution: in contexts where the branch target is another block, this has to be the
/// same successor as the one specified in the terminator branch of the current block.
/// Otherwise, this might confuse register allocation by creating new invisible edges.
JmpIf { cc: CC, taken: MachLabel },
/// Two-way conditional branch: jcond cond target target.
/// Emitted as a compound sequence; the MachBuffer will shrink it as appropriate.
JmpCond {
cc: CC,
taken: MachLabel,
not_taken: MachLabel,
},
/// Jump-table sequence, as one compound instruction (see note in lower.rs for rationale).
/// The generated code sequence is described in the emit's function match arm for this
/// instruction.
/// See comment in lowering about the temporaries signedness.
JmpTableSeq {
idx: Reg,
tmp1: Writable<Reg>,
tmp2: Writable<Reg>,
default_target: MachLabel,
targets: Vec<MachLabel>,
targets_for_term: Vec<MachLabel>,
},
/// Indirect jump: jmpq (reg mem).
JmpUnknown { target: RegMem },
/// Traps if the condition code is set.
TrapIf { cc: CC, trap_code: TrapCode },
/// A debug trap.
Hlt,
/// An instruction that will always trigger the illegal instruction exception.
Ud2 { trap_code: TrapCode },
/// Loads an external symbol in a register, with a relocation: movabsq $name, dst
LoadExtName {
dst: Writable<Reg>,
name: Box<ExternalName>,
offset: i64,
},
// =====================================
// Instructions pertaining to atomic memory accesses.
/// A standard (native) `lock cmpxchg src, (amode)`, with register conventions:
///
/// `dst` (read) address
/// `src` (read) replacement value
/// %rax (modified) in: expected value, out: value that was actually at `dst`
/// %rflags is written. Do not assume anything about it after the instruction.
///
/// The instruction "succeeded" iff the lowest `ty` bits of %rax afterwards are the same as
/// they were before.
LockCmpxchg {
ty: Type, // I8, I16, I32 or I64
src: Reg,
dst: SyntheticAmode,
},
/// A synthetic instruction, based on a loop around a native `lock cmpxchg` instruction.
/// This atomically modifies a value in memory and returns the old value. The sequence
/// consists of an initial "normal" load from `dst`, followed by a loop which computes the
/// new value and tries to compare-and-swap ("CAS") it into `dst`, using the native
/// instruction `lock cmpxchg{b,w,l,q}` . The loop iterates until the CAS is successful.
/// If there is no contention, there will be only one pass through the loop body. The
/// sequence does *not* perform any explicit memory fence instructions
/// (mfence/sfence/lfence).
///
/// Note that the transaction is atomic in the sense that, as observed by some other thread,
/// `dst` either has the initial or final value, but no other. It isn't atomic in the sense
/// of guaranteeing that no other thread writes to `dst` in between the initial load and the
/// CAS -- but that would cause the CAS to fail unless the other thread's last write before
/// the CAS wrote the same value that was already there. In other words, this
/// implementation suffers (unavoidably) from the A-B-A problem.
///
/// This instruction sequence has fixed register uses as follows:
///
/// %r9 (read) address
/// %r10 (read) second operand for `op`
/// %r11 (written) scratch reg; value afterwards has no meaning
/// %rax (written) the old value at %r9
/// %rflags is written. Do not assume anything about it after the instruction.
AtomicRmwSeq {
ty: Type, // I8, I16, I32 or I64
op: inst_common::AtomicRmwOp,
},
/// A memory fence (mfence, lfence or sfence).
Fence { kind: FenceKind },
// =====================================
// Meta-instructions generating no code.
/// Marker, no-op in generated code: SP "virtual offset" is adjusted. This
/// controls how MemArg::NominalSPOffset args are lowered.
VirtualSPOffsetAdj { offset: i64 },
/// Provides a way to tell the register allocator that the upcoming sequence of instructions
/// will overwrite `dst` so it should be considered as a `def`; use this with care.
///
/// This is useful when we have a sequence of instructions whose register usages are nominally
/// `mod`s, but such that the combination of operations creates a result that is independent of
/// the initial register value. It's thus semantically a `def`, not a `mod`, when all the
/// instructions are taken together, so we want to ensure the register is defined (its
/// live-range starts) prior to the sequence to keep analyses happy.
///
/// One alternative would be a compound instruction that somehow encapsulates the others and
/// reports its own `def`s/`use`s/`mod`s; this adds complexity (the instruction list is no
/// longer flat) and requires knowledge about semantics and initial-value independence anyway.
XmmUninitializedValue { dst: Writable<Reg> },
}
pub(crate) fn low32_will_sign_extend_to_64(x: u64) -> bool {
let xs = x as i64;
xs == ((xs << 32) >> 32)
}
impl Inst {
fn isa_requirement(&self) -> Option<InstructionSet> {
match self {
// These instructions are part of SSE2, which is a basic requirement in Cranelift, and
// don't have to be checked.
Inst::AluRmiR { .. }
| Inst::AtomicRmwSeq { .. }
| Inst::CallKnown { .. }
| Inst::CallUnknown { .. }
| Inst::CheckedDivOrRemSeq { .. }
| Inst::Cmove { .. }
| Inst::CmpRmiR { .. }
| Inst::CvtFloatToSintSeq { .. }
| Inst::CvtFloatToUintSeq { .. }
| Inst::CvtUint64ToFloatSeq { .. }
| Inst::Div { .. }
| Inst::EpiloguePlaceholder
| Inst::Fence { .. }
| Inst::Hlt
| Inst::Imm { .. }
| Inst::JmpCond { .. }
| Inst::JmpIf { .. }
| Inst::JmpKnown { .. }
| Inst::JmpTableSeq { .. }
| Inst::JmpUnknown { .. }
| Inst::LoadEffectiveAddress { .. }
| Inst::LoadExtName { .. }
| Inst::LockCmpxchg { .. }
| Inst::Mov64MR { .. }
| Inst::MovRM { .. }
| Inst::MovRR { .. }
| Inst::MovsxRmR { .. }
| Inst::MovzxRmR { .. }
| Inst::MulHi { .. }
| Inst::Neg { .. }
| Inst::Not { .. }
| Inst::Nop { .. }
| Inst::Pop64 { .. }
| Inst::Push64 { .. }
| Inst::Ret
| Inst::Setcc { .. }
| Inst::ShiftR { .. }
| Inst::SignExtendData { .. }
| Inst::TrapIf { .. }
| Inst::Ud2 { .. }
| Inst::UnaryRmR { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::XmmCmove { .. }
| Inst::XmmCmpRmR { .. }
| Inst::XmmLoadConst { .. }
| Inst::XmmMinMaxSeq { .. }
| Inst::XmmUninitializedValue { .. } => None,
// These use dynamic SSE opcodes.
Inst::GprToXmm { op, .. }
| Inst::XmmMovRM { op, .. }
| Inst::XmmRmiReg { opcode: op, .. }
| Inst::XmmRmR { op, .. }
| Inst::XmmRmRImm { op, .. }
| Inst::XmmToGpr { op, .. }
| Inst::XmmUnaryRmR { op, .. } => Some(op.available_from()),
}
}
}
// Handy constructors for Insts.
impl Inst {
pub(crate) fn nop(len: u8) -> Self {
debug_assert!(len <= 16);
Self::Nop { len }
}
pub(crate) fn alu_rmi_r(
is_64: bool,
op: AluRmiROpcode,
src: RegMemImm,
dst: Writable<Reg>,
) -> Self {
src.assert_regclass_is(RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Self::AluRmiR {
is_64,
op,
src,
dst,
}
}
pub(crate) fn unary_rm_r(
size: u8,
op: UnaryRmROpcode,
src: RegMem,
dst: Writable<Reg>,
) -> Self {
src.assert_regclass_is(RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2);
Self::UnaryRmR { size, op, src, dst }
}
pub(crate) fn not(size: u8, src: Writable<Reg>) -> Inst {
debug_assert_eq!(src.to_reg().get_class(), RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
Inst::Not { size, src }
}
pub(crate) fn neg(size: u8, src: Writable<Reg>) -> Inst {
debug_assert_eq!(src.to_reg().get_class(), RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
Inst::Neg { size, src }
}
pub(crate) fn div(size: u8, signed: bool, divisor: RegMem) -> Inst {
divisor.assert_regclass_is(RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
Inst::Div {
size,
signed,
divisor,
}
}
pub(crate) fn mul_hi(size: u8, signed: bool, rhs: RegMem) -> Inst {
rhs.assert_regclass_is(RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
Inst::MulHi { size, signed, rhs }
}
pub(crate) fn checked_div_or_rem_seq(
kind: DivOrRemKind,
size: u8,
divisor: Writable<Reg>,
tmp: Option<Writable<Reg>>,
) -> Inst {
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
debug_assert!(divisor.to_reg().get_class() == RegClass::I64);
debug_assert!(tmp
.map(|tmp| tmp.to_reg().get_class() == RegClass::I64)
.unwrap_or(true));
Inst::CheckedDivOrRemSeq {
kind,
size,
divisor,
tmp,
}
}
pub(crate) fn sign_extend_data(size: u8) -> Inst {
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
Inst::SignExtendData { size }
}
pub(crate) fn imm(size: OperandSize, simm64: u64, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
// Try to generate a 32-bit immediate when the upper high bits are zeroed (which matches
// the semantics of movl).
let dst_is_64 = size == OperandSize::Size64 && simm64 > u32::max_value() as u64;
Inst::Imm {
dst_is_64,
simm64,
dst,
}
}
pub(crate) fn mov_r_r(is_64: bool, src: Reg, dst: Writable<Reg>) -> Inst {
debug_assert!(src.get_class() == RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::MovRR { is_64, src, dst }
}
// TODO Can be replaced by `Inst::move` (high-level) and `Inst::unary_rm_r` (low-level)
pub(crate) fn xmm_mov(op: SseOpcode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmUnaryRmR { op, src, dst }
}
pub(crate) fn xmm_load_const(src: VCodeConstant, dst: Writable<Reg>, ty: Type) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
debug_assert!(ty.is_vector() && ty.bits() == 128);
Inst::XmmLoadConst { src, dst, ty }
}
/// Convenient helper for unary float operations.
pub(crate) fn xmm_unary_rm_r(op: SseOpcode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmUnaryRmR { op, src, dst }
}
pub(crate) fn xmm_rm_r(op: SseOpcode, src: RegMem, dst: Writable<Reg>) -> Self {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmRmR { op, src, dst }
}
pub(crate) fn xmm_uninit_value(dst: Writable<Reg>) -> Self {
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmUninitializedValue { dst }
}
pub(crate) fn xmm_mov_r_m(op: SseOpcode, src: Reg, dst: impl Into<SyntheticAmode>) -> Inst {
debug_assert!(src.get_class() == RegClass::V128);
Inst::XmmMovRM {
op,
src,
dst: dst.into(),
}
}
pub(crate) fn xmm_to_gpr(
op: SseOpcode,
src: Reg,
dst: Writable<Reg>,
dst_size: OperandSize,
) -> Inst {
debug_assert!(src.get_class() == RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::XmmToGpr {
op,
src,
dst,
dst_size,
}
}
pub(crate) fn gpr_to_xmm(
op: SseOpcode,
src: RegMem,
src_size: OperandSize,
dst: Writable<Reg>,
) -> Inst {
src.assert_regclass_is(RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::GprToXmm {
op,
src,
dst,
src_size,
}
}
pub(crate) fn xmm_cmp_rm_r(op: SseOpcode, src: RegMem, dst: Reg) -> Inst {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.get_class() == RegClass::V128);
Inst::XmmCmpRmR { op, src, dst }
}
pub(crate) fn cvt_u64_to_float_seq(
to_f64: bool,
src: Writable<Reg>,
tmp_gpr1: Writable<Reg>,
tmp_gpr2: Writable<Reg>,
dst: Writable<Reg>,
) -> Inst {
debug_assert!(src.to_reg().get_class() == RegClass::I64);
debug_assert!(tmp_gpr1.to_reg().get_class() == RegClass::I64);
debug_assert!(tmp_gpr2.to_reg().get_class() == RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::CvtUint64ToFloatSeq {
src,
dst,
tmp_gpr1,
tmp_gpr2,
to_f64,
}
}
pub(crate) fn cvt_float_to_sint_seq(
src_size: OperandSize,
dst_size: OperandSize,
is_saturating: bool,
src: Writable<Reg>,
dst: Writable<Reg>,
tmp_gpr: Writable<Reg>,
tmp_xmm: Writable<Reg>,
) -> Inst {
debug_assert!(src.to_reg().get_class() == RegClass::V128);
debug_assert!(tmp_xmm.to_reg().get_class() == RegClass::V128);
debug_assert!(tmp_gpr.to_reg().get_class() == RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::CvtFloatToSintSeq {
src_size,
dst_size,
is_saturating,
src,
dst,
tmp_gpr,
tmp_xmm,
}
}
pub(crate) fn cvt_float_to_uint_seq(
src_size: OperandSize,
dst_size: OperandSize,
is_saturating: bool,
src: Writable<Reg>,
dst: Writable<Reg>,
tmp_gpr: Writable<Reg>,
tmp_xmm: Writable<Reg>,
) -> Inst {
debug_assert!(src.to_reg().get_class() == RegClass::V128);
debug_assert!(tmp_xmm.to_reg().get_class() == RegClass::V128);
debug_assert!(tmp_gpr.to_reg().get_class() == RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::CvtFloatToUintSeq {
src_size,
dst_size,
is_saturating,
src,
dst,
tmp_gpr,
tmp_xmm,
}
}
pub(crate) fn xmm_min_max_seq(
size: OperandSize,
is_min: bool,
lhs: Reg,
rhs_dst: Writable<Reg>,
) -> Inst {
debug_assert_eq!(lhs.get_class(), RegClass::V128);
debug_assert_eq!(rhs_dst.to_reg().get_class(), RegClass::V128);
Inst::XmmMinMaxSeq {
size,
is_min,
lhs,
rhs_dst,
}
}
pub(crate) fn xmm_rm_r_imm(
op: SseOpcode,
src: RegMem,
dst: Writable<Reg>,
imm: u8,
is64: bool,
) -> Inst {
Inst::XmmRmRImm {
op,
src,
dst,
imm,
is64,
}
}
pub(crate) fn movzx_rm_r(ext_mode: ExtMode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::MovzxRmR { ext_mode, src, dst }
}
pub(crate) fn xmm_rmi_reg(opcode: SseOpcode, src: RegMemImm, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmRmiReg { opcode, src, dst }
}
pub(crate) fn movsx_rm_r(ext_mode: ExtMode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::I64);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::MovsxRmR { ext_mode, src, dst }
}
pub(crate) fn mov64_m_r(src: impl Into<SyntheticAmode>, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::Mov64MR {
src: src.into(),
dst,
}
}
/// A convenience function to be able to use a RegMem as the source of a move.
pub(crate) fn mov64_rm_r(src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::I64);
match src {
RegMem::Reg { reg } => Self::mov_r_r(true, reg, dst),
RegMem::Mem { addr } => Self::mov64_m_r(addr, dst),
}
}
pub(crate) fn mov_r_m(
size: u8, // 1, 2, 4 or 8
src: Reg,
dst: impl Into<SyntheticAmode>,
) -> Inst {
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
debug_assert!(src.get_class() == RegClass::I64);
Inst::MovRM {
size,
src,
dst: dst.into(),
}
}
pub(crate) fn lea(addr: impl Into<SyntheticAmode>, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::LoadEffectiveAddress {
addr: addr.into(),
dst,
}
}
pub(crate) fn shift_r(
size: u8,
kind: ShiftKind,
num_bits: Option<u8>,
dst: Writable<Reg>,
) -> Inst {
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
debug_assert!(if let Some(num_bits) = num_bits {
num_bits < size * 8
} else {
true
});
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::ShiftR {
size,
kind,
num_bits,
dst,
}
}
/// Does a comparison of dst - src for operands of size `size`, as stated by the machine
/// instruction semantics. Be careful with the order of parameters!
pub(crate) fn cmp_rmi_r(
size: u8, // 1, 2, 4 or 8
src: RegMemImm,
dst: Reg,
) -> Inst {
src.assert_regclass_is(RegClass::I64);
debug_assert!(size == 8 || size == 4 || size == 2 || size == 1);
debug_assert!(dst.get_class() == RegClass::I64);
Inst::CmpRmiR { size, src, dst }
}
pub(crate) fn trap(trap_code: TrapCode) -> Inst {
Inst::Ud2 {
trap_code: trap_code,
}
}
pub(crate) fn setcc(cc: CC, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::Setcc { cc, dst }
}
pub(crate) fn cmove(size: u8, cc: CC, src: RegMem, dst: Writable<Reg>) -> Inst {
debug_assert!(size == 8 || size == 4 || size == 2);
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::Cmove { size, cc, src, dst }
}
pub(crate) fn xmm_cmove(is_64: bool, cc: CC, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::V128);
debug_assert!(dst.to_reg().get_class() == RegClass::V128);
Inst::XmmCmove {
is_64,
cc,
src,
dst,
}
}
pub(crate) fn push64(src: RegMemImm) -> Inst {
src.assert_regclass_is(RegClass::I64);
Inst::Push64 { src }
}
pub(crate) fn pop64(dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().get_class() == RegClass::I64);
Inst::Pop64 { dst }
}
pub(crate) fn call_known(
dest: ExternalName,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: Opcode,
) -> Inst {
Inst::CallKnown {
dest,
uses,
defs,
opcode,
}
}
pub(crate) fn call_unknown(
dest: RegMem,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: Opcode,
) -> Inst {
dest.assert_regclass_is(RegClass::I64);
Inst::CallUnknown {
dest,
uses,
defs,
opcode,
}
}
pub(crate) fn ret() -> Inst {
Inst::Ret
}
pub(crate) fn epilogue_placeholder() -> Inst {
Inst::EpiloguePlaceholder
}
pub(crate) fn jmp_known(dst: MachLabel) -> Inst {
Inst::JmpKnown { dst }
}
pub(crate) fn jmp_if(cc: CC, taken: MachLabel) -> Inst {
Inst::JmpIf { cc, taken }
}
pub(crate) fn jmp_cond(cc: CC, taken: MachLabel, not_taken: MachLabel) -> Inst {
Inst::JmpCond {
cc,
taken,
not_taken,
}
}
pub(crate) fn jmp_unknown(target: RegMem) -> Inst {
target.assert_regclass_is(RegClass::I64);
Inst::JmpUnknown { target }
}
pub(crate) fn trap_if(cc: CC, trap_code: TrapCode) -> Inst {
Inst::TrapIf { cc, trap_code }
}
/// Choose which instruction to use for loading a register value from memory. For loads smaller
/// than 64 bits, this method expects a way to extend the value (i.e. [ExtKind::SignExtend],
/// [ExtKind::ZeroExtend]); loads with no extension necessary will ignore this.
pub(crate) fn load(
ty: Type,
from_addr: impl Into<SyntheticAmode>,
to_reg: Writable<Reg>,
ext_kind: ExtKind,
) -> Inst {
let rc = to_reg.to_reg().get_class();
match rc {
RegClass::I64 => {
let ext_mode = match ty.bytes() {
1 => Some(ExtMode::BQ),
2 => Some(ExtMode::WQ),
4 => Some(ExtMode::LQ),
8 => None,
_ => unreachable!("the type should never use a scalar load: {}", ty),
};
if let Some(ext_mode) = ext_mode {
// Values smaller than 64 bits must be extended in some way.
match ext_kind {
ExtKind::SignExtend => {
Inst::movsx_rm_r(ext_mode, RegMem::mem(from_addr), to_reg)
}
ExtKind::ZeroExtend => {
Inst::movzx_rm_r(ext_mode, RegMem::mem(from_addr), to_reg)
}
ExtKind::None => panic!(
"expected an extension kind for extension mode: {:?}",
ext_mode
),
}
} else {
// 64-bit values can be moved directly.
Inst::mov64_m_r(from_addr, to_reg)
}
}
RegClass::V128 => {
let opcode = match ty {
types::F32 => SseOpcode::Movss,
types::F64 => SseOpcode::Movsd,
types::F32X4 => SseOpcode::Movups,
types::F64X2 => SseOpcode::Movupd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqu,
_ => unimplemented!("unable to load type: {}", ty),
};
Inst::xmm_unary_rm_r(opcode, RegMem::mem(from_addr), to_reg)
}
_ => panic!("unable to generate load for register class: {:?}", rc),
}
}
/// Choose which instruction to use for storing a register value to memory.
pub(crate) fn store(ty: Type, from_reg: Reg, to_addr: impl Into<SyntheticAmode>) -> Inst {
let rc = from_reg.get_class();
match rc {
RegClass::I64 => {
// Always store the full register, to ensure that the high bits are properly set
// when doing a full reload.
Inst::mov_r_m(8 /* bytes */, from_reg, to_addr)
}
RegClass::V128 => {
let opcode = match ty {
types::F32 => SseOpcode::Movss,
types::F64 => SseOpcode::Movsd,
types::F32X4 => SseOpcode::Movups,
types::F64X2 => SseOpcode::Movupd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqu,
_ => unimplemented!("unable to store type: {}", ty),
};
Inst::xmm_mov_r_m(opcode, from_reg, to_addr)
}
_ => panic!("unable to generate store for register class: {:?}", rc),
}
}
}
// Inst helpers.
impl Inst {
/// In certain cases, instructions of this format can act as a definition of an XMM register,
/// producing a value that is independent of its initial value.
///
/// For example, a vector equality comparison (`cmppd` or `cmpps`) that compares a register to
/// itself will generate all ones as a result, regardless of its value. From the register
/// allocator's point of view, we should (i) record the first register, which is normally a
/// mod, as a def instead; and (ii) not record the second register as a use, because it is the
/// same as the first register (already handled).
fn produces_const(&self) -> bool {
match self {
Self::AluRmiR { op, src, dst, .. } => {
src.to_reg() == Some(dst.to_reg())
&& (*op == AluRmiROpcode::Xor || *op == AluRmiROpcode::Sub)
}
Self::XmmRmR { op, src, dst, .. } => {
src.to_reg() == Some(dst.to_reg())
&& (*op == SseOpcode::Xorps
|| *op == SseOpcode::Xorpd
|| *op == SseOpcode::Pxor
|| *op == SseOpcode::Pcmpeqb
|| *op == SseOpcode::Pcmpeqw
|| *op == SseOpcode::Pcmpeqd
|| *op == SseOpcode::Pcmpeqq)
}
Self::XmmRmRImm {
op, src, dst, imm, ..
} => {
src.to_reg() == Some(dst.to_reg())
&& (*op == SseOpcode::Cmppd || *op == SseOpcode::Cmpps)
&& *imm == FcmpImm::Equal.encode()
}
_ => false,
}
}
/// Choose which instruction to use for comparing two values for equality.
pub(crate) fn equals(ty: Type, from: RegMem, to: Writable<Reg>) -> Inst {
match ty {
types::I8X16 | types::B8X16 => Inst::xmm_rm_r(SseOpcode::Pcmpeqb, from, to),
types::I16X8 | types::B16X8 => Inst::xmm_rm_r(SseOpcode::Pcmpeqw, from, to),
types::I32X4 | types::B32X4 => Inst::xmm_rm_r(SseOpcode::Pcmpeqd, from, to),
types::I64X2 | types::B64X2 => Inst::xmm_rm_r(SseOpcode::Pcmpeqq, from, to),
types::F32X4 => {
Inst::xmm_rm_r_imm(SseOpcode::Cmpps, from, to, FcmpImm::Equal.encode(), false)
}
types::F64X2 => {
Inst::xmm_rm_r_imm(SseOpcode::Cmppd, from, to, FcmpImm::Equal.encode(), false)
}
_ => unimplemented!("unimplemented type for Inst::equals: {}", ty),
}
}
/// Choose which instruction to use for computing a bitwise AND on two values.
pub(crate) fn and(ty: Type, from: RegMem, to: Writable<Reg>) -> Inst {
match ty {
types::F32X4 => Inst::xmm_rm_r(SseOpcode::Andps, from, to),
types::F64X2 => Inst::xmm_rm_r(SseOpcode::Andpd, from, to),
_ if ty.is_vector() && ty.bits() == 128 => Inst::xmm_rm_r(SseOpcode::Pand, from, to),
_ => unimplemented!("unimplemented type for Inst::and: {}", ty),
}
}
/// Choose which instruction to use for computing a bitwise AND NOT on two values.
pub(crate) fn and_not(ty: Type, from: RegMem, to: Writable<Reg>) -> Inst {
match ty {
types::F32X4 => Inst::xmm_rm_r(SseOpcode::Andnps, from, to),
types::F64X2 => Inst::xmm_rm_r(SseOpcode::Andnpd, from, to),
_ if ty.is_vector() && ty.bits() == 128 => Inst::xmm_rm_r(SseOpcode::Pandn, from, to),
_ => unimplemented!("unimplemented type for Inst::and_not: {}", ty),
}
}
/// Choose which instruction to use for computing a bitwise OR on two values.
pub(crate) fn or(ty: Type, from: RegMem, to: Writable<Reg>) -> Inst {
match ty {
types::F32X4 => Inst::xmm_rm_r(SseOpcode::Orps, from, to),
types::F64X2 => Inst::xmm_rm_r(SseOpcode::Orpd, from, to),
_ if ty.is_vector() && ty.bits() == 128 => Inst::xmm_rm_r(SseOpcode::Por, from, to),
_ => unimplemented!("unimplemented type for Inst::or: {}", ty),
}
}
/// Choose which instruction to use for computing a bitwise XOR on two values.
pub(crate) fn xor(ty: Type, from: RegMem, to: Writable<Reg>) -> Inst {
match ty {
types::F32X4 => Inst::xmm_rm_r(SseOpcode::Xorps, from, to),
types::F64X2 => Inst::xmm_rm_r(SseOpcode::Xorpd, from, to),
_ if ty.is_vector() && ty.bits() == 128 => Inst::xmm_rm_r(SseOpcode::Pxor, from, to),
_ => unimplemented!("unimplemented type for Inst::xor: {}", ty),
}
}
}
//=============================================================================
// Instructions: printing
impl PrettyPrint for Inst {
fn show_rru(&self, mb_rru: Option<&RealRegUniverse>) -> String {
fn ljustify(s: String) -> String {
let w = 7;
if s.len() >= w {
s
} else {
let need = usize::min(w, w - s.len());
s + &format!("{nil: <width$}", nil = "", width = need)
}
}
fn ljustify2(s1: String, s2: String) -> String {
ljustify(s1 + &s2)
}
fn suffix_lq(is_64: bool) -> String {
(if is_64 { "q" } else { "l" }).to_string()
}
fn size_lq(is_64: bool) -> u8 {
if is_64 {
8
} else {
4
}
}
fn suffix_bwlq(size: u8) -> String {
match size {
1 => "b".to_string(),
2 => "w".to_string(),
4 => "l".to_string(),
8 => "q".to_string(),
_ => panic!("Inst(x64).show.suffixBWLQ: size={}", size),
}
}
match self {
Inst::Nop { len } => format!("{} len={}", ljustify("nop".to_string()), len),
Inst::AluRmiR {
is_64,
op,
src,
dst,
} => format!(
"{} {}, {}",
ljustify2(op.to_string(), suffix_lq(*is_64)),
src.show_rru_sized(mb_rru, size_lq(*is_64)),
show_ireg_sized(dst.to_reg(), mb_rru, size_lq(*is_64)),
),
Inst::UnaryRmR { src, dst, op, size } => format!(
"{} {}, {}",
ljustify2(op.to_string(), suffix_bwlq(*size)),
src.show_rru_sized(mb_rru, *size),
show_ireg_sized(dst.to_reg(), mb_rru, *size),
),
Inst::Not { size, src } => format!(
"{} {}",
ljustify2("not".to_string(), suffix_bwlq(*size)),
show_ireg_sized(src.to_reg(), mb_rru, *size)
),
Inst::Neg { size, src } => format!(
"{} {}",
ljustify2("neg".to_string(), suffix_bwlq(*size)),
show_ireg_sized(src.to_reg(), mb_rru, *size)
),
Inst::Div {
size,
signed,
divisor,
..
} => format!(
"{} {}",
ljustify(if *signed {
"idiv".to_string()
} else {
"div".into()
}),
divisor.show_rru_sized(mb_rru, *size)
),
Inst::MulHi {
size, signed, rhs, ..
} => format!(
"{} {}",
ljustify(if *signed {
"imul".to_string()
} else {
"mul".to_string()
}),
rhs.show_rru_sized(mb_rru, *size)
),
Inst::CheckedDivOrRemSeq {
kind,
size,
divisor,
..
} => format!(
"{} $rax:$rdx, {}",
match kind {
DivOrRemKind::SignedDiv => "sdiv",
DivOrRemKind::UnsignedDiv => "udiv",
DivOrRemKind::SignedRem => "srem",
DivOrRemKind::UnsignedRem => "urem",
},
show_ireg_sized(divisor.to_reg(), mb_rru, *size),
),
Inst::SignExtendData { size } => match size {
1 => "cbw",
2 => "cwd",
4 => "cdq",
8 => "cqo",
_ => unreachable!(),
}
.into(),
Inst::XmmUnaryRmR { op, src, dst, .. } => format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru_sized(mb_rru, op.src_size()),
show_ireg_sized(dst.to_reg(), mb_rru, 8),
),
Inst::XmmMovRM { op, src, dst, .. } => format!(
"{} {}, {}",
ljustify(op.to_string()),
show_ireg_sized(*src, mb_rru, 8),
dst.show_rru(mb_rru),
),
Inst::XmmRmR { op, src, dst, .. } => format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru_sized(mb_rru, 8),
show_ireg_sized(dst.to_reg(), mb_rru, 8),
),
Inst::XmmMinMaxSeq {
lhs,
rhs_dst,
is_min,
size,
} => format!(
"{} {}, {}",
ljustify2(
if *is_min {
"xmm min seq ".to_string()
} else {
"xmm max seq ".to_string()
},
match size {
OperandSize::Size32 => "f32",
OperandSize::Size64 => "f64",
}
.into()
),
show_ireg_sized(*lhs, mb_rru, 8),
show_ireg_sized(rhs_dst.to_reg(), mb_rru, 8),
),
Inst::XmmRmRImm { op, src, dst, imm, is64, .. } => format!(
"{} ${}, {}, {}",
ljustify(format!("{}{}", op.to_string(), if *is64 { ".w" } else { "" })),
imm,
src.show_rru(mb_rru),
dst.show_rru(mb_rru),
),
Inst::XmmUninitializedValue { dst } => format!(
"{} {}",
ljustify("uninit".into()),
dst.show_rru(mb_rru),
),
Inst::XmmLoadConst { src, dst, .. } => {
format!("load_const {:?}, {}", src, dst.show_rru(mb_rru),)
}
Inst::XmmToGpr {
op,
src,
dst,
dst_size,
} => {
let dst_size = match dst_size {
OperandSize::Size32 => 4,
OperandSize::Size64 => 8,
};
format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru(mb_rru),
show_ireg_sized(dst.to_reg(), mb_rru, dst_size),
)
}
Inst::GprToXmm {
op,
src,
src_size,
dst,
} => format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru_sized(mb_rru, src_size.to_bytes()),
dst.show_rru(mb_rru)
),
Inst::XmmCmpRmR { op, src, dst } => format!(
"{} {}, {}",
ljustify(op.to_string()),
src.show_rru_sized(mb_rru, 8),
show_ireg_sized(*dst, mb_rru, 8),
),
Inst::CvtUint64ToFloatSeq {
src, dst, to_f64, ..
} => format!(
"{} {}, {}",
ljustify(format!(
"u64_to_{}_seq",
if *to_f64 { "f64" } else { "f32" }
)),
show_ireg_sized(src.to_reg(), mb_rru, 8),
dst.show_rru(mb_rru),
),
Inst::CvtFloatToSintSeq {
src,
dst,
src_size,
dst_size,
..
} => format!(
"{} {}, {}",
ljustify(format!(
"cvt_float{}_to_sint{}_seq",
if *src_size == OperandSize::Size64 {
"64"
} else {
"32"
},
if *dst_size == OperandSize::Size64 {
"64"
} else {
"32"
}
)),
show_ireg_sized(src.to_reg(), mb_rru, 8),
show_ireg_sized(dst.to_reg(), mb_rru, dst_size.to_bytes()),
),
Inst::CvtFloatToUintSeq {
src,
dst,
src_size,
dst_size,
..
} => format!(
"{} {}, {}",
ljustify(format!(
"cvt_float{}_to_uint{}_seq",
if *src_size == OperandSize::Size64 {
"64"
} else {
"32"
},
if *dst_size == OperandSize::Size64 {
"64"
} else {
"32"
}
)),
show_ireg_sized(src.to_reg(), mb_rru, 8),
show_ireg_sized(dst.to_reg(), mb_rru, dst_size.to_bytes()),
),
Inst::Imm {
dst_is_64,
simm64,
dst,
} => {
if *dst_is_64 {
format!(
"{} ${}, {}",
ljustify("movabsq".to_string()),
*simm64 as i64,
show_ireg_sized(dst.to_reg(), mb_rru, 8)
)
} else {
format!(
"{} ${}, {}",
ljustify("movl".to_string()),
(*simm64 as u32) as i32,
show_ireg_sized(dst.to_reg(), mb_rru, 4)
)
}
}
Inst::MovRR { is_64, src, dst } => format!(
"{} {}, {}",
ljustify2("mov".to_string(), suffix_lq(*is_64)),
show_ireg_sized(*src, mb_rru, size_lq(*is_64)),
show_ireg_sized(dst.to_reg(), mb_rru, size_lq(*is_64))
),
Inst::MovzxRmR {
ext_mode, src, dst, ..
} => {
if *ext_mode == ExtMode::LQ {
format!(
"{} {}, {}",
ljustify("movl".to_string()),
src.show_rru_sized(mb_rru, ext_mode.src_size()),
show_ireg_sized(dst.to_reg(), mb_rru, 4)
)
} else {
format!(
"{} {}, {}",
ljustify2("movz".to_string(), ext_mode.to_string()),
src.show_rru_sized(mb_rru, ext_mode.src_size()),
show_ireg_sized(dst.to_reg(), mb_rru, ext_mode.dst_size())
)
}
}
Inst::Mov64MR { src, dst, .. } => format!(
"{} {}, {}",
ljustify("movq".to_string()),
src.show_rru(mb_rru),
dst.show_rru(mb_rru)
),
Inst::LoadEffectiveAddress { addr, dst } => format!(
"{} {}, {}",
ljustify("lea".to_string()),
addr.show_rru(mb_rru),
dst.show_rru(mb_rru)
),
Inst::MovsxRmR {
ext_mode, src, dst, ..
} => format!(
"{} {}, {}",
ljustify2("movs".to_string(), ext_mode.to_string()),
src.show_rru_sized(mb_rru, ext_mode.src_size()),
show_ireg_sized(dst.to_reg(), mb_rru, ext_mode.dst_size())
),
Inst::MovRM { size, src, dst, .. } => format!(
"{} {}, {}",
ljustify2("mov".to_string(), suffix_bwlq(*size)),
show_ireg_sized(*src, mb_rru, *size),
dst.show_rru(mb_rru)
),
Inst::ShiftR {
size,
kind,
num_bits,
dst,
} => match num_bits {
None => format!(
"{} %cl, {}",
ljustify2(kind.to_string(), suffix_bwlq(*size)),
show_ireg_sized(dst.to_reg(), mb_rru, *size)
),
Some(num_bits) => format!(
"{} ${}, {}",
ljustify2(kind.to_string(), suffix_bwlq(*size)),
num_bits,
show_ireg_sized(dst.to_reg(), mb_rru, *size)
),
},
Inst::XmmRmiReg { opcode, src, dst } => format!(
"{} {}, {}",
ljustify(opcode.to_string()),
src.show_rru(mb_rru),
dst.to_reg().show_rru(mb_rru)
),
Inst::CmpRmiR { size, src, dst } => format!(
"{} {}, {}",
ljustify2("cmp".to_string(), suffix_bwlq(*size)),
src.show_rru_sized(mb_rru, *size),
show_ireg_sized(*dst, mb_rru, *size)
),
Inst::Setcc { cc, dst } => format!(
"{} {}",
ljustify2("set".to_string(), cc.to_string()),
show_ireg_sized(dst.to_reg(), mb_rru, 1)
),
Inst::Cmove { size, cc, src, dst } => format!(
"{} {}, {}",
ljustify(format!("cmov{}{}", cc.to_string(), suffix_bwlq(*size))),
src.show_rru_sized(mb_rru, *size),
show_ireg_sized(dst.to_reg(), mb_rru, *size)
),
Inst::XmmCmove {
is_64,
cc,
src,
dst,
} => {
let size = if *is_64 { 8 } else { 4 };
format!(
"j{} $next; mov{} {}, {}; $next: ",
cc.invert().to_string(),
if *is_64 { "sd" } else { "ss" },
src.show_rru_sized(mb_rru, size),
show_ireg_sized(dst.to_reg(), mb_rru, size)
)
}
Inst::Push64 { src } => {
format!("{} {}", ljustify("pushq".to_string()), src.show_rru(mb_rru))
}
Inst::Pop64 { dst } => {
format!("{} {}", ljustify("popq".to_string()), dst.show_rru(mb_rru))
}
Inst::CallKnown { dest, .. } => format!("{} {:?}", ljustify("call".to_string()), dest),
Inst::CallUnknown { dest, .. } => format!(
"{} *{}",
ljustify("call".to_string()),
dest.show_rru(mb_rru)
),
Inst::Ret => "ret".to_string(),
Inst::EpiloguePlaceholder => "epilogue placeholder".to_string(),
Inst::JmpKnown { dst } => {
format!("{} {}", ljustify("jmp".to_string()), dst.to_string())
}
Inst::JmpIf { cc, taken } => format!(
"{} {}",
ljustify2("j".to_string(), cc.to_string()),
taken.to_string(),
),
Inst::JmpCond {
cc,
taken,
not_taken,
} => format!(
"{} {}; j {}",
ljustify2("j".to_string(), cc.to_string()),
taken.to_string(),
not_taken.to_string()
),
Inst::JmpTableSeq { idx, .. } => {
format!("{} {}", ljustify("br_table".into()), idx.show_rru(mb_rru))
}
Inst::JmpUnknown { target } => format!(
"{} *{}",
ljustify("jmp".to_string()),
target.show_rru(mb_rru)
),
Inst::TrapIf { cc, trap_code, .. } => {
format!("j{} ; ud2 {} ;", cc.invert().to_string(), trap_code)
}
Inst::LoadExtName {
dst, name, offset, ..
} => format!(
"{} {}+{}, {}",
ljustify("movaps".into()),
name,
offset,
show_ireg_sized(dst.to_reg(), mb_rru, 8),
),
Inst::LockCmpxchg { ty, src, dst, .. } => {
let size = ty.bytes() as u8;
format!("lock cmpxchg{} {}, {}",
suffix_bwlq(size), show_ireg_sized(*src, mb_rru, size), dst.show_rru(mb_rru))
}
Inst::AtomicRmwSeq { ty, op, .. } => {
format!(
"atomically {{ {}_bits_at_[%r9]) {:?}= %r10; %rax = old_value_at_[%r9]; %r11, %rflags = trash }}",
ty.bits(), op)
},
Inst::Fence { kind } => {
match kind {
FenceKind::MFence => "mfence".to_string(),
FenceKind::LFence => "lfence".to_string(),
FenceKind::SFence => "sfence".to_string(),
}
}
Inst::VirtualSPOffsetAdj { offset } => format!("virtual_sp_offset_adjust {}", offset),
Inst::Hlt => "hlt".into(),
Inst::Ud2 { trap_code } => format!("ud2 {}", trap_code),
}
}
}
// Temp hook for legacy printing machinery
impl fmt::Debug for Inst {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
// Print the insn without a Universe :-(
write!(fmt, "{}", self.show_rru(None))
}
}
fn x64_get_regs(inst: &Inst, collector: &mut RegUsageCollector) {
// This is a bit subtle. If some register is in the modified set, then it may not be in either
// the use or def sets. However, enforcing that directly is somewhat difficult. Instead,
// regalloc.rs will "fix" this for us by removing the the modified set from the use and def
// sets.
match inst {
Inst::AluRmiR { src, dst, .. } => {
if inst.produces_const() {
// No need to account for src, since src == dst.
collector.add_def(*dst);
} else {
src.get_regs_as_uses(collector);
collector.add_mod(*dst);
}
}
Inst::Not { src, .. } => {
collector.add_mod(*src);
}
Inst::Neg { src, .. } => {
collector.add_mod(*src);
}
Inst::Div { size, divisor, .. } => {
collector.add_mod(Writable::from_reg(regs::rax()));
if *size == 1 {
collector.add_def(Writable::from_reg(regs::rdx()));
} else {
collector.add_mod(Writable::from_reg(regs::rdx()));
}
divisor.get_regs_as_uses(collector);
}
Inst::MulHi { rhs, .. } => {
collector.add_mod(Writable::from_reg(regs::rax()));
collector.add_def(Writable::from_reg(regs::rdx()));
rhs.get_regs_as_uses(collector);
}
Inst::CheckedDivOrRemSeq { divisor, tmp, .. } => {
// Mark both fixed registers as mods, to avoid an early clobber problem in codegen
// (i.e. the temporary is allocated one of the fixed registers). This requires writing
// the rdx register *before* the instruction, which is not too bad.
collector.add_mod(Writable::from_reg(regs::rax()));
collector.add_mod(Writable::from_reg(regs::rdx()));
collector.add_mod(*divisor);
if let Some(tmp) = tmp {
collector.add_def(*tmp);
}
}
Inst::SignExtendData { size } => match size {
1 => collector.add_mod(Writable::from_reg(regs::rax())),
2 | 4 | 8 => {
collector.add_use(regs::rax());
collector.add_def(Writable::from_reg(regs::rdx()));
}
_ => unreachable!(),
},
Inst::UnaryRmR { src, dst, .. } | Inst::XmmUnaryRmR { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_def(*dst);
}
Inst::XmmRmR { src, dst, .. } => {
if inst.produces_const() {
// No need to account for src, since src == dst.
collector.add_def(*dst);
} else {
src.get_regs_as_uses(collector);
collector.add_mod(*dst);
}
}
Inst::XmmRmRImm { op, src, dst, .. } => {
if inst.produces_const() {
// No need to account for src, since src == dst.
collector.add_def(*dst);
} else if *op == SseOpcode::Pextrb
|| *op == SseOpcode::Pextrw
|| *op == SseOpcode::Pextrd
|| *op == SseOpcode::Pshufd
{
src.get_regs_as_uses(collector);
collector.add_def(*dst);
} else {
src.get_regs_as_uses(collector);
collector.add_mod(*dst);
}
}
Inst::XmmUninitializedValue { dst } => collector.add_def(*dst),
Inst::XmmLoadConst { dst, .. } => collector.add_def(*dst),
Inst::XmmMinMaxSeq { lhs, rhs_dst, .. } => {
collector.add_use(*lhs);
collector.add_mod(*rhs_dst);
}
Inst::XmmRmiReg { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_mod(*dst);
}
Inst::XmmMovRM { src, dst, .. } => {
collector.add_use(*src);
dst.get_regs_as_uses(collector);
}
Inst::XmmCmpRmR { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_use(*dst);
}
Inst::Imm { dst, .. } => {
collector.add_def(*dst);
}
Inst::MovRR { src, dst, .. } | Inst::XmmToGpr { src, dst, .. } => {
collector.add_use(*src);
collector.add_def(*dst);
}
Inst::GprToXmm { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_def(*dst);
}
Inst::CvtUint64ToFloatSeq {
src,
dst,
tmp_gpr1,
tmp_gpr2,
..
} => {
collector.add_mod(*src);
collector.add_def(*dst);
collector.add_def(*tmp_gpr1);
collector.add_def(*tmp_gpr2);
}
Inst::CvtFloatToSintSeq {
src,
dst,
tmp_xmm,
tmp_gpr,
..
}
| Inst::CvtFloatToUintSeq {
src,
dst,
tmp_gpr,
tmp_xmm,
..
} => {
collector.add_mod(*src);
collector.add_def(*dst);
collector.add_def(*tmp_gpr);
collector.add_def(*tmp_xmm);
}
Inst::MovzxRmR { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_def(*dst);
}
Inst::Mov64MR { src, dst, .. } | Inst::LoadEffectiveAddress { addr: src, dst } => {
src.get_regs_as_uses(collector);
collector.add_def(*dst)
}
Inst::MovsxRmR { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_def(*dst);
}
Inst::MovRM { src, dst, .. } => {
collector.add_use(*src);
dst.get_regs_as_uses(collector);
}
Inst::ShiftR { num_bits, dst, .. } => {
if num_bits.is_none() {
collector.add_use(regs::rcx());
}
collector.add_mod(*dst);
}
Inst::CmpRmiR { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_use(*dst); // yes, really `add_use`
}
Inst::Setcc { dst, .. } => {
collector.add_def(*dst);
}
Inst::Cmove { src, dst, .. } | Inst::XmmCmove { src, dst, .. } => {
src.get_regs_as_uses(collector);
collector.add_mod(*dst);
}
Inst::Push64 { src } => {
src.get_regs_as_uses(collector);
collector.add_mod(Writable::from_reg(regs::rsp()));
}
Inst::Pop64 { dst } => {
collector.add_def(*dst);
}
Inst::CallKnown {
ref uses, ref defs, ..
} => {
collector.add_uses(uses);
collector.add_defs(defs);
}
Inst::CallUnknown {
ref uses,
ref defs,
dest,
..
} => {
collector.add_uses(uses);
collector.add_defs(defs);
dest.get_regs_as_uses(collector);
}
Inst::JmpTableSeq {
ref idx,
ref tmp1,
ref tmp2,
..
} => {
collector.add_use(*idx);
collector.add_def(*tmp1);
collector.add_def(*tmp2);
}
Inst::JmpUnknown { target } => {
target.get_regs_as_uses(collector);
}
Inst::LoadExtName { dst, .. } => {
collector.add_def(*dst);
}
Inst::LockCmpxchg { src, dst, .. } => {
dst.get_regs_as_uses(collector);
collector.add_use(*src);
collector.add_mod(Writable::from_reg(regs::rax()));
}
Inst::AtomicRmwSeq { .. } => {
collector.add_use(regs::r9());
collector.add_use(regs::r10());
collector.add_def(Writable::from_reg(regs::r11()));
collector.add_def(Writable::from_reg(regs::rax()));
}
Inst::Ret
| Inst::EpiloguePlaceholder
| Inst::JmpKnown { .. }
| Inst::JmpIf { .. }
| Inst::JmpCond { .. }
| Inst::Nop { .. }
| Inst::TrapIf { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::Hlt
| Inst::Ud2 { .. }
| Inst::Fence { .. } => {
// No registers are used.
}
}
}
//=============================================================================
// Instructions and subcomponents: map_regs
fn map_use<RUM: RegUsageMapper>(m: &RUM, r: &mut Reg) {
if let Some(reg) = r.as_virtual_reg() {
let new = m.get_use(reg).unwrap().to_reg();
*r = new;
}
}
fn map_def<RUM: RegUsageMapper>(m: &RUM, r: &mut Writable<Reg>) {
if let Some(reg) = r.to_reg().as_virtual_reg() {
let new = m.get_def(reg).unwrap().to_reg();
*r = Writable::from_reg(new);
}
}
fn map_mod<RUM: RegUsageMapper>(m: &RUM, r: &mut Writable<Reg>) {
if let Some(reg) = r.to_reg().as_virtual_reg() {
let new = m.get_mod(reg).unwrap().to_reg();
*r = Writable::from_reg(new);
}
}
impl Amode {
fn map_uses<RUM: RegUsageMapper>(&mut self, map: &RUM) {
match self {
Amode::ImmReg { ref mut base, .. } => map_use(map, base),
Amode::ImmRegRegShift {
ref mut base,
ref mut index,
..
} => {
map_use(map, base);
map_use(map, index);
}
Amode::RipRelative { .. } => {
// RIP isn't involved in regalloc.
}
}
}
}
impl RegMemImm {
fn map_uses<RUM: RegUsageMapper>(&mut self, map: &RUM) {
match self {
RegMemImm::Reg { ref mut reg } => map_use(map, reg),
RegMemImm::Mem { ref mut addr } => addr.map_uses(map),
RegMemImm::Imm { .. } => {}
}
}
fn map_as_def<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
match self {
Self::Reg { reg } => {
let mut writable_src = Writable::from_reg(*reg);
map_def(mapper, &mut writable_src);
*self = Self::reg(writable_src.to_reg());
}
_ => panic!("unexpected RegMemImm kind in map_src_reg_as_def"),
}
}
}
impl RegMem {
fn map_uses<RUM: RegUsageMapper>(&mut self, map: &RUM) {
match self {
RegMem::Reg { ref mut reg } => map_use(map, reg),
RegMem::Mem { ref mut addr, .. } => addr.map_uses(map),
}
}
fn map_as_def<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
match self {
Self::Reg { reg } => {
let mut writable_src = Writable::from_reg(*reg);
map_def(mapper, &mut writable_src);
*self = Self::reg(writable_src.to_reg());
}
_ => panic!("unexpected RegMem kind in map_src_reg_as_def"),
}
}
}
fn x64_map_regs<RUM: RegUsageMapper>(inst: &mut Inst, mapper: &RUM) {
// Note this must be carefully synchronized with x64_get_regs.
let produces_const = inst.produces_const();
match inst {
// ** Nop
Inst::AluRmiR {
ref mut src,
ref mut dst,
..
} => {
if produces_const {
src.map_as_def(mapper);
map_def(mapper, dst);
} else {
src.map_uses(mapper);
map_mod(mapper, dst);
}
}
Inst::Not { src, .. } | Inst::Neg { src, .. } => map_mod(mapper, src),
Inst::Div { divisor, .. } => divisor.map_uses(mapper),
Inst::MulHi { rhs, .. } => rhs.map_uses(mapper),
Inst::CheckedDivOrRemSeq { divisor, tmp, .. } => {
map_mod(mapper, divisor);
if let Some(tmp) = tmp {
map_def(mapper, tmp)
}
}
Inst::SignExtendData { .. } => {}
Inst::XmmUnaryRmR {
ref mut src,
ref mut dst,
..
}
| Inst::UnaryRmR {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_def(mapper, dst);
}
Inst::XmmRmRImm {
ref op,
ref mut src,
ref mut dst,
..
} => {
if produces_const {
src.map_as_def(mapper);
map_def(mapper, dst);
} else if *op == SseOpcode::Pextrb
|| *op == SseOpcode::Pextrw
|| *op == SseOpcode::Pextrd
|| *op == SseOpcode::Pshufd
{
src.map_uses(mapper);
map_def(mapper, dst);
} else {
src.map_uses(mapper);
map_mod(mapper, dst);
}
}
Inst::XmmRmR {
ref mut src,
ref mut dst,
..
} => {
if produces_const {
src.map_as_def(mapper);
map_def(mapper, dst);
} else {
src.map_uses(mapper);
map_mod(mapper, dst);
}
}
Inst::XmmRmiReg {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_mod(mapper, dst);
}
Inst::XmmUninitializedValue { ref mut dst, .. } => {
map_def(mapper, dst);
}
Inst::XmmLoadConst { ref mut dst, .. } => {
map_def(mapper, dst);
}
Inst::XmmMinMaxSeq {
ref mut lhs,
ref mut rhs_dst,
..
} => {
map_use(mapper, lhs);
map_mod(mapper, rhs_dst);
}
Inst::XmmMovRM {
ref mut src,
ref mut dst,
..
} => {
map_use(mapper, src);
dst.map_uses(mapper);
}
Inst::XmmCmpRmR {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_use(mapper, dst);
}
Inst::Imm { ref mut dst, .. } => map_def(mapper, dst),
Inst::MovRR {
ref mut src,
ref mut dst,
..
}
| Inst::XmmToGpr {
ref mut src,
ref mut dst,
..
} => {
map_use(mapper, src);
map_def(mapper, dst);
}
Inst::GprToXmm {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_def(mapper, dst);
}
Inst::CvtUint64ToFloatSeq {
ref mut src,
ref mut dst,
ref mut tmp_gpr1,
ref mut tmp_gpr2,
..
} => {
map_mod(mapper, src);
map_def(mapper, dst);
map_def(mapper, tmp_gpr1);
map_def(mapper, tmp_gpr2);
}
Inst::CvtFloatToSintSeq {
ref mut src,
ref mut dst,
ref mut tmp_xmm,
ref mut tmp_gpr,
..
}
| Inst::CvtFloatToUintSeq {
ref mut src,
ref mut dst,
ref mut tmp_gpr,
ref mut tmp_xmm,
..
} => {
map_mod(mapper, src);
map_def(mapper, dst);
map_def(mapper, tmp_gpr);
map_def(mapper, tmp_xmm);
}
Inst::MovzxRmR {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_def(mapper, dst);
}
Inst::Mov64MR { src, dst, .. } | Inst::LoadEffectiveAddress { addr: src, dst } => {
src.map_uses(mapper);
map_def(mapper, dst);
}
Inst::MovsxRmR {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_def(mapper, dst);
}
Inst::MovRM {
ref mut src,
ref mut dst,
..
} => {
map_use(mapper, src);
dst.map_uses(mapper);
}
Inst::ShiftR { ref mut dst, .. } => {
map_mod(mapper, dst);
}
Inst::CmpRmiR {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_use(mapper, dst);
}
Inst::Setcc { ref mut dst, .. } => map_def(mapper, dst),
Inst::Cmove {
ref mut src,
ref mut dst,
..
}
| Inst::XmmCmove {
ref mut src,
ref mut dst,
..
} => {
src.map_uses(mapper);
map_mod(mapper, dst)
}
Inst::Push64 { ref mut src } => src.map_uses(mapper),
Inst::Pop64 { ref mut dst } => {
map_def(mapper, dst);
}
Inst::CallKnown {
ref mut uses,
ref mut defs,
..
} => {
for r in uses.iter_mut() {
map_use(mapper, r);
}
for r in defs.iter_mut() {
map_def(mapper, r);
}
}
Inst::CallUnknown {
ref mut uses,
ref mut defs,
ref mut dest,
..
} => {
for r in uses.iter_mut() {
map_use(mapper, r);
}
for r in defs.iter_mut() {
map_def(mapper, r);
}
dest.map_uses(mapper);
}
Inst::JmpTableSeq {
ref mut idx,
ref mut tmp1,
ref mut tmp2,
..
} => {
map_use(mapper, idx);
map_def(mapper, tmp1);
map_def(mapper, tmp2);
}
Inst::JmpUnknown { ref mut target } => target.map_uses(mapper),
Inst::LoadExtName { ref mut dst, .. } => map_def(mapper, dst),
Inst::LockCmpxchg {
ref mut src,
ref mut dst,
..
} => {
map_use(mapper, src);
dst.map_uses(mapper);
}
Inst::Ret
| Inst::EpiloguePlaceholder
| Inst::JmpKnown { .. }
| Inst::JmpCond { .. }
| Inst::JmpIf { .. }
| Inst::Nop { .. }
| Inst::TrapIf { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::Ud2 { .. }
| Inst::Hlt
| Inst::AtomicRmwSeq { .. }
| Inst::Fence { .. } => {
// Instruction doesn't explicitly mention any regs, so it can't have any virtual
// regs that we'd need to remap. Hence no action required.
}
}
}
//=============================================================================
// Instructions: misc functions and external interface
impl MachInst for Inst {
fn get_regs(&self, collector: &mut RegUsageCollector) {
x64_get_regs(&self, collector)
}
fn map_regs<RUM: RegUsageMapper>(&mut self, mapper: &RUM) {
x64_map_regs(self, mapper);
}
fn is_move(&self) -> Option<(Writable<Reg>, Reg)> {
match self {
// Note (carefully!) that a 32-bit mov *isn't* a no-op since it zeroes
// out the upper 32 bits of the destination. For example, we could
// conceivably use `movl %reg, %reg` to zero out the top 32 bits of
// %reg.
Self::MovRR {
is_64, src, dst, ..
} if *is_64 => Some((*dst, *src)),
// Note as well that MOVS[S|D] when used in the `XmmUnaryRmR` context are pure moves of
// scalar floating-point values (and annotate `dst` as `def`s to the register allocator)
// whereas the same operation in a packed context, e.g. `XMM_RM_R`, is used to merge a
// value into the lowest lane of a vector (not a move).
Self::XmmUnaryRmR { op, src, dst, .. }
if *op == SseOpcode::Movss
|| *op == SseOpcode::Movsd
|| *op == SseOpcode::Movaps
|| *op == SseOpcode::Movapd
|| *op == SseOpcode::Movups
|| *op == SseOpcode::Movupd
|| *op == SseOpcode::Movdqa
|| *op == SseOpcode::Movdqu =>
{
if let RegMem::Reg { reg } = src {
Some((*dst, *reg))
} else {
None
}
}
_ => None,
}
}
fn is_epilogue_placeholder(&self) -> bool {
if let Self::EpiloguePlaceholder = self {
true
} else {
false
}
}
fn is_term<'a>(&'a self) -> MachTerminator<'a> {
match self {
// Interesting cases.
&Self::Ret | &Self::EpiloguePlaceholder => MachTerminator::Ret,
&Self::JmpKnown { dst } => MachTerminator::Uncond(dst),
&Self::JmpCond {
taken, not_taken, ..
} => MachTerminator::Cond(taken, not_taken),
&Self::JmpTableSeq {
ref targets_for_term,
..
} => MachTerminator::Indirect(&targets_for_term[..]),
// All other cases are boring.
_ => MachTerminator::None,
}
}
fn gen_move(dst_reg: Writable<Reg>, src_reg: Reg, ty: Type) -> Inst {
let rc_dst = dst_reg.to_reg().get_class();
let rc_src = src_reg.get_class();
// If this isn't true, we have gone way off the rails.
debug_assert!(rc_dst == rc_src);
match rc_dst {
RegClass::I64 => Inst::mov_r_r(true, src_reg, dst_reg),
RegClass::V128 => {
// The Intel optimization manual, in "3.5.1.13 Zero-Latency MOV Instructions",
// doesn't include MOVSS/MOVSD as instructions with zero-latency. Use movaps for
// those, which may write more lanes that we need, but are specified to have
// zero-latency.
let opcode = match ty {
types::F32 | types::F64 | types::F32X4 => SseOpcode::Movaps,
types::F64X2 => SseOpcode::Movapd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqa,
_ => unimplemented!("unable to move type: {}", ty),
};
Inst::xmm_unary_rm_r(opcode, RegMem::reg(src_reg), dst_reg)
}
_ => panic!("gen_move(x64): unhandled regclass {:?}", rc_dst),
}
}
fn gen_zero_len_nop() -> Inst {
Inst::Nop { len: 0 }
}
fn gen_nop(preferred_size: usize) -> Inst {
Inst::nop((preferred_size % 16) as u8)
}
fn maybe_direct_reload(&self, _reg: VirtualReg, _slot: SpillSlot) -> Option<Inst> {
None
}
fn rc_for_type(ty: Type) -> CodegenResult<RegClass> {
match ty {
types::I8
| types::I16
| types::I32
| types::I64
| types::B1
| types::B8
| types::B16
| types::B32
| types::B64
| types::R32
| types::R64 => Ok(RegClass::I64),
types::F32 | types::F64 => Ok(RegClass::V128),
_ if ty.bits() == 128 => Ok(RegClass::V128),
types::IFLAGS | types::FFLAGS => Ok(RegClass::I64),
_ => Err(CodegenError::Unsupported(format!(
"Unexpected SSA-value type: {}",
ty
))),
}
}
fn gen_jump(label: MachLabel) -> Inst {
Inst::jmp_known(label)
}
fn gen_constant<F: FnMut(RegClass, Type) -> Writable<Reg>>(
to_reg: Writable<Reg>,
value: u64,
ty: Type,
mut alloc_tmp: F,
) -> SmallVec<[Self; 4]> {
let mut ret = SmallVec::new();
if ty == types::F32 {
if value == 0 {
ret.push(Inst::xmm_rm_r(
SseOpcode::Xorps,
RegMem::reg(to_reg.to_reg()),
to_reg,
));
} else {
let tmp = alloc_tmp(RegClass::I64, types::I32);
ret.push(Inst::imm(OperandSize::Size32, value, tmp));
ret.push(Inst::gpr_to_xmm(
SseOpcode::Movd,
RegMem::reg(tmp.to_reg()),
OperandSize::Size32,
to_reg,
));
}
} else if ty == types::F64 {
if value == 0 {
ret.push(Inst::xmm_rm_r(
SseOpcode::Xorpd,
RegMem::reg(to_reg.to_reg()),
to_reg,
));
} else {
let tmp = alloc_tmp(RegClass::I64, types::I64);
ret.push(Inst::imm(OperandSize::Size64, value, tmp));
ret.push(Inst::gpr_to_xmm(
SseOpcode::Movq,
RegMem::reg(tmp.to_reg()),
OperandSize::Size64,
to_reg,
));
}
} else {
// Must be an integer type.
debug_assert!(
ty == types::B1
|| ty == types::I8
|| ty == types::B8
|| ty == types::I16
|| ty == types::B16
|| ty == types::I32
|| ty == types::B32
|| ty == types::I64
|| ty == types::B64
|| ty == types::R32
|| ty == types::R64
);
if value == 0 {
ret.push(Inst::alu_rmi_r(
ty == types::I64,
AluRmiROpcode::Xor,
RegMemImm::reg(to_reg.to_reg()),
to_reg,
));
} else {
ret.push(Inst::imm(
OperandSize::from_bytes(ty.bytes()),
value.into(),
to_reg,
));
}
}
ret
}
fn reg_universe(flags: &Flags) -> RealRegUniverse {
create_reg_universe_systemv(flags)
}
fn worst_case_size() -> CodeOffset {
15
}
fn ref_type_regclass(_: &settings::Flags) -> RegClass {
RegClass::I64
}
type LabelUse = LabelUse;
}
/// State carried between emissions of a sequence of instructions.
#[derive(Default, Clone, Debug)]
pub struct EmitState {
/// Addend to convert nominal-SP offsets to real-SP offsets at the current
/// program point.
pub(crate) virtual_sp_offset: i64,
/// Offset of FP from nominal-SP.
pub(crate) nominal_sp_to_fp: i64,
/// Safepoint stack map for upcoming instruction, as provided to `pre_safepoint()`.
stack_map: Option<StackMap>,
/// Current source location.
cur_srcloc: SourceLoc,
}
/// Constant state used during emissions of a sequence of instructions.
pub struct EmitInfo {
flags: settings::Flags,
isa_flags: x64_settings::Flags,
}
impl EmitInfo {
pub(crate) fn new(flags: settings::Flags, isa_flags: x64_settings::Flags) -> Self {
Self { flags, isa_flags }
}
}
impl MachInstEmitInfo for EmitInfo {
fn flags(&self) -> &Flags {
&self.flags
}
}
impl MachInstEmit for Inst {
type State = EmitState;
type Info = EmitInfo;
type UnwindInfo = unwind::X64UnwindInfo;
fn emit(&self, sink: &mut MachBuffer<Inst>, info: &Self::Info, state: &mut Self::State) {
emit::emit(self, sink, info, state);
}
fn pretty_print(&self, mb_rru: Option<&RealRegUniverse>, _: &mut Self::State) -> String {
self.show_rru(mb_rru)
}
}
impl MachInstEmitState<Inst> for EmitState {
fn new(abi: &dyn ABICallee<I = Inst>) -> Self {
EmitState {
virtual_sp_offset: 0,
nominal_sp_to_fp: abi.frame_size() as i64,
stack_map: None,
cur_srcloc: SourceLoc::default(),
}
}
fn pre_safepoint(&mut self, stack_map: StackMap) {
self.stack_map = Some(stack_map);
}
fn pre_sourceloc(&mut self, srcloc: SourceLoc) {
self.cur_srcloc = srcloc;
}
}
impl EmitState {
fn take_stack_map(&mut self) -> Option<StackMap> {
self.stack_map.take()
}
fn clear_post_insn(&mut self) {
self.stack_map = None;
}
fn cur_srcloc(&self) -> SourceLoc {
self.cur_srcloc
}
}
/// A label-use (internal relocation) in generated code.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LabelUse {
/// A 32-bit offset from location of relocation itself, added to the existing value at that
/// location. Used for control flow instructions which consider an offset from the start of the
/// next instruction (so the size of the payload -- 4 bytes -- is subtracted from the payload).
JmpRel32,
/// A 32-bit offset from location of relocation itself, added to the existing value at that
/// location.
PCRel32,
}
impl MachInstLabelUse for LabelUse {
const ALIGN: CodeOffset = 1;
fn max_pos_range(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0x7fff_ffff,
}
}
fn max_neg_range(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0x8000_0000,
}
}
fn patch_size(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 4,
}
}
fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset) {
let pc_rel = (label_offset as i64) - (use_offset as i64);
debug_assert!(pc_rel <= self.max_pos_range() as i64);
debug_assert!(pc_rel >= -(self.max_neg_range() as i64));
let pc_rel = pc_rel as u32;
match self {
LabelUse::JmpRel32 => {
let addend = u32::from_le_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let value = pc_rel.wrapping_add(addend).wrapping_sub(4);
buffer.copy_from_slice(&value.to_le_bytes()[..]);
}
LabelUse::PCRel32 => {
let addend = u32::from_le_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let value = pc_rel.wrapping_add(addend);
buffer.copy_from_slice(&value.to_le_bytes()[..]);
}
}
}
fn supports_veneer(self) -> bool {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => false,
}
}
fn veneer_size(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0,
}
}
fn generate_veneer(self, _: &mut [u8], _: CodeOffset) -> (CodeOffset, LabelUse) {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => {
panic!("Veneer not supported for JumpRel32 label-use.");
}
}
}
}