| //! Instruction predicates/properties, shared by various analyses. |
| use crate::ir::immediates::Offset32; |
| use crate::ir::instructions::BranchInfo; |
| use crate::ir::{Block, DataFlowGraph, Function, Inst, InstructionData, Opcode, Type, Value}; |
| use cranelift_entity::EntityRef; |
| |
| /// Preserve instructions with used result values. |
| pub fn any_inst_results_used(inst: Inst, live: &[bool], dfg: &DataFlowGraph) -> bool { |
| dfg.inst_results(inst).iter().any(|v| live[v.index()]) |
| } |
| |
| /// Test whether the given opcode is unsafe to even consider as side-effect-free. |
| #[inline(always)] |
| fn trivially_has_side_effects(opcode: Opcode) -> bool { |
| opcode.is_call() |
| || opcode.is_branch() |
| || opcode.is_terminator() |
| || opcode.is_return() |
| || opcode.can_trap() |
| || opcode.other_side_effects() |
| || opcode.can_store() |
| } |
| |
| /// Load instructions without the `notrap` flag are defined to trap when |
| /// operating on inaccessible memory, so we can't treat them as side-effect-free even if the loaded |
| /// value is unused. |
| #[inline(always)] |
| fn is_load_with_defined_trapping(opcode: Opcode, data: &InstructionData) -> bool { |
| if !opcode.can_load() { |
| return false; |
| } |
| match *data { |
| InstructionData::StackLoad { .. } => false, |
| InstructionData::Load { flags, .. } => !flags.notrap(), |
| _ => true, |
| } |
| } |
| |
| /// Does the given instruction have any side-effect that would preclude it from being removed when |
| /// its value is unused? |
| #[inline(always)] |
| pub fn has_side_effect(func: &Function, inst: Inst) -> bool { |
| let data = &func.dfg[inst]; |
| let opcode = data.opcode(); |
| trivially_has_side_effects(opcode) || is_load_with_defined_trapping(opcode, data) |
| } |
| |
| /// Does the given instruction have any side-effect as per [has_side_effect], or else is a load, |
| /// but not the get_pinned_reg opcode? |
| pub fn has_lowering_side_effect(func: &Function, inst: Inst) -> bool { |
| let op = func.dfg[inst].opcode(); |
| op != Opcode::GetPinnedReg && (has_side_effect(func, inst) || op.can_load()) |
| } |
| |
| /// Is the given instruction a constant value (`iconst`, `fconst`) that can be |
| /// represented in 64 bits? |
| pub fn is_constant_64bit(func: &Function, inst: Inst) -> Option<u64> { |
| let data = &func.dfg[inst]; |
| if data.opcode() == Opcode::Null { |
| return Some(0); |
| } |
| match data { |
| &InstructionData::UnaryImm { imm, .. } => Some(imm.bits() as u64), |
| &InstructionData::UnaryIeee32 { imm, .. } => Some(imm.bits() as u64), |
| &InstructionData::UnaryIeee64 { imm, .. } => Some(imm.bits()), |
| _ => None, |
| } |
| } |
| |
| /// Get the address, offset, and access type from the given instruction, if any. |
| pub fn inst_addr_offset_type(func: &Function, inst: Inst) -> Option<(Value, Offset32, Type)> { |
| let data = &func.dfg[inst]; |
| match data { |
| InstructionData::Load { arg, offset, .. } => { |
| let ty = func.dfg.value_type(func.dfg.inst_results(inst)[0]); |
| Some((*arg, *offset, ty)) |
| } |
| InstructionData::LoadNoOffset { arg, .. } => { |
| let ty = func.dfg.value_type(func.dfg.inst_results(inst)[0]); |
| Some((*arg, 0.into(), ty)) |
| } |
| InstructionData::Store { args, offset, .. } => { |
| let ty = func.dfg.value_type(args[0]); |
| Some((args[1], *offset, ty)) |
| } |
| InstructionData::StoreNoOffset { args, .. } => { |
| let ty = func.dfg.value_type(args[0]); |
| Some((args[1], 0.into(), ty)) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Get the store data, if any, from an instruction. |
| pub fn inst_store_data(func: &Function, inst: Inst) -> Option<Value> { |
| let data = &func.dfg[inst]; |
| match data { |
| InstructionData::Store { args, .. } | InstructionData::StoreNoOffset { args, .. } => { |
| Some(args[0]) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Determine whether this opcode behaves as a memory fence, i.e., |
| /// prohibits any moving of memory accesses across it. |
| pub fn has_memory_fence_semantics(op: Opcode) -> bool { |
| match op { |
| Opcode::AtomicRmw |
| | Opcode::AtomicCas |
| | Opcode::AtomicLoad |
| | Opcode::AtomicStore |
| | Opcode::Fence |
| | Opcode::Debugtrap => true, |
| Opcode::Call | Opcode::CallIndirect => true, |
| op if op.can_trap() => true, |
| _ => false, |
| } |
| } |
| |
| /// Visit all successors of a block with a given visitor closure. The closure |
| /// arguments are the branch instruction that is used to reach the successor, |
| /// the successor block itself, and a flag indicating whether the block is |
| /// branched to via a table entry. |
| pub(crate) fn visit_block_succs<F: FnMut(Inst, Block, bool)>( |
| f: &Function, |
| block: Block, |
| mut visit: F, |
| ) { |
| for inst in f.layout.block_likely_branches(block) { |
| if f.dfg[inst].opcode().is_branch() { |
| visit_branch_targets(f, inst, &mut visit); |
| } |
| } |
| } |
| |
| fn visit_branch_targets<F: FnMut(Inst, Block, bool)>(f: &Function, inst: Inst, visit: &mut F) { |
| match f.dfg[inst].analyze_branch(&f.dfg.value_lists) { |
| BranchInfo::NotABranch => {} |
| BranchInfo::SingleDest(dest, _) => { |
| visit(inst, dest, false); |
| } |
| BranchInfo::Table(table, maybe_dest) => { |
| if let Some(dest) = maybe_dest { |
| // The default block is reached via a direct conditional branch, |
| // so it is not part of the table. |
| visit(inst, dest, false); |
| } |
| for &dest in f.jump_tables[table].as_slice() { |
| visit(inst, dest, true); |
| } |
| } |
| } |
| } |