blob: 6a3eae120aee730f6320115d783884f6932238dd [file] [log] [blame]
//! This module defines x86_64-specific machine instruction types.
use crate::binemit::{Addend, CodeOffset, Reloc, StackMap};
use crate::ir::{types, ExternalName, LibCall, Opcode, RelSourceLoc, TrapCode, Type};
use crate::isa::x64::abi::X64ABIMachineSpec;
use crate::isa::x64::inst::regs::pretty_print_reg;
use crate::isa::x64::settings as x64_settings;
use crate::isa::CallConv;
use crate::{machinst::*, trace};
use crate::{settings, CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc2::{Allocation, PRegSet, VReg};
use smallvec::{smallvec, SmallVec};
use std::fmt;
use std::string::{String, ToString};
pub mod args;
mod emit;
#[cfg(test)]
mod emit_tests;
pub mod regs;
pub mod unwind;
use args::*;
//=============================================================================
// Instructions (top level): definition
// `Inst` is defined inside ISLE as `MInst`. We publicly re-export it here.
pub use super::lower::isle::generated_code::MInst as Inst;
// Out-of-line data for calls, to keep the size of `Inst` downn.
#[derive(Clone, Debug)]
pub struct CallInfo {
/// Register uses of this call.
pub uses: CallArgList,
/// Register defs of this call.
pub defs: CallRetList,
/// Registers clobbered by this call, as per its calling convention.
pub clobbers: PRegSet,
/// The opcode of this call.
pub opcode: Opcode,
}
#[test]
#[cfg(target_pointer_width = "64")]
fn inst_size_test() {
// This test will help with unintentionally growing the size
// of the Inst enum.
assert_eq!(40, std::mem::size_of::<Inst>());
}
pub(crate) fn low32_will_sign_extend_to_64(x: u64) -> bool {
let xs = x as i64;
xs == ((xs << 32) >> 32)
}
impl Inst {
/// Retrieve a list of ISA feature sets in which the instruction is available. An empty list
/// indicates that the instruction is available in the baseline feature set (i.e. SSE2 and
/// below); more than one `InstructionSet` in the list indicates that the instruction is present
/// *any* of the included ISA feature sets.
fn available_in_any_isa(&self) -> SmallVec<[InstructionSet; 2]> {
match self {
// These instructions are part of SSE2, which is a basic requirement in Cranelift, and
// don't have to be checked.
Inst::AluRmiR { .. }
| Inst::AluRM { .. }
| Inst::AtomicRmwSeq { .. }
| Inst::Bswap { .. }
| Inst::CallKnown { .. }
| Inst::CallUnknown { .. }
| Inst::CheckedDivOrRemSeq { .. }
| Inst::Cmove { .. }
| Inst::CmpRmiR { .. }
| Inst::CvtFloatToSintSeq { .. }
| Inst::CvtFloatToUintSeq { .. }
| Inst::CvtUint64ToFloatSeq { .. }
| Inst::Div { .. }
| Inst::Fence { .. }
| Inst::Hlt
| Inst::Imm { .. }
| Inst::JmpCond { .. }
| Inst::JmpIf { .. }
| Inst::JmpKnown { .. }
| Inst::JmpTableSeq { .. }
| Inst::JmpUnknown { .. }
| Inst::LoadEffectiveAddress { .. }
| Inst::LoadExtName { .. }
| Inst::LockCmpxchg { .. }
| Inst::Mov64MR { .. }
| Inst::MovRM { .. }
| Inst::MovRR { .. }
| Inst::MovPReg { .. }
| Inst::MovsxRmR { .. }
| Inst::MovzxRmR { .. }
| Inst::MulHi { .. }
| Inst::Neg { .. }
| Inst::Not { .. }
| Inst::Nop { .. }
| Inst::Pop64 { .. }
| Inst::Push64 { .. }
| Inst::StackProbeLoop { .. }
| Inst::Args { .. }
| Inst::Ret { .. }
| Inst::Setcc { .. }
| Inst::ShiftR { .. }
| Inst::SignExtendData { .. }
| Inst::TrapIf { .. }
| Inst::TrapIfAnd { .. }
| Inst::TrapIfOr { .. }
| Inst::Ud2 { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::XmmCmove { .. }
| Inst::XmmCmpRmR { .. }
| Inst::XmmMinMaxSeq { .. }
| Inst::XmmUninitializedValue { .. }
| Inst::ElfTlsGetAddr { .. }
| Inst::MachOTlsGetAddr { .. }
| Inst::CoffTlsGetAddr { .. }
| Inst::Unwind { .. }
| Inst::DummyUse { .. } => smallvec![],
Inst::UnaryRmR { op, .. } => op.available_from(),
// These use dynamic SSE opcodes.
Inst::GprToXmm { op, .. }
| Inst::XmmMovRM { op, .. }
| Inst::XmmRmiReg { opcode: op, .. }
| Inst::XmmRmR { op, .. }
| Inst::XmmRmRImm { op, .. }
| Inst::XmmToGpr { op, .. }
| Inst::XmmUnaryRmRImm { op, .. }
| Inst::XmmUnaryRmR { op, .. } => smallvec![op.available_from()],
Inst::XmmUnaryRmREvex { op, .. }
| Inst::XmmRmREvex { op, .. }
| Inst::XmmRmREvex3 { op, .. } => op.available_from(),
Inst::XmmRmRVex { op, .. } => op.available_from(),
}
}
}
// Handy constructors for Insts.
impl Inst {
pub(crate) fn nop(len: u8) -> Self {
debug_assert!(len <= 15);
Self::Nop { len }
}
pub(crate) fn alu_rmi_r(
size: OperandSize,
op: AluRmiROpcode,
src: RegMemImm,
dst: Writable<Reg>,
) -> Self {
debug_assert!(size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
src.assert_regclass_is(RegClass::Int);
debug_assert!(dst.to_reg().class() == RegClass::Int);
Self::AluRmiR {
size,
op,
src1: Gpr::new(dst.to_reg()).unwrap(),
src2: GprMemImm::new(src).unwrap(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
#[allow(dead_code)]
pub(crate) fn unary_rm_r(
size: OperandSize,
op: UnaryRmROpcode,
src: RegMem,
dst: Writable<Reg>,
) -> Self {
src.assert_regclass_is(RegClass::Int);
debug_assert!(dst.to_reg().class() == RegClass::Int);
debug_assert!(size.is_one_of(&[
OperandSize::Size16,
OperandSize::Size32,
OperandSize::Size64
]));
Self::UnaryRmR {
size,
op,
src: GprMem::new(src).unwrap(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn not(size: OperandSize, src: Writable<Reg>) -> Inst {
debug_assert_eq!(src.to_reg().class(), RegClass::Int);
Inst::Not {
size,
src: Gpr::new(src.to_reg()).unwrap(),
dst: WritableGpr::from_writable_reg(src).unwrap(),
}
}
pub(crate) fn div(
size: OperandSize,
signed: bool,
divisor: RegMem,
dividend_lo: Gpr,
dividend_hi: Gpr,
dst_quotient: WritableGpr,
dst_remainder: WritableGpr,
) -> Inst {
divisor.assert_regclass_is(RegClass::Int);
Inst::Div {
size,
signed,
divisor: GprMem::new(divisor).unwrap(),
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
}
}
pub(crate) fn checked_div_or_rem_seq(
kind: DivOrRemKind,
size: OperandSize,
divisor: Reg,
dividend_lo: Gpr,
dividend_hi: Gpr,
dst_quotient: WritableGpr,
dst_remainder: WritableGpr,
tmp: Option<Writable<Reg>>,
) -> Inst {
debug_assert!(divisor.class() == RegClass::Int);
debug_assert!(tmp
.map(|tmp| tmp.to_reg().class() == RegClass::Int)
.unwrap_or(true));
Inst::CheckedDivOrRemSeq {
kind,
size,
divisor: Gpr::new(divisor).unwrap(),
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
tmp: tmp.map(|tmp| WritableGpr::from_writable_reg(tmp).unwrap()),
}
}
pub(crate) fn sign_extend_data(size: OperandSize, src: Gpr, dst: WritableGpr) -> Inst {
Inst::SignExtendData { size, src, dst }
}
pub(crate) fn imm(dst_size: OperandSize, simm64: u64, dst: Writable<Reg>) -> Inst {
debug_assert!(dst_size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
debug_assert!(dst.to_reg().class() == RegClass::Int);
// Try to generate a 32-bit immediate when the upper high bits are zeroed (which matches
// the semantics of movl).
let dst_size = match dst_size {
OperandSize::Size64 if simm64 > u32::max_value() as u64 => OperandSize::Size64,
_ => OperandSize::Size32,
};
Inst::Imm {
dst_size,
simm64,
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn mov_r_r(size: OperandSize, src: Reg, dst: Writable<Reg>) -> Inst {
debug_assert!(size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
debug_assert!(src.class() == RegClass::Int);
debug_assert!(dst.to_reg().class() == RegClass::Int);
let src = Gpr::new(src).unwrap();
let dst = WritableGpr::from_writable_reg(dst).unwrap();
Inst::MovRR { size, src, dst }
}
/// Convenient helper for unary float operations.
pub(crate) fn xmm_unary_rm_r(op: SseOpcode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::Float);
debug_assert!(dst.to_reg().class() == RegClass::Float);
Inst::XmmUnaryRmR {
op,
src: XmmMem::new(src).unwrap(),
dst: WritableXmm::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn xmm_rm_r(op: SseOpcode, src: RegMem, dst: Writable<Reg>) -> Self {
src.assert_regclass_is(RegClass::Float);
debug_assert!(dst.to_reg().class() == RegClass::Float);
Inst::XmmRmR {
op,
src1: Xmm::new(dst.to_reg()).unwrap(),
src2: XmmMem::new(src).unwrap(),
dst: WritableXmm::from_writable_reg(dst).unwrap(),
}
}
#[cfg(test)]
pub(crate) fn xmm_rm_r_vex(op: AvxOpcode, src3: RegMem, src2: Reg, dst: Writable<Reg>) -> Self {
src3.assert_regclass_is(RegClass::Float);
debug_assert!(src2.class() == RegClass::Float);
debug_assert!(dst.to_reg().class() == RegClass::Float);
Inst::XmmRmRVex {
op,
src3: XmmMem::new(src3).unwrap(),
src2: Xmm::new(src2).unwrap(),
src1: Xmm::new(dst.to_reg()).unwrap(),
dst: WritableXmm::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn xmm_mov_r_m(op: SseOpcode, src: Reg, dst: impl Into<SyntheticAmode>) -> Inst {
debug_assert!(src.class() == RegClass::Float);
Inst::XmmMovRM {
op,
src,
dst: dst.into(),
}
}
pub(crate) fn xmm_to_gpr(
op: SseOpcode,
src: Reg,
dst: Writable<Reg>,
dst_size: OperandSize,
) -> Inst {
debug_assert!(src.class() == RegClass::Float);
debug_assert!(dst.to_reg().class() == RegClass::Int);
debug_assert!(dst_size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
Inst::XmmToGpr {
op,
src: Xmm::new(src).unwrap(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
dst_size,
}
}
pub(crate) fn gpr_to_xmm(
op: SseOpcode,
src: RegMem,
src_size: OperandSize,
dst: Writable<Reg>,
) -> Inst {
src.assert_regclass_is(RegClass::Int);
debug_assert!(src_size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
debug_assert!(dst.to_reg().class() == RegClass::Float);
Inst::GprToXmm {
op,
src: GprMem::new(src).unwrap(),
dst: WritableXmm::from_writable_reg(dst).unwrap(),
src_size,
}
}
pub(crate) fn xmm_cmp_rm_r(op: SseOpcode, src: RegMem, dst: Reg) -> Inst {
src.assert_regclass_is(RegClass::Float);
debug_assert!(dst.class() == RegClass::Float);
let src = XmmMem::new(src).unwrap();
let dst = Xmm::new(dst).unwrap();
Inst::XmmCmpRmR { op, src, dst }
}
#[allow(dead_code)]
pub(crate) fn xmm_min_max_seq(
size: OperandSize,
is_min: bool,
lhs: Reg,
rhs: Reg,
dst: Writable<Reg>,
) -> Inst {
debug_assert!(size.is_one_of(&[OperandSize::Size32, OperandSize::Size64]));
debug_assert_eq!(lhs.class(), RegClass::Float);
debug_assert_eq!(rhs.class(), RegClass::Float);
debug_assert_eq!(dst.to_reg().class(), RegClass::Float);
Inst::XmmMinMaxSeq {
size,
is_min,
lhs: Xmm::new(lhs).unwrap(),
rhs: Xmm::new(rhs).unwrap(),
dst: WritableXmm::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn movzx_rm_r(ext_mode: ExtMode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::Int);
debug_assert!(dst.to_reg().class() == RegClass::Int);
let src = GprMem::new(src).unwrap();
let dst = WritableGpr::from_writable_reg(dst).unwrap();
Inst::MovzxRmR { ext_mode, src, dst }
}
pub(crate) fn movsx_rm_r(ext_mode: ExtMode, src: RegMem, dst: Writable<Reg>) -> Inst {
src.assert_regclass_is(RegClass::Int);
debug_assert!(dst.to_reg().class() == RegClass::Int);
let src = GprMem::new(src).unwrap();
let dst = WritableGpr::from_writable_reg(dst).unwrap();
Inst::MovsxRmR { ext_mode, src, dst }
}
pub(crate) fn mov64_m_r(src: impl Into<SyntheticAmode>, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().class() == RegClass::Int);
Inst::Mov64MR {
src: src.into(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn mov_r_m(size: OperandSize, src: Reg, dst: impl Into<SyntheticAmode>) -> Inst {
debug_assert!(src.class() == RegClass::Int);
Inst::MovRM {
size,
src: Gpr::new(src).unwrap(),
dst: dst.into(),
}
}
pub(crate) fn lea(addr: impl Into<SyntheticAmode>, dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().class() == RegClass::Int);
Inst::LoadEffectiveAddress {
addr: addr.into(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn shift_r(
size: OperandSize,
kind: ShiftKind,
num_bits: Imm8Gpr,
dst: Writable<Reg>,
) -> Inst {
if let Imm8Reg::Imm8 { imm: num_bits } = num_bits.clone().to_imm8_reg() {
debug_assert!(num_bits < size.to_bits());
}
debug_assert!(dst.to_reg().class() == RegClass::Int);
Inst::ShiftR {
size,
kind,
src: Gpr::new(dst.to_reg()).unwrap(),
num_bits,
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
/// Does a comparison of dst - src for operands of size `size`, as stated by the machine
/// instruction semantics. Be careful with the order of parameters!
pub(crate) fn cmp_rmi_r(size: OperandSize, src: RegMemImm, dst: Reg) -> Inst {
src.assert_regclass_is(RegClass::Int);
debug_assert_eq!(dst.class(), RegClass::Int);
Inst::CmpRmiR {
size,
src: GprMemImm::new(src).unwrap(),
dst: Gpr::new(dst).unwrap(),
opcode: CmpOpcode::Cmp,
}
}
pub(crate) fn trap(trap_code: TrapCode) -> Inst {
Inst::Ud2 { trap_code }
}
pub(crate) fn cmove(size: OperandSize, cc: CC, src: RegMem, dst: Writable<Reg>) -> Inst {
debug_assert!(size.is_one_of(&[
OperandSize::Size16,
OperandSize::Size32,
OperandSize::Size64
]));
debug_assert!(dst.to_reg().class() == RegClass::Int);
Inst::Cmove {
size,
cc,
consequent: GprMem::new(src).unwrap(),
alternative: Gpr::new(dst.to_reg()).unwrap(),
dst: WritableGpr::from_writable_reg(dst).unwrap(),
}
}
pub(crate) fn push64(src: RegMemImm) -> Inst {
src.assert_regclass_is(RegClass::Int);
let src = GprMemImm::new(src).unwrap();
Inst::Push64 { src }
}
pub(crate) fn pop64(dst: Writable<Reg>) -> Inst {
debug_assert!(dst.to_reg().class() == RegClass::Int);
let dst = WritableGpr::from_writable_reg(dst).unwrap();
Inst::Pop64 { dst }
}
pub(crate) fn call_known(
dest: ExternalName,
uses: CallArgList,
defs: CallRetList,
clobbers: PRegSet,
opcode: Opcode,
) -> Inst {
Inst::CallKnown {
dest,
info: Box::new(CallInfo {
uses,
defs,
clobbers,
opcode,
}),
}
}
pub(crate) fn call_unknown(
dest: RegMem,
uses: CallArgList,
defs: CallRetList,
clobbers: PRegSet,
opcode: Opcode,
) -> Inst {
dest.assert_regclass_is(RegClass::Int);
Inst::CallUnknown {
dest,
info: Box::new(CallInfo {
uses,
defs,
clobbers,
opcode,
}),
}
}
pub(crate) fn ret(rets: Vec<Reg>) -> Inst {
Inst::Ret { rets }
}
pub(crate) fn jmp_known(dst: MachLabel) -> Inst {
Inst::JmpKnown { dst }
}
pub(crate) fn jmp_unknown(target: RegMem) -> Inst {
target.assert_regclass_is(RegClass::Int);
Inst::JmpUnknown { target }
}
pub(crate) fn trap_if(cc: CC, trap_code: TrapCode) -> Inst {
Inst::TrapIf { cc, trap_code }
}
/// Choose which instruction to use for loading a register value from memory. For loads smaller
/// than 64 bits, this method expects a way to extend the value (i.e. [ExtKind::SignExtend],
/// [ExtKind::ZeroExtend]); loads with no extension necessary will ignore this.
pub(crate) fn load(
ty: Type,
from_addr: impl Into<SyntheticAmode>,
to_reg: Writable<Reg>,
ext_kind: ExtKind,
) -> Inst {
let rc = to_reg.to_reg().class();
match rc {
RegClass::Int => {
let ext_mode = match ty.bytes() {
1 => Some(ExtMode::BQ),
2 => Some(ExtMode::WQ),
4 => Some(ExtMode::LQ),
8 => None,
_ => unreachable!("the type should never use a scalar load: {}", ty),
};
if let Some(ext_mode) = ext_mode {
// Values smaller than 64 bits must be extended in some way.
match ext_kind {
ExtKind::SignExtend => {
Inst::movsx_rm_r(ext_mode, RegMem::mem(from_addr), to_reg)
}
ExtKind::ZeroExtend => {
Inst::movzx_rm_r(ext_mode, RegMem::mem(from_addr), to_reg)
}
ExtKind::None => panic!(
"expected an extension kind for extension mode: {:?}",
ext_mode
),
}
} else {
// 64-bit values can be moved directly.
Inst::mov64_m_r(from_addr, to_reg)
}
}
RegClass::Float => {
let opcode = match ty {
types::F32 => SseOpcode::Movss,
types::F64 => SseOpcode::Movsd,
types::F32X4 => SseOpcode::Movups,
types::F64X2 => SseOpcode::Movupd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqu,
_ => unimplemented!("unable to load type: {}", ty),
};
Inst::xmm_unary_rm_r(opcode, RegMem::mem(from_addr), to_reg)
}
}
}
/// Choose which instruction to use for storing a register value to memory.
pub(crate) fn store(ty: Type, from_reg: Reg, to_addr: impl Into<SyntheticAmode>) -> Inst {
let rc = from_reg.class();
match rc {
RegClass::Int => Inst::mov_r_m(OperandSize::from_ty(ty), from_reg, to_addr),
RegClass::Float => {
let opcode = match ty {
types::F32 => SseOpcode::Movss,
types::F64 => SseOpcode::Movsd,
types::F32X4 => SseOpcode::Movups,
types::F64X2 => SseOpcode::Movupd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqu,
_ => unimplemented!("unable to store type: {}", ty),
};
Inst::xmm_mov_r_m(opcode, from_reg, to_addr)
}
}
}
}
// Inst helpers.
impl Inst {
/// In certain cases, instructions of this format can act as a definition of an XMM register,
/// producing a value that is independent of its initial value.
///
/// For example, a vector equality comparison (`cmppd` or `cmpps`) that compares a register to
/// itself will generate all ones as a result, regardless of its value. From the register
/// allocator's point of view, we should (i) record the first register, which is normally a
/// mod, as a def instead; and (ii) not record the second register as a use, because it is the
/// same as the first register (already handled).
fn produces_const(&self) -> bool {
match self {
Self::AluRmiR { op, src1, src2, .. } => {
src2.clone().to_reg_mem_imm().to_reg() == Some(src1.to_reg())
&& (*op == AluRmiROpcode::Xor || *op == AluRmiROpcode::Sub)
}
Self::XmmRmR { op, src1, src2, .. } => {
src2.clone().to_reg_mem().to_reg() == Some(src1.to_reg())
&& (*op == SseOpcode::Xorps
|| *op == SseOpcode::Xorpd
|| *op == SseOpcode::Pxor
|| *op == SseOpcode::Pcmpeqb
|| *op == SseOpcode::Pcmpeqw
|| *op == SseOpcode::Pcmpeqd
|| *op == SseOpcode::Pcmpeqq)
}
_ => false,
}
}
}
//=============================================================================
// Instructions: printing
impl PrettyPrint for Inst {
fn pretty_print(&self, _size: u8, allocs: &mut AllocationConsumer<'_>) -> String {
fn ljustify(s: String) -> String {
let w = 7;
if s.len() >= w {
s
} else {
let need = usize::min(w, w - s.len());
s + &format!("{nil: <width$}", nil = "", width = need)
}
}
fn ljustify2(s1: String, s2: String) -> String {
ljustify(s1 + &s2)
}
fn suffix_lq(size: OperandSize) -> String {
match size {
OperandSize::Size32 => "l",
OperandSize::Size64 => "q",
_ => unreachable!(),
}
.to_string()
}
fn suffix_lqb(size: OperandSize) -> String {
match size {
OperandSize::Size32 => "l",
OperandSize::Size64 => "q",
_ => unreachable!(),
}
.to_string()
}
fn suffix_bwlq(size: OperandSize) -> String {
match size {
OperandSize::Size8 => "b".to_string(),
OperandSize::Size16 => "w".to_string(),
OperandSize::Size32 => "l".to_string(),
OperandSize::Size64 => "q".to_string(),
}
}
match self {
Inst::Nop { len } => format!("{} len={}", ljustify("nop".to_string()), len),
Inst::AluRmiR { size, op, dst, .. } if self.produces_const() => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}, {}",
ljustify2(op.to_string(), suffix_lqb(*size)),
dst,
dst,
dst
)
}
Inst::AluRmiR {
size,
op,
src1,
src2,
dst,
} => {
let size_bytes = size.to_bytes();
let src1 = pretty_print_reg(src1.to_reg(), size_bytes, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size_bytes, allocs);
let src2 = src2.pretty_print(size_bytes, allocs);
format!(
"{} {}, {}, {}",
ljustify2(op.to_string(), suffix_lqb(*size)),
src1,
src2,
dst
)
}
Inst::AluRM {
size,
op,
src1_dst,
src2,
} => {
let size_bytes = size.to_bytes();
let src2 = pretty_print_reg(src2.to_reg(), size_bytes, allocs);
let src1_dst = src1_dst.pretty_print(size_bytes, allocs);
format!(
"{} {}, {}",
ljustify2(op.to_string(), suffix_lqb(*size)),
src2,
src1_dst,
)
}
Inst::UnaryRmR { src, dst, op, size } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
let src = src.pretty_print(size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2(op.to_string(), suffix_bwlq(*size)),
src,
dst,
)
}
Inst::Not { size, src, dst } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2("not".to_string(), suffix_bwlq(*size)),
src,
dst,
)
}
Inst::Neg { size, src, dst } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2("neg".to_string(), suffix_bwlq(*size)),
src,
dst,
)
}
Inst::Div {
size,
signed,
divisor,
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
} => {
let dividend_lo = pretty_print_reg(dividend_lo.to_reg(), size.to_bytes(), allocs);
let dst_quotient =
pretty_print_reg(dst_quotient.to_reg().to_reg(), size.to_bytes(), allocs);
let dst_remainder = if size.to_bits() > 8 {
pretty_print_reg(dst_remainder.to_reg().to_reg(), size.to_bytes(), allocs)
} else {
"(none)".to_string()
};
let dividend_hi = if size.to_bits() > 8 {
pretty_print_reg(dividend_hi.to_reg(), size.to_bytes(), allocs)
} else {
"(none)".to_string()
};
let divisor = divisor.pretty_print(size.to_bytes(), allocs);
format!(
"{} {}, {}, {}, {}, {}",
ljustify(if *signed {
"idiv".to_string()
} else {
"div".into()
}),
dividend_lo,
dividend_hi,
divisor,
dst_quotient,
dst_remainder,
)
}
Inst::MulHi {
size,
signed,
src1,
src2,
dst_lo,
dst_hi,
} => {
let src1 = pretty_print_reg(src1.to_reg(), size.to_bytes(), allocs);
let dst_lo = pretty_print_reg(dst_lo.to_reg().to_reg(), size.to_bytes(), allocs);
let dst_hi = pretty_print_reg(dst_hi.to_reg().to_reg(), size.to_bytes(), allocs);
let src2 = src2.pretty_print(size.to_bytes(), allocs);
format!(
"{} {}, {}, {}, {}",
ljustify(if *signed {
"imul".to_string()
} else {
"mul".to_string()
}),
src1,
src2,
dst_lo,
dst_hi,
)
}
Inst::CheckedDivOrRemSeq {
kind,
size,
divisor,
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
tmp,
} => {
let dividend_lo = pretty_print_reg(dividend_lo.to_reg(), size.to_bytes(), allocs);
let dividend_hi = pretty_print_reg(dividend_hi.to_reg(), size.to_bytes(), allocs);
let divisor = pretty_print_reg(divisor.to_reg(), size.to_bytes(), allocs);
let dst_quotient =
pretty_print_reg(dst_quotient.to_reg().to_reg(), size.to_bytes(), allocs);
let dst_remainder =
pretty_print_reg(dst_remainder.to_reg().to_reg(), size.to_bytes(), allocs);
let tmp = tmp
.map(|tmp| pretty_print_reg(tmp.to_reg().to_reg(), size.to_bytes(), allocs))
.unwrap_or("(none)".to_string());
format!(
"{} {}, {}, {}, {}, {}, tmp={}",
match kind {
DivOrRemKind::SignedDiv => "sdiv_seq",
DivOrRemKind::UnsignedDiv => "udiv_seq",
DivOrRemKind::SignedRem => "srem_seq",
DivOrRemKind::UnsignedRem => "urem_seq",
},
dividend_lo,
dividend_hi,
divisor,
dst_quotient,
dst_remainder,
tmp,
)
}
Inst::SignExtendData { size, src, dst } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}",
match size {
OperandSize::Size8 => "cbw",
OperandSize::Size16 => "cwd",
OperandSize::Size32 => "cdq",
OperandSize::Size64 => "cqo",
},
src,
dst,
)
}
Inst::XmmUnaryRmR { op, src, dst, .. } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), op.src_size(), allocs);
let src = src.pretty_print(op.src_size(), allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::XmmUnaryRmRImm {
op, src, dst, imm, ..
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), op.src_size(), allocs);
let src = src.pretty_print(op.src_size(), allocs);
format!("{} ${}, {}, {}", ljustify(op.to_string()), imm, src, dst)
}
Inst::XmmUnaryRmREvex { op, src, dst, .. } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src = src.pretty_print(8, allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::XmmMovRM { op, src, dst, .. } => {
let src = pretty_print_reg(*src, 8, allocs);
let dst = dst.pretty_print(8, allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::XmmRmR { op, dst, .. } if self.produces_const() => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} {}, {}, {}", ljustify(op.to_string()), dst, dst, dst)
}
Inst::XmmRmR {
op,
src1,
src2,
dst,
..
} => {
let src1 = pretty_print_reg(src1.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src2 = src2.pretty_print(8, allocs);
format!("{} {}, {}, {}", ljustify(op.to_string()), src1, src2, dst)
}
Inst::XmmRmRVex {
op,
src1,
src2,
src3,
dst,
..
} => {
let src1 = pretty_print_reg(src1.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src2 = pretty_print_reg(src2.to_reg(), 8, allocs);
let src3 = src3.pretty_print(8, allocs);
format!(
"{} {}, {}, {}, {}",
ljustify(op.to_string()),
src1,
src2,
src3,
dst
)
}
Inst::XmmRmREvex {
op,
src1,
src2,
dst,
..
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src2 = pretty_print_reg(src2.to_reg(), 8, allocs);
let src1 = src1.pretty_print(8, allocs);
format!("{} {}, {}, {}", ljustify(op.to_string()), src1, src2, dst)
}
Inst::XmmRmREvex3 {
op,
src1,
src2,
src3,
dst,
..
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src2 = pretty_print_reg(src2.to_reg(), 8, allocs);
let src3 = pretty_print_reg(src3.to_reg(), 8, allocs);
let src1 = src1.pretty_print(8, allocs);
format!(
"{} {}, {}, {}, {}",
ljustify(op.to_string()),
src1,
src2,
src3,
dst
)
}
Inst::XmmMinMaxSeq {
lhs,
rhs,
dst,
is_min,
size,
} => {
let rhs = pretty_print_reg(rhs.to_reg(), 8, allocs);
let lhs = pretty_print_reg(lhs.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!(
"{} {}, {}, {}",
ljustify2(
if *is_min {
"xmm min seq ".to_string()
} else {
"xmm max seq ".to_string()
},
format!("f{}", size.to_bits())
),
lhs,
rhs,
dst
)
}
Inst::XmmRmRImm {
op, dst, imm, size, ..
} if self.produces_const() => {
let dst = pretty_print_reg(dst.to_reg(), 8, allocs);
format!(
"{} ${}, {}, {}, {}",
ljustify(format!(
"{}{}",
op.to_string(),
if *size == OperandSize::Size64 {
".w"
} else {
""
}
)),
imm,
dst,
dst,
dst,
)
}
Inst::XmmRmRImm {
op,
src1,
src2,
dst,
imm,
size,
..
} => {
let src1 = if op.uses_src1() {
pretty_print_reg(*src1, 8, allocs) + ", "
} else {
"".into()
};
let dst = pretty_print_reg(dst.to_reg(), 8, allocs);
let src2 = src2.pretty_print(8, allocs);
format!(
"{} ${}, {}{}, {}",
ljustify(format!(
"{}{}",
op.to_string(),
if *size == OperandSize::Size64 {
".w"
} else {
""
}
)),
imm,
src1,
src2,
dst,
)
}
Inst::XmmUninitializedValue { dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} {}", ljustify("uninit".into()), dst)
}
Inst::XmmToGpr {
op,
src,
dst,
dst_size,
} => {
let dst_size = dst_size.to_bytes();
let src = pretty_print_reg(src.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size, allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::GprToXmm {
op,
src,
src_size,
dst,
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src = src.pretty_print(src_size.to_bytes(), allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::XmmCmpRmR { op, src, dst } => {
let dst = pretty_print_reg(dst.to_reg(), 8, allocs);
let src = src.pretty_print(8, allocs);
format!("{} {}, {}", ljustify(op.to_string()), src, dst)
}
Inst::CvtUint64ToFloatSeq {
src,
dst,
dst_size,
tmp_gpr1,
tmp_gpr2,
..
} => {
let src = pretty_print_reg(src.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size.to_bytes(), allocs);
let tmp_gpr1 = pretty_print_reg(tmp_gpr1.to_reg().to_reg(), 8, allocs);
let tmp_gpr2 = pretty_print_reg(tmp_gpr2.to_reg().to_reg(), 8, allocs);
format!(
"{} {}, {}, {}, {}",
ljustify(format!(
"u64_to_{}_seq",
if *dst_size == OperandSize::Size64 {
"f64"
} else {
"f32"
}
)),
src,
dst,
tmp_gpr1,
tmp_gpr2
)
}
Inst::CvtFloatToSintSeq {
src,
dst,
src_size,
dst_size,
tmp_xmm,
tmp_gpr,
is_saturating,
} => {
let src = pretty_print_reg(src.to_reg(), src_size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size.to_bytes(), allocs);
let tmp_gpr = pretty_print_reg(tmp_gpr.to_reg().to_reg(), 8, allocs);
let tmp_xmm = pretty_print_reg(tmp_xmm.to_reg().to_reg(), 8, allocs);
format!(
"{} {}, {}, {}, {}",
ljustify(format!(
"cvt_float{}_to_sint{}{}_seq",
src_size.to_bits(),
dst_size.to_bits(),
if *is_saturating { "_sat" } else { "" },
)),
src,
dst,
tmp_gpr,
tmp_xmm,
)
}
Inst::CvtFloatToUintSeq {
src,
dst,
src_size,
dst_size,
tmp_gpr,
tmp_xmm,
tmp_xmm2,
is_saturating,
} => {
let src = pretty_print_reg(src.to_reg(), src_size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size.to_bytes(), allocs);
let tmp_gpr = pretty_print_reg(tmp_gpr.to_reg().to_reg(), 8, allocs);
let tmp_xmm = pretty_print_reg(tmp_xmm.to_reg().to_reg(), 8, allocs);
let tmp_xmm2 = pretty_print_reg(tmp_xmm2.to_reg().to_reg(), 8, allocs);
format!(
"{} {}, {}, {}, {}, {}",
ljustify(format!(
"cvt_float{}_to_uint{}{}_seq",
src_size.to_bits(),
dst_size.to_bits(),
if *is_saturating { "_sat" } else { "" },
)),
src,
dst,
tmp_gpr,
tmp_xmm,
tmp_xmm2,
)
}
Inst::Imm {
dst_size,
simm64,
dst,
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size.to_bytes(), allocs);
if *dst_size == OperandSize::Size64 {
format!(
"{} ${}, {}",
ljustify("movabsq".to_string()),
*simm64 as i64,
dst,
)
} else {
format!(
"{} ${}, {}",
ljustify("movl".to_string()),
(*simm64 as u32) as i32,
dst,
)
}
}
Inst::MovRR { size, src, dst } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2("mov".to_string(), suffix_lq(*size)),
src,
dst
)
}
Inst::MovPReg { src, dst } => {
let src: Reg = (*src).into();
let src = regs::show_ireg_sized(src, 8);
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} {}, {}", ljustify("movq".to_string()), src, dst)
}
Inst::MovzxRmR {
ext_mode, src, dst, ..
} => {
let dst_size = if *ext_mode == ExtMode::LQ {
4
} else {
ext_mode.dst_size()
};
let dst = pretty_print_reg(dst.to_reg().to_reg(), dst_size, allocs);
let src = src.pretty_print(ext_mode.src_size(), allocs);
if *ext_mode == ExtMode::LQ {
format!("{} {}, {}", ljustify("movl".to_string()), src, dst)
} else {
format!(
"{} {}, {}",
ljustify2("movz".to_string(), ext_mode.to_string()),
src,
dst,
)
}
}
Inst::Mov64MR { src, dst, .. } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src = src.pretty_print(8, allocs);
format!("{} {}, {}", ljustify("movq".to_string()), src, dst)
}
Inst::LoadEffectiveAddress { addr, dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let addr = addr.pretty_print(8, allocs);
format!("{} {}, {}", ljustify("lea".to_string()), addr, dst)
}
Inst::MovsxRmR {
ext_mode, src, dst, ..
} => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), ext_mode.dst_size(), allocs);
let src = src.pretty_print(ext_mode.src_size(), allocs);
format!(
"{} {}, {}",
ljustify2("movs".to_string(), ext_mode.to_string()),
src,
dst
)
}
Inst::MovRM { size, src, dst, .. } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = dst.pretty_print(size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2("mov".to_string(), suffix_bwlq(*size)),
src,
dst
)
}
Inst::ShiftR {
size,
kind,
num_bits,
src,
dst,
..
} => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
match num_bits.clone().to_imm8_reg() {
Imm8Reg::Reg { reg } => {
let reg = pretty_print_reg(reg, 1, allocs);
format!(
"{} {}, {}, {}",
ljustify2(kind.to_string(), suffix_bwlq(*size)),
reg,
src,
dst,
)
}
Imm8Reg::Imm8 { imm: num_bits } => format!(
"{} ${}, {}, {}",
ljustify2(kind.to_string(), suffix_bwlq(*size)),
num_bits,
src,
dst,
),
}
}
Inst::XmmRmiReg {
opcode,
src1,
src2,
dst,
..
} => {
let src1 = pretty_print_reg(src1.to_reg(), 8, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
let src2 = src2.pretty_print(8, allocs);
format!(
"{} {}, {}, {}",
ljustify(opcode.to_string()),
src1,
src2,
dst,
)
}
Inst::CmpRmiR {
size,
src,
dst,
opcode,
} => {
let dst = pretty_print_reg(dst.to_reg(), size.to_bytes(), allocs);
let src = src.pretty_print(size.to_bytes(), allocs);
let op = match opcode {
CmpOpcode::Cmp => "cmp",
CmpOpcode::Test => "test",
};
format!(
"{} {}, {}",
ljustify2(op.to_string(), suffix_bwlq(*size)),
src,
dst,
)
}
Inst::Setcc { cc, dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 1, allocs);
format!("{} {}", ljustify2("set".to_string(), cc.to_string()), dst)
}
Inst::Bswap { size, src, dst } => {
let src = pretty_print_reg(src.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
format!(
"{} {}, {}",
ljustify2("bswap".to_string(), suffix_bwlq(*size)),
src,
dst
)
}
Inst::Cmove {
size,
cc,
consequent,
alternative,
dst,
} => {
let alternative = pretty_print_reg(alternative.to_reg(), size.to_bytes(), allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size.to_bytes(), allocs);
let consequent = consequent.pretty_print(size.to_bytes(), allocs);
format!(
"{} {}, {}, {}",
ljustify(format!("cmov{}{}", cc.to_string(), suffix_bwlq(*size))),
consequent,
alternative,
dst,
)
}
Inst::XmmCmove {
ty,
cc,
consequent,
alternative,
dst,
..
} => {
let size = u8::try_from(ty.bytes()).unwrap();
let alternative = pretty_print_reg(alternative.to_reg(), size, allocs);
let dst = pretty_print_reg(dst.to_reg().to_reg(), size, allocs);
let consequent = consequent.pretty_print(size, allocs);
format!(
"mov {}, {}; j{} $next; mov{} {}, {}; $next: ",
cc.invert().to_string(),
match *ty {
types::F64 => "sd",
types::F32 => "ss",
types::F32X4 => "aps",
types::F64X2 => "apd",
_ => "dqa",
},
consequent,
dst,
alternative,
dst,
)
}
Inst::Push64 { src } => {
let src = src.pretty_print(8, allocs);
format!("{} {}", ljustify("pushq".to_string()), src)
}
Inst::StackProbeLoop {
tmp,
frame_size,
guard_size,
} => {
let tmp = pretty_print_reg(tmp.to_reg(), 8, allocs);
format!(
"{} {}, frame_size={}, guard_size={}",
ljustify("stack_probe_loop".to_string()),
tmp,
frame_size,
guard_size
)
}
Inst::Pop64 { dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} {}", ljustify("popq".to_string()), dst)
}
Inst::CallKnown { dest, .. } => {
format!("{} {:?}", ljustify("call".to_string()), dest)
}
Inst::CallUnknown { dest, .. } => {
let dest = dest.pretty_print(8, allocs);
format!("{} *{}", ljustify("call".to_string()), dest)
}
Inst::Args { args } => {
let mut s = "args".to_string();
for arg in args {
use std::fmt::Write;
let preg = regs::show_reg(arg.preg);
let def = pretty_print_reg(arg.vreg.to_reg(), 8, allocs);
write!(&mut s, " {}={}", def, preg).unwrap();
}
s
}
Inst::Ret { .. } => "ret".to_string(),
Inst::JmpKnown { dst } => {
format!("{} {}", ljustify("jmp".to_string()), dst.to_string())
}
Inst::JmpIf { cc, taken } => format!(
"{} {}",
ljustify2("j".to_string(), cc.to_string()),
taken.to_string(),
),
Inst::JmpCond {
cc,
taken,
not_taken,
} => format!(
"{} {}; j {}",
ljustify2("j".to_string(), cc.to_string()),
taken.to_string(),
not_taken.to_string()
),
Inst::JmpTableSeq {
idx, tmp1, tmp2, ..
} => {
let idx = pretty_print_reg(*idx, 8, allocs);
let tmp1 = pretty_print_reg(tmp1.to_reg(), 8, allocs);
let tmp2 = pretty_print_reg(tmp2.to_reg(), 8, allocs);
format!(
"{} {}, {}, {}",
ljustify("br_table".into()),
idx,
tmp1,
tmp2
)
}
Inst::JmpUnknown { target } => {
let target = target.pretty_print(8, allocs);
format!("{} *{}", ljustify("jmp".to_string()), target)
}
Inst::TrapIf { cc, trap_code, .. } => {
format!("j{} ; ud2 {} ;", cc.invert().to_string(), trap_code)
}
Inst::TrapIfAnd {
cc1,
cc2,
trap_code,
..
} => {
format!(
"trap_if_and {}, {}, {}",
cc1.invert().to_string(),
cc2.invert().to_string(),
trap_code
)
}
Inst::TrapIfOr {
cc1,
cc2,
trap_code,
..
} => {
format!(
"trap_if_or {}, {}, {}",
cc1.to_string(),
cc2.invert().to_string(),
trap_code
)
}
Inst::LoadExtName {
dst, name, offset, ..
} => {
let dst = pretty_print_reg(dst.to_reg(), 8, allocs);
format!(
"{} {}+{}, {}",
ljustify("load_ext_name".into()),
name.display(None),
offset,
dst,
)
}
Inst::LockCmpxchg {
ty,
replacement,
expected,
mem,
dst_old,
..
} => {
let size = ty.bytes() as u8;
let replacement = pretty_print_reg(*replacement, size, allocs);
let expected = pretty_print_reg(*expected, size, allocs);
let dst_old = pretty_print_reg(dst_old.to_reg(), size, allocs);
let mem = mem.pretty_print(size, allocs);
format!(
"lock cmpxchg{} {}, {}, expected={}, dst_old={}",
suffix_bwlq(OperandSize::from_bytes(size as u32)),
replacement,
mem,
expected,
dst_old,
)
}
Inst::AtomicRmwSeq { ty, op, .. } => {
format!(
"atomically {{ {}_bits_at_[%r9]) {:?}= %r10; %rax = old_value_at_[%r9]; %r11, %rflags = trash }}",
ty.bits(), op)
}
Inst::Fence { kind } => match kind {
FenceKind::MFence => "mfence".to_string(),
FenceKind::LFence => "lfence".to_string(),
FenceKind::SFence => "sfence".to_string(),
},
Inst::VirtualSPOffsetAdj { offset } => format!("virtual_sp_offset_adjust {}", offset),
Inst::Hlt => "hlt".into(),
Inst::Ud2 { trap_code } => format!("ud2 {}", trap_code),
Inst::ElfTlsGetAddr { ref symbol, dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} = elf_tls_get_addr {:?}", dst, symbol)
}
Inst::MachOTlsGetAddr { ref symbol, dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} = macho_tls_get_addr {:?}", dst, symbol)
}
Inst::CoffTlsGetAddr { ref symbol, dst } => {
let dst = pretty_print_reg(dst.to_reg().to_reg(), 8, allocs);
format!("{} = coff_tls_get_addr {:?}", dst, symbol)
}
Inst::Unwind { inst } => {
format!("unwind {:?}", inst)
}
Inst::DummyUse { reg } => {
let reg = pretty_print_reg(*reg, 8, allocs);
format!("dummy_use {}", reg)
}
}
}
}
impl fmt::Debug for Inst {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"{}",
self.pretty_print_inst(&[], &mut Default::default())
)
}
}
fn x64_get_operands<F: Fn(VReg) -> VReg>(inst: &Inst, collector: &mut OperandCollector<'_, F>) {
// FIXME: remove all remaining `mod` operands here to get to pure
// SSA.
// Note: because we need to statically know the indices of each
// reg in the operands list in order to fetch its allocation
// later, we put the variable-operand-count bits (the RegMem,
// RegMemImm, etc args) last. regalloc2 doesn't care what order
// the operands come in; they can be freely reordered.
// N.B.: we MUST keep the below in careful sync with (i) emission,
// in `emit.rs`, and (ii) pretty-printing, in the `pretty_print`
// method above.
match inst {
Inst::AluRmiR {
src1, src2, dst, ..
} => {
if inst.produces_const() {
collector.reg_def(dst.to_writable_reg());
} else {
collector.reg_use(src1.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
src2.get_operands(collector);
}
}
Inst::AluRM { src1_dst, src2, .. } => {
collector.reg_use(src2.to_reg());
src1_dst.get_operands(collector);
}
Inst::Not { src, dst, .. } => {
collector.reg_use(src.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
}
Inst::Neg { src, dst, .. } => {
collector.reg_use(src.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
}
Inst::Div {
divisor,
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
size,
..
} => {
collector.reg_fixed_use(dividend_lo.to_reg(), regs::rax());
collector.reg_fixed_def(dst_quotient.to_writable_reg(), regs::rax());
if size.to_bits() > 8 {
collector.reg_fixed_def(dst_remainder.to_writable_reg(), regs::rdx());
collector.reg_fixed_use(dividend_hi.to_reg(), regs::rdx());
}
divisor.get_operands(collector);
}
Inst::MulHi {
src1,
src2,
dst_lo,
dst_hi,
..
} => {
collector.reg_fixed_use(src1.to_reg(), regs::rax());
collector.reg_fixed_def(dst_lo.to_writable_reg(), regs::rax());
collector.reg_fixed_def(dst_hi.to_writable_reg(), regs::rdx());
src2.get_operands(collector);
}
Inst::CheckedDivOrRemSeq {
divisor,
dividend_lo,
dividend_hi,
dst_quotient,
dst_remainder,
tmp,
..
} => {
collector.reg_fixed_use(dividend_lo.to_reg(), regs::rax());
collector.reg_fixed_use(dividend_hi.to_reg(), regs::rdx());
collector.reg_use(divisor.to_reg());
collector.reg_fixed_def(dst_quotient.to_writable_reg(), regs::rax());
collector.reg_fixed_def(dst_remainder.to_writable_reg(), regs::rdx());
if let Some(tmp) = tmp {
// Early def so that the temporary register does not
// conflict with inputs or outputs.
collector.reg_early_def(tmp.to_writable_reg());
}
}
Inst::SignExtendData { size, src, dst } => {
match size {
OperandSize::Size8 => {
// Note `rax` on both src and dest: 8->16 extend
// does AL -> AX.
collector.reg_fixed_use(src.to_reg(), regs::rax());
collector.reg_fixed_def(dst.to_writable_reg(), regs::rax());
}
_ => {
// All other widths do RAX -> RDX (AX -> DX:AX,
// EAX -> EDX:EAX).
collector.reg_fixed_use(src.to_reg(), regs::rax());
collector.reg_fixed_def(dst.to_writable_reg(), regs::rdx());
}
}
}
Inst::UnaryRmR { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::XmmUnaryRmR { src, dst, .. }
| Inst::XmmUnaryRmREvex { src, dst, .. }
| Inst::XmmUnaryRmRImm { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::XmmRmR {
src1,
src2,
dst,
op,
..
} => {
if inst.produces_const() {
collector.reg_def(dst.to_writable_reg());
} else {
collector.reg_use(src1.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
src2.get_operands(collector);
// Some instructions have an implicit use of XMM0.
if *op == SseOpcode::Blendvpd
|| *op == SseOpcode::Blendvps
|| *op == SseOpcode::Pblendvb
{
collector.reg_use(regs::xmm0());
}
}
}
Inst::XmmRmRVex {
op,
src1,
src2,
src3,
dst,
..
} => {
// Vfmadd uses and defs the dst reg, that is not the case with all
// AVX's ops, if you're adding a new op, make sure to correctly define
// register uses.
assert!(
*op == AvxOpcode::Vfmadd213ss
|| *op == AvxOpcode::Vfmadd213sd
|| *op == AvxOpcode::Vfmadd213ps
|| *op == AvxOpcode::Vfmadd213pd
);
collector.reg_use(src1.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
collector.reg_use(src2.to_reg());
src3.get_operands(collector);
}
Inst::XmmRmREvex {
op,
src1,
src2,
dst,
..
} => {
assert_ne!(*op, Avx512Opcode::Vpermi2b);
collector.reg_def(dst.to_writable_reg());
collector.reg_use(src2.to_reg());
src1.get_operands(collector);
}
Inst::XmmRmREvex3 {
op,
src1,
src2,
src3,
dst,
..
} => {
assert_eq!(*op, Avx512Opcode::Vpermi2b);
collector.reg_reuse_def(dst.to_writable_reg(), 2); // Reuse `src3`.
collector.reg_use(src2.to_reg());
collector.reg_use(src3.to_reg());
src1.get_operands(collector);
}
Inst::XmmRmRImm {
op,
src1,
src2,
dst,
..
} => {
if inst.produces_const() {
collector.reg_def(*dst);
} else if !op.uses_src1() {
// FIXME: split this instruction into two, so we don't
// need this awkward src1-is-only-sometimes-an-arg
// behavior.
collector.reg_def(*dst);
src2.get_operands(collector);
} else {
collector.reg_use(*src1);
collector.reg_reuse_def(*dst, 0);
src2.get_operands(collector);
}
}
Inst::XmmUninitializedValue { dst } => collector.reg_def(dst.to_writable_reg()),
Inst::XmmMinMaxSeq { lhs, rhs, dst, .. } => {
collector.reg_use(rhs.to_reg());
collector.reg_use(lhs.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0); // Reuse RHS.
}
Inst::XmmRmiReg {
src1, src2, dst, ..
} => {
collector.reg_use(src1.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0); // Reuse RHS.
src2.get_operands(collector);
}
Inst::XmmMovRM { src, dst, .. } => {
collector.reg_use(*src);
dst.get_operands(collector);
}
Inst::XmmCmpRmR { src, dst, .. } => {
collector.reg_use(dst.to_reg());
src.get_operands(collector);
}
Inst::Imm { dst, .. } => {
collector.reg_def(dst.to_writable_reg());
}
Inst::MovRR { src, dst, .. } => {
collector.reg_use(src.to_reg());
collector.reg_def(dst.to_writable_reg());
}
Inst::MovPReg { dst, src } => {
debug_assert!([regs::rsp(), regs::rbp()].contains(&(*src).into()));
debug_assert!(dst.to_reg().to_reg().is_virtual());
collector.reg_def(dst.to_writable_reg());
}
Inst::XmmToGpr { src, dst, .. } => {
collector.reg_use(src.to_reg());
collector.reg_def(dst.to_writable_reg());
}
Inst::GprToXmm { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::CvtUint64ToFloatSeq {
src,
dst,
tmp_gpr1,
tmp_gpr2,
..
} => {
collector.reg_use(src.to_reg());
collector.reg_early_def(dst.to_writable_reg());
collector.reg_early_def(tmp_gpr1.to_writable_reg());
collector.reg_early_def(tmp_gpr2.to_writable_reg());
}
Inst::CvtFloatToSintSeq {
src,
dst,
tmp_xmm,
tmp_gpr,
..
} => {
collector.reg_use(src.to_reg());
collector.reg_early_def(dst.to_writable_reg());
collector.reg_early_def(tmp_gpr.to_writable_reg());
collector.reg_early_def(tmp_xmm.to_writable_reg());
}
Inst::CvtFloatToUintSeq {
src,
dst,
tmp_gpr,
tmp_xmm,
tmp_xmm2,
..
} => {
collector.reg_use(src.to_reg());
collector.reg_early_def(dst.to_writable_reg());
collector.reg_early_def(tmp_gpr.to_writable_reg());
collector.reg_early_def(tmp_xmm.to_writable_reg());
collector.reg_early_def(tmp_xmm2.to_writable_reg());
}
Inst::MovzxRmR { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::Mov64MR { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::LoadEffectiveAddress { addr: src, dst } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::MovsxRmR { src, dst, .. } => {
collector.reg_def(dst.to_writable_reg());
src.get_operands(collector);
}
Inst::MovRM { src, dst, .. } => {
collector.reg_use(src.to_reg());
dst.get_operands(collector);
}
Inst::ShiftR {
num_bits, src, dst, ..
} => {
collector.reg_use(src.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
if let Imm8Reg::Reg { reg } = num_bits.clone().to_imm8_reg() {
collector.reg_fixed_use(reg, regs::rcx());
}
}
Inst::CmpRmiR { src, dst, .. } => {
// N.B.: use, not def (cmp doesn't write its result).
collector.reg_use(dst.to_reg());
src.get_operands(collector);
}
Inst::Setcc { dst, .. } => {
collector.reg_def(dst.to_writable_reg());
}
Inst::Bswap { src, dst, .. } => {
collector.reg_use(src.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
}
Inst::Cmove {
consequent,
alternative,
dst,
..
} => {
collector.reg_use(alternative.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
consequent.get_operands(collector);
}
Inst::XmmCmove {
consequent,
alternative,
dst,
..
} => {
collector.reg_use(alternative.to_reg());
collector.reg_reuse_def(dst.to_writable_reg(), 0);
consequent.get_operands(collector);
}
Inst::Push64 { src } => {
src.get_operands(collector);
}
Inst::Pop64 { dst } => {
collector.reg_def(dst.to_writable_reg());
}
Inst::StackProbeLoop { tmp, .. } => {
collector.reg_early_def(*tmp);
}
Inst::CallKnown { dest, ref info, .. } => {
// Probestack is special and is only inserted after
// regalloc, so we do not need to represent its ABI to the
// register allocator. Assert that we don't alter that
// arrangement.
debug_assert_ne!(*dest, ExternalName::LibCall(LibCall::Probestack));
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
collector.reg_clobbers(info.clobbers);
}
Inst::CallUnknown { ref info, dest, .. } => {
dest.get_operands(collector);
for u in &info.uses {
collector.reg_fixed_use(u.vreg, u.preg);
}
for d in &info.defs {
collector.reg_fixed_def(d.vreg, d.preg);
}
collector.reg_clobbers(info.clobbers);
}
Inst::JmpTableSeq {
ref idx,
ref tmp1,
ref tmp2,
..
} => {
collector.reg_use(*idx);
collector.reg_early_def(*tmp1);
collector.reg_early_def(*tmp2);
}
Inst::JmpUnknown { target } => {
target.get_operands(collector);
}
Inst::LoadExtName { dst, .. } => {
collector.reg_def(*dst);
}
Inst::LockCmpxchg {
replacement,
expected,
mem,
dst_old,
..
} => {
collector.reg_use(*replacement);
collector.reg_fixed_use(*expected, regs::rax());
collector.reg_fixed_def(*dst_old, regs::rax());
mem.get_operands(collector);
}
Inst::AtomicRmwSeq {
operand,
temp,
dst_old,
mem,
..
} => {
collector.reg_late_use(*operand);
collector.reg_early_def(*temp);
// This `fixed_def` is needed because `CMPXCHG` always uses this
// register implicitly.
collector.reg_fixed_def(*dst_old, regs::rax());
mem.get_operands_late(collector)
}
Inst::Args { args } => {
for arg in args {
collector.reg_fixed_def(arg.vreg, arg.preg);
}
}
Inst::Ret { rets } => {
// The return value(s) are live-out; we represent this
// with register uses on the return instruction.
for &ret in rets {
collector.reg_use(ret);
}
}
Inst::JmpKnown { .. }
| Inst::JmpIf { .. }
| Inst::JmpCond { .. }
| Inst::Nop { .. }
| Inst::TrapIf { .. }
| Inst::TrapIfAnd { .. }
| Inst::TrapIfOr { .. }
| Inst::VirtualSPOffsetAdj { .. }
| Inst::Hlt
| Inst::Ud2 { .. }
| Inst::Fence { .. } => {
// No registers are used.
}
Inst::ElfTlsGetAddr { dst, .. } | Inst::MachOTlsGetAddr { dst, .. } => {
collector.reg_fixed_def(dst.to_writable_reg(), regs::rax());
// All caller-saves are clobbered.
//
// We use the SysV calling convention here because the
// pseudoinstruction (and relocation that it emits) is specific to
// ELF systems; other x86-64 targets with other conventions (i.e.,
// Windows) use different TLS strategies.
let mut clobbers = X64ABIMachineSpec::get_regs_clobbered_by_call(CallConv::SystemV);
clobbers.remove(regs::gpr_preg(regs::ENC_RAX));
collector.reg_clobbers(clobbers);
}
Inst::CoffTlsGetAddr { dst, .. } => {
// We also use the gs register. But that register is not allocatable by the
// register allocator, so we don't need to mark it as used here.
// We use %rax to set the address
collector.reg_fixed_def(dst.to_writable_reg(), regs::rax());
// We use %rcx as a temporary variable to load the _tls_index
collector.reg_def(Writable::from_reg(regs::rcx()));
}
Inst::Unwind { .. } => {}
Inst::DummyUse { reg } => {
collector.reg_use(*reg);
}
}
}
//=============================================================================
// Instructions: misc functions and external interface
impl MachInst for Inst {
type ABIMachineSpec = X64ABIMachineSpec;
fn get_operands<F: Fn(VReg) -> VReg>(&self, collector: &mut OperandCollector<'_, F>) {
x64_get_operands(&self, collector)
}
fn is_move(&self) -> Option<(Writable<Reg>, Reg)> {
match self {
// Note (carefully!) that a 32-bit mov *isn't* a no-op since it zeroes
// out the upper 32 bits of the destination. For example, we could
// conceivably use `movl %reg, %reg` to zero out the top 32 bits of
// %reg.
Self::MovRR { size, src, dst, .. } if *size == OperandSize::Size64 => {
Some((dst.to_writable_reg(), src.to_reg()))
}
// Note as well that MOVS[S|D] when used in the `XmmUnaryRmR` context are pure moves of
// scalar floating-point values (and annotate `dst` as `def`s to the register allocator)
// whereas the same operation in a packed context, e.g. `XMM_RM_R`, is used to merge a
// value into the lowest lane of a vector (not a move).
Self::XmmUnaryRmR { op, src, dst, .. }
if *op == SseOpcode::Movss
|| *op == SseOpcode::Movsd
|| *op == SseOpcode::Movaps
|| *op == SseOpcode::Movapd
|| *op == SseOpcode::Movups
|| *op == SseOpcode::Movupd
|| *op == SseOpcode::Movdqa
|| *op == SseOpcode::Movdqu =>
{
if let RegMem::Reg { reg } = src.clone().to_reg_mem() {
Some((dst.to_writable_reg(), reg))
} else {
None
}
}
_ => None,
}
}
fn is_args(&self) -> bool {
match self {
Self::Args { .. } => true,
_ => false,
}
}
fn is_term(&self) -> MachTerminator {
match self {
// Interesting cases.
&Self::Ret { .. } => MachTerminator::Ret,
&Self::JmpKnown { .. } => MachTerminator::Uncond,
&Self::JmpCond { .. } => MachTerminator::Cond,
&Self::JmpTableSeq { .. } => MachTerminator::Indirect,
// All other cases are boring.
_ => MachTerminator::None,
}
}
fn gen_move(dst_reg: Writable<Reg>, src_reg: Reg, ty: Type) -> Inst {
trace!(
"Inst::gen_move {:?} -> {:?} (type: {:?})",
src_reg,
dst_reg.to_reg(),
ty
);
let rc_dst = dst_reg.to_reg().class();
let rc_src = src_reg.class();
// If this isn't true, we have gone way off the rails.
debug_assert!(rc_dst == rc_src);
match rc_dst {
RegClass::Int => Inst::mov_r_r(OperandSize::Size64, src_reg, dst_reg),
RegClass::Float => {
// The Intel optimization manual, in "3.5.1.13 Zero-Latency MOV Instructions",
// doesn't include MOVSS/MOVSD as instructions with zero-latency. Use movaps for
// those, which may write more lanes that we need, but are specified to have
// zero-latency.
let opcode = match ty {
types::F32 | types::F64 | types::F32X4 => SseOpcode::Movaps,
types::F64X2 => SseOpcode::Movapd,
_ if ty.is_vector() && ty.bits() == 128 => SseOpcode::Movdqa,
_ => unimplemented!("unable to move type: {}", ty),
};
Inst::xmm_unary_rm_r(opcode, RegMem::reg(src_reg), dst_reg)
}
}
}
fn gen_nop(preferred_size: usize) -> Inst {
Inst::nop(std::cmp::min(preferred_size, 15) as u8)
}
fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])> {
match ty {
types::I8 => Ok((&[RegClass::Int], &[types::I8])),
types::I16 => Ok((&[RegClass::Int], &[types::I16])),
types::I32 => Ok((&[RegClass::Int], &[types::I32])),
types::I64 => Ok((&[RegClass::Int], &[types::I64])),
types::R32 => panic!("32-bit reftype pointer should never be seen on x86-64"),
types::R64 => Ok((&[RegClass::Int], &[types::R64])),
types::F32 => Ok((&[RegClass::Float], &[types::F32])),
types::F64 => Ok((&[RegClass::Float], &[types::F64])),
types::I128 => Ok((&[RegClass::Int, RegClass::Int], &[types::I64, types::I64])),
_ if ty.is_vector() => {
assert!(ty.bits() <= 128);
Ok((&[RegClass::Float], &[types::I8X16]))
}
types::IFLAGS | types::FFLAGS => Ok((&[RegClass::Int], &[types::I64])),
_ => Err(CodegenError::Unsupported(format!(
"Unexpected SSA-value type: {}",
ty
))),
}
}
fn canonical_type_for_rc(rc: RegClass) -> Type {
match rc {
RegClass::Float => types::I8X16,
RegClass::Int => types::I64,
}
}
fn gen_jump(label: MachLabel) -> Inst {
Inst::jmp_known(label)
}
fn gen_constant<F: FnMut(Type) -> Writable<Reg>>(
to_regs: ValueRegs<Writable<Reg>>,
value: u128,
ty: Type,
mut alloc_tmp: F,
) -> SmallVec<[Self; 4]> {
let mut ret = SmallVec::new();
if ty == types::I128 {
let lo = value as u64;
let hi = (value >> 64) as u64;
let lo_reg = to_regs.regs()[0];
let hi_reg = to_regs.regs()[1];
if lo == 0 {
ret.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Xor,
RegMemImm::reg(lo_reg.to_reg()),
lo_reg,
));
} else {
ret.push(Inst::imm(OperandSize::Size64, lo, lo_reg));
}
if hi == 0 {
ret.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Xor,
RegMemImm::reg(hi_reg.to_reg()),
hi_reg,
));
} else {
ret.push(Inst::imm(OperandSize::Size64, hi, hi_reg));
}
} else {
let to_reg = to_regs
.only_reg()
.expect("multi-reg values not supported on x64");
if ty == types::F32 {
if value == 0 {
ret.push(Inst::xmm_rm_r(
SseOpcode::Xorps,
RegMem::reg(to_reg.to_reg()),
to_reg,
));
} else {
let tmp = alloc_tmp(types::I32);
ret.push(Inst::imm(OperandSize::Size32, value as u64, tmp));
ret.push(Inst::gpr_to_xmm(
SseOpcode::Movd,
RegMem::reg(tmp.to_reg()),
OperandSize::Size32,
to_reg,
));
}
} else if ty == types::F64 {
if value == 0 {
ret.push(Inst::xmm_rm_r(
SseOpcode::Xorpd,
RegMem::reg(to_reg.to_reg()),
to_reg,
));
} else {
let tmp = alloc_tmp(types::I64);
ret.push(Inst::imm(OperandSize::Size64, value as u64, tmp));
ret.push(Inst::gpr_to_xmm(
SseOpcode::Movq,
RegMem::reg(tmp.to_reg()),
OperandSize::Size64,
to_reg,
));
}
} else {
// Must be an integer type.
debug_assert!(
ty == types::I8
|| ty == types::I16
|| ty == types::I32
|| ty == types::I64
|| ty == types::R32
|| ty == types::R64
);
// Immediates must be 32 or 64 bits.
// Smaller types are widened.
let size = match OperandSize::from_ty(ty) {
OperandSize::Size64 => OperandSize::Size64,
_ => OperandSize::Size32,
};
if value == 0 {
ret.push(Inst::alu_rmi_r(
size,
AluRmiROpcode::Xor,
RegMemImm::reg(to_reg.to_reg()),
to_reg,
));
} else {
let value = value as u64;
ret.push(Inst::imm(size, value.into(), to_reg));
}
}
}
ret
}
fn gen_dummy_use(reg: Reg) -> Self {
Inst::DummyUse { reg }
}
fn worst_case_size() -> CodeOffset {
15
}
fn ref_type_regclass(_: &settings::Flags) -> RegClass {
RegClass::Int
}
fn is_safepoint(&self) -> bool {
match self {
Inst::CallKnown { .. }
| Inst::CallUnknown { .. }
| Inst::TrapIf { .. }
| Inst::Ud2 { .. } => true,
_ => false,
}
}
type LabelUse = LabelUse;
}
/// State carried between emissions of a sequence of instructions.
#[derive(Default, Clone, Debug)]
pub struct EmitState {
/// Addend to convert nominal-SP offsets to real-SP offsets at the current
/// program point.
pub(crate) virtual_sp_offset: i64,
/// Offset of FP from nominal-SP.
pub(crate) nominal_sp_to_fp: i64,
/// Safepoint stack map for upcoming instruction, as provided to `pre_safepoint()`.
stack_map: Option<StackMap>,
/// Current source location.
cur_srcloc: RelSourceLoc,
}
/// Constant state used during emissions of a sequence of instructions.
pub struct EmitInfo {
pub(super) flags: settings::Flags,
isa_flags: x64_settings::Flags,
}
impl EmitInfo {
pub(crate) fn new(flags: settings::Flags, isa_flags: x64_settings::Flags) -> Self {
Self { flags, isa_flags }
}
}
impl MachInstEmit for Inst {
type State = EmitState;
type Info = EmitInfo;
fn emit(
&self,
allocs: &[Allocation],
sink: &mut MachBuffer<Inst>,
info: &Self::Info,
state: &mut Self::State,
) {
let mut allocs = AllocationConsumer::new(allocs);
emit::emit(self, &mut allocs, sink, info, state);
}
fn pretty_print_inst(&self, allocs: &[Allocation], _: &mut Self::State) -> String {
PrettyPrint::pretty_print(self, 0, &mut AllocationConsumer::new(allocs))
}
}
impl MachInstEmitState<Inst> for EmitState {
fn new(abi: &Callee<X64ABIMachineSpec>) -> Self {
EmitState {
virtual_sp_offset: 0,
nominal_sp_to_fp: abi.frame_size() as i64,
stack_map: None,
cur_srcloc: Default::default(),
}
}
fn pre_safepoint(&mut self, stack_map: StackMap) {
self.stack_map = Some(stack_map);
}
fn pre_sourceloc(&mut self, srcloc: RelSourceLoc) {
self.cur_srcloc = srcloc;
}
}
impl EmitState {
fn take_stack_map(&mut self) -> Option<StackMap> {
self.stack_map.take()
}
fn clear_post_insn(&mut self) {
self.stack_map = None;
}
}
/// A label-use (internal relocation) in generated code.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LabelUse {
/// A 32-bit offset from location of relocation itself, added to the existing value at that
/// location. Used for control flow instructions which consider an offset from the start of the
/// next instruction (so the size of the payload -- 4 bytes -- is subtracted from the payload).
JmpRel32,
/// A 32-bit offset from location of relocation itself, added to the existing value at that
/// location.
PCRel32,
}
impl MachInstLabelUse for LabelUse {
const ALIGN: CodeOffset = 1;
fn max_pos_range(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0x7fff_ffff,
}
}
fn max_neg_range(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0x8000_0000,
}
}
fn patch_size(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 4,
}
}
fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset) {
let pc_rel = (label_offset as i64) - (use_offset as i64);
debug_assert!(pc_rel <= self.max_pos_range() as i64);
debug_assert!(pc_rel >= -(self.max_neg_range() as i64));
let pc_rel = pc_rel as u32;
match self {
LabelUse::JmpRel32 => {
let addend = u32::from_le_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let value = pc_rel.wrapping_add(addend).wrapping_sub(4);
buffer.copy_from_slice(&value.to_le_bytes()[..]);
}
LabelUse::PCRel32 => {
let addend = u32::from_le_bytes([buffer[0], buffer[1], buffer[2], buffer[3]]);
let value = pc_rel.wrapping_add(addend);
buffer.copy_from_slice(&value.to_le_bytes()[..]);
}
}
}
fn supports_veneer(self) -> bool {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => false,
}
}
fn veneer_size(self) -> CodeOffset {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => 0,
}
}
fn generate_veneer(self, _: &mut [u8], _: CodeOffset) -> (CodeOffset, LabelUse) {
match self {
LabelUse::JmpRel32 | LabelUse::PCRel32 => {
panic!("Veneer not supported for JumpRel32 label-use.");
}
}
}
fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self> {
match (reloc, addend) {
(Reloc::X86CallPCRel4, -4) => Some(LabelUse::JmpRel32),
_ => None,
}
}
}