| #![allow(non_upper_case_globals)] |
| |
| use crate::attributes; |
| use crate::llvm; |
| use crate::llvm_util; |
| use crate::abi::{Abi, FnType, LlvmType, PassMode}; |
| use crate::context::CodegenCx; |
| use crate::type_::Type; |
| use crate::type_of::LayoutLlvmExt; |
| use crate::builder::Builder; |
| use crate::value::Value; |
| use crate::va_arg::emit_va_arg; |
| use rustc_codegen_ssa::MemFlags; |
| use rustc_codegen_ssa::mir::place::PlaceRef; |
| use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; |
| use rustc_codegen_ssa::glue; |
| use rustc_codegen_ssa::base::{to_immediate, wants_msvc_seh, compare_simd_types}; |
| use rustc::ty::{self, Ty}; |
| use rustc::ty::layout::{self, LayoutOf, HasTyCtxt, Primitive}; |
| use rustc_codegen_ssa::common::{IntPredicate, TypeKind}; |
| use rustc::hir; |
| use syntax::ast::{self, FloatTy}; |
| |
| use rustc_codegen_ssa::traits::*; |
| |
| use rustc::session::Session; |
| use syntax_pos::Span; |
| |
| use std::cmp::Ordering; |
| use std::{iter, i128, u128}; |
| |
| fn get_simple_intrinsic(cx: &CodegenCx<'ll, '_>, name: &str) -> Option<&'ll Value> { |
| let llvm_name = match name { |
| "sqrtf32" => "llvm.sqrt.f32", |
| "sqrtf64" => "llvm.sqrt.f64", |
| "powif32" => "llvm.powi.f32", |
| "powif64" => "llvm.powi.f64", |
| "sinf32" => "llvm.sin.f32", |
| "sinf64" => "llvm.sin.f64", |
| "cosf32" => "llvm.cos.f32", |
| "cosf64" => "llvm.cos.f64", |
| "powf32" => "llvm.pow.f32", |
| "powf64" => "llvm.pow.f64", |
| "expf32" => "llvm.exp.f32", |
| "expf64" => "llvm.exp.f64", |
| "exp2f32" => "llvm.exp2.f32", |
| "exp2f64" => "llvm.exp2.f64", |
| "logf32" => "llvm.log.f32", |
| "logf64" => "llvm.log.f64", |
| "log10f32" => "llvm.log10.f32", |
| "log10f64" => "llvm.log10.f64", |
| "log2f32" => "llvm.log2.f32", |
| "log2f64" => "llvm.log2.f64", |
| "fmaf32" => "llvm.fma.f32", |
| "fmaf64" => "llvm.fma.f64", |
| "fabsf32" => "llvm.fabs.f32", |
| "fabsf64" => "llvm.fabs.f64", |
| "minnumf32" => "llvm.minnum.f32", |
| "minnumf64" => "llvm.minnum.f64", |
| "maxnumf32" => "llvm.maxnum.f32", |
| "maxnumf64" => "llvm.maxnum.f64", |
| "copysignf32" => "llvm.copysign.f32", |
| "copysignf64" => "llvm.copysign.f64", |
| "floorf32" => "llvm.floor.f32", |
| "floorf64" => "llvm.floor.f64", |
| "ceilf32" => "llvm.ceil.f32", |
| "ceilf64" => "llvm.ceil.f64", |
| "truncf32" => "llvm.trunc.f32", |
| "truncf64" => "llvm.trunc.f64", |
| "rintf32" => "llvm.rint.f32", |
| "rintf64" => "llvm.rint.f64", |
| "nearbyintf32" => "llvm.nearbyint.f32", |
| "nearbyintf64" => "llvm.nearbyint.f64", |
| "roundf32" => "llvm.round.f32", |
| "roundf64" => "llvm.round.f64", |
| "assume" => "llvm.assume", |
| "abort" => "llvm.trap", |
| _ => return None |
| }; |
| Some(cx.get_intrinsic(&llvm_name)) |
| } |
| |
| impl IntrinsicCallMethods<'tcx> for Builder<'a, 'll, 'tcx> { |
| fn codegen_intrinsic_call( |
| &mut self, |
| callee_ty: Ty<'tcx>, |
| fn_ty: &FnType<'tcx, Ty<'tcx>>, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| llresult: &'ll Value, |
| span: Span, |
| ) { |
| let tcx = self.tcx; |
| |
| let (def_id, substs) = match callee_ty.sty { |
| ty::FnDef(def_id, substs) => (def_id, substs), |
| _ => bug!("expected fn item type, found {}", callee_ty) |
| }; |
| |
| let sig = callee_ty.fn_sig(tcx); |
| let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig); |
| let arg_tys = sig.inputs(); |
| let ret_ty = sig.output(); |
| let name = &*tcx.item_name(def_id).as_str(); |
| |
| let llret_ty = self.layout_of(ret_ty).llvm_type(self); |
| let result = PlaceRef::new_sized(llresult, fn_ty.ret.layout, fn_ty.ret.layout.align.abi); |
| |
| let simple = get_simple_intrinsic(self, name); |
| let llval = match name { |
| _ if simple.is_some() => { |
| self.call(simple.unwrap(), |
| &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), |
| None) |
| } |
| "unreachable" => { |
| return; |
| }, |
| "likely" => { |
| let expect = self.get_intrinsic(&("llvm.expect.i1")); |
| self.call(expect, &[args[0].immediate(), self.const_bool(true)], None) |
| } |
| "unlikely" => { |
| let expect = self.get_intrinsic(&("llvm.expect.i1")); |
| self.call(expect, &[args[0].immediate(), self.const_bool(false)], None) |
| } |
| "try" => { |
| try_intrinsic(self, |
| args[0].immediate(), |
| args[1].immediate(), |
| args[2].immediate(), |
| llresult); |
| return; |
| } |
| "breakpoint" => { |
| let llfn = self.get_intrinsic(&("llvm.debugtrap")); |
| self.call(llfn, &[], None) |
| } |
| "size_of" => { |
| let tp_ty = substs.type_at(0); |
| self.const_usize(self.size_of(tp_ty).bytes()) |
| } |
| "va_start" => { |
| self.va_start(args[0].immediate()) |
| } |
| "va_end" => { |
| self.va_end(args[0].immediate()) |
| } |
| "va_copy" => { |
| let intrinsic = self.cx().get_intrinsic(&("llvm.va_copy")); |
| self.call(intrinsic, &[args[0].immediate(), args[1].immediate()], None) |
| } |
| "va_arg" => { |
| match fn_ty.ret.layout.abi { |
| layout::Abi::Scalar(ref scalar) => { |
| match scalar.value { |
| Primitive::Int(..) => { |
| if self.cx().size_of(ret_ty).bytes() < 4 { |
| // va_arg should not be called on a integer type |
| // less than 4 bytes in length. If it is, promote |
| // the integer to a `i32` and truncate the result |
| // back to the smaller type. |
| let promoted_result = emit_va_arg(self, args[0], |
| tcx.types.i32); |
| self.trunc(promoted_result, llret_ty) |
| } else { |
| emit_va_arg(self, args[0], ret_ty) |
| } |
| } |
| Primitive::Float(FloatTy::F64) | |
| Primitive::Pointer => { |
| emit_va_arg(self, args[0], ret_ty) |
| } |
| // `va_arg` should never be used with the return type f32. |
| Primitive::Float(FloatTy::F32) => { |
| bug!("the va_arg intrinsic does not work with `f32`") |
| } |
| } |
| } |
| _ => { |
| bug!("the va_arg intrinsic does not work with non-scalar types") |
| } |
| } |
| } |
| "size_of_val" => { |
| let tp_ty = substs.type_at(0); |
| if let OperandValue::Pair(_, meta) = args[0].val { |
| let (llsize, _) = glue::size_and_align_of_dst(self, tp_ty, Some(meta)); |
| llsize |
| } else { |
| self.const_usize(self.size_of(tp_ty).bytes()) |
| } |
| } |
| "min_align_of" => { |
| let tp_ty = substs.type_at(0); |
| self.const_usize(self.align_of(tp_ty).bytes()) |
| } |
| "min_align_of_val" => { |
| let tp_ty = substs.type_at(0); |
| if let OperandValue::Pair(_, meta) = args[0].val { |
| let (_, llalign) = glue::size_and_align_of_dst(self, tp_ty, Some(meta)); |
| llalign |
| } else { |
| self.const_usize(self.align_of(tp_ty).bytes()) |
| } |
| } |
| "pref_align_of" => { |
| let tp_ty = substs.type_at(0); |
| self.const_usize(self.layout_of(tp_ty).align.pref.bytes()) |
| } |
| "type_name" => { |
| let tp_ty = substs.type_at(0); |
| let ty_name = self.tcx.type_name(tp_ty); |
| OperandRef::from_const(self, ty_name).immediate_or_packed_pair(self) |
| } |
| "type_id" => { |
| self.const_u64(self.tcx.type_id_hash(substs.type_at(0))) |
| } |
| "init" => { |
| let ty = substs.type_at(0); |
| if !self.layout_of(ty).is_zst() { |
| // Just zero out the stack slot. |
| // If we store a zero constant, LLVM will drown in vreg allocation for large |
| // data structures, and the generated code will be awful. (A telltale sign of |
| // this is large quantities of `mov [byte ptr foo],0` in the generated code.) |
| memset_intrinsic( |
| self, |
| false, |
| ty, |
| llresult, |
| self.const_u8(0), |
| self.const_usize(1) |
| ); |
| } |
| return; |
| } |
| // Effectively no-ops |
| "uninit" | "forget" => { |
| return; |
| } |
| "needs_drop" => { |
| let tp_ty = substs.type_at(0); |
| |
| self.const_bool(self.type_needs_drop(tp_ty)) |
| } |
| "offset" => { |
| let ptr = args[0].immediate(); |
| let offset = args[1].immediate(); |
| self.inbounds_gep(ptr, &[offset]) |
| } |
| "arith_offset" => { |
| let ptr = args[0].immediate(); |
| let offset = args[1].immediate(); |
| self.gep(ptr, &[offset]) |
| } |
| |
| "copy_nonoverlapping" => { |
| copy_intrinsic(self, false, false, substs.type_at(0), |
| args[1].immediate(), args[0].immediate(), args[2].immediate()); |
| return; |
| } |
| "copy" => { |
| copy_intrinsic(self, true, false, substs.type_at(0), |
| args[1].immediate(), args[0].immediate(), args[2].immediate()); |
| return; |
| } |
| "write_bytes" => { |
| memset_intrinsic(self, false, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()); |
| return; |
| } |
| |
| "volatile_copy_nonoverlapping_memory" => { |
| copy_intrinsic(self, false, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()); |
| return; |
| } |
| "volatile_copy_memory" => { |
| copy_intrinsic(self, true, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()); |
| return; |
| } |
| "volatile_set_memory" => { |
| memset_intrinsic(self, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()); |
| return; |
| } |
| "volatile_load" | "unaligned_volatile_load" => { |
| let tp_ty = substs.type_at(0); |
| let mut ptr = args[0].immediate(); |
| if let PassMode::Cast(ty) = fn_ty.ret.mode { |
| ptr = self.pointercast(ptr, self.type_ptr_to(ty.llvm_type(self))); |
| } |
| let load = self.volatile_load(ptr); |
| let align = if name == "unaligned_volatile_load" { |
| 1 |
| } else { |
| self.align_of(tp_ty).bytes() as u32 |
| }; |
| unsafe { |
| llvm::LLVMSetAlignment(load, align); |
| } |
| to_immediate(self, load, self.layout_of(tp_ty)) |
| }, |
| "volatile_store" => { |
| let dst = args[0].deref(self.cx()); |
| args[1].val.volatile_store(self, dst); |
| return; |
| }, |
| "unaligned_volatile_store" => { |
| let dst = args[0].deref(self.cx()); |
| args[1].val.unaligned_volatile_store(self, dst); |
| return; |
| }, |
| "prefetch_read_data" | "prefetch_write_data" | |
| "prefetch_read_instruction" | "prefetch_write_instruction" => { |
| let expect = self.get_intrinsic(&("llvm.prefetch")); |
| let (rw, cache_type) = match name { |
| "prefetch_read_data" => (0, 1), |
| "prefetch_write_data" => (1, 1), |
| "prefetch_read_instruction" => (0, 0), |
| "prefetch_write_instruction" => (1, 0), |
| _ => bug!() |
| }; |
| self.call(expect, &[ |
| args[0].immediate(), |
| self.const_i32(rw), |
| args[1].immediate(), |
| self.const_i32(cache_type) |
| ], None) |
| }, |
| "ctlz" | "ctlz_nonzero" | "cttz" | "cttz_nonzero" | "ctpop" | "bswap" | |
| "bitreverse" | "add_with_overflow" | "sub_with_overflow" | |
| "mul_with_overflow" | "overflowing_add" | "overflowing_sub" | "overflowing_mul" | |
| "unchecked_div" | "unchecked_rem" | "unchecked_shl" | "unchecked_shr" | |
| "unchecked_add" | "unchecked_sub" | "unchecked_mul" | "exact_div" | |
| "rotate_left" | "rotate_right" | "saturating_add" | "saturating_sub" => { |
| let ty = arg_tys[0]; |
| match int_type_width_signed(ty, self) { |
| Some((width, signed)) => |
| match name { |
| "ctlz" | "cttz" => { |
| let y = self.const_bool(false); |
| let llfn = self.get_intrinsic( |
| &format!("llvm.{}.i{}", name, width), |
| ); |
| self.call(llfn, &[args[0].immediate(), y], None) |
| } |
| "ctlz_nonzero" | "cttz_nonzero" => { |
| let y = self.const_bool(true); |
| let llvm_name = &format!("llvm.{}.i{}", &name[..4], width); |
| let llfn = self.get_intrinsic(llvm_name); |
| self.call(llfn, &[args[0].immediate(), y], None) |
| } |
| "ctpop" => self.call( |
| self.get_intrinsic(&format!("llvm.ctpop.i{}", width)), |
| &[args[0].immediate()], |
| None |
| ), |
| "bswap" => { |
| if width == 8 { |
| args[0].immediate() // byte swap a u8/i8 is just a no-op |
| } else { |
| self.call( |
| self.get_intrinsic( |
| &format!("llvm.bswap.i{}", width), |
| ), |
| &[args[0].immediate()], |
| None, |
| ) |
| } |
| } |
| "bitreverse" => { |
| self.call( |
| self.get_intrinsic( |
| &format!("llvm.bitreverse.i{}", width), |
| ), |
| &[args[0].immediate()], |
| None, |
| ) |
| } |
| "add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" => { |
| let intrinsic = format!("llvm.{}{}.with.overflow.i{}", |
| if signed { 's' } else { 'u' }, |
| &name[..3], width); |
| let llfn = self.get_intrinsic(&intrinsic); |
| |
| // Convert `i1` to a `bool`, and write it to the out parameter |
| let pair = self.call(llfn, &[ |
| args[0].immediate(), |
| args[1].immediate() |
| ], None); |
| let val = self.extract_value(pair, 0); |
| let overflow = self.extract_value(pair, 1); |
| let overflow = self.zext(overflow, self.type_bool()); |
| |
| let dest = result.project_field(self, 0); |
| self.store(val, dest.llval, dest.align); |
| let dest = result.project_field(self, 1); |
| self.store(overflow, dest.llval, dest.align); |
| |
| return; |
| }, |
| "overflowing_add" => self.add(args[0].immediate(), args[1].immediate()), |
| "overflowing_sub" => self.sub(args[0].immediate(), args[1].immediate()), |
| "overflowing_mul" => self.mul(args[0].immediate(), args[1].immediate()), |
| "exact_div" => |
| if signed { |
| self.exactsdiv(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.exactudiv(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_div" => |
| if signed { |
| self.sdiv(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.udiv(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_rem" => |
| if signed { |
| self.srem(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.urem(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_shl" => self.shl(args[0].immediate(), args[1].immediate()), |
| "unchecked_shr" => |
| if signed { |
| self.ashr(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.lshr(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_add" => { |
| if signed { |
| self.unchecked_sadd(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.unchecked_uadd(args[0].immediate(), args[1].immediate()) |
| } |
| }, |
| "unchecked_sub" => { |
| if signed { |
| self.unchecked_ssub(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.unchecked_usub(args[0].immediate(), args[1].immediate()) |
| } |
| }, |
| "unchecked_mul" => { |
| if signed { |
| self.unchecked_smul(args[0].immediate(), args[1].immediate()) |
| } else { |
| self.unchecked_umul(args[0].immediate(), args[1].immediate()) |
| } |
| }, |
| "rotate_left" | "rotate_right" => { |
| let is_left = name == "rotate_left"; |
| let val = args[0].immediate(); |
| let raw_shift = args[1].immediate(); |
| if llvm_util::get_major_version() >= 7 { |
| // rotate = funnel shift with first two args the same |
| let llvm_name = &format!("llvm.fsh{}.i{}", |
| if is_left { 'l' } else { 'r' }, width); |
| let llfn = self.get_intrinsic(llvm_name); |
| self.call(llfn, &[val, val, raw_shift], None) |
| } else { |
| // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW)) |
| // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW)) |
| let width = self.const_uint( |
| self.type_ix(width), |
| width, |
| ); |
| let shift = self.urem(raw_shift, width); |
| let width_minus_raw_shift = self.sub(width, raw_shift); |
| let inv_shift = self.urem(width_minus_raw_shift, width); |
| let shift1 = self.shl( |
| val, |
| if is_left { shift } else { inv_shift }, |
| ); |
| let shift2 = self.lshr( |
| val, |
| if !is_left { shift } else { inv_shift }, |
| ); |
| self.or(shift1, shift2) |
| } |
| }, |
| "saturating_add" | "saturating_sub" => { |
| let is_add = name == "saturating_add"; |
| let lhs = args[0].immediate(); |
| let rhs = args[1].immediate(); |
| if llvm_util::get_major_version() >= 8 { |
| let llvm_name = &format!("llvm.{}{}.sat.i{}", |
| if signed { 's' } else { 'u' }, |
| if is_add { "add" } else { "sub" }, |
| width); |
| let llfn = self.get_intrinsic(llvm_name); |
| self.call(llfn, &[lhs, rhs], None) |
| } else { |
| let llvm_name = &format!("llvm.{}{}.with.overflow.i{}", |
| if signed { 's' } else { 'u' }, |
| if is_add { "add" } else { "sub" }, |
| width); |
| let llfn = self.get_intrinsic(llvm_name); |
| let pair = self.call(llfn, &[lhs, rhs], None); |
| let val = self.extract_value(pair, 0); |
| let overflow = self.extract_value(pair, 1); |
| let llty = self.type_ix(width); |
| |
| let limit = if signed { |
| let limit_lo = self.const_uint_big( |
| llty, (i128::MIN >> (128 - width)) as u128); |
| let limit_hi = self.const_uint_big( |
| llty, (i128::MAX >> (128 - width)) as u128); |
| let neg = self.icmp( |
| IntPredicate::IntSLT, val, self.const_uint(llty, 0)); |
| self.select(neg, limit_hi, limit_lo) |
| } else if is_add { |
| self.const_uint_big(llty, u128::MAX >> (128 - width)) |
| } else { |
| self.const_uint(llty, 0) |
| }; |
| self.select(overflow, limit, val) |
| } |
| }, |
| _ => bug!(), |
| }, |
| None => { |
| span_invalid_monomorphization_error( |
| tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic integer type, found `{}`", name, ty)); |
| return; |
| } |
| } |
| |
| }, |
| "fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => { |
| match float_type_width(arg_tys[0]) { |
| Some(_width) => |
| match name { |
| "fadd_fast" => self.fadd_fast(args[0].immediate(), args[1].immediate()), |
| "fsub_fast" => self.fsub_fast(args[0].immediate(), args[1].immediate()), |
| "fmul_fast" => self.fmul_fast(args[0].immediate(), args[1].immediate()), |
| "fdiv_fast" => self.fdiv_fast(args[0].immediate(), args[1].immediate()), |
| "frem_fast" => self.frem_fast(args[0].immediate(), args[1].immediate()), |
| _ => bug!(), |
| }, |
| None => { |
| span_invalid_monomorphization_error( |
| tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic float type, found `{}`", name, arg_tys[0])); |
| return; |
| } |
| } |
| |
| }, |
| |
| "discriminant_value" => { |
| args[0].deref(self.cx()).codegen_get_discr(self, ret_ty) |
| } |
| |
| name if name.starts_with("simd_") => { |
| match generic_simd_intrinsic(self, name, |
| callee_ty, |
| args, |
| ret_ty, llret_ty, |
| span) { |
| Ok(llval) => llval, |
| Err(()) => return |
| } |
| } |
| // This requires that atomic intrinsics follow a specific naming pattern: |
| // "atomic_<operation>[_<ordering>]", and no ordering means SeqCst |
| name if name.starts_with("atomic_") => { |
| use rustc_codegen_ssa::common::AtomicOrdering::*; |
| use rustc_codegen_ssa::common:: |
| {SynchronizationScope, AtomicRmwBinOp}; |
| |
| let split: Vec<&str> = name.split('_').collect(); |
| |
| let is_cxchg = split[1] == "cxchg" || split[1] == "cxchgweak"; |
| let (order, failorder) = match split.len() { |
| 2 => (SequentiallyConsistent, SequentiallyConsistent), |
| 3 => match split[2] { |
| "unordered" => (Unordered, Unordered), |
| "relaxed" => (Monotonic, Monotonic), |
| "acq" => (Acquire, Acquire), |
| "rel" => (Release, Monotonic), |
| "acqrel" => (AcquireRelease, Acquire), |
| "failrelaxed" if is_cxchg => |
| (SequentiallyConsistent, Monotonic), |
| "failacq" if is_cxchg => |
| (SequentiallyConsistent, Acquire), |
| _ => self.sess().fatal("unknown ordering in atomic intrinsic") |
| }, |
| 4 => match (split[2], split[3]) { |
| ("acq", "failrelaxed") if is_cxchg => |
| (Acquire, Monotonic), |
| ("acqrel", "failrelaxed") if is_cxchg => |
| (AcquireRelease, Monotonic), |
| _ => self.sess().fatal("unknown ordering in atomic intrinsic") |
| }, |
| _ => self.sess().fatal("Atomic intrinsic not in correct format"), |
| }; |
| |
| let invalid_monomorphization = |ty| { |
| span_invalid_monomorphization_error(tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic integer type, found `{}`", name, ty)); |
| }; |
| |
| match split[1] { |
| "cxchg" | "cxchgweak" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, self).is_some() { |
| let weak = split[1] == "cxchgweak"; |
| let pair = self.atomic_cmpxchg( |
| args[0].immediate(), |
| args[1].immediate(), |
| args[2].immediate(), |
| order, |
| failorder, |
| weak); |
| let val = self.extract_value(pair, 0); |
| let success = self.extract_value(pair, 1); |
| let success = self.zext(success, self.type_bool()); |
| |
| let dest = result.project_field(self, 0); |
| self.store(val, dest.llval, dest.align); |
| let dest = result.project_field(self, 1); |
| self.store(success, dest.llval, dest.align); |
| return; |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "load" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, self).is_some() { |
| let size = self.size_of(ty); |
| self.atomic_load(args[0].immediate(), order, size) |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "store" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, self).is_some() { |
| let size = self.size_of(ty); |
| self.atomic_store( |
| args[1].immediate(), |
| args[0].immediate(), |
| order, |
| size |
| ); |
| return; |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "fence" => { |
| self.atomic_fence(order, SynchronizationScope::CrossThread); |
| return; |
| } |
| |
| "singlethreadfence" => { |
| self.atomic_fence(order, SynchronizationScope::SingleThread); |
| return; |
| } |
| |
| // These are all AtomicRMW ops |
| op => { |
| let atom_op = match op { |
| "xchg" => AtomicRmwBinOp::AtomicXchg, |
| "xadd" => AtomicRmwBinOp::AtomicAdd, |
| "xsub" => AtomicRmwBinOp::AtomicSub, |
| "and" => AtomicRmwBinOp::AtomicAnd, |
| "nand" => AtomicRmwBinOp::AtomicNand, |
| "or" => AtomicRmwBinOp::AtomicOr, |
| "xor" => AtomicRmwBinOp::AtomicXor, |
| "max" => AtomicRmwBinOp::AtomicMax, |
| "min" => AtomicRmwBinOp::AtomicMin, |
| "umax" => AtomicRmwBinOp::AtomicUMax, |
| "umin" => AtomicRmwBinOp::AtomicUMin, |
| _ => self.sess().fatal("unknown atomic operation") |
| }; |
| |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, self).is_some() { |
| self.atomic_rmw( |
| atom_op, |
| args[0].immediate(), |
| args[1].immediate(), |
| order |
| ) |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| } |
| } |
| |
| "nontemporal_store" => { |
| let dst = args[0].deref(self.cx()); |
| args[1].val.nontemporal_store(self, dst); |
| return; |
| } |
| |
| _ => bug!("unknown intrinsic '{}'", name), |
| }; |
| |
| if !fn_ty.ret.is_ignore() { |
| if let PassMode::Cast(ty) = fn_ty.ret.mode { |
| let ptr_llty = self.type_ptr_to(ty.llvm_type(self)); |
| let ptr = self.pointercast(result.llval, ptr_llty); |
| self.store(llval, ptr, result.align); |
| } else { |
| OperandRef::from_immediate_or_packed_pair(self, llval, result.layout) |
| .val.store(self, result); |
| } |
| } |
| } |
| |
| fn abort(&mut self) { |
| let fnname = self.get_intrinsic(&("llvm.trap")); |
| self.call(fnname, &[], None); |
| } |
| |
| fn assume(&mut self, val: Self::Value) { |
| let assume_intrinsic = self.get_intrinsic("llvm.assume"); |
| self.call(assume_intrinsic, &[val], None); |
| } |
| |
| fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value { |
| let expect = self.get_intrinsic(&"llvm.expect.i1"); |
| self.call(expect, &[cond, self.const_bool(expected)], None) |
| } |
| |
| fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value { |
| let intrinsic = self.cx().get_intrinsic("llvm.va_start"); |
| self.call(intrinsic, &[va_list], None) |
| } |
| |
| fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value { |
| let intrinsic = self.cx().get_intrinsic("llvm.va_end"); |
| self.call(intrinsic, &[va_list], None) |
| } |
| } |
| |
| fn copy_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| allow_overlap: bool, |
| volatile: bool, |
| ty: Ty<'tcx>, |
| dst: &'ll Value, |
| src: &'ll Value, |
| count: &'ll Value, |
| ) { |
| let (size, align) = bx.size_and_align_of(ty); |
| let size = bx.mul(bx.const_usize(size.bytes()), count); |
| let flags = if volatile { |
| MemFlags::VOLATILE |
| } else { |
| MemFlags::empty() |
| }; |
| if allow_overlap { |
| bx.memmove(dst, align, src, align, size, flags); |
| } else { |
| bx.memcpy(dst, align, src, align, size, flags); |
| } |
| } |
| |
| fn memset_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| volatile: bool, |
| ty: Ty<'tcx>, |
| dst: &'ll Value, |
| val: &'ll Value, |
| count: &'ll Value |
| ) { |
| let (size, align) = bx.size_and_align_of(ty); |
| let size = bx.mul(bx.const_usize(size.bytes()), count); |
| let flags = if volatile { |
| MemFlags::VOLATILE |
| } else { |
| MemFlags::empty() |
| }; |
| bx.memset(dst, val, size, align, flags); |
| } |
| |
| fn try_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| func: &'ll Value, |
| data: &'ll Value, |
| local_ptr: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| if bx.sess().no_landing_pads() { |
| bx.call(func, &[data], None); |
| let ptr_align = bx.tcx().data_layout.pointer_align.abi; |
| bx.store(bx.const_null(bx.type_i8p()), dest, ptr_align); |
| } else if wants_msvc_seh(bx.sess()) { |
| codegen_msvc_try(bx, func, data, local_ptr, dest); |
| } else { |
| codegen_gnu_try(bx, func, data, local_ptr, dest); |
| } |
| } |
| |
| // MSVC's definition of the `rust_try` function. |
| // |
| // This implementation uses the new exception handling instructions in LLVM |
| // which have support in LLVM for SEH on MSVC targets. Although these |
| // instructions are meant to work for all targets, as of the time of this |
| // writing, however, LLVM does not recommend the usage of these new instructions |
| // as the old ones are still more optimized. |
| fn codegen_msvc_try( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| func: &'ll Value, |
| data: &'ll Value, |
| local_ptr: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| let llfn = get_rust_try_fn(bx, &mut |mut bx| { |
| bx.set_personality_fn(bx.eh_personality()); |
| |
| let mut normal = bx.build_sibling_block("normal"); |
| let mut catchswitch = bx.build_sibling_block("catchswitch"); |
| let mut catchpad = bx.build_sibling_block("catchpad"); |
| let mut caught = bx.build_sibling_block("caught"); |
| |
| let func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let local_ptr = llvm::get_param(bx.llfn(), 2); |
| |
| // We're generating an IR snippet that looks like: |
| // |
| // declare i32 @rust_try(%func, %data, %ptr) { |
| // %slot = alloca i64* |
| // invoke %func(%data) to label %normal unwind label %catchswitch |
| // |
| // normal: |
| // ret i32 0 |
| // |
| // catchswitch: |
| // %cs = catchswitch within none [%catchpad] unwind to caller |
| // |
| // catchpad: |
| // %tok = catchpad within %cs [%type_descriptor, 0, %slot] |
| // %ptr[0] = %slot[0] |
| // %ptr[1] = %slot[1] |
| // catchret from %tok to label %caught |
| // |
| // caught: |
| // ret i32 1 |
| // } |
| // |
| // This structure follows the basic usage of throw/try/catch in LLVM. |
| // For example, compile this C++ snippet to see what LLVM generates: |
| // |
| // #include <stdint.h> |
| // |
| // int bar(void (*foo)(void), uint64_t *ret) { |
| // try { |
| // foo(); |
| // return 0; |
| // } catch(uint64_t a[2]) { |
| // ret[0] = a[0]; |
| // ret[1] = a[1]; |
| // return 1; |
| // } |
| // } |
| // |
| // More information can be found in libstd's seh.rs implementation. |
| let i64p = bx.type_ptr_to(bx.type_i64()); |
| let ptr_align = bx.tcx().data_layout.pointer_align.abi; |
| let slot = bx.alloca(i64p, "slot", ptr_align); |
| bx.invoke(func, &[data], normal.llbb(), catchswitch.llbb(), None); |
| |
| normal.ret(bx.const_i32(0)); |
| |
| let cs = catchswitch.catch_switch(None, None, 1); |
| catchswitch.add_handler(cs, catchpad.llbb()); |
| |
| let tydesc = match bx.tcx().lang_items().msvc_try_filter() { |
| Some(did) => bx.get_static(did), |
| None => bug!("msvc_try_filter not defined"), |
| }; |
| let funclet = catchpad.catch_pad(cs, &[tydesc, bx.const_i32(0), slot]); |
| let addr = catchpad.load(slot, ptr_align); |
| |
| let i64_align = bx.tcx().data_layout.i64_align.abi; |
| let arg1 = catchpad.load(addr, i64_align); |
| let val1 = bx.const_i32(1); |
| let gep1 = catchpad.inbounds_gep(addr, &[val1]); |
| let arg2 = catchpad.load(gep1, i64_align); |
| let local_ptr = catchpad.bitcast(local_ptr, i64p); |
| let gep2 = catchpad.inbounds_gep(local_ptr, &[val1]); |
| catchpad.store(arg1, local_ptr, i64_align); |
| catchpad.store(arg2, gep2, i64_align); |
| catchpad.catch_ret(&funclet, caught.llbb()); |
| |
| caught.ret(bx.const_i32(1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llfn, &[func, data, local_ptr], None); |
| let i32_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Definition of the standard `try` function for Rust using the GNU-like model |
| // of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke` |
| // instructions). |
| // |
| // This codegen is a little surprising because we always call a shim |
| // function instead of inlining the call to `invoke` manually here. This is done |
| // because in LLVM we're only allowed to have one personality per function |
| // definition. The call to the `try` intrinsic is being inlined into the |
| // function calling it, and that function may already have other personality |
| // functions in play. By calling a shim we're guaranteed that our shim will have |
| // the right personality function. |
| fn codegen_gnu_try( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| func: &'ll Value, |
| data: &'ll Value, |
| local_ptr: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| let llfn = get_rust_try_fn(bx, &mut |mut bx| { |
| // Codegens the shims described above: |
| // |
| // bx: |
| // invoke %func(%args...) normal %normal unwind %catch |
| // |
| // normal: |
| // ret 0 |
| // |
| // catch: |
| // (ptr, _) = landingpad |
| // store ptr, %local_ptr |
| // ret 1 |
| // |
| // Note that the `local_ptr` data passed into the `try` intrinsic is |
| // expected to be `*mut *mut u8` for this to actually work, but that's |
| // managed by the standard library. |
| |
| let mut then = bx.build_sibling_block("then"); |
| let mut catch = bx.build_sibling_block("catch"); |
| |
| let func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let local_ptr = llvm::get_param(bx.llfn(), 2); |
| bx.invoke(func, &[data], then.llbb(), catch.llbb(), None); |
| then.ret(bx.const_i32(0)); |
| |
| // Type indicator for the exception being thrown. |
| // |
| // The first value in this tuple is a pointer to the exception object |
| // being thrown. The second value is a "selector" indicating which of |
| // the landing pad clauses the exception's type had been matched to. |
| // rust_try ignores the selector. |
| let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false); |
| let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 1); |
| catch.add_clause(vals, bx.const_null(bx.type_i8p())); |
| let ptr = catch.extract_value(vals, 0); |
| let ptr_align = bx.tcx().data_layout.pointer_align.abi; |
| let bitcast = catch.bitcast(local_ptr, bx.type_ptr_to(bx.type_i8p())); |
| catch.store(ptr, bitcast, ptr_align); |
| catch.ret(bx.const_i32(1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llfn, &[func, data, local_ptr], None); |
| let i32_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Helper function to give a Block to a closure to codegen a shim function. |
| // This is currently primarily used for the `try` intrinsic functions above. |
| fn gen_fn<'ll, 'tcx>( |
| cx: &CodegenCx<'ll, 'tcx>, |
| name: &str, |
| inputs: Vec<Ty<'tcx>>, |
| output: Ty<'tcx>, |
| codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>), |
| ) -> &'ll Value { |
| let rust_fn_sig = ty::Binder::bind(cx.tcx.mk_fn_sig( |
| inputs.into_iter(), |
| output, |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust |
| )); |
| let llfn = cx.define_internal_fn(name, rust_fn_sig); |
| attributes::from_fn_attrs(cx, llfn, None, rust_fn_sig); |
| let bx = Builder::new_block(cx, llfn, "entry-block"); |
| codegen(bx); |
| llfn |
| } |
| |
| // Helper function used to get a handle to the `__rust_try` function used to |
| // catch exceptions. |
| // |
| // This function is only generated once and is then cached. |
| fn get_rust_try_fn<'ll, 'tcx>( |
| cx: &CodegenCx<'ll, 'tcx>, |
| codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>), |
| ) -> &'ll Value { |
| if let Some(llfn) = cx.rust_try_fn.get() { |
| return llfn; |
| } |
| |
| // Define the type up front for the signature of the rust_try function. |
| let tcx = cx.tcx; |
| let i8p = tcx.mk_mut_ptr(tcx.types.i8); |
| let fn_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig( |
| iter::once(i8p), |
| tcx.mk_unit(), |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust |
| ))); |
| let output = tcx.types.i32; |
| let rust_try = gen_fn(cx, "__rust_try", vec![fn_ty, i8p, i8p], output, codegen); |
| cx.rust_try_fn.set(Some(rust_try)); |
| rust_try |
| } |
| |
| fn span_invalid_monomorphization_error(a: &Session, b: Span, c: &str) { |
| span_err!(a, b, E0511, "{}", c); |
| } |
| |
| fn generic_simd_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| name: &str, |
| callee_ty: Ty<'tcx>, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| ret_ty: Ty<'tcx>, |
| llret_ty: &'ll Type, |
| span: Span |
| ) -> Result<&'ll Value, ()> { |
| // macros for error handling: |
| macro_rules! emit_error { |
| ($msg: tt) => { |
| emit_error!($msg, ) |
| }; |
| ($msg: tt, $($fmt: tt)*) => { |
| span_invalid_monomorphization_error( |
| bx.sess(), span, |
| &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg), |
| name, $($fmt)*)); |
| } |
| } |
| |
| macro_rules! return_error { |
| ($($fmt: tt)*) => { |
| { |
| emit_error!($($fmt)*); |
| return Err(()); |
| } |
| } |
| } |
| |
| macro_rules! require { |
| ($cond: expr, $($fmt: tt)*) => { |
| if !$cond { |
| return_error!($($fmt)*); |
| } |
| }; |
| } |
| |
| macro_rules! require_simd { |
| ($ty: expr, $position: expr) => { |
| require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty) |
| } |
| } |
| |
| let tcx = bx.tcx(); |
| let sig = tcx.normalize_erasing_late_bound_regions( |
| ty::ParamEnv::reveal_all(), |
| &callee_ty.fn_sig(tcx), |
| ); |
| let arg_tys = sig.inputs(); |
| |
| if name == "simd_select_bitmask" { |
| let in_ty = arg_tys[0]; |
| let m_len = match in_ty.sty { |
| // Note that this `.unwrap()` crashes for isize/usize, that's sort |
| // of intentional as there's not currently a use case for that. |
| ty::Int(i) => i.bit_width().unwrap(), |
| ty::Uint(i) => i.bit_width().unwrap(), |
| _ => return_error!("`{}` is not an integral type", in_ty), |
| }; |
| require_simd!(arg_tys[1], "argument"); |
| let v_len = arg_tys[1].simd_size(tcx); |
| require!(m_len == v_len, |
| "mismatched lengths: mask length `{}` != other vector length `{}`", |
| m_len, v_len |
| ); |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, m_len as u64); |
| let m_i1s = bx.bitcast(args[0].immediate(), i1xn); |
| return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); |
| } |
| |
| // every intrinsic below takes a SIMD vector as its first argument |
| require_simd!(arg_tys[0], "input"); |
| let in_ty = arg_tys[0]; |
| let in_elem = arg_tys[0].simd_type(tcx); |
| let in_len = arg_tys[0].simd_size(tcx); |
| |
| let comparison = match name { |
| "simd_eq" => Some(hir::BinOpKind::Eq), |
| "simd_ne" => Some(hir::BinOpKind::Ne), |
| "simd_lt" => Some(hir::BinOpKind::Lt), |
| "simd_le" => Some(hir::BinOpKind::Le), |
| "simd_gt" => Some(hir::BinOpKind::Gt), |
| "simd_ge" => Some(hir::BinOpKind::Ge), |
| _ => None |
| }; |
| |
| if let Some(cmp_op) = comparison { |
| require_simd!(ret_ty, "return"); |
| |
| let out_len = ret_ty.simd_size(tcx); |
| require!(in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, in_ty, |
| ret_ty, out_len); |
| require!(bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer, |
| "expected return type with integer elements, found `{}` with non-integer `{}`", |
| ret_ty, |
| ret_ty.simd_type(tcx)); |
| |
| return Ok(compare_simd_types(bx, |
| args[0].immediate(), |
| args[1].immediate(), |
| in_elem, |
| llret_ty, |
| cmp_op)) |
| } |
| |
| if name.starts_with("simd_shuffle") { |
| let n: usize = name["simd_shuffle".len()..].parse().unwrap_or_else(|_| |
| span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")); |
| |
| require_simd!(ret_ty, "return"); |
| |
| let out_len = ret_ty.simd_size(tcx); |
| require!(out_len == n, |
| "expected return type of length {}, found `{}` with length {}", |
| n, ret_ty, out_len); |
| require!(in_elem == ret_ty.simd_type(tcx), |
| "expected return element type `{}` (element of input `{}`), \ |
| found `{}` with element type `{}`", |
| in_elem, in_ty, |
| ret_ty, ret_ty.simd_type(tcx)); |
| |
| let total_len = in_len as u128 * 2; |
| |
| let vector = args[2].immediate(); |
| |
| let indices: Option<Vec<_>> = (0..n) |
| .map(|i| { |
| let arg_idx = i; |
| let val = bx.const_get_elt(vector, i as u64); |
| match bx.const_to_opt_u128(val, true) { |
| None => { |
| emit_error!("shuffle index #{} is not a constant", arg_idx); |
| None |
| } |
| Some(idx) if idx >= total_len => { |
| emit_error!("shuffle index #{} is out of bounds (limit {})", |
| arg_idx, total_len); |
| None |
| } |
| Some(idx) => Some(bx.const_i32(idx as i32)), |
| } |
| }) |
| .collect(); |
| let indices = match indices { |
| Some(i) => i, |
| None => return Ok(bx.const_null(llret_ty)) |
| }; |
| |
| return Ok(bx.shuffle_vector(args[0].immediate(), |
| args[1].immediate(), |
| bx.const_vector(&indices))) |
| } |
| |
| if name == "simd_insert" { |
| require!(in_elem == arg_tys[2], |
| "expected inserted type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, arg_tys[2]); |
| return Ok(bx.insert_element(args[0].immediate(), |
| args[2].immediate(), |
| args[1].immediate())) |
| } |
| if name == "simd_extract" { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return Ok(bx.extract_element(args[0].immediate(), args[1].immediate())) |
| } |
| |
| if name == "simd_select" { |
| let m_elem_ty = in_elem; |
| let m_len = in_len; |
| require_simd!(arg_tys[1], "argument"); |
| let v_len = arg_tys[1].simd_size(tcx); |
| require!(m_len == v_len, |
| "mismatched lengths: mask length `{}` != other vector length `{}`", |
| m_len, v_len |
| ); |
| match m_elem_ty.sty { |
| ty::Int(_) => {}, |
| _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty) |
| } |
| // truncate the mask to a vector of i1s |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, m_len as u64); |
| let m_i1s = bx.trunc(args[0].immediate(), i1xn); |
| return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); |
| } |
| |
| if name == "simd_bitmask" { |
| // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a |
| // vector mask and returns an unsigned integer containing the most |
| // significant bit (MSB) of each lane. |
| use rustc_target::abi::HasDataLayout; |
| |
| // If the vector has less than 8 lanes, an u8 is returned with zeroed |
| // trailing bits. |
| let expected_int_bits = in_len.max(8); |
| match ret_ty.sty { |
| ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => (), |
| _ => return_error!( |
| "bitmask `{}`, expected `u{}`", |
| ret_ty, expected_int_bits |
| ), |
| } |
| |
| // Integer vector <i{in_bitwidth} x in_len>: |
| let (i_xn, in_elem_bitwidth) = match in_elem.sty { |
| ty::Int(i) => ( |
| args[0].immediate(), |
| i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _) |
| ), |
| ty::Uint(i) => ( |
| args[0].immediate(), |
| i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _) |
| ), |
| _ => return_error!( |
| "vector argument `{}`'s element type `{}`, expected integer element type", |
| in_ty, in_elem |
| ), |
| }; |
| |
| // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position. |
| let shift_indices = vec![ |
| bx.cx.const_int(bx.type_ix(in_elem_bitwidth as _), (in_elem_bitwidth - 1) as _); in_len |
| ]; |
| let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice())); |
| // Truncate vector to an <i1 x N> |
| let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len as _)); |
| // Bitcast <i1 x N> to iN: |
| let i_ = bx.bitcast(i1xn, bx.type_ix(in_len as _)); |
| // Zero-extend iN to the bitmask type: |
| return Ok(bx.zext(i_, bx.type_ix(expected_int_bits as _))); |
| } |
| |
| fn simd_simple_float_intrinsic( |
| name: &str, |
| in_elem: &::rustc::ty::TyS<'_>, |
| in_ty: &::rustc::ty::TyS<'_>, |
| in_len: usize, |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| span: Span, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| ) -> Result<&'ll Value, ()> { |
| macro_rules! emit_error { |
| ($msg: tt) => { |
| emit_error!($msg, ) |
| }; |
| ($msg: tt, $($fmt: tt)*) => { |
| span_invalid_monomorphization_error( |
| bx.sess(), span, |
| &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg), |
| name, $($fmt)*)); |
| } |
| } |
| macro_rules! return_error { |
| ($($fmt: tt)*) => { |
| { |
| emit_error!($($fmt)*); |
| return Err(()); |
| } |
| } |
| } |
| let ety = match in_elem.sty { |
| ty::Float(f) if f.bit_width() == 32 => { |
| if in_len < 2 || in_len > 16 { |
| return_error!( |
| "unsupported floating-point vector `{}` with length `{}` \ |
| out-of-range [2, 16]", |
| in_ty, in_len); |
| } |
| "f32" |
| }, |
| ty::Float(f) if f.bit_width() == 64 => { |
| if in_len < 2 || in_len > 8 { |
| return_error!("unsupported floating-point vector `{}` with length `{}` \ |
| out-of-range [2, 8]", |
| in_ty, in_len); |
| } |
| "f64" |
| }, |
| ty::Float(f) => { |
| return_error!("unsupported element type `{}` of floating-point vector `{}`", |
| f, in_ty); |
| }, |
| _ => { |
| return_error!("`{}` is not a floating-point type", in_ty); |
| } |
| }; |
| |
| let llvm_name = &format!("llvm.{0}.v{1}{2}", name, in_len, ety); |
| let intrinsic = bx.get_intrinsic(&llvm_name); |
| let c = bx.call(intrinsic, |
| &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), |
| None); |
| unsafe { llvm::LLVMRustSetHasUnsafeAlgebra(c) }; |
| Ok(c) |
| } |
| |
| match name { |
| "simd_fsqrt" => { |
| return simd_simple_float_intrinsic("sqrt", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fsin" => { |
| return simd_simple_float_intrinsic("sin", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fcos" => { |
| return simd_simple_float_intrinsic("cos", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fabs" => { |
| return simd_simple_float_intrinsic("fabs", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_floor" => { |
| return simd_simple_float_intrinsic("floor", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_ceil" => { |
| return simd_simple_float_intrinsic("ceil", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fexp" => { |
| return simd_simple_float_intrinsic("exp", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fexp2" => { |
| return simd_simple_float_intrinsic("exp2", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_flog10" => { |
| return simd_simple_float_intrinsic("log10", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_flog2" => { |
| return simd_simple_float_intrinsic("log2", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_flog" => { |
| return simd_simple_float_intrinsic("log", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fpowi" => { |
| return simd_simple_float_intrinsic("powi", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fpow" => { |
| return simd_simple_float_intrinsic("pow", in_elem, in_ty, in_len, bx, span, args); |
| } |
| "simd_fma" => { |
| return simd_simple_float_intrinsic("fma", in_elem, in_ty, in_len, bx, span, args); |
| } |
| _ => { /* fallthrough */ } |
| } |
| |
| // FIXME: use: |
| // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182 |
| // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81 |
| fn llvm_vector_str(elem_ty: Ty<'_>, vec_len: usize, no_pointers: usize) -> String { |
| let p0s: String = "p0".repeat(no_pointers); |
| match elem_ty.sty { |
| ty::Int(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()), |
| ty::Uint(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()), |
| ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()), |
| _ => unreachable!(), |
| } |
| } |
| |
| fn llvm_vector_ty(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: usize, |
| mut no_pointers: usize) -> &'ll Type { |
| // FIXME: use cx.layout_of(ty).llvm_type() ? |
| let mut elem_ty = match elem_ty.sty { |
| ty::Int(v) => cx.type_int_from_ty( v), |
| ty::Uint(v) => cx.type_uint_from_ty( v), |
| ty::Float(v) => cx.type_float_from_ty( v), |
| _ => unreachable!(), |
| }; |
| while no_pointers > 0 { |
| elem_ty = cx.type_ptr_to(elem_ty); |
| no_pointers -= 1; |
| } |
| cx.type_vector(elem_ty, vec_len as u64) |
| } |
| |
| |
| if name == "simd_gather" { |
| // simd_gather(values: <N x T>, pointers: <N x *_ T>, |
| // mask: <N x i{M}>) -> <N x T> |
| // * N: number of elements in the input vectors |
| // * T: type of the element to load |
| // * M: any integer width is supported, will be truncated to i1 |
| |
| // All types must be simd vector types |
| require_simd!(in_ty, "first"); |
| require_simd!(arg_tys[1], "second"); |
| require_simd!(arg_tys[2], "third"); |
| require_simd!(ret_ty, "return"); |
| |
| // Of the same length: |
| require!(in_len == arg_tys[1].simd_size(tcx), |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", "second", in_len, in_ty, arg_tys[1], |
| arg_tys[1].simd_size(tcx)); |
| require!(in_len == arg_tys[2].simd_size(tcx), |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", "third", in_len, in_ty, arg_tys[2], |
| arg_tys[2].simd_size(tcx)); |
| |
| // The return type must match the first argument type |
| require!(ret_ty == in_ty, |
| "expected return type `{}`, found `{}`", |
| in_ty, ret_ty); |
| |
| // This counts how many pointers |
| fn ptr_count(t: Ty<'_>) -> usize { |
| match t.sty { |
| ty::RawPtr(p) => 1 + ptr_count(p.ty), |
| _ => 0, |
| } |
| } |
| |
| // Non-ptr type |
| fn non_ptr(t: Ty<'_>) -> Ty<'_> { |
| match t.sty { |
| ty::RawPtr(p) => non_ptr(p.ty), |
| _ => t, |
| } |
| } |
| |
| // The second argument must be a simd vector with an element type that's a pointer |
| // to the element type of the first argument |
| let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).sty { |
| ty::RawPtr(p) if p.ty == in_elem => (ptr_count(arg_tys[1].simd_type(tcx)), |
| non_ptr(arg_tys[1].simd_type(tcx))), |
| _ => { |
| require!(false, "expected element type `{}` of second argument `{}` \ |
| to be a pointer to the element type `{}` of the first \ |
| argument `{}`, found `{}` != `*_ {}`", |
| arg_tys[1].simd_type(tcx), arg_tys[1], in_elem, in_ty, |
| arg_tys[1].simd_type(tcx), in_elem); |
| unreachable!(); |
| } |
| }; |
| assert!(pointer_count > 0); |
| assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx))); |
| assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx))); |
| |
| // The element type of the third argument must be a signed integer type of any width: |
| match arg_tys[2].simd_type(tcx).sty { |
| ty::Int(_) => (), |
| _ => { |
| require!(false, "expected element type `{}` of third argument `{}` \ |
| to be a signed integer type", |
| arg_tys[2].simd_type(tcx), arg_tys[2]); |
| } |
| } |
| |
| // Alignment of T, must be a constant integer value: |
| let alignment_ty = bx.type_i32(); |
| let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); |
| |
| // Truncate the mask vector to a vector of i1s: |
| let (mask, mask_ty) = { |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len as u64); |
| (bx.trunc(args[2].immediate(), i1xn), i1xn) |
| }; |
| |
| // Type of the vector of pointers: |
| let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count); |
| let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count); |
| |
| // Type of the vector of elements: |
| let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1); |
| let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1); |
| |
| let llvm_intrinsic = format!("llvm.masked.gather.{}.{}", |
| llvm_elem_vec_str, llvm_pointer_vec_str); |
| let f = bx.declare_cfn(&llvm_intrinsic, |
| bx.type_func(&[ |
| llvm_pointer_vec_ty, |
| alignment_ty, |
| mask_ty, |
| llvm_elem_vec_ty], llvm_elem_vec_ty)); |
| llvm::SetUnnamedAddr(f, false); |
| let v = bx.call(f, &[args[1].immediate(), alignment, mask, args[0].immediate()], |
| None); |
| return Ok(v); |
| } |
| |
| if name == "simd_scatter" { |
| // simd_scatter(values: <N x T>, pointers: <N x *mut T>, |
| // mask: <N x i{M}>) -> () |
| // * N: number of elements in the input vectors |
| // * T: type of the element to load |
| // * M: any integer width is supported, will be truncated to i1 |
| |
| // All types must be simd vector types |
| require_simd!(in_ty, "first"); |
| require_simd!(arg_tys[1], "second"); |
| require_simd!(arg_tys[2], "third"); |
| |
| // Of the same length: |
| require!(in_len == arg_tys[1].simd_size(tcx), |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", "second", in_len, in_ty, arg_tys[1], |
| arg_tys[1].simd_size(tcx)); |
| require!(in_len == arg_tys[2].simd_size(tcx), |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", "third", in_len, in_ty, arg_tys[2], |
| arg_tys[2].simd_size(tcx)); |
| |
| // This counts how many pointers |
| fn ptr_count(t: Ty<'_>) -> usize { |
| match t.sty { |
| ty::RawPtr(p) => 1 + ptr_count(p.ty), |
| _ => 0, |
| } |
| } |
| |
| // Non-ptr type |
| fn non_ptr(t: Ty<'_>) -> Ty<'_> { |
| match t.sty { |
| ty::RawPtr(p) => non_ptr(p.ty), |
| _ => t, |
| } |
| } |
| |
| // The second argument must be a simd vector with an element type that's a pointer |
| // to the element type of the first argument |
| let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).sty { |
| ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::MutMutable |
| => (ptr_count(arg_tys[1].simd_type(tcx)), |
| non_ptr(arg_tys[1].simd_type(tcx))), |
| _ => { |
| require!(false, "expected element type `{}` of second argument `{}` \ |
| to be a pointer to the element type `{}` of the first \ |
| argument `{}`, found `{}` != `*mut {}`", |
| arg_tys[1].simd_type(tcx), arg_tys[1], in_elem, in_ty, |
| arg_tys[1].simd_type(tcx), in_elem); |
| unreachable!(); |
| } |
| }; |
| assert!(pointer_count > 0); |
| assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx))); |
| assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx))); |
| |
| // The element type of the third argument must be a signed integer type of any width: |
| match arg_tys[2].simd_type(tcx).sty { |
| ty::Int(_) => (), |
| _ => { |
| require!(false, "expected element type `{}` of third argument `{}` \ |
| to be a signed integer type", |
| arg_tys[2].simd_type(tcx), arg_tys[2]); |
| } |
| } |
| |
| // Alignment of T, must be a constant integer value: |
| let alignment_ty = bx.type_i32(); |
| let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); |
| |
| // Truncate the mask vector to a vector of i1s: |
| let (mask, mask_ty) = { |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len as u64); |
| (bx.trunc(args[2].immediate(), i1xn), i1xn) |
| }; |
| |
| let ret_t = bx.type_void(); |
| |
| // Type of the vector of pointers: |
| let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count); |
| let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count); |
| |
| // Type of the vector of elements: |
| let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1); |
| let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1); |
| |
| let llvm_intrinsic = format!("llvm.masked.scatter.{}.{}", |
| llvm_elem_vec_str, llvm_pointer_vec_str); |
| let f = bx.declare_cfn(&llvm_intrinsic, |
| bx.type_func(&[llvm_elem_vec_ty, |
| llvm_pointer_vec_ty, |
| alignment_ty, |
| mask_ty], ret_t)); |
| llvm::SetUnnamedAddr(f, false); |
| let v = bx.call(f, &[args[0].immediate(), args[1].immediate(), alignment, mask], |
| None); |
| return Ok(v); |
| } |
| |
| macro_rules! arith_red { |
| ($name:tt : $integer_reduce:ident, $float_reduce:ident, $ordered:expr) => { |
| if name == $name { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return match in_elem.sty { |
| ty::Int(_) | ty::Uint(_) => { |
| let r = bx.$integer_reduce(args[0].immediate()); |
| if $ordered { |
| // if overflow occurs, the result is the |
| // mathematical result modulo 2^n: |
| if name.contains("mul") { |
| Ok(bx.mul(args[1].immediate(), r)) |
| } else { |
| Ok(bx.add(args[1].immediate(), r)) |
| } |
| } else { |
| Ok(bx.$integer_reduce(args[0].immediate())) |
| } |
| }, |
| ty::Float(f) => { |
| // ordered arithmetic reductions take an accumulator |
| let acc = if $ordered { |
| let acc = args[1].immediate(); |
| // FIXME: https://bugs.llvm.org/show_bug.cgi?id=36734 |
| // * if the accumulator of the fadd isn't 0, incorrect |
| // code is generated |
| // * if the accumulator of the fmul isn't 1, incorrect |
| // code is generated |
| match bx.const_get_real(acc) { |
| None => return_error!("accumulator of {} is not a constant", $name), |
| Some((v, loses_info)) => { |
| if $name.contains("mul") && v != 1.0_f64 { |
| return_error!("accumulator of {} is not 1.0", $name); |
| } else if $name.contains("add") && v != 0.0_f64 { |
| return_error!("accumulator of {} is not 0.0", $name); |
| } else if loses_info { |
| return_error!("accumulator of {} loses information", $name); |
| } |
| } |
| } |
| acc |
| } else { |
| // unordered arithmetic reductions do not: |
| match f.bit_width() { |
| 32 => bx.const_undef(bx.type_f32()), |
| 64 => bx.const_undef(bx.type_f64()), |
| v => { |
| return_error!(r#" |
| unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#, |
| $name, in_ty, in_elem, v, ret_ty |
| ) |
| } |
| } |
| }; |
| Ok(bx.$float_reduce(acc, args[0].immediate())) |
| } |
| _ => { |
| return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty |
| ) |
| }, |
| } |
| } |
| } |
| } |
| |
| arith_red!("simd_reduce_add_ordered": vector_reduce_add, vector_reduce_fadd_fast, true); |
| arith_red!("simd_reduce_mul_ordered": vector_reduce_mul, vector_reduce_fmul_fast, true); |
| arith_red!("simd_reduce_add_unordered": vector_reduce_add, vector_reduce_fadd_fast, false); |
| arith_red!("simd_reduce_mul_unordered": vector_reduce_mul, vector_reduce_fmul_fast, false); |
| |
| macro_rules! minmax_red { |
| ($name:tt: $int_red:ident, $float_red:ident) => { |
| if name == $name { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return match in_elem.sty { |
| ty::Int(_i) => { |
| Ok(bx.$int_red(args[0].immediate(), true)) |
| }, |
| ty::Uint(_u) => { |
| Ok(bx.$int_red(args[0].immediate(), false)) |
| }, |
| ty::Float(_f) => { |
| Ok(bx.$float_red(args[0].immediate())) |
| } |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| }, |
| } |
| } |
| |
| } |
| } |
| |
| minmax_red!("simd_reduce_min": vector_reduce_min, vector_reduce_fmin); |
| minmax_red!("simd_reduce_max": vector_reduce_max, vector_reduce_fmax); |
| |
| minmax_red!("simd_reduce_min_nanless": vector_reduce_min, vector_reduce_fmin_fast); |
| minmax_red!("simd_reduce_max_nanless": vector_reduce_max, vector_reduce_fmax_fast); |
| |
| macro_rules! bitwise_red { |
| ($name:tt : $red:ident, $boolean:expr) => { |
| if name == $name { |
| let input = if !$boolean { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| args[0].immediate() |
| } else { |
| match in_elem.sty { |
| ty::Int(_) | ty::Uint(_) => {}, |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| } |
| } |
| |
| // boolean reductions operate on vectors of i1s: |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len as u64); |
| bx.trunc(args[0].immediate(), i1xn) |
| }; |
| return match in_elem.sty { |
| ty::Int(_) | ty::Uint(_) => { |
| let r = bx.$red(input); |
| Ok( |
| if !$boolean { |
| r |
| } else { |
| bx.zext(r, bx.type_bool()) |
| } |
| ) |
| }, |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| }, |
| } |
| } |
| } |
| } |
| |
| bitwise_red!("simd_reduce_and": vector_reduce_and, false); |
| bitwise_red!("simd_reduce_or": vector_reduce_or, false); |
| bitwise_red!("simd_reduce_xor": vector_reduce_xor, false); |
| bitwise_red!("simd_reduce_all": vector_reduce_and, true); |
| bitwise_red!("simd_reduce_any": vector_reduce_or, true); |
| |
| if name == "simd_cast" { |
| require_simd!(ret_ty, "return"); |
| let out_len = ret_ty.simd_size(tcx); |
| require!(in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, in_ty, |
| ret_ty, out_len); |
| // casting cares about nominal type, not just structural type |
| let out_elem = ret_ty.simd_type(tcx); |
| |
| if in_elem == out_elem { return Ok(args[0].immediate()); } |
| |
| enum Style { Float, Int(/* is signed? */ bool), Unsupported } |
| |
| let (in_style, in_width) = match in_elem.sty { |
| // vectors of pointer-sized integers should've been |
| // disallowed before here, so this unwrap is safe. |
| ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::Float(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0) |
| }; |
| let (out_style, out_width) = match out_elem.sty { |
| ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::Float(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0) |
| }; |
| |
| match (in_style, out_style) { |
| (Style::Int(in_is_signed), Style::Int(_)) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => if in_is_signed { |
| bx.sext(args[0].immediate(), llret_ty) |
| } else { |
| bx.zext(args[0].immediate(), llret_ty) |
| } |
| }) |
| } |
| (Style::Int(in_is_signed), Style::Float) => { |
| return Ok(if in_is_signed { |
| bx.sitofp(args[0].immediate(), llret_ty) |
| } else { |
| bx.uitofp(args[0].immediate(), llret_ty) |
| }) |
| } |
| (Style::Float, Style::Int(out_is_signed)) => { |
| return Ok(if out_is_signed { |
| bx.fptosi(args[0].immediate(), llret_ty) |
| } else { |
| bx.fptoui(args[0].immediate(), llret_ty) |
| }) |
| } |
| (Style::Float, Style::Float) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => bx.fpext(args[0].immediate(), llret_ty) |
| }) |
| } |
| _ => {/* Unsupported. Fallthrough. */} |
| } |
| require!(false, |
| "unsupported cast from `{}` with element `{}` to `{}` with element `{}`", |
| in_ty, in_elem, |
| ret_ty, out_elem); |
| } |
| macro_rules! arith { |
| ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { |
| $(if name == stringify!($name) { |
| match in_elem.sty { |
| $($(ty::$p(_))|* => { |
| return Ok(bx.$call(args[0].immediate(), args[1].immediate())) |
| })* |
| _ => {}, |
| } |
| require!(false, |
| "unsupported operation on `{}` with element `{}`", |
| in_ty, |
| in_elem) |
| })* |
| } |
| } |
| arith! { |
| simd_add: Uint, Int => add, Float => fadd; |
| simd_sub: Uint, Int => sub, Float => fsub; |
| simd_mul: Uint, Int => mul, Float => fmul; |
| simd_div: Uint => udiv, Int => sdiv, Float => fdiv; |
| simd_rem: Uint => urem, Int => srem, Float => frem; |
| simd_shl: Uint, Int => shl; |
| simd_shr: Uint => lshr, Int => ashr; |
| simd_and: Uint, Int => and; |
| simd_or: Uint, Int => or; |
| simd_xor: Uint, Int => xor; |
| simd_fmax: Float => maxnum; |
| simd_fmin: Float => minnum; |
| |
| } |
| |
| if name == "simd_saturating_add" || name == "simd_saturating_sub" { |
| let lhs = args[0].immediate(); |
| let rhs = args[1].immediate(); |
| let is_add = name == "simd_saturating_add"; |
| let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _; |
| let (signed, elem_width, elem_ty) = match in_elem.sty { |
| ty::Int(i) => |
| ( |
| true, |
| i.bit_width().unwrap_or(ptr_bits), |
| bx.cx.type_int_from_ty(i) |
| ), |
| ty::Uint(i) => |
| ( |
| false, |
| i.bit_width().unwrap_or(ptr_bits), |
| bx.cx.type_uint_from_ty(i) |
| ), |
| _ => { |
| return_error!( |
| "expected element type `{}` of vector type `{}` \ |
| to be a signed or unsigned integer type", |
| arg_tys[0].simd_type(tcx), arg_tys[0] |
| ); |
| } |
| }; |
| let llvm_intrinsic = &format!( |
| "llvm.{}{}.sat.v{}i{}", |
| if signed { 's' } else { 'u' }, |
| if is_add { "add" } else { "sub" }, |
| in_len, elem_width |
| ); |
| let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64); |
| |
| let f = bx.declare_cfn( |
| &llvm_intrinsic, |
| bx.type_func(&[vec_ty, vec_ty], vec_ty) |
| ); |
| llvm::SetUnnamedAddr(f, false); |
| let v = bx.call(f, &[lhs, rhs], None); |
| return Ok(v); |
| } |
| |
| span_bug!(span, "unknown SIMD intrinsic"); |
| } |
| |
| // Returns the width of an int Ty, and if it's signed or not |
| // Returns None if the type is not an integer |
| // FIXME: there’s multiple of this functions, investigate using some of the already existing |
| // stuffs. |
| fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> { |
| match ty.sty { |
| ty::Int(t) => Some((match t { |
| ast::IntTy::Isize => cx.tcx.sess.target.isize_ty.bit_width().unwrap() as u64, |
| ast::IntTy::I8 => 8, |
| ast::IntTy::I16 => 16, |
| ast::IntTy::I32 => 32, |
| ast::IntTy::I64 => 64, |
| ast::IntTy::I128 => 128, |
| }, true)), |
| ty::Uint(t) => Some((match t { |
| ast::UintTy::Usize => cx.tcx.sess.target.usize_ty.bit_width().unwrap() as u64, |
| ast::UintTy::U8 => 8, |
| ast::UintTy::U16 => 16, |
| ast::UintTy::U32 => 32, |
| ast::UintTy::U64 => 64, |
| ast::UintTy::U128 => 128, |
| }, false)), |
| _ => None, |
| } |
| } |
| |
| // Returns the width of a float Ty |
| // Returns None if the type is not a float |
| fn float_type_width(ty: Ty<'_>) -> Option<u64> { |
| match ty.sty { |
| ty::Float(t) => Some(t.bit_width() as u64), |
| _ => None, |
| } |
| } |