| //! A private parser implementation of IPv4, IPv6, and socket addresses. |
| //! |
| //! This module is "publicly exported" through the `FromStr` implementations |
| //! below. |
| |
| use crate::error::Error; |
| use crate::fmt; |
| use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6}; |
| use crate::str::FromStr; |
| |
| struct Parser<'a> { |
| // parsing as ASCII, so can use byte array |
| state: &'a [u8], |
| } |
| |
| impl<'a> Parser<'a> { |
| fn new(input: &'a str) -> Parser<'a> { |
| Parser { state: input.as_bytes() } |
| } |
| |
| fn is_eof(&self) -> bool { |
| self.state.is_empty() |
| } |
| |
| /// Run a parser, and restore the pre-parse state if it fails |
| fn read_atomically<T, F>(&mut self, inner: F) -> Option<T> |
| where |
| F: FnOnce(&mut Parser<'_>) -> Option<T>, |
| { |
| let state = self.state; |
| let result = inner(self); |
| if result.is_none() { |
| self.state = state; |
| } |
| result |
| } |
| |
| /// Run a parser, but fail if the entire input wasn't consumed. |
| /// Doesn't run atomically. |
| fn read_till_eof<T, F>(&mut self, inner: F) -> Option<T> |
| where |
| F: FnOnce(&mut Parser<'_>) -> Option<T>, |
| { |
| inner(self).filter(|_| self.is_eof()) |
| } |
| |
| /// Same as read_till_eof, but returns a Result<AddrParseError> on failure |
| fn parse_with<T, F>(&mut self, inner: F) -> Result<T, AddrParseError> |
| where |
| F: FnOnce(&mut Parser<'_>) -> Option<T>, |
| { |
| self.read_till_eof(inner).ok_or(AddrParseError(())) |
| } |
| |
| /// Read the next character from the input |
| fn read_char(&mut self) -> Option<char> { |
| self.state.split_first().map(|(&b, tail)| { |
| self.state = tail; |
| b as char |
| }) |
| } |
| |
| /// Read the next character from the input if it matches the target |
| fn read_given_char(&mut self, target: char) -> Option<char> { |
| self.read_atomically(|p| p.read_char().filter(|&c| c == target)) |
| } |
| |
| /// Helper for reading separators in an indexed loop. Reads the separator |
| /// character iff index > 0, then runs the parser. When used in a loop, |
| /// the separator character will only be read on index > 0 (see |
| /// read_ipv4_addr for an example) |
| fn read_separator<T, F>(&mut self, sep: char, index: usize, inner: F) -> Option<T> |
| where |
| F: FnOnce(&mut Parser<'_>) -> Option<T>, |
| { |
| self.read_atomically(move |p| { |
| if index > 0 { |
| let _ = p.read_given_char(sep)?; |
| } |
| inner(p) |
| }) |
| } |
| |
| // Read a single digit in the given radix. For instance, 0-9 in radix 10; |
| // 0-9A-F in radix 16. |
| fn read_digit(&mut self, radix: u32) -> Option<u32> { |
| self.read_atomically(move |p| p.read_char()?.to_digit(radix)) |
| } |
| |
| // Read a number off the front of the input in the given radix, stopping |
| // at the first non-digit character or eof. Fails if the number has more |
| // digits than max_digits, or the value is >= upto, or if there is no number. |
| fn read_number(&mut self, radix: u32, max_digits: u32, upto: u32) -> Option<u32> { |
| self.read_atomically(move |p| { |
| let mut result = 0; |
| let mut digit_count = 0; |
| |
| while let Some(digit) = p.read_digit(radix) { |
| result = (result * radix) + digit; |
| digit_count += 1; |
| if digit_count > max_digits || result >= upto { |
| return None; |
| } |
| } |
| |
| if digit_count == 0 { None } else { Some(result) } |
| }) |
| } |
| |
| /// Read an IPv4 address |
| fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> { |
| self.read_atomically(|p| { |
| let mut groups = [0; 4]; |
| |
| for (i, slot) in groups.iter_mut().enumerate() { |
| *slot = p.read_separator('.', i, |p| p.read_number(10, 3, 0x100))? as u8; |
| } |
| |
| Some(groups.into()) |
| }) |
| } |
| |
| /// Read an IPV6 Address |
| fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> { |
| /// Read a chunk of an ipv6 address into `groups`. Returns the number |
| /// of groups read, along with a bool indicating if an embedded |
| /// trailing ipv4 address was read. Specifically, read a series of |
| /// colon-separated ipv6 groups (0x0000 - 0xFFFF), with an optional |
| /// trailing embedded ipv4 address. |
| fn read_groups(p: &mut Parser<'_>, groups: &mut [u16]) -> (usize, bool) { |
| let limit = groups.len(); |
| |
| for (i, slot) in groups.iter_mut().enumerate() { |
| // Try to read a trailing embedded ipv4 address. There must be |
| // at least two groups left. |
| if i < limit - 1 { |
| let ipv4 = p.read_separator(':', i, |p| p.read_ipv4_addr()); |
| |
| if let Some(v4_addr) = ipv4 { |
| let octets = v4_addr.octets(); |
| groups[i + 0] = ((octets[0] as u16) << 8) | (octets[1] as u16); |
| groups[i + 1] = ((octets[2] as u16) << 8) | (octets[3] as u16); |
| return (i + 2, true); |
| } |
| } |
| |
| let group = p.read_separator(':', i, |p| p.read_number(16, 4, 0x10000)); |
| |
| match group { |
| Some(g) => *slot = g as u16, |
| None => return (i, false), |
| } |
| } |
| (groups.len(), false) |
| } |
| |
| self.read_atomically(|p| { |
| // Read the front part of the address; either the whole thing, or up |
| // to the first :: |
| let mut head = [0; 8]; |
| let (head_size, head_ipv4) = read_groups(p, &mut head); |
| |
| if head_size == 8 { |
| return Some(head.into()); |
| } |
| |
| // IPv4 part is not allowed before `::` |
| if head_ipv4 { |
| return None; |
| } |
| |
| // read `::` if previous code parsed less than 8 groups |
| // `::` indicates one or more groups of 16 bits of zeros |
| let _ = p.read_given_char(':')?; |
| let _ = p.read_given_char(':')?; |
| |
| // Read the back part of the address. The :: must contain at least one |
| // set of zeroes, so our max length is 7. |
| let mut tail = [0; 7]; |
| let limit = 8 - (head_size + 1); |
| let (tail_size, _) = read_groups(p, &mut tail[..limit]); |
| |
| // Concat the head and tail of the IP address |
| head[(8 - tail_size)..8].copy_from_slice(&tail[..tail_size]); |
| |
| Some(head.into()) |
| }) |
| } |
| |
| /// Read an IP Address, either IPV4 or IPV6. |
| fn read_ip_addr(&mut self) -> Option<IpAddr> { |
| self.read_ipv4_addr().map(IpAddr::V4).or_else(move || self.read_ipv6_addr().map(IpAddr::V6)) |
| } |
| |
| /// Read a : followed by a port in base 10 |
| fn read_port(&mut self) -> Option<u16> { |
| self.read_atomically(|p| { |
| let _ = p.read_given_char(':')?; |
| let port = p.read_number(10, 5, 0x10000)?; |
| Some(port as u16) |
| }) |
| } |
| |
| /// Read an IPV4 address with a port |
| fn read_socket_addr_v4(&mut self) -> Option<SocketAddrV4> { |
| self.read_atomically(|p| { |
| let ip = p.read_ipv4_addr()?; |
| let port = p.read_port()?; |
| Some(SocketAddrV4::new(ip, port)) |
| }) |
| } |
| |
| /// Read an IPV6 address with a port |
| fn read_socket_addr_v6(&mut self) -> Option<SocketAddrV6> { |
| self.read_atomically(|p| { |
| let _ = p.read_given_char('[')?; |
| let ip = p.read_ipv6_addr()?; |
| let _ = p.read_given_char(']')?; |
| |
| let port = p.read_port()?; |
| Some(SocketAddrV6::new(ip, port, 0, 0)) |
| }) |
| } |
| |
| /// Read an IP address with a port |
| fn read_socket_addr(&mut self) -> Option<SocketAddr> { |
| self.read_socket_addr_v4() |
| .map(SocketAddr::V4) |
| .or_else(|| self.read_socket_addr_v6().map(SocketAddr::V6)) |
| } |
| } |
| |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| impl FromStr for IpAddr { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<IpAddr, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_ip_addr()) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl FromStr for Ipv4Addr { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_ipv4_addr()) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl FromStr for Ipv6Addr { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_ipv6_addr()) |
| } |
| } |
| |
| #[stable(feature = "socket_addr_from_str", since = "1.5.0")] |
| impl FromStr for SocketAddrV4 { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<SocketAddrV4, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_socket_addr_v4()) |
| } |
| } |
| |
| #[stable(feature = "socket_addr_from_str", since = "1.5.0")] |
| impl FromStr for SocketAddrV6 { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<SocketAddrV6, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_socket_addr_v6()) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl FromStr for SocketAddr { |
| type Err = AddrParseError; |
| fn from_str(s: &str) -> Result<SocketAddr, AddrParseError> { |
| Parser::new(s).parse_with(|p| p.read_socket_addr()) |
| } |
| } |
| |
| /// An error which can be returned when parsing an IP address or a socket address. |
| /// |
| /// This error is used as the error type for the [`FromStr`] implementation for |
| /// [`IpAddr`], [`Ipv4Addr`], [`Ipv6Addr`], [`SocketAddr`], [`SocketAddrV4`], and |
| /// [`SocketAddrV6`]. |
| /// |
| /// # Potential causes |
| /// |
| /// `AddrParseError` may be thrown because the provided string does not parse as the given type, |
| /// often because it includes information only handled by a different address type. |
| /// |
| /// ```should_panic |
| /// use std::net::IpAddr; |
| /// let _foo: IpAddr = "127.0.0.1:8080".parse().expect("Cannot handle the socket port"); |
| /// ``` |
| /// |
| /// [`IpAddr`] doesn't handle the port. Use [`SocketAddr`] instead. |
| /// |
| /// ``` |
| /// use std::net::SocketAddr; |
| /// |
| /// // No problem, the `panic!` message has disappeared. |
| /// let _foo: SocketAddr = "127.0.0.1:8080".parse().expect("unreachable panic"); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[derive(Debug, Clone, PartialEq, Eq)] |
| pub struct AddrParseError(()); |
| |
| #[stable(feature = "addr_parse_error_error", since = "1.4.0")] |
| impl fmt::Display for AddrParseError { |
| #[allow(deprecated, deprecated_in_future)] |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt.write_str(self.description()) |
| } |
| } |
| |
| #[stable(feature = "addr_parse_error_error", since = "1.4.0")] |
| impl Error for AddrParseError { |
| #[allow(deprecated)] |
| fn description(&self) -> &str { |
| "invalid IP address syntax" |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| // FIXME: These tests are all excellent candidates for AFL fuzz testing |
| use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6}; |
| use crate::str::FromStr; |
| |
| const PORT: u16 = 8080; |
| |
| const IPV4: Ipv4Addr = Ipv4Addr::new(192, 168, 0, 1); |
| const IPV4_STR: &str = "192.168.0.1"; |
| const IPV4_STR_PORT: &str = "192.168.0.1:8080"; |
| |
| const IPV6: Ipv6Addr = Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0xc0a8, 0x1); |
| const IPV6_STR_FULL: &str = "2001:db8:0:0:0:0:c0a8:1"; |
| const IPV6_STR_COMPRESS: &str = "2001:db8::c0a8:1"; |
| const IPV6_STR_V4: &str = "2001:db8::192.168.0.1"; |
| const IPV6_STR_PORT: &str = "[2001:db8::c0a8:1]:8080"; |
| |
| #[test] |
| fn parse_ipv4() { |
| let result: Ipv4Addr = IPV4_STR.parse().unwrap(); |
| assert_eq!(result, IPV4); |
| |
| assert!(Ipv4Addr::from_str(IPV4_STR_PORT).is_err()); |
| assert!(Ipv4Addr::from_str(IPV6_STR_FULL).is_err()); |
| assert!(Ipv4Addr::from_str(IPV6_STR_COMPRESS).is_err()); |
| assert!(Ipv4Addr::from_str(IPV6_STR_V4).is_err()); |
| assert!(Ipv4Addr::from_str(IPV6_STR_PORT).is_err()); |
| } |
| |
| #[test] |
| fn parse_ipv6() { |
| let result: Ipv6Addr = IPV6_STR_FULL.parse().unwrap(); |
| assert_eq!(result, IPV6); |
| |
| let result: Ipv6Addr = IPV6_STR_COMPRESS.parse().unwrap(); |
| assert_eq!(result, IPV6); |
| |
| let result: Ipv6Addr = IPV6_STR_V4.parse().unwrap(); |
| assert_eq!(result, IPV6); |
| |
| assert!(Ipv6Addr::from_str(IPV4_STR).is_err()); |
| assert!(Ipv6Addr::from_str(IPV4_STR_PORT).is_err()); |
| assert!(Ipv6Addr::from_str(IPV6_STR_PORT).is_err()); |
| } |
| |
| #[test] |
| fn parse_ip() { |
| let result: IpAddr = IPV4_STR.parse().unwrap(); |
| assert_eq!(result, IpAddr::from(IPV4)); |
| |
| let result: IpAddr = IPV6_STR_FULL.parse().unwrap(); |
| assert_eq!(result, IpAddr::from(IPV6)); |
| |
| let result: IpAddr = IPV6_STR_COMPRESS.parse().unwrap(); |
| assert_eq!(result, IpAddr::from(IPV6)); |
| |
| let result: IpAddr = IPV6_STR_V4.parse().unwrap(); |
| assert_eq!(result, IpAddr::from(IPV6)); |
| |
| assert!(IpAddr::from_str(IPV4_STR_PORT).is_err()); |
| assert!(IpAddr::from_str(IPV6_STR_PORT).is_err()); |
| } |
| |
| #[test] |
| fn parse_socket_v4() { |
| let result: SocketAddrV4 = IPV4_STR_PORT.parse().unwrap(); |
| assert_eq!(result, SocketAddrV4::new(IPV4, PORT)); |
| |
| assert!(SocketAddrV4::from_str(IPV4_STR).is_err()); |
| assert!(SocketAddrV4::from_str(IPV6_STR_FULL).is_err()); |
| assert!(SocketAddrV4::from_str(IPV6_STR_COMPRESS).is_err()); |
| assert!(SocketAddrV4::from_str(IPV6_STR_V4).is_err()); |
| assert!(SocketAddrV4::from_str(IPV6_STR_PORT).is_err()); |
| } |
| |
| #[test] |
| fn parse_socket_v6() { |
| let result: SocketAddrV6 = IPV6_STR_PORT.parse().unwrap(); |
| assert_eq!(result, SocketAddrV6::new(IPV6, PORT, 0, 0)); |
| |
| assert!(SocketAddrV6::from_str(IPV4_STR).is_err()); |
| assert!(SocketAddrV6::from_str(IPV4_STR_PORT).is_err()); |
| assert!(SocketAddrV6::from_str(IPV6_STR_FULL).is_err()); |
| assert!(SocketAddrV6::from_str(IPV6_STR_COMPRESS).is_err()); |
| assert!(SocketAddrV6::from_str(IPV6_STR_V4).is_err()); |
| } |
| |
| #[test] |
| fn parse_socket() { |
| let result: SocketAddr = IPV4_STR_PORT.parse().unwrap(); |
| assert_eq!(result, SocketAddr::from((IPV4, PORT))); |
| |
| let result: SocketAddr = IPV6_STR_PORT.parse().unwrap(); |
| assert_eq!(result, SocketAddr::from((IPV6, PORT))); |
| |
| assert!(SocketAddr::from_str(IPV4_STR).is_err()); |
| assert!(SocketAddr::from_str(IPV6_STR_FULL).is_err()); |
| assert!(SocketAddr::from_str(IPV6_STR_COMPRESS).is_err()); |
| assert!(SocketAddr::from_str(IPV6_STR_V4).is_err()); |
| } |
| |
| #[test] |
| fn ipv6_corner_cases() { |
| let result: Ipv6Addr = "1::".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| let result: Ipv6Addr = "1:1::".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(1, 1, 0, 0, 0, 0, 0, 0)); |
| |
| let result: Ipv6Addr = "::1".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); |
| |
| let result: Ipv6Addr = "::1:1".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 1, 1)); |
| |
| let result: Ipv6Addr = "::".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| let result: Ipv6Addr = "::192.168.0.1".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc0a8, 0x1)); |
| |
| let result: Ipv6Addr = "::1:192.168.0.1".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 1, 0xc0a8, 0x1)); |
| |
| let result: Ipv6Addr = "1:1:1:1:1:1:192.168.0.1".parse().unwrap(); |
| assert_eq!(result, Ipv6Addr::new(1, 1, 1, 1, 1, 1, 0xc0a8, 0x1)); |
| } |
| |
| // Things that might not seem like failures but are |
| #[test] |
| fn ipv6_corner_failures() { |
| // No IP address before the :: |
| assert!(Ipv6Addr::from_str("1:192.168.0.1::").is_err()); |
| |
| // :: must have at least 1 set of zeroes |
| assert!(Ipv6Addr::from_str("1:1:1:1::1:1:1:1").is_err()); |
| |
| // Need brackets for a port |
| assert!(SocketAddrV6::from_str("1:1:1:1:1:1:1:1:8080").is_err()); |
| } |
| } |