| //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the AArch64 addressing mode implementation stuff. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H |
| #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/bit.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| |
| namespace llvm { |
| |
| /// AArch64_AM - AArch64 Addressing Mode Stuff |
| namespace AArch64_AM { |
| |
| //===----------------------------------------------------------------------===// |
| // Shifts |
| // |
| |
| enum ShiftExtendType { |
| InvalidShiftExtend = -1, |
| LSL = 0, |
| LSR, |
| ASR, |
| ROR, |
| MSL, |
| |
| UXTB, |
| UXTH, |
| UXTW, |
| UXTX, |
| |
| SXTB, |
| SXTH, |
| SXTW, |
| SXTX, |
| }; |
| |
| /// getShiftName - Get the string encoding for the shift type. |
| static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) { |
| switch (ST) { |
| default: llvm_unreachable("unhandled shift type!"); |
| case AArch64_AM::LSL: return "lsl"; |
| case AArch64_AM::LSR: return "lsr"; |
| case AArch64_AM::ASR: return "asr"; |
| case AArch64_AM::ROR: return "ror"; |
| case AArch64_AM::MSL: return "msl"; |
| case AArch64_AM::UXTB: return "uxtb"; |
| case AArch64_AM::UXTH: return "uxth"; |
| case AArch64_AM::UXTW: return "uxtw"; |
| case AArch64_AM::UXTX: return "uxtx"; |
| case AArch64_AM::SXTB: return "sxtb"; |
| case AArch64_AM::SXTH: return "sxth"; |
| case AArch64_AM::SXTW: return "sxtw"; |
| case AArch64_AM::SXTX: return "sxtx"; |
| } |
| return nullptr; |
| } |
| |
| /// getShiftType - Extract the shift type. |
| static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) { |
| switch ((Imm >> 6) & 0x7) { |
| default: return AArch64_AM::InvalidShiftExtend; |
| case 0: return AArch64_AM::LSL; |
| case 1: return AArch64_AM::LSR; |
| case 2: return AArch64_AM::ASR; |
| case 3: return AArch64_AM::ROR; |
| case 4: return AArch64_AM::MSL; |
| } |
| } |
| |
| /// getShiftValue - Extract the shift value. |
| static inline unsigned getShiftValue(unsigned Imm) { |
| return Imm & 0x3f; |
| } |
| |
| /// getShifterImm - Encode the shift type and amount: |
| /// imm: 6-bit shift amount |
| /// shifter: 000 ==> lsl |
| /// 001 ==> lsr |
| /// 010 ==> asr |
| /// 011 ==> ror |
| /// 100 ==> msl |
| /// {8-6} = shifter |
| /// {5-0} = imm |
| static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, |
| unsigned Imm) { |
| assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); |
| unsigned STEnc = 0; |
| switch (ST) { |
| default: llvm_unreachable("Invalid shift requested"); |
| case AArch64_AM::LSL: STEnc = 0; break; |
| case AArch64_AM::LSR: STEnc = 1; break; |
| case AArch64_AM::ASR: STEnc = 2; break; |
| case AArch64_AM::ROR: STEnc = 3; break; |
| case AArch64_AM::MSL: STEnc = 4; break; |
| } |
| return (STEnc << 6) | (Imm & 0x3f); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Extends |
| // |
| |
| /// getArithShiftValue - get the arithmetic shift value. |
| static inline unsigned getArithShiftValue(unsigned Imm) { |
| return Imm & 0x7; |
| } |
| |
| /// getExtendType - Extract the extend type for operands of arithmetic ops. |
| static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) { |
| assert((Imm & 0x7) == Imm && "invalid immediate!"); |
| switch (Imm) { |
| default: llvm_unreachable("Compiler bug!"); |
| case 0: return AArch64_AM::UXTB; |
| case 1: return AArch64_AM::UXTH; |
| case 2: return AArch64_AM::UXTW; |
| case 3: return AArch64_AM::UXTX; |
| case 4: return AArch64_AM::SXTB; |
| case 5: return AArch64_AM::SXTH; |
| case 6: return AArch64_AM::SXTW; |
| case 7: return AArch64_AM::SXTX; |
| } |
| } |
| |
| static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) { |
| return getExtendType((Imm >> 3) & 0x7); |
| } |
| |
| /// Mapping from extend bits to required operation: |
| /// shifter: 000 ==> uxtb |
| /// 001 ==> uxth |
| /// 010 ==> uxtw |
| /// 011 ==> uxtx |
| /// 100 ==> sxtb |
| /// 101 ==> sxth |
| /// 110 ==> sxtw |
| /// 111 ==> sxtx |
| inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) { |
| switch (ET) { |
| default: llvm_unreachable("Invalid extend type requested"); |
| case AArch64_AM::UXTB: return 0; break; |
| case AArch64_AM::UXTH: return 1; break; |
| case AArch64_AM::UXTW: return 2; break; |
| case AArch64_AM::UXTX: return 3; break; |
| case AArch64_AM::SXTB: return 4; break; |
| case AArch64_AM::SXTH: return 5; break; |
| case AArch64_AM::SXTW: return 6; break; |
| case AArch64_AM::SXTX: return 7; break; |
| } |
| } |
| |
| /// getArithExtendImm - Encode the extend type and shift amount for an |
| /// arithmetic instruction: |
| /// imm: 3-bit extend amount |
| /// {5-3} = shifter |
| /// {2-0} = imm3 |
| static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, |
| unsigned Imm) { |
| assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); |
| return (getExtendEncoding(ET) << 3) | (Imm & 0x7); |
| } |
| |
| /// getMemDoShift - Extract the "do shift" flag value for load/store |
| /// instructions. |
| static inline bool getMemDoShift(unsigned Imm) { |
| return (Imm & 0x1) != 0; |
| } |
| |
| /// getExtendType - Extract the extend type for the offset operand of |
| /// loads/stores. |
| static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) { |
| return getExtendType((Imm >> 1) & 0x7); |
| } |
| |
| /// getExtendImm - Encode the extend type and amount for a load/store inst: |
| /// doshift: should the offset be scaled by the access size |
| /// shifter: 000 ==> uxtb |
| /// 001 ==> uxth |
| /// 010 ==> uxtw |
| /// 011 ==> uxtx |
| /// 100 ==> sxtb |
| /// 101 ==> sxth |
| /// 110 ==> sxtw |
| /// 111 ==> sxtx |
| /// {3-1} = shifter |
| /// {0} = doshift |
| static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, |
| bool DoShift) { |
| return (getExtendEncoding(ET) << 1) | unsigned(DoShift); |
| } |
| |
| static inline uint64_t ror(uint64_t elt, unsigned size) { |
| return ((elt & 1) << (size-1)) | (elt >> 1); |
| } |
| |
| /// processLogicalImmediate - Determine if an immediate value can be encoded |
| /// as the immediate operand of a logical instruction for the given register |
| /// size. If so, return true with "encoding" set to the encoded value in |
| /// the form N:immr:imms. |
| static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, |
| uint64_t &Encoding) { |
| if (Imm == 0ULL || Imm == ~0ULL || |
| (RegSize != 64 && |
| (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize))))) |
| return false; |
| |
| // First, determine the element size. |
| unsigned Size = RegSize; |
| |
| do { |
| Size /= 2; |
| uint64_t Mask = (1ULL << Size) - 1; |
| |
| if ((Imm & Mask) != ((Imm >> Size) & Mask)) { |
| Size *= 2; |
| break; |
| } |
| } while (Size > 2); |
| |
| // Second, determine the rotation to make the element be: 0^m 1^n. |
| uint32_t CTO, I; |
| uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size); |
| Imm &= Mask; |
| |
| if (isShiftedMask_64(Imm)) { |
| I = countTrailingZeros(Imm); |
| assert(I < 64 && "undefined behavior"); |
| CTO = countTrailingOnes(Imm >> I); |
| } else { |
| Imm |= ~Mask; |
| if (!isShiftedMask_64(~Imm)) |
| return false; |
| |
| unsigned CLO = countLeadingOnes(Imm); |
| I = 64 - CLO; |
| CTO = CLO + countTrailingOnes(Imm) - (64 - Size); |
| } |
| |
| // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n |
| // to our target value, where I is the number of RORs to go the opposite |
| // direction. |
| assert(Size > I && "I should be smaller than element size"); |
| unsigned Immr = (Size - I) & (Size - 1); |
| |
| // If size has a 1 in the n'th bit, create a value that has zeroes in |
| // bits [0, n] and ones above that. |
| uint64_t NImms = ~(Size-1) << 1; |
| |
| // Or the CTO value into the low bits, which must be below the Nth bit |
| // bit mentioned above. |
| NImms |= (CTO-1); |
| |
| // Extract the seventh bit and toggle it to create the N field. |
| unsigned N = ((NImms >> 6) & 1) ^ 1; |
| |
| Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f); |
| return true; |
| } |
| |
| /// isLogicalImmediate - Return true if the immediate is valid for a logical |
| /// immediate instruction of the given register size. Return false otherwise. |
| static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { |
| uint64_t encoding; |
| return processLogicalImmediate(imm, regSize, encoding); |
| } |
| |
| /// encodeLogicalImmediate - Return the encoded immediate value for a logical |
| /// immediate instruction of the given register size. |
| static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { |
| uint64_t encoding = 0; |
| bool res = processLogicalImmediate(imm, regSize, encoding); |
| assert(res && "invalid logical immediate"); |
| (void)res; |
| return encoding; |
| } |
| |
| /// decodeLogicalImmediate - Decode a logical immediate value in the form |
| /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the |
| /// integer value it represents with regSize bits. |
| static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { |
| // Extract the N, imms, and immr fields. |
| unsigned N = (val >> 12) & 1; |
| unsigned immr = (val >> 6) & 0x3f; |
| unsigned imms = val & 0x3f; |
| |
| assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); |
| int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); |
| assert(len >= 0 && "undefined logical immediate encoding"); |
| unsigned size = (1 << len); |
| unsigned R = immr & (size - 1); |
| unsigned S = imms & (size - 1); |
| assert(S != size - 1 && "undefined logical immediate encoding"); |
| uint64_t pattern = (1ULL << (S + 1)) - 1; |
| for (unsigned i = 0; i < R; ++i) |
| pattern = ror(pattern, size); |
| |
| // Replicate the pattern to fill the regSize. |
| while (size != regSize) { |
| pattern |= (pattern << size); |
| size *= 2; |
| } |
| return pattern; |
| } |
| |
| /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value |
| /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) |
| /// is a valid encoding for an integer value with regSize bits. |
| static inline bool isValidDecodeLogicalImmediate(uint64_t val, |
| unsigned regSize) { |
| // Extract the N and imms fields needed for checking. |
| unsigned N = (val >> 12) & 1; |
| unsigned imms = val & 0x3f; |
| |
| if (regSize == 32 && N != 0) // undefined logical immediate encoding |
| return false; |
| int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); |
| if (len < 0) // undefined logical immediate encoding |
| return false; |
| unsigned size = (1 << len); |
| unsigned S = imms & (size - 1); |
| if (S == size - 1) // undefined logical immediate encoding |
| return false; |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Floating-point Immediates |
| // |
| static inline float getFPImmFloat(unsigned Imm) { |
| // We expect an 8-bit binary encoding of a floating-point number here. |
| |
| uint8_t Sign = (Imm >> 7) & 0x1; |
| uint8_t Exp = (Imm >> 4) & 0x7; |
| uint8_t Mantissa = Imm & 0xf; |
| |
| // 8-bit FP IEEE Float Encoding |
| // abcd efgh aBbbbbbc defgh000 00000000 00000000 |
| // |
| // where B = NOT(b); |
| |
| uint32_t I = 0; |
| I |= Sign << 31; |
| I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; |
| I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; |
| I |= (Exp & 0x3) << 23; |
| I |= Mantissa << 19; |
| return bit_cast<float>(I); |
| } |
| |
| /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit |
| /// floating-point value. If the value cannot be represented as an 8-bit |
| /// floating-point value, then return -1. |
| static inline int getFP16Imm(const APInt &Imm) { |
| uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; |
| int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 |
| int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0x3f) |
| return -1; |
| Mantissa >>= 6; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| static inline int getFP16Imm(const APFloat &FPImm) { |
| return getFP16Imm(FPImm.bitcastToAPInt()); |
| } |
| |
| /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit |
| /// floating-point value. If the value cannot be represented as an 8-bit |
| /// floating-point value, then return -1. |
| static inline int getFP32Imm(const APInt &Imm) { |
| uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; |
| int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 |
| int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0x7ffff) |
| return -1; |
| Mantissa >>= 19; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| static inline int getFP32Imm(const APFloat &FPImm) { |
| return getFP32Imm(FPImm.bitcastToAPInt()); |
| } |
| |
| /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit |
| /// floating-point value. If the value cannot be represented as an 8-bit |
| /// floating-point value, then return -1. |
| static inline int getFP64Imm(const APInt &Imm) { |
| uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; |
| int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
| uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0xffffffffffffULL) |
| return -1; |
| Mantissa >>= 48; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| static inline int getFP64Imm(const APFloat &FPImm) { |
| return getFP64Imm(FPImm.bitcastToAPInt()); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // AdvSIMD Modified Immediates |
| //===--------------------------------------------------------------------===// |
| |
| // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh |
| static inline bool isAdvSIMDModImmType1(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0xffffff00ffffff00ULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { |
| return (Imm & 0xffULL); |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 32) | EncVal; |
| } |
| |
| // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 |
| static inline bool isAdvSIMDModImmType2(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0xffff00ffffff00ffULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { |
| return (Imm & 0xff00ULL) >> 8; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 40) | (EncVal << 8); |
| } |
| |
| // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 |
| static inline bool isAdvSIMDModImmType3(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0xff00ffffff00ffffULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { |
| return (Imm & 0xff0000ULL) >> 16; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 48) | (EncVal << 16); |
| } |
| |
| // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 |
| static inline bool isAdvSIMDModImmType4(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0x00ffffff00ffffffULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { |
| return (Imm & 0xff000000ULL) >> 24; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 56) | (EncVal << 24); |
| } |
| |
| // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh |
| static inline bool isAdvSIMDModImmType5(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && |
| ((Imm & 0xff00ff00ff00ff00ULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { |
| return (Imm & 0xffULL); |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; |
| } |
| |
| // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 |
| static inline bool isAdvSIMDModImmType6(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && |
| ((Imm & 0x00ff00ff00ff00ffULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { |
| return (Imm & 0xff00ULL) >> 8; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); |
| } |
| |
| // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF |
| static inline bool isAdvSIMDModImmType7(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { |
| return (Imm & 0xff00ULL) >> 8; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; |
| } |
| |
| // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF |
| static inline bool isAdvSIMDModImmType8(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { |
| return (Imm & 0x00ff0000ULL) >> 16; |
| } |
| |
| // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh |
| static inline bool isAdvSIMDModImmType9(uint64_t Imm) { |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| ((Imm >> 48) == (Imm & 0x0000ffffULL)) && |
| ((Imm >> 56) == (Imm & 0x000000ffULL)); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { |
| return (Imm & 0xffULL); |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { |
| uint64_t EncVal = Imm; |
| EncVal |= (EncVal << 8); |
| EncVal |= (EncVal << 16); |
| EncVal |= (EncVal << 32); |
| return EncVal; |
| } |
| |
| // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh |
| // cmode: 1110, op: 1 |
| static inline bool isAdvSIMDModImmType10(uint64_t Imm) { |
| uint64_t ByteA = Imm & 0xff00000000000000ULL; |
| uint64_t ByteB = Imm & 0x00ff000000000000ULL; |
| uint64_t ByteC = Imm & 0x0000ff0000000000ULL; |
| uint64_t ByteD = Imm & 0x000000ff00000000ULL; |
| uint64_t ByteE = Imm & 0x00000000ff000000ULL; |
| uint64_t ByteF = Imm & 0x0000000000ff0000ULL; |
| uint64_t ByteG = Imm & 0x000000000000ff00ULL; |
| uint64_t ByteH = Imm & 0x00000000000000ffULL; |
| |
| return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && |
| (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && |
| (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && |
| (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && |
| (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && |
| (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && |
| (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && |
| (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { |
| uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; |
| uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; |
| uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; |
| uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; |
| uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; |
| uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; |
| uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; |
| uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; |
| |
| uint8_t EncVal = BitA; |
| EncVal <<= 1; |
| EncVal |= BitB; |
| EncVal <<= 1; |
| EncVal |= BitC; |
| EncVal <<= 1; |
| EncVal |= BitD; |
| EncVal <<= 1; |
| EncVal |= BitE; |
| EncVal <<= 1; |
| EncVal |= BitF; |
| EncVal <<= 1; |
| EncVal |= BitG; |
| EncVal <<= 1; |
| EncVal |= BitH; |
| return EncVal; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { |
| uint64_t EncVal = 0; |
| if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; |
| if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; |
| if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; |
| if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; |
| if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; |
| if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; |
| if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; |
| if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; |
| return EncVal; |
| } |
| |
| // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 |
| static inline bool isAdvSIMDModImmType11(uint64_t Imm) { |
| uint64_t BString = (Imm & 0x7E000000ULL) >> 25; |
| return ((Imm >> 32) == (Imm & 0xffffffffULL)) && |
| (BString == 0x1f || BString == 0x20) && |
| ((Imm & 0x0007ffff0007ffffULL) == 0); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { |
| uint8_t BitA = (Imm & 0x80000000ULL) != 0; |
| uint8_t BitB = (Imm & 0x20000000ULL) != 0; |
| uint8_t BitC = (Imm & 0x01000000ULL) != 0; |
| uint8_t BitD = (Imm & 0x00800000ULL) != 0; |
| uint8_t BitE = (Imm & 0x00400000ULL) != 0; |
| uint8_t BitF = (Imm & 0x00200000ULL) != 0; |
| uint8_t BitG = (Imm & 0x00100000ULL) != 0; |
| uint8_t BitH = (Imm & 0x00080000ULL) != 0; |
| |
| uint8_t EncVal = BitA; |
| EncVal <<= 1; |
| EncVal |= BitB; |
| EncVal <<= 1; |
| EncVal |= BitC; |
| EncVal <<= 1; |
| EncVal |= BitD; |
| EncVal <<= 1; |
| EncVal |= BitE; |
| EncVal <<= 1; |
| EncVal |= BitF; |
| EncVal <<= 1; |
| EncVal |= BitG; |
| EncVal <<= 1; |
| EncVal |= BitH; |
| return EncVal; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { |
| uint64_t EncVal = 0; |
| if (Imm & 0x80) EncVal |= 0x80000000ULL; |
| if (Imm & 0x40) EncVal |= 0x3e000000ULL; |
| else EncVal |= 0x40000000ULL; |
| if (Imm & 0x20) EncVal |= 0x01000000ULL; |
| if (Imm & 0x10) EncVal |= 0x00800000ULL; |
| if (Imm & 0x08) EncVal |= 0x00400000ULL; |
| if (Imm & 0x04) EncVal |= 0x00200000ULL; |
| if (Imm & 0x02) EncVal |= 0x00100000ULL; |
| if (Imm & 0x01) EncVal |= 0x00080000ULL; |
| return (EncVal << 32) | EncVal; |
| } |
| |
| // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 |
| static inline bool isAdvSIMDModImmType12(uint64_t Imm) { |
| uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; |
| return ((BString == 0xff || BString == 0x100) && |
| ((Imm & 0x0000ffffffffffffULL) == 0)); |
| } |
| |
| static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { |
| uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; |
| uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; |
| uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; |
| uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; |
| uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; |
| uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; |
| uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; |
| uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; |
| |
| uint8_t EncVal = BitA; |
| EncVal <<= 1; |
| EncVal |= BitB; |
| EncVal <<= 1; |
| EncVal |= BitC; |
| EncVal <<= 1; |
| EncVal |= BitD; |
| EncVal <<= 1; |
| EncVal |= BitE; |
| EncVal <<= 1; |
| EncVal |= BitF; |
| EncVal <<= 1; |
| EncVal |= BitG; |
| EncVal <<= 1; |
| EncVal |= BitH; |
| return EncVal; |
| } |
| |
| static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { |
| uint64_t EncVal = 0; |
| if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; |
| if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; |
| else EncVal |= 0x4000000000000000ULL; |
| if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; |
| if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; |
| if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; |
| if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; |
| if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; |
| if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; |
| return (EncVal << 32) | EncVal; |
| } |
| |
| /// Returns true if Imm is the concatenation of a repeating pattern of type T. |
| template <typename T> |
| static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) { |
| auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm); |
| return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; }); |
| } |
| |
| /// Returns true if Imm is valid for CPY/DUP. |
| template <typename T> |
| static inline bool isSVECpyImm(int64_t Imm) { |
| bool IsImm8 = int8_t(Imm) == Imm; |
| bool IsImm16 = int16_t(Imm & ~0xff) == Imm; |
| |
| if (std::is_same<int8_t, std::make_signed_t<T>>::value) |
| return IsImm8 || uint8_t(Imm) == Imm; |
| |
| if (std::is_same<int16_t, std::make_signed_t<T>>::value) |
| return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm; |
| |
| return IsImm8 || IsImm16; |
| } |
| |
| /// Returns true if Imm is valid for ADD/SUB. |
| template <typename T> |
| static inline bool isSVEAddSubImm(int64_t Imm) { |
| bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value; |
| return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm); |
| } |
| |
| /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent. |
| static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) { |
| if (isSVECpyImm<int64_t>(Imm)) |
| return false; |
| |
| auto S = bit_cast<std::array<int32_t, 2>>(Imm); |
| auto H = bit_cast<std::array<int16_t, 4>>(Imm); |
| auto B = bit_cast<std::array<int8_t, 8>>(Imm); |
| |
| if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0])) |
| return false; |
| if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0])) |
| return false; |
| if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0])) |
| return false; |
| return isLogicalImmediate(Imm, 64); |
| } |
| |
| inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) { |
| for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16) |
| if ((Value & ~(0xffffULL << Shift)) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) { |
| if (RegWidth == 32) |
| Value &= 0xffffffffULL; |
| |
| // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0". |
| if (Value == 0 && Shift != 0) |
| return false; |
| |
| return (Value & ~(0xffffULL << Shift)) == 0; |
| } |
| |
| inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) { |
| // MOVZ takes precedence over MOVN. |
| if (isAnyMOVZMovAlias(Value, RegWidth)) |
| return false; |
| |
| Value = ~Value; |
| if (RegWidth == 32) |
| Value &= 0xffffffffULL; |
| |
| return isMOVZMovAlias(Value, Shift, RegWidth); |
| } |
| |
| inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) { |
| if (isAnyMOVZMovAlias(Value, RegWidth)) |
| return true; |
| |
| // It's not a MOVZ, but it might be a MOVN. |
| Value = ~Value; |
| if (RegWidth == 32) |
| Value &= 0xffffffffULL; |
| |
| return isAnyMOVZMovAlias(Value, RegWidth); |
| } |
| |
| } // end namespace AArch64_AM |
| |
| } // end namespace llvm |
| |
| #endif |