| //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead |
| /// branches to help accelerate DSP applications. These two extensions, |
| /// combined with a new form of predication called tail-predication, can be used |
| /// to provide implicit vector predication within a low-overhead loop. |
| /// This is implicit because the predicate of active/inactive lanes is |
| /// calculated by hardware, and thus does not need to be explicitly passed |
| /// to vector instructions. The instructions responsible for this are the |
| /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the |
| /// the total number of data elements processed by the loop. The loop-end |
| /// LETP instruction is responsible for decrementing and setting the remaining |
| /// elements to be processed and generating the mask of active lanes. |
| /// |
| /// The HardwareLoops pass inserts intrinsics identifying loops that the |
| /// backend will attempt to convert into a low-overhead loop. The vectorizer is |
| /// responsible for generating a vectorized loop in which the lanes are |
| /// predicated upon the iteration counter. This pass looks at these predicated |
| /// vector loops, that are targets for low-overhead loops, and prepares it for |
| /// code generation. Once the vectorizer has produced a masked loop, there's a |
| /// couple of final forms: |
| /// - A tail-predicated loop, with implicit predication. |
| /// - A loop containing multiple VCPT instructions, predicating multiple VPT |
| /// blocks of instructions operating on different vector types. |
| /// |
| /// This pass: |
| /// 1) Checks if the predicates of the masked load/store instructions are |
| /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes |
| /// the Backedge Taken Count (BTC) of the scalar loop as its second argument, |
| /// which we extract to set up the number of elements processed by the loop. |
| /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target |
| /// specific VCTP intrinsic to represent the effect of tail predication. |
| /// This will be picked up by the ARM Low-overhead loop pass, which performs |
| /// the final transformation to a DLSTP or WLSTP tail-predicated loop. |
| |
| #include "ARM.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetTransformInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mve-tail-predication" |
| #define DESC "Transform predicated vector loops to use MVE tail predication" |
| |
| cl::opt<TailPredication::Mode> EnableTailPredication( |
| "tail-predication", cl::desc("MVE tail-predication options"), |
| cl::init(TailPredication::Disabled), |
| cl::values(clEnumValN(TailPredication::Disabled, "disabled", |
| "Don't tail-predicate loops"), |
| clEnumValN(TailPredication::EnabledNoReductions, |
| "enabled-no-reductions", |
| "Enable tail-predication, but not for reduction loops"), |
| clEnumValN(TailPredication::Enabled, |
| "enabled", |
| "Enable tail-predication, including reduction loops"), |
| clEnumValN(TailPredication::ForceEnabledNoReductions, |
| "force-enabled-no-reductions", |
| "Enable tail-predication, but not for reduction loops, " |
| "and force this which might be unsafe"), |
| clEnumValN(TailPredication::ForceEnabled, |
| "force-enabled", |
| "Enable tail-predication, including reduction loops, " |
| "and force this which might be unsafe"))); |
| |
| |
| namespace { |
| |
| class MVETailPredication : public LoopPass { |
| SmallVector<IntrinsicInst*, 4> MaskedInsts; |
| Loop *L = nullptr; |
| ScalarEvolution *SE = nullptr; |
| TargetTransformInfo *TTI = nullptr; |
| const ARMSubtarget *ST = nullptr; |
| |
| public: |
| static char ID; |
| |
| MVETailPredication() : LoopPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager&) override; |
| |
| private: |
| /// Perform the relevant checks on the loop and convert if possible. |
| bool TryConvert(Value *TripCount); |
| |
| /// Return whether this is a vectorized loop, that contains masked |
| /// load/stores. |
| bool IsPredicatedVectorLoop(); |
| |
| /// Perform checks on the arguments of @llvm.get.active.lane.mask |
| /// intrinsic: check if the first is a loop induction variable, and for the |
| /// the second check that no overflow can occur in the expression that use |
| /// this backedge-taken count. |
| bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, |
| FixedVectorType *VecTy); |
| |
| /// Insert the intrinsic to represent the effect of tail predication. |
| void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, |
| FixedVectorType *VecTy); |
| |
| /// Rematerialize the iteration count in exit blocks, which enables |
| /// ARMLowOverheadLoops to better optimise away loop update statements inside |
| /// hardware-loops. |
| void RematerializeIterCount(); |
| }; |
| |
| } // end namespace |
| |
| static bool IsDecrement(Instruction &I) { |
| auto *Call = dyn_cast<IntrinsicInst>(&I); |
| if (!Call) |
| return false; |
| |
| Intrinsic::ID ID = Call->getIntrinsicID(); |
| return ID == Intrinsic::loop_decrement_reg; |
| } |
| |
| static bool IsMasked(Instruction *I) { |
| auto *Call = dyn_cast<IntrinsicInst>(I); |
| if (!Call) |
| return false; |
| |
| Intrinsic::ID ID = Call->getIntrinsicID(); |
| // TODO: Support gather/scatter expand/compress operations. |
| return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; |
| } |
| |
| bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { |
| if (skipLoop(L) || !EnableTailPredication) |
| return false; |
| |
| MaskedInsts.clear(); |
| Function &F = *L->getHeader()->getParent(); |
| auto &TPC = getAnalysis<TargetPassConfig>(); |
| auto &TM = TPC.getTM<TargetMachine>(); |
| ST = &TM.getSubtarget<ARMSubtarget>(F); |
| TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| this->L = L; |
| |
| // The MVE and LOB extensions are combined to enable tail-predication, but |
| // there's nothing preventing us from generating VCTP instructions for v8.1m. |
| if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); |
| return false; |
| } |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) |
| return false; |
| |
| auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { |
| for (auto &I : *BB) { |
| auto *Call = dyn_cast<IntrinsicInst>(&I); |
| if (!Call) |
| continue; |
| |
| Intrinsic::ID ID = Call->getIntrinsicID(); |
| if (ID == Intrinsic::set_loop_iterations || |
| ID == Intrinsic::test_set_loop_iterations) |
| return cast<IntrinsicInst>(&I); |
| } |
| return nullptr; |
| }; |
| |
| // Look for the hardware loop intrinsic that sets the iteration count. |
| IntrinsicInst *Setup = FindLoopIterations(Preheader); |
| |
| // The test.set iteration could live in the pre-preheader. |
| if (!Setup) { |
| if (!Preheader->getSinglePredecessor()) |
| return false; |
| Setup = FindLoopIterations(Preheader->getSinglePredecessor()); |
| if (!Setup) |
| return false; |
| } |
| |
| // Search for the hardware loop intrinic that decrements the loop counter. |
| IntrinsicInst *Decrement = nullptr; |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| if (IsDecrement(I)) { |
| Decrement = cast<IntrinsicInst>(&I); |
| break; |
| } |
| } |
| } |
| |
| if (!Decrement) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" |
| << *Decrement << "\n"); |
| |
| if (!TryConvert(Setup->getArgOperand(0))) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static FixedVectorType *getVectorType(IntrinsicInst *I) { |
| unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; |
| auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); |
| auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType()); |
| assert(VecTy && "No scalable vectors expected here"); |
| return VecTy; |
| } |
| |
| bool MVETailPredication::IsPredicatedVectorLoop() { |
| // Check that the loop contains at least one masked load/store intrinsic. |
| // We only support 'normal' vector instructions - other than masked |
| // load/stores. |
| bool ActiveLaneMask = false; |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| auto *Int = dyn_cast<IntrinsicInst>(&I); |
| if (!Int) |
| continue; |
| |
| switch (Int->getIntrinsicID()) { |
| case Intrinsic::get_active_lane_mask: |
| ActiveLaneMask = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::sadd_sat: |
| case Intrinsic::uadd_sat: |
| case Intrinsic::ssub_sat: |
| case Intrinsic::usub_sat: |
| continue; |
| case Intrinsic::fma: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::round: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::fabs: |
| if (ST->hasMVEFloatOps()) |
| continue; |
| LLVM_FALLTHROUGH; |
| default: |
| break; |
| } |
| |
| if (IsMasked(&I)) { |
| auto *VecTy = getVectorType(Int); |
| unsigned Lanes = VecTy->getNumElements(); |
| unsigned ElementWidth = VecTy->getScalarSizeInBits(); |
| // MVE vectors are 128-bit, but don't support 128 x i1. |
| // TODO: Can we support vectors larger than 128-bits? |
| unsigned MaxWidth = TTI->getRegisterBitWidth(true); |
| if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) |
| return false; |
| MaskedInsts.push_back(cast<IntrinsicInst>(&I)); |
| continue; |
| } |
| |
| for (const Use &U : Int->args()) { |
| if (isa<VectorType>(U->getType())) |
| return false; |
| } |
| } |
| } |
| |
| if (!ActiveLaneMask) { |
| LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n"); |
| return false; |
| } |
| return !MaskedInsts.empty(); |
| } |
| |
| // Look through the exit block to see whether there's a duplicate predicate |
| // instruction. This can happen when we need to perform a select on values |
| // from the last and previous iteration. Instead of doing a straight |
| // replacement of that predicate with the vctp, clone the vctp and place it |
| // in the block. This means that the VPR doesn't have to be live into the |
| // exit block which should make it easier to convert this loop into a proper |
| // tail predicated loop. |
| static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) { |
| BasicBlock *Exit = L->getUniqueExitBlock(); |
| if (!Exit) { |
| LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); |
| return; |
| } |
| |
| // Drop references and add operands to check for dead. |
| SmallPtrSet<Instruction*, 4> Dead; |
| while (!MaybeDead.empty()) { |
| auto *I = MaybeDead.front(); |
| MaybeDead.remove(I); |
| if (I->hasNUsesOrMore(1)) |
| continue; |
| |
| for (auto &U : I->operands()) |
| if (auto *OpI = dyn_cast<Instruction>(U)) |
| MaybeDead.insert(OpI); |
| |
| Dead.insert(I); |
| } |
| |
| for (auto *I : Dead) { |
| LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); |
| I->eraseFromParent(); |
| } |
| |
| for (auto I : L->blocks()) |
| DeleteDeadPHIs(I); |
| } |
| |
| // The active lane intrinsic has this form: |
| // |
| // @llvm.get.active.lane.mask(IV, BTC) |
| // |
| // Here we perform checks that this intrinsic behaves as expected, |
| // which means: |
| // |
| // 1) The element count, which is calculated with BTC + 1, cannot overflow. |
| // 2) The element count needs to be sufficiently large that the decrement of |
| // element counter doesn't overflow, which means that we need to prove: |
| // ceil(ElementCount / VectorWidth) >= TripCount |
| // by rounding up ElementCount up: |
| // ((ElementCount + (VectorWidth - 1)) / VectorWidth |
| // and evaluate if expression isKnownNonNegative: |
| // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
| // 3) The IV must be an induction phi with an increment equal to the |
| // vector width. |
| bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, |
| Value *TripCount, FixedVectorType *VecTy) { |
| bool ForceTailPredication = |
| EnableTailPredication == TailPredication::ForceEnabledNoReductions || |
| EnableTailPredication == TailPredication::ForceEnabled; |
| // 1) Test whether entry to the loop is protected by a conditional |
| // BTC + 1 < 0. In other words, if the scalar trip count overflows, |
| // becomes negative, we shouldn't enter the loop and creating |
| // tripcount expression BTC + 1 is not safe. So, check that BTC |
| // isn't max. This is evaluated in unsigned, because the semantics |
| // of @get.active.lane.mask is a ULE comparison. |
| |
| int VectorWidth = VecTy->getNumElements(); |
| auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1); |
| auto *BTC = SE->getSCEV(BackedgeTakenCount); |
| |
| if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) && |
| !ForceTailPredication) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: "; |
| BTC->dump()); |
| return false; |
| } |
| |
| // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow: |
| // |
| // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
| // |
| // 2.1) First prove overflow can't happen in: |
| // |
| // ElementCount + (VectorWidth - 1) |
| // |
| // Because of a lack of context, it is difficult to get a useful bounds on |
| // this expression. But since ElementCount uses the same variables as the |
| // TripCount (TC), for which we can find meaningful value ranges, we use that |
| // instead and assert that: |
| // |
| // upperbound(TC) <= UINT_MAX - VectorWidth |
| // |
| auto *TC = SE->getSCEV(TripCount); |
| unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits(); |
| auto Diff = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth); |
| uint64_t MaxMinusVW = Diff.getZExtValue(); |
| uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue(); |
| |
| if (UpperboundTC > MaxMinusVW && !ForceTailPredication) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n"; |
| dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n"; |
| dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";); |
| return false; |
| } |
| |
| // 2.2) Make sure overflow doesn't happen in final expression: |
| // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount, |
| // To do this, compare the full ranges of these subexpressions: |
| // |
| // Range(Ceil) <= Range(TC) |
| // |
| // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime |
| // values (and not constants), we have to compensate for the lowerbound value |
| // range to be off by 1. The reason is that BTC lives in the preheader in |
| // this form: |
| // |
| // %trip.count.minus = add nsw nuw i32 %N, -1 |
| // |
| // For the loop to be executed, %N has to be >= 1 and as a result the value |
| // range of %trip.count.minus has a lower bound of 0. Value %TC has this form: |
| // |
| // %5 = add nuw nsw i32 %4, 1 |
| // call void @llvm.set.loop.iterations.i32(i32 %5) |
| // |
| // where %5 is some expression using %N, which needs to have a lower bound of |
| // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set, |
| // we first add 0 to TC such that we can do the <= comparison on both sets. |
| // |
| auto *One = SE->getOne(TripCount->getType()); |
| // ElementCount = BTC + 1 |
| auto *ElementCount = SE->getAddExpr(BTC, One); |
| // Tmp = ElementCount + (VW-1) |
| auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount, |
| SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); |
| // Ceil = ElementCount + (VW-1) / VW |
| auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, |
| SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth))); |
| |
| ConstantRange RangeCeil = SE->getSignedRange(Ceil) ; |
| ConstantRange RangeTC = SE->getSignedRange(TC) ; |
| if (!RangeTC.isSingleElement()) { |
| auto ZeroRange = |
| ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0)); |
| RangeTC = RangeTC.unionWith(ZeroRange); |
| } |
| if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n"); |
| return false; |
| } |
| |
| // 3) Find out if IV is an induction phi. Note that We can't use Loop |
| // helpers here to get the induction variable, because the hardware loop is |
| // no longer in loopsimplify form, and also the hwloop intrinsic use a |
| // different counter. Using SCEV, we check that the induction is of the |
| // form i = i + 4, where the increment must be equal to the VectorWidth. |
| auto *IV = ActiveLaneMask->getOperand(0); |
| auto *IVExpr = SE->getSCEV(IV); |
| auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); |
| if (!AddExpr) { |
| LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); |
| return false; |
| } |
| // Check that this AddRec is associated with this loop. |
| if (AddExpr->getLoop() != L) { |
| LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); |
| return false; |
| } |
| auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); |
| if (!Step) { |
| LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; |
| AddExpr->getOperand(1)->dump()); |
| return false; |
| } |
| auto StepValue = Step->getValue()->getSExtValue(); |
| if (VectorWidth == StepValue) |
| return true; |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match " |
| "vector width " << VectorWidth << "\n"); |
| |
| return false; |
| } |
| |
| // Materialize NumElements in the preheader block. |
| static Value *getNumElements(BasicBlock *Preheader, Value *BTC) { |
| // First, check the preheader if it not already exist: |
| // |
| // preheader: |
| // %BTC = add i32 %N, -1 |
| // .. |
| // vector.body: |
| // |
| // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1, |
| // but instead can just return %N. |
| for (auto &I : *Preheader) { |
| if (I.getOpcode() != Instruction::Add || &I != BTC) |
| continue; |
| ConstantInt *MinusOne = nullptr; |
| if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1)))) |
| continue; |
| if (MinusOne->getSExtValue() == -1) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n"); |
| return I.getOperand(0); |
| } |
| } |
| |
| // But we do need to materialise BTC if it is not already there, |
| // e.g. if it is a constant. |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| Value *NumElements = Builder.CreateAdd(BTC, |
| ConstantInt::get(BTC->getType(), 1), "num.elements"); |
| LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n"); |
| return NumElements; |
| } |
| |
| void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, |
| Value *TripCount, FixedVectorType *VecTy) { |
| IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); |
| Module *M = L->getHeader()->getModule(); |
| Type *Ty = IntegerType::get(M->getContext(), 32); |
| unsigned VectorWidth = VecTy->getNumElements(); |
| |
| // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand, |
| // is one less than the trip count. So we need to find or create |
| // %num.elements = %BTC + 1 in the preheader. |
| Value *BTC = ActiveLaneMask->getOperand(1); |
| Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); |
| Value *NumElements = getNumElements(L->getLoopPreheader(), BTC); |
| |
| // Insert a phi to count the number of elements processed by the loop. |
| Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); |
| PHINode *Processed = Builder.CreatePHI(Ty, 2); |
| Processed->addIncoming(NumElements, L->getLoopPreheader()); |
| |
| // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus |
| // represent the effect of tail predication. |
| Builder.SetInsertPoint(ActiveLaneMask); |
| ConstantInt *Factor = |
| ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); |
| |
| Intrinsic::ID VCTPID; |
| switch (VectorWidth) { |
| default: |
| llvm_unreachable("unexpected number of lanes"); |
| case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; |
| case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; |
| case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; |
| |
| // FIXME: vctp64 currently not supported because the predicate |
| // vector wants to be <2 x i1>, but v2i1 is not a legal MVE |
| // type, so problems happen at isel time. |
| // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics |
| // purposes, but takes a v4i1 instead of a v2i1. |
| } |
| Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); |
| Value *VCTPCall = Builder.CreateCall(VCTP, Processed); |
| ActiveLaneMask->replaceAllUsesWith(VCTPCall); |
| |
| // Add the incoming value to the new phi. |
| // TODO: This add likely already exists in the loop. |
| Value *Remaining = Builder.CreateSub(Processed, Factor); |
| Processed->addIncoming(Remaining, L->getLoopLatch()); |
| LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " |
| << *Processed << "\n" |
| << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); |
| } |
| |
| bool MVETailPredication::TryConvert(Value *TripCount) { |
| if (!IsPredicatedVectorLoop()) { |
| LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); |
| SetVector<Instruction*> Predicates; |
| |
| // Walk through the masked intrinsics and try to find whether the predicate |
| // operand is generated by intrinsic @llvm.get.active.lane.mask(). |
| for (auto *I : MaskedInsts) { |
| unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3; |
| auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); |
| if (!Predicate || Predicates.count(Predicate)) |
| continue; |
| |
| auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate); |
| if (!ActiveLaneMask || |
| ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) |
| continue; |
| |
| Predicates.insert(Predicate); |
| LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " |
| << *ActiveLaneMask << "\n"); |
| |
| auto *VecTy = getVectorType(I); |
| if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) { |
| LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); |
| InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy); |
| } |
| |
| Cleanup(Predicates, L); |
| return true; |
| } |
| |
| Pass *llvm::createMVETailPredicationPass() { |
| return new MVETailPredication(); |
| } |
| |
| char MVETailPredication::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
| INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |