| //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // llvm-profdata merges .profdata files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Object/Binary.h" |
| #include "llvm/ProfileData/InstrProfCorrelator.h" |
| #include "llvm/ProfileData/InstrProfReader.h" |
| #include "llvm/ProfileData/InstrProfWriter.h" |
| #include "llvm/ProfileData/MemProf.h" |
| #include "llvm/ProfileData/ProfileCommon.h" |
| #include "llvm/ProfileData/RawMemProfReader.h" |
| #include "llvm/ProfileData/SampleProfReader.h" |
| #include "llvm/ProfileData/SampleProfWriter.h" |
| #include "llvm/Support/BalancedPartitioning.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Discriminator.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/InitLLVM.h" |
| #include "llvm/Support/LLVMDriver.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/ThreadPool.h" |
| #include "llvm/Support/Threading.h" |
| #include "llvm/Support/VirtualFileSystem.h" |
| #include "llvm/Support/WithColor.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <optional> |
| #include <queue> |
| |
| using namespace llvm; |
| |
| // We use this string to indicate that there are |
| // multiple static functions map to the same name. |
| const std::string DuplicateNameStr = "----"; |
| |
| enum ProfileFormat { |
| PF_None = 0, |
| PF_Text, |
| PF_Compact_Binary, // Deprecated |
| PF_Ext_Binary, |
| PF_GCC, |
| PF_Binary |
| }; |
| |
| enum class ShowFormat { Text, Json, Yaml }; |
| |
| static void warn(Twine Message, std::string Whence = "", |
| std::string Hint = "") { |
| WithColor::warning(); |
| if (!Whence.empty()) |
| errs() << Whence << ": "; |
| errs() << Message << "\n"; |
| if (!Hint.empty()) |
| WithColor::note() << Hint << "\n"; |
| } |
| |
| static void warn(Error E, StringRef Whence = "") { |
| if (E.isA<InstrProfError>()) { |
| handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { |
| warn(IPE.message(), std::string(Whence), std::string("")); |
| }); |
| } |
| } |
| |
| static void exitWithError(Twine Message, std::string Whence = "", |
| std::string Hint = "") { |
| WithColor::error(); |
| if (!Whence.empty()) |
| errs() << Whence << ": "; |
| errs() << Message << "\n"; |
| if (!Hint.empty()) |
| WithColor::note() << Hint << "\n"; |
| ::exit(1); |
| } |
| |
| static void exitWithError(Error E, StringRef Whence = "") { |
| if (E.isA<InstrProfError>()) { |
| handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { |
| instrprof_error instrError = IPE.get(); |
| StringRef Hint = ""; |
| if (instrError == instrprof_error::unrecognized_format) { |
| // Hint in case user missed specifying the profile type. |
| Hint = "Perhaps you forgot to use the --sample or --memory option?"; |
| } |
| exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); |
| }); |
| return; |
| } |
| |
| exitWithError(toString(std::move(E)), std::string(Whence)); |
| } |
| |
| static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { |
| exitWithError(EC.message(), std::string(Whence)); |
| } |
| |
| namespace { |
| enum ProfileKinds { instr, sample, memory }; |
| enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; |
| } |
| |
| static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, |
| StringRef Whence = "") { |
| if (FailMode == failIfAnyAreInvalid) |
| exitWithErrorCode(EC, Whence); |
| else |
| warn(EC.message(), std::string(Whence)); |
| } |
| |
| static void handleMergeWriterError(Error E, StringRef WhenceFile = "", |
| StringRef WhenceFunction = "", |
| bool ShowHint = true) { |
| if (!WhenceFile.empty()) |
| errs() << WhenceFile << ": "; |
| if (!WhenceFunction.empty()) |
| errs() << WhenceFunction << ": "; |
| |
| auto IPE = instrprof_error::success; |
| E = handleErrors(std::move(E), |
| [&IPE](std::unique_ptr<InstrProfError> E) -> Error { |
| IPE = E->get(); |
| return Error(std::move(E)); |
| }); |
| errs() << toString(std::move(E)) << "\n"; |
| |
| if (ShowHint) { |
| StringRef Hint = ""; |
| if (IPE != instrprof_error::success) { |
| switch (IPE) { |
| case instrprof_error::hash_mismatch: |
| case instrprof_error::count_mismatch: |
| case instrprof_error::value_site_count_mismatch: |
| Hint = "Make sure that all profile data to be merged is generated " |
| "from the same binary."; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!Hint.empty()) |
| errs() << Hint << "\n"; |
| } |
| } |
| |
| namespace { |
| /// A remapper from original symbol names to new symbol names based on a file |
| /// containing a list of mappings from old name to new name. |
| class SymbolRemapper { |
| std::unique_ptr<MemoryBuffer> File; |
| DenseMap<StringRef, StringRef> RemappingTable; |
| |
| public: |
| /// Build a SymbolRemapper from a file containing a list of old/new symbols. |
| static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { |
| auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); |
| if (!BufOrError) |
| exitWithErrorCode(BufOrError.getError(), InputFile); |
| |
| auto Remapper = std::make_unique<SymbolRemapper>(); |
| Remapper->File = std::move(BufOrError.get()); |
| |
| for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); |
| !LineIt.is_at_eof(); ++LineIt) { |
| std::pair<StringRef, StringRef> Parts = LineIt->split(' '); |
| if (Parts.first.empty() || Parts.second.empty() || |
| Parts.second.count(' ')) { |
| exitWithError("unexpected line in remapping file", |
| (InputFile + ":" + Twine(LineIt.line_number())).str(), |
| "expected 'old_symbol new_symbol'"); |
| } |
| Remapper->RemappingTable.insert(Parts); |
| } |
| return Remapper; |
| } |
| |
| /// Attempt to map the given old symbol into a new symbol. |
| /// |
| /// \return The new symbol, or \p Name if no such symbol was found. |
| StringRef operator()(StringRef Name) { |
| StringRef New = RemappingTable.lookup(Name); |
| return New.empty() ? Name : New; |
| } |
| }; |
| } |
| |
| struct WeightedFile { |
| std::string Filename; |
| uint64_t Weight; |
| }; |
| typedef SmallVector<WeightedFile, 5> WeightedFileVector; |
| |
| /// Keep track of merged data and reported errors. |
| struct WriterContext { |
| std::mutex Lock; |
| InstrProfWriter Writer; |
| std::vector<std::pair<Error, std::string>> Errors; |
| std::mutex &ErrLock; |
| SmallSet<instrprof_error, 4> &WriterErrorCodes; |
| |
| WriterContext(bool IsSparse, std::mutex &ErrLock, |
| SmallSet<instrprof_error, 4> &WriterErrorCodes, |
| uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) |
| : Writer(IsSparse, ReservoirSize, MaxTraceLength), ErrLock(ErrLock), |
| WriterErrorCodes(WriterErrorCodes) {} |
| }; |
| |
| /// Computer the overlap b/w profile BaseFilename and TestFileName, |
| /// and store the program level result to Overlap. |
| static void overlapInput(const std::string &BaseFilename, |
| const std::string &TestFilename, WriterContext *WC, |
| OverlapStats &Overlap, |
| const OverlapFuncFilters &FuncFilter, |
| raw_fd_ostream &OS, bool IsCS) { |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); |
| if (Error E = ReaderOrErr.takeError()) { |
| // Skip the empty profiles by returning sliently. |
| auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); |
| if (ErrorCode != instrprof_error::empty_raw_profile) |
| WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), |
| TestFilename); |
| return; |
| } |
| |
| auto Reader = std::move(ReaderOrErr.get()); |
| for (auto &I : *Reader) { |
| OverlapStats FuncOverlap(OverlapStats::FunctionLevel); |
| FuncOverlap.setFuncInfo(I.Name, I.Hash); |
| |
| WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); |
| FuncOverlap.dump(OS); |
| } |
| } |
| |
| /// Load an input into a writer context. |
| static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, |
| const InstrProfCorrelator *Correlator, |
| const StringRef ProfiledBinary, WriterContext *WC) { |
| std::unique_lock<std::mutex> CtxGuard{WC->Lock}; |
| |
| // Copy the filename, because llvm::ThreadPool copied the input "const |
| // WeightedFile &" by value, making a reference to the filename within it |
| // invalid outside of this packaged task. |
| std::string Filename = Input.Filename; |
| |
| using ::llvm::memprof::RawMemProfReader; |
| if (RawMemProfReader::hasFormat(Input.Filename)) { |
| auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); |
| if (!ReaderOrErr) { |
| exitWithError(ReaderOrErr.takeError(), Input.Filename); |
| } |
| std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); |
| // Check if the profile types can be merged, e.g. clang frontend profiles |
| // should not be merged with memprof profiles. |
| if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { |
| consumeError(std::move(E)); |
| WC->Errors.emplace_back( |
| make_error<StringError>( |
| "Cannot merge MemProf profile with Clang generated profile.", |
| std::error_code()), |
| Filename); |
| return; |
| } |
| |
| auto MemProfError = [&](Error E) { |
| auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); |
| WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), |
| Filename); |
| }; |
| |
| // Add the frame mappings into the writer context. |
| const auto &IdToFrame = Reader->getFrameMapping(); |
| for (const auto &I : IdToFrame) { |
| bool Succeeded = WC->Writer.addMemProfFrame( |
| /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); |
| // If we weren't able to add the frame mappings then it doesn't make sense |
| // to try to add the records from this profile. |
| if (!Succeeded) |
| return; |
| } |
| const auto &FunctionProfileData = Reader->getProfileData(); |
| // Add the memprof records into the writer context. |
| for (const auto &I : FunctionProfileData) { |
| WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second); |
| } |
| return; |
| } |
| |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator); |
| if (Error E = ReaderOrErr.takeError()) { |
| // Skip the empty profiles by returning silently. |
| auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); |
| if (ErrCode != instrprof_error::empty_raw_profile) |
| WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), |
| Filename); |
| return; |
| } |
| |
| auto Reader = std::move(ReaderOrErr.get()); |
| if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { |
| consumeError(std::move(E)); |
| WC->Errors.emplace_back( |
| make_error<StringError>( |
| "Merge IR generated profile with Clang generated profile.", |
| std::error_code()), |
| Filename); |
| return; |
| } |
| |
| for (auto &I : *Reader) { |
| if (Remapper) |
| I.Name = (*Remapper)(I.Name); |
| const StringRef FuncName = I.Name; |
| bool Reported = false; |
| WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { |
| if (Reported) { |
| consumeError(std::move(E)); |
| return; |
| } |
| Reported = true; |
| // Only show hint the first time an error occurs. |
| auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); |
| std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; |
| bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; |
| handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), |
| Input.Filename, FuncName, firstTime); |
| }); |
| } |
| |
| if (Reader->hasTemporalProfile()) { |
| auto &Traces = Reader->getTemporalProfTraces(Input.Weight); |
| if (!Traces.empty()) |
| WC->Writer.addTemporalProfileTraces( |
| Traces, Reader->getTemporalProfTraceStreamSize()); |
| } |
| if (Reader->hasError()) { |
| if (Error E = Reader->getError()) |
| WC->Errors.emplace_back(std::move(E), Filename); |
| } |
| |
| std::vector<llvm::object::BuildID> BinaryIds; |
| if (Error E = Reader->readBinaryIds(BinaryIds)) |
| WC->Errors.emplace_back(std::move(E), Filename); |
| WC->Writer.addBinaryIds(BinaryIds); |
| } |
| |
| /// Merge the \p Src writer context into \p Dst. |
| static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { |
| for (auto &ErrorPair : Src->Errors) |
| Dst->Errors.push_back(std::move(ErrorPair)); |
| Src->Errors.clear(); |
| |
| if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) |
| exitWithError(std::move(E)); |
| |
| Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { |
| auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); |
| std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; |
| bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; |
| if (firstTime) |
| warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); |
| }); |
| } |
| |
| static void writeInstrProfile(StringRef OutputFilename, |
| ProfileFormat OutputFormat, |
| InstrProfWriter &Writer) { |
| std::error_code EC; |
| raw_fd_ostream Output(OutputFilename.data(), EC, |
| OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF |
| : sys::fs::OF_None); |
| if (EC) |
| exitWithErrorCode(EC, OutputFilename); |
| |
| if (OutputFormat == PF_Text) { |
| if (Error E = Writer.writeText(Output)) |
| warn(std::move(E)); |
| } else { |
| if (Output.is_displayed()) |
| exitWithError("cannot write a non-text format profile to the terminal"); |
| if (Error E = Writer.write(Output)) |
| warn(std::move(E)); |
| } |
| } |
| |
| static void |
| mergeInstrProfile(const WeightedFileVector &Inputs, StringRef DebugInfoFilename, |
| SymbolRemapper *Remapper, StringRef OutputFilename, |
| ProfileFormat OutputFormat, uint64_t TraceReservoirSize, |
| uint64_t MaxTraceLength, bool OutputSparse, |
| unsigned NumThreads, FailureMode FailMode, |
| const StringRef ProfiledBinary) { |
| if (OutputFormat == PF_Compact_Binary) |
| exitWithError("Compact Binary is deprecated"); |
| if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && |
| OutputFormat != PF_Text) |
| exitWithError("unknown format is specified"); |
| |
| std::unique_ptr<InstrProfCorrelator> Correlator; |
| if (!DebugInfoFilename.empty()) { |
| if (auto Err = |
| InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator)) |
| exitWithError(std::move(Err), DebugInfoFilename); |
| if (auto Err = Correlator->correlateProfileData()) |
| exitWithError(std::move(Err), DebugInfoFilename); |
| } |
| |
| std::mutex ErrorLock; |
| SmallSet<instrprof_error, 4> WriterErrorCodes; |
| |
| // If NumThreads is not specified, auto-detect a good default. |
| if (NumThreads == 0) |
| NumThreads = std::min(hardware_concurrency().compute_thread_count(), |
| unsigned((Inputs.size() + 1) / 2)); |
| |
| // Initialize the writer contexts. |
| SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; |
| for (unsigned I = 0; I < NumThreads; ++I) |
| Contexts.emplace_back(std::make_unique<WriterContext>( |
| OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, |
| MaxTraceLength)); |
| |
| if (NumThreads == 1) { |
| for (const auto &Input : Inputs) |
| loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, |
| Contexts[0].get()); |
| } else { |
| ThreadPool Pool(hardware_concurrency(NumThreads)); |
| |
| // Load the inputs in parallel (N/NumThreads serial steps). |
| unsigned Ctx = 0; |
| for (const auto &Input : Inputs) { |
| Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, |
| Contexts[Ctx].get()); |
| Ctx = (Ctx + 1) % NumThreads; |
| } |
| Pool.wait(); |
| |
| // Merge the writer contexts together (~ lg(NumThreads) serial steps). |
| unsigned Mid = Contexts.size() / 2; |
| unsigned End = Contexts.size(); |
| assert(Mid > 0 && "Expected more than one context"); |
| do { |
| for (unsigned I = 0; I < Mid; ++I) |
| Pool.async(mergeWriterContexts, Contexts[I].get(), |
| Contexts[I + Mid].get()); |
| Pool.wait(); |
| if (End & 1) { |
| Pool.async(mergeWriterContexts, Contexts[0].get(), |
| Contexts[End - 1].get()); |
| Pool.wait(); |
| } |
| End = Mid; |
| Mid /= 2; |
| } while (Mid > 0); |
| } |
| |
| // Handle deferred errors encountered during merging. If the number of errors |
| // is equal to the number of inputs the merge failed. |
| unsigned NumErrors = 0; |
| for (std::unique_ptr<WriterContext> &WC : Contexts) { |
| for (auto &ErrorPair : WC->Errors) { |
| ++NumErrors; |
| warn(toString(std::move(ErrorPair.first)), ErrorPair.second); |
| } |
| } |
| if (NumErrors == Inputs.size() || |
| (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) |
| exitWithError("no profile can be merged"); |
| |
| writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); |
| } |
| |
| /// The profile entry for a function in instrumentation profile. |
| struct InstrProfileEntry { |
| uint64_t MaxCount = 0; |
| uint64_t NumEdgeCounters = 0; |
| float ZeroCounterRatio = 0.0; |
| InstrProfRecord *ProfRecord; |
| InstrProfileEntry(InstrProfRecord *Record); |
| InstrProfileEntry() = default; |
| }; |
| |
| InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { |
| ProfRecord = Record; |
| uint64_t CntNum = Record->Counts.size(); |
| uint64_t ZeroCntNum = 0; |
| for (size_t I = 0; I < CntNum; ++I) { |
| MaxCount = std::max(MaxCount, Record->Counts[I]); |
| ZeroCntNum += !Record->Counts[I]; |
| } |
| ZeroCounterRatio = (float)ZeroCntNum / CntNum; |
| NumEdgeCounters = CntNum; |
| } |
| |
| /// Either set all the counters in the instr profile entry \p IFE to |
| /// -1 / -2 /in order to drop the profile or scale up the |
| /// counters in \p IFP to be above hot / cold threshold. We use |
| /// the ratio of zero counters in the profile of a function to |
| /// decide the profile is helpful or harmful for performance, |
| /// and to choose whether to scale up or drop it. |
| static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, |
| uint64_t HotInstrThreshold, |
| uint64_t ColdInstrThreshold, |
| float ZeroCounterThreshold) { |
| InstrProfRecord *ProfRecord = IFE.ProfRecord; |
| if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { |
| // If all or most of the counters of the function are zero, the |
| // profile is unaccountable and should be dropped. Reset all the |
| // counters to be -1 / -2 and PGO profile-use will drop the profile. |
| // All counters being -1 also implies that the function is hot so |
| // PGO profile-use will also set the entry count metadata to be |
| // above hot threshold. |
| // All counters being -2 implies that the function is warm so |
| // PGO profile-use will also set the entry count metadata to be |
| // above cold threshold. |
| auto Kind = |
| (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); |
| ProfRecord->setPseudoCount(Kind); |
| return; |
| } |
| |
| // Scale up the MaxCount to be multiple times above hot / cold threshold. |
| const unsigned MultiplyFactor = 3; |
| uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); |
| uint64_t Numerator = Threshold * MultiplyFactor; |
| |
| // Make sure Threshold for warm counters is below the HotInstrThreshold. |
| if (!SetToHot && Threshold >= HotInstrThreshold) { |
| Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; |
| } |
| |
| uint64_t Denominator = IFE.MaxCount; |
| if (Numerator <= Denominator) |
| return; |
| ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { |
| warn(toString(make_error<InstrProfError>(E))); |
| }); |
| } |
| |
| const uint64_t ColdPercentileIdx = 15; |
| const uint64_t HotPercentileIdx = 11; |
| |
| using sampleprof::FSDiscriminatorPass; |
| |
| // Internal options to set FSDiscriminatorPass. Used in merge and show |
| // commands. |
| static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( |
| "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, |
| cl::desc("Zero out the discriminator bits for the FS discrimiantor " |
| "pass beyond this value. The enum values are defined in " |
| "Support/Discriminator.h"), |
| cl::values(clEnumVal(Base, "Use base discriminators only"), |
| clEnumVal(Pass1, "Use base and pass 1 discriminators"), |
| clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), |
| clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), |
| clEnumVal(PassLast, "Use all discriminator bits (default)"))); |
| |
| static unsigned getDiscriminatorMask() { |
| return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); |
| } |
| |
| /// Adjust the instr profile in \p WC based on the sample profile in |
| /// \p Reader. |
| static void |
| adjustInstrProfile(std::unique_ptr<WriterContext> &WC, |
| std::unique_ptr<sampleprof::SampleProfileReader> &Reader, |
| unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, |
| unsigned InstrProfColdThreshold) { |
| // Function to its entry in instr profile. |
| StringMap<InstrProfileEntry> InstrProfileMap; |
| StringMap<StringRef> StaticFuncMap; |
| InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); |
| |
| auto checkSampleProfileHasFUnique = [&Reader]() { |
| for (const auto &PD : Reader->getProfiles()) { |
| auto &FContext = PD.first; |
| if (FContext.toString().find(FunctionSamples::UniqSuffix) != |
| std::string::npos) { |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); |
| |
| auto buildStaticFuncMap = [&StaticFuncMap, |
| SampleProfileHasFUnique](const StringRef Name) { |
| std::string Prefixes[] = {".cpp:", "cc:", ".c:", ".hpp:", ".h:"}; |
| size_t PrefixPos = StringRef::npos; |
| for (auto &Prefix : Prefixes) { |
| PrefixPos = Name.find_insensitive(Prefix); |
| if (PrefixPos == StringRef::npos) |
| continue; |
| PrefixPos += Prefix.size(); |
| break; |
| } |
| |
| if (PrefixPos == StringRef::npos) { |
| return; |
| } |
| |
| StringRef NewName = Name.drop_front(PrefixPos); |
| StringRef FName = Name.substr(0, PrefixPos - 1); |
| if (NewName.size() == 0) { |
| return; |
| } |
| |
| // This name should have a static linkage. |
| size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); |
| bool ProfileHasFUnique = (PostfixPos != StringRef::npos); |
| |
| // If sample profile and instrumented profile do not agree on symbol |
| // uniqification. |
| if (SampleProfileHasFUnique != ProfileHasFUnique) { |
| // If instrumented profile uses -funique-internal-linakge-symbols, |
| // we need to trim the name. |
| if (ProfileHasFUnique) { |
| NewName = NewName.substr(0, PostfixPos); |
| } else { |
| // If sample profile uses -funique-internal-linakge-symbols, |
| // we build the map. |
| std::string NStr = |
| NewName.str() + getUniqueInternalLinkagePostfix(FName); |
| NewName = StringRef(NStr); |
| StaticFuncMap[NewName] = Name; |
| return; |
| } |
| } |
| |
| if (!StaticFuncMap.contains(NewName)) { |
| StaticFuncMap[NewName] = Name; |
| } else { |
| StaticFuncMap[NewName] = DuplicateNameStr; |
| } |
| }; |
| |
| // We need to flatten the SampleFDO profile as the InstrFDO |
| // profile does not have inlined callsite profiles. |
| // One caveat is the pre-inlined function -- their samples |
| // should be collapsed into the caller function. |
| // Here we do a DFS traversal to get the flatten profile |
| // info: the sum of entrycount and the max of maxcount. |
| // Here is the algorithm: |
| // recursive (FS, root_name) { |
| // name = FS->getName(); |
| // get samples for FS; |
| // if (InstrProf.find(name) { |
| // root_name = name; |
| // } else { |
| // if (name is in static_func map) { |
| // root_name = static_name; |
| // } |
| // } |
| // update the Map entry for root_name; |
| // for (subfs: FS) { |
| // recursive(subfs, root_name); |
| // } |
| // } |
| // |
| // Here is an example. |
| // |
| // SampleProfile: |
| // foo:12345:1000 |
| // 1: 1000 |
| // 2.1: 1000 |
| // 15: 5000 |
| // 4: bar:1000 |
| // 1: 1000 |
| // 2: goo:3000 |
| // 1: 3000 |
| // 8: bar:40000 |
| // 1: 10000 |
| // 2: goo:30000 |
| // 1: 30000 |
| // |
| // InstrProfile has two entries: |
| // foo |
| // bar.cc:bar |
| // |
| // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: |
| // {"foo", {1000, 5000}} |
| // {"bar.cc:bar", {11000, 30000}} |
| // |
| // foo's has an entry count of 1000, and max body count of 5000. |
| // bar.cc:bar has an entry count of 11000 (sum two callsites of 1000 and |
| // 10000), and max count of 30000 (from the callsite in line 8). |
| // |
| // Note that goo's count will remain in bar.cc:bar() as it does not have an |
| // entry in InstrProfile. |
| DenseMap<StringRef, std::pair<uint64_t, uint64_t>> FlattenSampleMap; |
| auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, |
| &InstrProfileMap](const FunctionSamples &FS, |
| const StringRef &RootName) { |
| auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, |
| const StringRef &RootName, |
| auto &BuildImpl) -> void { |
| const StringRef &Name = FS.getName(); |
| const StringRef *NewRootName = &RootName; |
| uint64_t EntrySample = FS.getHeadSamplesEstimate(); |
| uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); |
| |
| auto It = InstrProfileMap.find(Name); |
| if (It != InstrProfileMap.end()) { |
| NewRootName = &Name; |
| } else { |
| auto NewName = StaticFuncMap.find(Name); |
| if (NewName != StaticFuncMap.end()) { |
| It = InstrProfileMap.find(NewName->second.str()); |
| if (NewName->second != DuplicateNameStr) { |
| NewRootName = &NewName->second; |
| } |
| } else { |
| // Here the EntrySample is of an inlined function, so we should not |
| // update the EntrySample in the map. |
| EntrySample = 0; |
| } |
| } |
| EntrySample += FlattenSampleMap[*NewRootName].first; |
| MaxBodySample = |
| std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); |
| FlattenSampleMap[*NewRootName] = |
| std::make_pair(EntrySample, MaxBodySample); |
| |
| for (const auto &C : FS.getCallsiteSamples()) |
| for (const auto &F : C.second) |
| BuildImpl(F.second, *NewRootName, BuildImpl); |
| }; |
| BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); |
| }; |
| |
| for (auto &PD : WC->Writer.getProfileData()) { |
| // Populate IPBuilder. |
| for (const auto &PDV : PD.getValue()) { |
| InstrProfRecord Record = PDV.second; |
| IPBuilder.addRecord(Record); |
| } |
| |
| // If a function has multiple entries in instr profile, skip it. |
| if (PD.getValue().size() != 1) |
| continue; |
| |
| // Initialize InstrProfileMap. |
| InstrProfRecord *R = &PD.getValue().begin()->second; |
| StringRef FullName = PD.getKey(); |
| InstrProfileMap[FullName] = InstrProfileEntry(R); |
| buildStaticFuncMap(FullName); |
| } |
| |
| for (auto &PD : Reader->getProfiles()) { |
| sampleprof::FunctionSamples &FS = PD.second; |
| BuildMaxSampleMap(FS, FS.getName()); |
| } |
| |
| ProfileSummary InstrPS = *IPBuilder.getSummary(); |
| ProfileSummary SamplePS = Reader->getSummary(); |
| |
| // Compute cold thresholds for instr profile and sample profile. |
| uint64_t HotSampleThreshold = |
| ProfileSummaryBuilder::getEntryForPercentile( |
| SamplePS.getDetailedSummary(), |
| ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) |
| .MinCount; |
| uint64_t ColdSampleThreshold = |
| ProfileSummaryBuilder::getEntryForPercentile( |
| SamplePS.getDetailedSummary(), |
| ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) |
| .MinCount; |
| uint64_t HotInstrThreshold = |
| ProfileSummaryBuilder::getEntryForPercentile( |
| InstrPS.getDetailedSummary(), |
| ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) |
| .MinCount; |
| uint64_t ColdInstrThreshold = |
| InstrProfColdThreshold |
| ? InstrProfColdThreshold |
| : ProfileSummaryBuilder::getEntryForPercentile( |
| InstrPS.getDetailedSummary(), |
| ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) |
| .MinCount; |
| |
| // Find hot/warm functions in sample profile which is cold in instr profile |
| // and adjust the profiles of those functions in the instr profile. |
| for (const auto &E : FlattenSampleMap) { |
| uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); |
| if (SampleMaxCount < ColdSampleThreshold) |
| continue; |
| const StringRef &Name = E.first; |
| auto It = InstrProfileMap.find(Name); |
| if (It == InstrProfileMap.end()) { |
| auto NewName = StaticFuncMap.find(Name); |
| if (NewName != StaticFuncMap.end()) { |
| It = InstrProfileMap.find(NewName->second.str()); |
| if (NewName->second == DuplicateNameStr) { |
| WithColor::warning() |
| << "Static function " << Name |
| << " has multiple promoted names, cannot adjust profile.\n"; |
| } |
| } |
| } |
| if (It == InstrProfileMap.end() || |
| It->second.MaxCount > ColdInstrThreshold || |
| It->second.NumEdgeCounters < SupplMinSizeThreshold) |
| continue; |
| bool SetToHot = SampleMaxCount >= HotSampleThreshold; |
| updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, |
| ColdInstrThreshold, ZeroCounterThreshold); |
| } |
| } |
| |
| /// The main function to supplement instr profile with sample profile. |
| /// \Inputs contains the instr profile. \p SampleFilename specifies the |
| /// sample profile. \p OutputFilename specifies the output profile name. |
| /// \p OutputFormat specifies the output profile format. \p OutputSparse |
| /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold |
| /// specifies the minimal size for the functions whose profile will be |
| /// adjusted. \p ZeroCounterThreshold is the threshold to check whether |
| /// a function contains too many zero counters and whether its profile |
| /// should be dropped. \p InstrProfColdThreshold is the user specified |
| /// cold threshold which will override the cold threshold got from the |
| /// instr profile summary. |
| static void supplementInstrProfile( |
| const WeightedFileVector &Inputs, StringRef SampleFilename, |
| StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, |
| unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, |
| unsigned InstrProfColdThreshold) { |
| if (OutputFilename.compare("-") == 0) |
| exitWithError("cannot write indexed profdata format to stdout"); |
| if (Inputs.size() != 1) |
| exitWithError("expect one input to be an instr profile"); |
| if (Inputs[0].Weight != 1) |
| exitWithError("expect instr profile doesn't have weight"); |
| |
| StringRef InstrFilename = Inputs[0].Filename; |
| |
| // Read sample profile. |
| LLVMContext Context; |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = sampleprof::SampleProfileReader::create( |
| SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); |
| if (std::error_code EC = ReaderOrErr.getError()) |
| exitWithErrorCode(EC, SampleFilename); |
| auto Reader = std::move(ReaderOrErr.get()); |
| if (std::error_code EC = Reader->read()) |
| exitWithErrorCode(EC, SampleFilename); |
| |
| // Read instr profile. |
| std::mutex ErrorLock; |
| SmallSet<instrprof_error, 4> WriterErrorCodes; |
| auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, |
| WriterErrorCodes); |
| loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); |
| if (WC->Errors.size() > 0) |
| exitWithError(std::move(WC->Errors[0].first), InstrFilename); |
| |
| adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, |
| InstrProfColdThreshold); |
| writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); |
| } |
| |
| /// Make a copy of the given function samples with all symbol names remapped |
| /// by the provided symbol remapper. |
| static sampleprof::FunctionSamples |
| remapSamples(const sampleprof::FunctionSamples &Samples, |
| SymbolRemapper &Remapper, sampleprof_error &Error) { |
| sampleprof::FunctionSamples Result; |
| Result.setName(Remapper(Samples.getName())); |
| Result.addTotalSamples(Samples.getTotalSamples()); |
| Result.addHeadSamples(Samples.getHeadSamples()); |
| for (const auto &BodySample : Samples.getBodySamples()) { |
| uint32_t MaskedDiscriminator = |
| BodySample.first.Discriminator & getDiscriminatorMask(); |
| Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, |
| BodySample.second.getSamples()); |
| for (const auto &Target : BodySample.second.getCallTargets()) { |
| Result.addCalledTargetSamples(BodySample.first.LineOffset, |
| MaskedDiscriminator, |
| Remapper(Target.first()), Target.second); |
| } |
| } |
| for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { |
| sampleprof::FunctionSamplesMap &Target = |
| Result.functionSamplesAt(CallsiteSamples.first); |
| for (const auto &Callsite : CallsiteSamples.second) { |
| sampleprof::FunctionSamples Remapped = |
| remapSamples(Callsite.second, Remapper, Error); |
| MergeResult(Error, |
| Target[std::string(Remapped.getName())].merge(Remapped)); |
| } |
| } |
| return Result; |
| } |
| |
| static sampleprof::SampleProfileFormat FormatMap[] = { |
| sampleprof::SPF_None, |
| sampleprof::SPF_Text, |
| sampleprof::SPF_None, |
| sampleprof::SPF_Ext_Binary, |
| sampleprof::SPF_GCC, |
| sampleprof::SPF_Binary}; |
| |
| static std::unique_ptr<MemoryBuffer> |
| getInputFileBuf(const StringRef &InputFile) { |
| if (InputFile == "") |
| return {}; |
| |
| auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); |
| if (!BufOrError) |
| exitWithErrorCode(BufOrError.getError(), InputFile); |
| |
| return std::move(*BufOrError); |
| } |
| |
| static void populateProfileSymbolList(MemoryBuffer *Buffer, |
| sampleprof::ProfileSymbolList &PSL) { |
| if (!Buffer) |
| return; |
| |
| SmallVector<StringRef, 32> SymbolVec; |
| StringRef Data = Buffer->getBuffer(); |
| Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); |
| |
| for (StringRef SymbolStr : SymbolVec) |
| PSL.add(SymbolStr.trim()); |
| } |
| |
| static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, |
| ProfileFormat OutputFormat, |
| MemoryBuffer *Buffer, |
| sampleprof::ProfileSymbolList &WriterList, |
| bool CompressAllSections, bool UseMD5, |
| bool GenPartialProfile) { |
| populateProfileSymbolList(Buffer, WriterList); |
| if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) |
| warn("Profile Symbol list is not empty but the output format is not " |
| "ExtBinary format. The list will be lost in the output. "); |
| |
| Writer.setProfileSymbolList(&WriterList); |
| |
| if (CompressAllSections) { |
| if (OutputFormat != PF_Ext_Binary) |
| warn("-compress-all-section is ignored. Specify -extbinary to enable it"); |
| else |
| Writer.setToCompressAllSections(); |
| } |
| if (UseMD5) { |
| if (OutputFormat != PF_Ext_Binary) |
| warn("-use-md5 is ignored. Specify -extbinary to enable it"); |
| else |
| Writer.setUseMD5(); |
| } |
| if (GenPartialProfile) { |
| if (OutputFormat != PF_Ext_Binary) |
| warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); |
| else |
| Writer.setPartialProfile(); |
| } |
| } |
| |
| static void |
| mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, |
| StringRef OutputFilename, ProfileFormat OutputFormat, |
| StringRef ProfileSymbolListFile, bool CompressAllSections, |
| bool UseMD5, bool GenPartialProfile, |
| SampleProfileLayout ProfileLayout, |
| bool SampleMergeColdContext, bool SampleTrimColdContext, |
| bool SampleColdContextFrameDepth, FailureMode FailMode, |
| bool DropProfileSymbolList, size_t OutputSizeLimit) { |
| using namespace sampleprof; |
| SampleProfileMap ProfileMap; |
| SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; |
| LLVMContext Context; |
| sampleprof::ProfileSymbolList WriterList; |
| std::optional<bool> ProfileIsProbeBased; |
| std::optional<bool> ProfileIsCS; |
| for (const auto &Input : Inputs) { |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, |
| FSDiscriminatorPassOption); |
| if (std::error_code EC = ReaderOrErr.getError()) { |
| warnOrExitGivenError(FailMode, EC, Input.Filename); |
| continue; |
| } |
| |
| // We need to keep the readers around until after all the files are |
| // read so that we do not lose the function names stored in each |
| // reader's memory. The function names are needed to write out the |
| // merged profile map. |
| Readers.push_back(std::move(ReaderOrErr.get())); |
| const auto Reader = Readers.back().get(); |
| if (std::error_code EC = Reader->read()) { |
| warnOrExitGivenError(FailMode, EC, Input.Filename); |
| Readers.pop_back(); |
| continue; |
| } |
| |
| SampleProfileMap &Profiles = Reader->getProfiles(); |
| if (ProfileIsProbeBased && |
| ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) |
| exitWithError( |
| "cannot merge probe-based profile with non-probe-based profile"); |
| ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; |
| if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) |
| exitWithError("cannot merge CS profile with non-CS profile"); |
| ProfileIsCS = FunctionSamples::ProfileIsCS; |
| for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); |
| I != E; ++I) { |
| sampleprof_error Result = sampleprof_error::success; |
| FunctionSamples Remapped = |
| Remapper ? remapSamples(I->second, *Remapper, Result) |
| : FunctionSamples(); |
| FunctionSamples &Samples = Remapper ? Remapped : I->second; |
| SampleContext FContext = Samples.getContext(); |
| MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); |
| if (Result != sampleprof_error::success) { |
| std::error_code EC = make_error_code(Result); |
| handleMergeWriterError(errorCodeToError(EC), Input.Filename, |
| FContext.toString()); |
| } |
| } |
| |
| if (!DropProfileSymbolList) { |
| std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = |
| Reader->getProfileSymbolList(); |
| if (ReaderList) |
| WriterList.merge(*ReaderList); |
| } |
| } |
| |
| if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { |
| // Use threshold calculated from profile summary unless specified. |
| SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); |
| auto Summary = Builder.computeSummaryForProfiles(ProfileMap); |
| uint64_t SampleProfColdThreshold = |
| ProfileSummaryBuilder::getColdCountThreshold( |
| (Summary->getDetailedSummary())); |
| |
| // Trim and merge cold context profile using cold threshold above; |
| SampleContextTrimmer(ProfileMap) |
| .trimAndMergeColdContextProfiles( |
| SampleProfColdThreshold, SampleTrimColdContext, |
| SampleMergeColdContext, SampleColdContextFrameDepth, false); |
| } |
| |
| if (ProfileLayout == llvm::sampleprof::SPL_Flat) { |
| ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); |
| ProfileIsCS = FunctionSamples::ProfileIsCS = false; |
| } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { |
| ProfileConverter CSConverter(ProfileMap); |
| CSConverter.convertCSProfiles(); |
| ProfileIsCS = FunctionSamples::ProfileIsCS = false; |
| } |
| |
| auto WriterOrErr = |
| SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); |
| if (std::error_code EC = WriterOrErr.getError()) |
| exitWithErrorCode(EC, OutputFilename); |
| |
| auto Writer = std::move(WriterOrErr.get()); |
| // WriterList will have StringRef refering to string in Buffer. |
| // Make sure Buffer lives as long as WriterList. |
| auto Buffer = getInputFileBuf(ProfileSymbolListFile); |
| handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, |
| CompressAllSections, UseMD5, GenPartialProfile); |
| |
| // If OutputSizeLimit is 0 (default), it is the same as write(). |
| if (std::error_code EC = |
| Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) |
| exitWithErrorCode(std::move(EC)); |
| } |
| |
| static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { |
| StringRef WeightStr, FileName; |
| std::tie(WeightStr, FileName) = WeightedFilename.split(','); |
| |
| uint64_t Weight; |
| if (WeightStr.getAsInteger(10, Weight) || Weight < 1) |
| exitWithError("input weight must be a positive integer"); |
| |
| return {std::string(FileName), Weight}; |
| } |
| |
| static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { |
| StringRef Filename = WF.Filename; |
| uint64_t Weight = WF.Weight; |
| |
| // If it's STDIN just pass it on. |
| if (Filename == "-") { |
| WNI.push_back({std::string(Filename), Weight}); |
| return; |
| } |
| |
| llvm::sys::fs::file_status Status; |
| llvm::sys::fs::status(Filename, Status); |
| if (!llvm::sys::fs::exists(Status)) |
| exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), |
| Filename); |
| // If it's a source file, collect it. |
| if (llvm::sys::fs::is_regular_file(Status)) { |
| WNI.push_back({std::string(Filename), Weight}); |
| return; |
| } |
| |
| if (llvm::sys::fs::is_directory(Status)) { |
| std::error_code EC; |
| for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; |
| F != E && !EC; F.increment(EC)) { |
| if (llvm::sys::fs::is_regular_file(F->path())) { |
| addWeightedInput(WNI, {F->path(), Weight}); |
| } |
| } |
| if (EC) |
| exitWithErrorCode(EC, Filename); |
| } |
| } |
| |
| static void parseInputFilenamesFile(MemoryBuffer *Buffer, |
| WeightedFileVector &WFV) { |
| if (!Buffer) |
| return; |
| |
| SmallVector<StringRef, 8> Entries; |
| StringRef Data = Buffer->getBuffer(); |
| Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); |
| for (const StringRef &FileWeightEntry : Entries) { |
| StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); |
| // Skip comments. |
| if (SanitizedEntry.startswith("#")) |
| continue; |
| // If there's no comma, it's an unweighted profile. |
| else if (!SanitizedEntry.contains(',')) |
| addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); |
| else |
| addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); |
| } |
| } |
| |
| static int merge_main(int argc, const char *argv[]) { |
| cl::list<std::string> InputFilenames(cl::Positional, |
| cl::desc("<filename...>")); |
| cl::list<std::string> WeightedInputFilenames("weighted-input", |
| cl::desc("<weight>,<filename>")); |
| cl::opt<std::string> InputFilenamesFile( |
| "input-files", cl::init(""), |
| cl::desc("Path to file containing newline-separated " |
| "[<weight>,]<filename> entries")); |
| cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), |
| cl::aliasopt(InputFilenamesFile)); |
| cl::opt<bool> DumpInputFileList( |
| "dump-input-file-list", cl::init(false), cl::Hidden, |
| cl::desc("Dump the list of input files and their weights, then exit")); |
| cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), |
| cl::desc("Symbol remapping file")); |
| cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), |
| cl::aliasopt(RemappingFile)); |
| cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), |
| cl::init("-"), cl::desc("Output file")); |
| cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), |
| cl::aliasopt(OutputFilename)); |
| cl::opt<ProfileKinds> ProfileKind( |
| cl::desc("Profile kind:"), cl::init(instr), |
| cl::values(clEnumVal(instr, "Instrumentation profile (default)"), |
| clEnumVal(sample, "Sample profile"))); |
| cl::opt<ProfileFormat> OutputFormat( |
| cl::desc("Format of output profile"), cl::init(PF_Ext_Binary), |
| cl::values( |
| clEnumValN(PF_Binary, "binary", "Binary encoding"), |
| clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding " |
| "(default)"), |
| clEnumValN(PF_Text, "text", "Text encoding"), |
| clEnumValN(PF_GCC, "gcc", |
| "GCC encoding (only meaningful for -sample)"))); |
| cl::opt<FailureMode> FailureMode( |
| "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), |
| cl::values(clEnumValN(failIfAnyAreInvalid, "any", |
| "Fail if any profile is invalid."), |
| clEnumValN(failIfAllAreInvalid, "all", |
| "Fail only if all profiles are invalid."))); |
| cl::opt<bool> OutputSparse("sparse", cl::init(false), |
| cl::desc("Generate a sparse profile (only meaningful for -instr)")); |
| cl::opt<unsigned> NumThreads( |
| "num-threads", cl::init(0), |
| cl::desc("Number of merge threads to use (default: autodetect)")); |
| cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), |
| cl::aliasopt(NumThreads)); |
| cl::opt<std::string> ProfileSymbolListFile( |
| "prof-sym-list", cl::init(""), |
| cl::desc("Path to file containing the list of function symbols " |
| "used to populate profile symbol list")); |
| cl::opt<bool> CompressAllSections( |
| "compress-all-sections", cl::init(false), cl::Hidden, |
| cl::desc("Compress all sections when writing the profile (only " |
| "meaningful for -extbinary)")); |
| cl::opt<bool> UseMD5( |
| "use-md5", cl::init(false), cl::Hidden, |
| cl::desc("Choose to use MD5 to represent string in name table (only " |
| "meaningful for -extbinary)")); |
| cl::opt<bool> SampleMergeColdContext( |
| "sample-merge-cold-context", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Merge context sample profiles whose count is below cold threshold")); |
| cl::opt<bool> SampleTrimColdContext( |
| "sample-trim-cold-context", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Trim context sample profiles whose count is below cold threshold")); |
| cl::opt<uint32_t> SampleColdContextFrameDepth( |
| "sample-frame-depth-for-cold-context", cl::init(1), |
| cl::desc("Keep the last K frames while merging cold profile. 1 means the " |
| "context-less base profile")); |
| cl::opt<size_t> OutputSizeLimit( |
| "output-size-limit", cl::init(0), cl::Hidden, |
| cl::desc("Trim cold functions until profile size is below specified " |
| "limit in bytes. This uses a heursitic and functions may be " |
| "excessively trimmed")); |
| cl::opt<bool> GenPartialProfile( |
| "gen-partial-profile", cl::init(false), cl::Hidden, |
| cl::desc("Generate a partial profile (only meaningful for -extbinary)")); |
| cl::opt<std::string> SupplInstrWithSample( |
| "supplement-instr-with-sample", cl::init(""), cl::Hidden, |
| cl::desc("Supplement an instr profile with sample profile, to correct " |
| "the profile unrepresentativeness issue. The sample " |
| "profile is the input of the flag. Output will be in instr " |
| "format (The flag only works with -instr)")); |
| cl::opt<float> ZeroCounterThreshold( |
| "zero-counter-threshold", cl::init(0.7), cl::Hidden, |
| cl::desc("For the function which is cold in instr profile but hot in " |
| "sample profile, if the ratio of the number of zero counters " |
| "divided by the total number of counters is above the " |
| "threshold, the profile of the function will be regarded as " |
| "being harmful for performance and will be dropped.")); |
| cl::opt<unsigned> SupplMinSizeThreshold( |
| "suppl-min-size-threshold", cl::init(10), cl::Hidden, |
| cl::desc("If the size of a function is smaller than the threshold, " |
| "assume it can be inlined by PGO early inliner and it won't " |
| "be adjusted based on sample profile.")); |
| cl::opt<unsigned> InstrProfColdThreshold( |
| "instr-prof-cold-threshold", cl::init(0), cl::Hidden, |
| cl::desc("User specified cold threshold for instr profile which will " |
| "override the cold threshold got from profile summary. ")); |
| cl::opt<SampleProfileLayout> ProfileLayout( |
| "convert-sample-profile-layout", |
| cl::desc("Convert the generated profile to a profile with a new layout"), |
| cl::init(SPL_None), |
| cl::values( |
| clEnumValN(SPL_Nest, "nest", |
| "Nested profile, the input should be CS flat profile"), |
| clEnumValN(SPL_Flat, "flat", |
| "Profile with nested inlinee flatten out"))); |
| cl::opt<std::string> DebugInfoFilename( |
| "debug-info", cl::init(""), |
| cl::desc("Use the provided debug info to correlate the raw profile.")); |
| cl::opt<std::string> ProfiledBinary( |
| "profiled-binary", cl::init(""), |
| cl::desc("Path to binary from which the profile was collected.")); |
| cl::opt<bool> DropProfileSymbolList( |
| "drop-profile-symbol-list", cl::init(false), cl::Hidden, |
| cl::desc("Drop the profile symbol list when merging AutoFDO profiles " |
| "(only meaningful for -sample)")); |
| // WARNING: This reservoir size value is propagated to any input indexed |
| // profiles for simplicity. Changing this value between invocations could |
| // result in sample bias. |
| cl::opt<uint64_t> TemporalProfTraceReservoirSize( |
| "temporal-profile-trace-reservoir-size", cl::init(100), |
| cl::desc("The maximum number of stored temporal profile traces (default: " |
| "100)")); |
| cl::opt<uint64_t> TemporalProfMaxTraceLength( |
| "temporal-profile-max-trace-length", cl::init(10000), |
| cl::desc("The maximum length of a single temporal profile trace " |
| "(default: 10000)")); |
| |
| cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); |
| |
| WeightedFileVector WeightedInputs; |
| for (StringRef Filename : InputFilenames) |
| addWeightedInput(WeightedInputs, {std::string(Filename), 1}); |
| for (StringRef WeightedFilename : WeightedInputFilenames) |
| addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); |
| |
| // Make sure that the file buffer stays alive for the duration of the |
| // weighted input vector's lifetime. |
| auto Buffer = getInputFileBuf(InputFilenamesFile); |
| parseInputFilenamesFile(Buffer.get(), WeightedInputs); |
| |
| if (WeightedInputs.empty()) |
| exitWithError("no input files specified. See " + |
| sys::path::filename(argv[0]) + " -help"); |
| |
| if (DumpInputFileList) { |
| for (auto &WF : WeightedInputs) |
| outs() << WF.Weight << "," << WF.Filename << "\n"; |
| return 0; |
| } |
| |
| std::unique_ptr<SymbolRemapper> Remapper; |
| if (!RemappingFile.empty()) |
| Remapper = SymbolRemapper::create(RemappingFile); |
| |
| if (!SupplInstrWithSample.empty()) { |
| if (ProfileKind != instr) |
| exitWithError( |
| "-supplement-instr-with-sample can only work with -instr. "); |
| |
| supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, |
| OutputFormat, OutputSparse, SupplMinSizeThreshold, |
| ZeroCounterThreshold, InstrProfColdThreshold); |
| return 0; |
| } |
| |
| if (ProfileKind == instr) |
| mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(), |
| OutputFilename, OutputFormat, |
| TemporalProfTraceReservoirSize, |
| TemporalProfMaxTraceLength, OutputSparse, NumThreads, |
| FailureMode, ProfiledBinary); |
| else |
| mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, |
| OutputFormat, ProfileSymbolListFile, CompressAllSections, |
| UseMD5, GenPartialProfile, ProfileLayout, |
| SampleMergeColdContext, SampleTrimColdContext, |
| SampleColdContextFrameDepth, FailureMode, |
| DropProfileSymbolList, OutputSizeLimit); |
| return 0; |
| } |
| |
| /// Computer the overlap b/w profile BaseFilename and profile TestFilename. |
| static void overlapInstrProfile(const std::string &BaseFilename, |
| const std::string &TestFilename, |
| const OverlapFuncFilters &FuncFilter, |
| raw_fd_ostream &OS, bool IsCS) { |
| std::mutex ErrorLock; |
| SmallSet<instrprof_error, 4> WriterErrorCodes; |
| WriterContext Context(false, ErrorLock, WriterErrorCodes); |
| WeightedFile WeightedInput{BaseFilename, 1}; |
| OverlapStats Overlap; |
| Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); |
| if (E) |
| exitWithError(std::move(E), "error in getting profile count sums"); |
| if (Overlap.Base.CountSum < 1.0f) { |
| OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; |
| exit(0); |
| } |
| if (Overlap.Test.CountSum < 1.0f) { |
| OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; |
| exit(0); |
| } |
| loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); |
| overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, |
| IsCS); |
| Overlap.dump(OS); |
| } |
| |
| namespace { |
| struct SampleOverlapStats { |
| SampleContext BaseName; |
| SampleContext TestName; |
| // Number of overlap units |
| uint64_t OverlapCount; |
| // Total samples of overlap units |
| uint64_t OverlapSample; |
| // Number of and total samples of units that only present in base or test |
| // profile |
| uint64_t BaseUniqueCount; |
| uint64_t BaseUniqueSample; |
| uint64_t TestUniqueCount; |
| uint64_t TestUniqueSample; |
| // Number of units and total samples in base or test profile |
| uint64_t BaseCount; |
| uint64_t BaseSample; |
| uint64_t TestCount; |
| uint64_t TestSample; |
| // Number of and total samples of units that present in at least one profile |
| uint64_t UnionCount; |
| uint64_t UnionSample; |
| // Weighted similarity |
| double Similarity; |
| // For SampleOverlapStats instances representing functions, weights of the |
| // function in base and test profiles |
| double BaseWeight; |
| double TestWeight; |
| |
| SampleOverlapStats() |
| : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), |
| BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), |
| BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), |
| UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| struct FuncSampleStats { |
| uint64_t SampleSum; |
| uint64_t MaxSample; |
| uint64_t HotBlockCount; |
| FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} |
| FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, |
| uint64_t HotBlockCount) |
| : SampleSum(SampleSum), MaxSample(MaxSample), |
| HotBlockCount(HotBlockCount) {} |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; |
| |
| // Class for updating merging steps for two sorted maps. The class should be |
| // instantiated with a map iterator type. |
| template <class T> class MatchStep { |
| public: |
| MatchStep() = delete; |
| |
| MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) |
| : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), |
| SecondEnd(SecondEnd), Status(MS_None) {} |
| |
| bool areBothFinished() const { |
| return (FirstIter == FirstEnd && SecondIter == SecondEnd); |
| } |
| |
| bool isFirstFinished() const { return FirstIter == FirstEnd; } |
| |
| bool isSecondFinished() const { return SecondIter == SecondEnd; } |
| |
| /// Advance one step based on the previous match status unless the previous |
| /// status is MS_None. Then update Status based on the comparison between two |
| /// container iterators at the current step. If the previous status is |
| /// MS_None, it means two iterators are at the beginning and no comparison has |
| /// been made, so we simply update Status without advancing the iterators. |
| void updateOneStep(); |
| |
| T getFirstIter() const { return FirstIter; } |
| |
| T getSecondIter() const { return SecondIter; } |
| |
| MatchStatus getMatchStatus() const { return Status; } |
| |
| private: |
| // Current iterator and end iterator of the first container. |
| T FirstIter; |
| T FirstEnd; |
| // Current iterator and end iterator of the second container. |
| T SecondIter; |
| T SecondEnd; |
| // Match status of the current step. |
| MatchStatus Status; |
| }; |
| } // end anonymous namespace |
| |
| template <class T> void MatchStep<T>::updateOneStep() { |
| switch (Status) { |
| case MS_Match: |
| ++FirstIter; |
| ++SecondIter; |
| break; |
| case MS_FirstUnique: |
| ++FirstIter; |
| break; |
| case MS_SecondUnique: |
| ++SecondIter; |
| break; |
| case MS_None: |
| break; |
| } |
| |
| // Update Status according to iterators at the current step. |
| if (areBothFinished()) |
| return; |
| if (FirstIter != FirstEnd && |
| (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) |
| Status = MS_FirstUnique; |
| else if (SecondIter != SecondEnd && |
| (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) |
| Status = MS_SecondUnique; |
| else |
| Status = MS_Match; |
| } |
| |
| // Return the sum of line/block samples, the max line/block sample, and the |
| // number of line/block samples above the given threshold in a function |
| // including its inlinees. |
| static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, |
| FuncSampleStats &FuncStats, |
| uint64_t HotThreshold) { |
| for (const auto &L : Func.getBodySamples()) { |
| uint64_t Sample = L.second.getSamples(); |
| FuncStats.SampleSum += Sample; |
| FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); |
| if (Sample >= HotThreshold) |
| ++FuncStats.HotBlockCount; |
| } |
| |
| for (const auto &C : Func.getCallsiteSamples()) { |
| for (const auto &F : C.second) |
| getFuncSampleStats(F.second, FuncStats, HotThreshold); |
| } |
| } |
| |
| /// Predicate that determines if a function is hot with a given threshold. We |
| /// keep it separate from its callsites for possible extension in the future. |
| static bool isFunctionHot(const FuncSampleStats &FuncStats, |
| uint64_t HotThreshold) { |
| // We intentionally compare the maximum sample count in a function with the |
| // HotThreshold to get an approximate determination on hot functions. |
| return (FuncStats.MaxSample >= HotThreshold); |
| } |
| |
| namespace { |
| class SampleOverlapAggregator { |
| public: |
| SampleOverlapAggregator(const std::string &BaseFilename, |
| const std::string &TestFilename, |
| double LowSimilarityThreshold, double Epsilon, |
| const OverlapFuncFilters &FuncFilter) |
| : BaseFilename(BaseFilename), TestFilename(TestFilename), |
| LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), |
| FuncFilter(FuncFilter) {} |
| |
| /// Detect 0-sample input profile and report to output stream. This interface |
| /// should be called after loadProfiles(). |
| bool detectZeroSampleProfile(raw_fd_ostream &OS) const; |
| |
| /// Write out function-level similarity statistics for functions specified by |
| /// options --function, --value-cutoff, and --similarity-cutoff. |
| void dumpFuncSimilarity(raw_fd_ostream &OS) const; |
| |
| /// Write out program-level similarity and overlap statistics. |
| void dumpProgramSummary(raw_fd_ostream &OS) const; |
| |
| /// Write out hot-function and hot-block statistics for base_profile, |
| /// test_profile, and their overlap. For both cases, the overlap HO is |
| /// calculated as follows: |
| /// Given the number of functions (or blocks) that are hot in both profiles |
| /// HCommon and the number of functions (or blocks) that are hot in at |
| /// least one profile HUnion, HO = HCommon / HUnion. |
| void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; |
| |
| /// This function tries matching functions in base and test profiles. For each |
| /// pair of matched functions, it aggregates the function-level |
| /// similarity into a profile-level similarity. It also dump function-level |
| /// similarity information of functions specified by --function, |
| /// --value-cutoff, and --similarity-cutoff options. The program-level |
| /// similarity PS is computed as follows: |
| /// Given function-level similarity FS(A) for all function A, the |
| /// weight of function A in base profile WB(A), and the weight of function |
| /// A in test profile WT(A), compute PS(base_profile, test_profile) = |
| /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 |
| /// meaning no-overlap. |
| void computeSampleProfileOverlap(raw_fd_ostream &OS); |
| |
| /// Initialize ProfOverlap with the sum of samples in base and test |
| /// profiles. This function also computes and keeps the sum of samples and |
| /// max sample counts of each function in BaseStats and TestStats for later |
| /// use to avoid re-computations. |
| void initializeSampleProfileOverlap(); |
| |
| /// Load profiles specified by BaseFilename and TestFilename. |
| std::error_code loadProfiles(); |
| |
| using FuncSampleStatsMap = |
| std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; |
| |
| private: |
| SampleOverlapStats ProfOverlap; |
| SampleOverlapStats HotFuncOverlap; |
| SampleOverlapStats HotBlockOverlap; |
| std::string BaseFilename; |
| std::string TestFilename; |
| std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; |
| std::unique_ptr<sampleprof::SampleProfileReader> TestReader; |
| // BaseStats and TestStats hold FuncSampleStats for each function, with |
| // function name as the key. |
| FuncSampleStatsMap BaseStats; |
| FuncSampleStatsMap TestStats; |
| // Low similarity threshold in floating point number |
| double LowSimilarityThreshold; |
| // Block samples above BaseHotThreshold or TestHotThreshold are considered hot |
| // for tracking hot blocks. |
| uint64_t BaseHotThreshold; |
| uint64_t TestHotThreshold; |
| // A small threshold used to round the results of floating point accumulations |
| // to resolve imprecision. |
| const double Epsilon; |
| std::multimap<double, SampleOverlapStats, std::greater<double>> |
| FuncSimilarityDump; |
| // FuncFilter carries specifications in options --value-cutoff and |
| // --function. |
| OverlapFuncFilters FuncFilter; |
| // Column offsets for printing the function-level details table. |
| static const unsigned int TestWeightCol = 15; |
| static const unsigned int SimilarityCol = 30; |
| static const unsigned int OverlapCol = 43; |
| static const unsigned int BaseUniqueCol = 53; |
| static const unsigned int TestUniqueCol = 67; |
| static const unsigned int BaseSampleCol = 81; |
| static const unsigned int TestSampleCol = 96; |
| static const unsigned int FuncNameCol = 111; |
| |
| /// Return a similarity of two line/block sample counters in the same |
| /// function in base and test profiles. The line/block-similarity BS(i) is |
| /// computed as follows: |
| /// For an offsets i, given the sample count at i in base profile BB(i), |
| /// the sample count at i in test profile BT(i), the sum of sample counts |
| /// in this function in base profile SB, and the sum of sample counts in |
| /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - |
| /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. |
| double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, |
| const SampleOverlapStats &FuncOverlap) const; |
| |
| void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, |
| uint64_t HotBlockCount); |
| |
| void getHotFunctions(const FuncSampleStatsMap &ProfStats, |
| FuncSampleStatsMap &HotFunc, |
| uint64_t HotThreshold) const; |
| |
| void computeHotFuncOverlap(); |
| |
| /// This function updates statistics in FuncOverlap, HotBlockOverlap, and |
| /// Difference for two sample units in a matched function according to the |
| /// given match status. |
| void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, |
| uint64_t HotBlockCount, |
| SampleOverlapStats &FuncOverlap, |
| double &Difference, MatchStatus Status); |
| |
| /// This function updates statistics in FuncOverlap, HotBlockOverlap, and |
| /// Difference for unmatched callees that only present in one profile in a |
| /// matched caller function. |
| void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, |
| SampleOverlapStats &FuncOverlap, |
| double &Difference, MatchStatus Status); |
| |
| /// This function updates sample overlap statistics of an overlap function in |
| /// base and test profile. It also calculates a function-internal similarity |
| /// FIS as follows: |
| /// For offsets i that have samples in at least one profile in this |
| /// function A, given BS(i) returned by computeBlockSimilarity(), compute |
| /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with |
| /// 0.0 meaning no overlap. |
| double computeSampleFunctionInternalOverlap( |
| const sampleprof::FunctionSamples &BaseFunc, |
| const sampleprof::FunctionSamples &TestFunc, |
| SampleOverlapStats &FuncOverlap); |
| |
| /// Function-level similarity (FS) is a weighted value over function internal |
| /// similarity (FIS). This function computes a function's FS from its FIS by |
| /// applying the weight. |
| double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, |
| uint64_t TestFuncSample) const; |
| |
| /// The function-level similarity FS(A) for a function A is computed as |
| /// follows: |
| /// Compute a function-internal similarity FIS(A) by |
| /// computeSampleFunctionInternalOverlap(). Then, with the weight of |
| /// function A in base profile WB(A), and the weight of function A in test |
| /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) |
| /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. |
| double |
| computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, |
| const sampleprof::FunctionSamples *TestFunc, |
| SampleOverlapStats *FuncOverlap, |
| uint64_t BaseFuncSample, |
| uint64_t TestFuncSample); |
| |
| /// Profile-level similarity (PS) is a weighted aggregate over function-level |
| /// similarities (FS). This method weights the FS value by the function |
| /// weights in the base and test profiles for the aggregation. |
| double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, |
| uint64_t TestFuncSample) const; |
| }; |
| } // end anonymous namespace |
| |
| bool SampleOverlapAggregator::detectZeroSampleProfile( |
| raw_fd_ostream &OS) const { |
| bool HaveZeroSample = false; |
| if (ProfOverlap.BaseSample == 0) { |
| OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; |
| HaveZeroSample = true; |
| } |
| if (ProfOverlap.TestSample == 0) { |
| OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; |
| HaveZeroSample = true; |
| } |
| return HaveZeroSample; |
| } |
| |
| double SampleOverlapAggregator::computeBlockSimilarity( |
| uint64_t BaseSample, uint64_t TestSample, |
| const SampleOverlapStats &FuncOverlap) const { |
| double BaseFrac = 0.0; |
| double TestFrac = 0.0; |
| if (FuncOverlap.BaseSample > 0) |
| BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; |
| if (FuncOverlap.TestSample > 0) |
| TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; |
| return 1.0 - std::fabs(BaseFrac - TestFrac); |
| } |
| |
| void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, |
| uint64_t TestSample, |
| uint64_t HotBlockCount) { |
| bool IsBaseHot = (BaseSample >= BaseHotThreshold); |
| bool IsTestHot = (TestSample >= TestHotThreshold); |
| if (!IsBaseHot && !IsTestHot) |
| return; |
| |
| HotBlockOverlap.UnionCount += HotBlockCount; |
| if (IsBaseHot) |
| HotBlockOverlap.BaseCount += HotBlockCount; |
| if (IsTestHot) |
| HotBlockOverlap.TestCount += HotBlockCount; |
| if (IsBaseHot && IsTestHot) |
| HotBlockOverlap.OverlapCount += HotBlockCount; |
| } |
| |
| void SampleOverlapAggregator::getHotFunctions( |
| const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, |
| uint64_t HotThreshold) const { |
| for (const auto &F : ProfStats) { |
| if (isFunctionHot(F.second, HotThreshold)) |
| HotFunc.emplace(F.first, F.second); |
| } |
| } |
| |
| void SampleOverlapAggregator::computeHotFuncOverlap() { |
| FuncSampleStatsMap BaseHotFunc; |
| getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); |
| HotFuncOverlap.BaseCount = BaseHotFunc.size(); |
| |
| FuncSampleStatsMap TestHotFunc; |
| getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); |
| HotFuncOverlap.TestCount = TestHotFunc.size(); |
| HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; |
| |
| for (const auto &F : BaseHotFunc) { |
| if (TestHotFunc.count(F.first)) |
| ++HotFuncOverlap.OverlapCount; |
| else |
| ++HotFuncOverlap.UnionCount; |
| } |
| } |
| |
| void SampleOverlapAggregator::updateOverlapStatsForFunction( |
| uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, |
| SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { |
| assert(Status != MS_None && |
| "Match status should be updated before updating overlap statistics"); |
| if (Status == MS_FirstUnique) { |
| TestSample = 0; |
| FuncOverlap.BaseUniqueSample += BaseSample; |
| } else if (Status == MS_SecondUnique) { |
| BaseSample = 0; |
| FuncOverlap.TestUniqueSample += TestSample; |
| } else { |
| ++FuncOverlap.OverlapCount; |
| } |
| |
| FuncOverlap.UnionSample += std::max(BaseSample, TestSample); |
| FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); |
| Difference += |
| 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); |
| updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); |
| } |
| |
| void SampleOverlapAggregator::updateForUnmatchedCallee( |
| const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, |
| double &Difference, MatchStatus Status) { |
| assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && |
| "Status must be either of the two unmatched cases"); |
| FuncSampleStats FuncStats; |
| if (Status == MS_FirstUnique) { |
| getFuncSampleStats(Func, FuncStats, BaseHotThreshold); |
| updateOverlapStatsForFunction(FuncStats.SampleSum, 0, |
| FuncStats.HotBlockCount, FuncOverlap, |
| Difference, Status); |
| } else { |
| getFuncSampleStats(Func, FuncStats, TestHotThreshold); |
| updateOverlapStatsForFunction(0, FuncStats.SampleSum, |
| FuncStats.HotBlockCount, FuncOverlap, |
| Difference, Status); |
| } |
| } |
| |
| double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( |
| const sampleprof::FunctionSamples &BaseFunc, |
| const sampleprof::FunctionSamples &TestFunc, |
| SampleOverlapStats &FuncOverlap) { |
| |
| using namespace sampleprof; |
| |
| double Difference = 0; |
| |
| // Accumulate Difference for regular line/block samples in the function. |
| // We match them through sort-merge join algorithm because |
| // FunctionSamples::getBodySamples() returns a map of sample counters ordered |
| // by their offsets. |
| MatchStep<BodySampleMap::const_iterator> BlockIterStep( |
| BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), |
| TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); |
| BlockIterStep.updateOneStep(); |
| while (!BlockIterStep.areBothFinished()) { |
| uint64_t BaseSample = |
| BlockIterStep.isFirstFinished() |
| ? 0 |
| : BlockIterStep.getFirstIter()->second.getSamples(); |
| uint64_t TestSample = |
| BlockIterStep.isSecondFinished() |
| ? 0 |
| : BlockIterStep.getSecondIter()->second.getSamples(); |
| updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, |
| Difference, BlockIterStep.getMatchStatus()); |
| |
| BlockIterStep.updateOneStep(); |
| } |
| |
| // Accumulate Difference for callsite lines in the function. We match |
| // them through sort-merge algorithm because |
| // FunctionSamples::getCallsiteSamples() returns a map of callsite records |
| // ordered by their offsets. |
| MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( |
| BaseFunc.getCallsiteSamples().cbegin(), |
| BaseFunc.getCallsiteSamples().cend(), |
| TestFunc.getCallsiteSamples().cbegin(), |
| TestFunc.getCallsiteSamples().cend()); |
| CallsiteIterStep.updateOneStep(); |
| while (!CallsiteIterStep.areBothFinished()) { |
| MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); |
| assert(CallsiteStepStatus != MS_None && |
| "Match status should be updated before entering loop body"); |
| |
| if (CallsiteStepStatus != MS_Match) { |
| auto Callsite = (CallsiteStepStatus == MS_FirstUnique) |
| ? CallsiteIterStep.getFirstIter() |
| : CallsiteIterStep.getSecondIter(); |
| for (const auto &F : Callsite->second) |
| updateForUnmatchedCallee(F.second, FuncOverlap, Difference, |
| CallsiteStepStatus); |
| } else { |
| // There may be multiple inlinees at the same offset, so we need to try |
| // matching all of them. This match is implemented through sort-merge |
| // algorithm because callsite records at the same offset are ordered by |
| // function names. |
| MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( |
| CallsiteIterStep.getFirstIter()->second.cbegin(), |
| CallsiteIterStep.getFirstIter()->second.cend(), |
| CallsiteIterStep.getSecondIter()->second.cbegin(), |
| CallsiteIterStep.getSecondIter()->second.cend()); |
| CalleeIterStep.updateOneStep(); |
| while (!CalleeIterStep.areBothFinished()) { |
| MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); |
| if (CalleeStepStatus != MS_Match) { |
| auto Callee = (CalleeStepStatus == MS_FirstUnique) |
| ? CalleeIterStep.getFirstIter() |
| : CalleeIterStep.getSecondIter(); |
| updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, |
| CalleeStepStatus); |
| } else { |
| // An inlined function can contain other inlinees inside, so compute |
| // the Difference recursively. |
| Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( |
| CalleeIterStep.getFirstIter()->second, |
| CalleeIterStep.getSecondIter()->second, |
| FuncOverlap); |
| } |
| CalleeIterStep.updateOneStep(); |
| } |
| } |
| CallsiteIterStep.updateOneStep(); |
| } |
| |
| // Difference reflects the total differences of line/block samples in this |
| // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to |
| // reflect the similarity between function profiles in [0.0f to 1.0f]. |
| return (2.0 - Difference) / 2; |
| } |
| |
| double SampleOverlapAggregator::weightForFuncSimilarity( |
| double FuncInternalSimilarity, uint64_t BaseFuncSample, |
| uint64_t TestFuncSample) const { |
| // Compute the weight as the distance between the function weights in two |
| // profiles. |
| double BaseFrac = 0.0; |
| double TestFrac = 0.0; |
| assert(ProfOverlap.BaseSample > 0 && |
| "Total samples in base profile should be greater than 0"); |
| BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; |
| assert(ProfOverlap.TestSample > 0 && |
| "Total samples in test profile should be greater than 0"); |
| TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; |
| double WeightDistance = std::fabs(BaseFrac - TestFrac); |
| |
| // Take WeightDistance into the similarity. |
| return FuncInternalSimilarity * (1 - WeightDistance); |
| } |
| |
| double |
| SampleOverlapAggregator::weightByImportance(double FuncSimilarity, |
| uint64_t BaseFuncSample, |
| uint64_t TestFuncSample) const { |
| |
| double BaseFrac = 0.0; |
| double TestFrac = 0.0; |
| assert(ProfOverlap.BaseSample > 0 && |
| "Total samples in base profile should be greater than 0"); |
| BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; |
| assert(ProfOverlap.TestSample > 0 && |
| "Total samples in test profile should be greater than 0"); |
| TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; |
| return FuncSimilarity * (BaseFrac + TestFrac); |
| } |
| |
| double SampleOverlapAggregator::computeSampleFunctionOverlap( |
| const sampleprof::FunctionSamples *BaseFunc, |
| const sampleprof::FunctionSamples *TestFunc, |
| SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, |
| uint64_t TestFuncSample) { |
| // Default function internal similarity before weighted, meaning two functions |
| // has no overlap. |
| const double DefaultFuncInternalSimilarity = 0; |
| double FuncSimilarity; |
| double FuncInternalSimilarity; |
| |
| // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. |
| // In this case, we use DefaultFuncInternalSimilarity as the function internal |
| // similarity. |
| if (!BaseFunc || !TestFunc) { |
| FuncInternalSimilarity = DefaultFuncInternalSimilarity; |
| } else { |
| assert(FuncOverlap != nullptr && |
| "FuncOverlap should be provided in this case"); |
| FuncInternalSimilarity = computeSampleFunctionInternalOverlap( |
| *BaseFunc, *TestFunc, *FuncOverlap); |
| // Now, FuncInternalSimilarity may be a little less than 0 due to |
| // imprecision of floating point accumulations. Make it zero if the |
| // difference is below Epsilon. |
| FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) |
| ? 0 |
| : FuncInternalSimilarity; |
| } |
| FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, |
| BaseFuncSample, TestFuncSample); |
| return FuncSimilarity; |
| } |
| |
| void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { |
| using namespace sampleprof; |
| |
| std::unordered_map<SampleContext, const FunctionSamples *, |
| SampleContext::Hash> |
| BaseFuncProf; |
| const auto &BaseProfiles = BaseReader->getProfiles(); |
| for (const auto &BaseFunc : BaseProfiles) { |
| BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); |
| } |
| ProfOverlap.UnionCount = BaseFuncProf.size(); |
| |
| const auto &TestProfiles = TestReader->getProfiles(); |
| for (const auto &TestFunc : TestProfiles) { |
| SampleOverlapStats FuncOverlap; |
| FuncOverlap.TestName = TestFunc.second.getContext(); |
| assert(TestStats.count(FuncOverlap.TestName) && |
| "TestStats should have records for all functions in test profile " |
| "except inlinees"); |
| FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; |
| |
| bool Matched = false; |
| const auto Match = BaseFuncProf.find(FuncOverlap.TestName); |
| if (Match == BaseFuncProf.end()) { |
| const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; |
| ++ProfOverlap.TestUniqueCount; |
| ProfOverlap.TestUniqueSample += FuncStats.SampleSum; |
| FuncOverlap.TestUniqueSample = FuncStats.SampleSum; |
| |
| updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); |
| |
| double FuncSimilarity = computeSampleFunctionOverlap( |
| nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); |
| ProfOverlap.Similarity += |
| weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); |
| |
| ++ProfOverlap.UnionCount; |
| ProfOverlap.UnionSample += FuncStats.SampleSum; |
| } else { |
| ++ProfOverlap.OverlapCount; |
| |
| // Two functions match with each other. Compute function-level overlap and |
| // aggregate them into profile-level overlap. |
| FuncOverlap.BaseName = Match->second->getContext(); |
| assert(BaseStats.count(FuncOverlap.BaseName) && |
| "BaseStats should have records for all functions in base profile " |
| "except inlinees"); |
| FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; |
| |
| FuncOverlap.Similarity = computeSampleFunctionOverlap( |
| Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, |
| FuncOverlap.TestSample); |
| ProfOverlap.Similarity += |
| weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, |
| FuncOverlap.TestSample); |
| ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; |
| ProfOverlap.UnionSample += FuncOverlap.UnionSample; |
| |
| // Accumulate the percentage of base unique and test unique samples into |
| // ProfOverlap. |
| ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; |
| ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; |
| |
| // Remove matched base functions for later reporting functions not found |
| // in test profile. |
| BaseFuncProf.erase(Match); |
| Matched = true; |
| } |
| |
| // Print function-level similarity information if specified by options. |
| assert(TestStats.count(FuncOverlap.TestName) && |
| "TestStats should have records for all functions in test profile " |
| "except inlinees"); |
| if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || |
| (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || |
| (Matched && !FuncFilter.NameFilter.empty() && |
| FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != |
| std::string::npos)) { |
| assert(ProfOverlap.BaseSample > 0 && |
| "Total samples in base profile should be greater than 0"); |
| FuncOverlap.BaseWeight = |
| static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; |
| assert(ProfOverlap.TestSample > 0 && |
| "Total samples in test profile should be greater than 0"); |
| FuncOverlap.TestWeight = |
| static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; |
| FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); |
| } |
| } |
| |
| // Traverse through functions in base profile but not in test profile. |
| for (const auto &F : BaseFuncProf) { |
| assert(BaseStats.count(F.second->getContext()) && |
| "BaseStats should have records for all functions in base profile " |
| "except inlinees"); |
| const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; |
| ++ProfOverlap.BaseUniqueCount; |
| ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; |
| |
| updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); |
| |
| double FuncSimilarity = computeSampleFunctionOverlap( |
| nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); |
| ProfOverlap.Similarity += |
| weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); |
| |
| ProfOverlap.UnionSample += FuncStats.SampleSum; |
| } |
| |
| // Now, ProfSimilarity may be a little greater than 1 due to imprecision |
| // of floating point accumulations. Make it 1.0 if the difference is below |
| // Epsilon. |
| ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) |
| ? 1 |
| : ProfOverlap.Similarity; |
| |
| computeHotFuncOverlap(); |
| } |
| |
| void SampleOverlapAggregator::initializeSampleProfileOverlap() { |
| const auto &BaseProf = BaseReader->getProfiles(); |
| for (const auto &I : BaseProf) { |
| ++ProfOverlap.BaseCount; |
| FuncSampleStats FuncStats; |
| getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); |
| ProfOverlap.BaseSample += FuncStats.SampleSum; |
| BaseStats.emplace(I.second.getContext(), FuncStats); |
| } |
| |
| const auto &TestProf = TestReader->getProfiles(); |
| for (const auto &I : TestProf) { |
| ++ProfOverlap.TestCount; |
| FuncSampleStats FuncStats; |
| getFuncSampleStats(I.second, FuncStats, TestHotThreshold); |
| ProfOverlap.TestSample += FuncStats.SampleSum; |
| TestStats.emplace(I.second.getContext(), FuncStats); |
| } |
| |
| ProfOverlap.BaseName = StringRef(BaseFilename); |
| ProfOverlap.TestName = StringRef(TestFilename); |
| } |
| |
| void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { |
| using namespace sampleprof; |
| |
| if (FuncSimilarityDump.empty()) |
| return; |
| |
| formatted_raw_ostream FOS(OS); |
| FOS << "Function-level details:\n"; |
| FOS << "Base weight"; |
| FOS.PadToColumn(TestWeightCol); |
| FOS << "Test weight"; |
| FOS.PadToColumn(SimilarityCol); |
| FOS << "Similarity"; |
| FOS.PadToColumn(OverlapCol); |
| FOS << "Overlap"; |
| FOS.PadToColumn(BaseUniqueCol); |
| FOS << "Base unique"; |
| FOS.PadToColumn(TestUniqueCol); |
| FOS << "Test unique"; |
| FOS.PadToColumn(BaseSampleCol); |
| FOS << "Base samples"; |
| FOS.PadToColumn(TestSampleCol); |
| FOS << "Test samples"; |
| FOS.PadToColumn(FuncNameCol); |
| FOS << "Function name\n"; |
| for (const auto &F : FuncSimilarityDump) { |
| double OverlapPercent = |
| F.second.UnionSample > 0 |
| ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample |
| : 0; |
| double BaseUniquePercent = |
| F.second.BaseSample > 0 |
| ? static_cast<double>(F.second.BaseUniqueSample) / |
| F.second.BaseSample |
| : 0; |
| double TestUniquePercent = |
| F.second.TestSample > 0 |
| ? static_cast<double>(F.second.TestUniqueSample) / |
| F.second.TestSample |
| : 0; |
| |
| FOS << format("%.2f%%", F.second.BaseWeight * 100); |
| FOS.PadToColumn(TestWeightCol); |
| FOS << format("%.2f%%", F.second.TestWeight * 100); |
| FOS.PadToColumn(SimilarityCol); |
| FOS << format("%.2f%%", F.second.Similarity * 100); |
| FOS.PadToColumn(OverlapCol); |
| FOS << format("%.2f%%", OverlapPercent * 100); |
| FOS.PadToColumn(BaseUniqueCol); |
| FOS << format("%.2f%%", BaseUniquePercent * 100); |
| FOS.PadToColumn(TestUniqueCol); |
| FOS << format("%.2f%%", TestUniquePercent * 100); |
| FOS.PadToColumn(BaseSampleCol); |
| FOS << F.second.BaseSample; |
| FOS.PadToColumn(TestSampleCol); |
| FOS << F.second.TestSample; |
| FOS.PadToColumn(FuncNameCol); |
| FOS << F.second.TestName.toString() << "\n"; |
| } |
| } |
| |
| void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { |
| OS << "Profile overlap infomation for base_profile: " |
| << ProfOverlap.BaseName.toString() |
| << " and test_profile: " << ProfOverlap.TestName.toString() |
| << "\nProgram level:\n"; |
| |
| OS << " Whole program profile similarity: " |
| << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; |
| |
| assert(ProfOverlap.UnionSample > 0 && |
| "Total samples in two profile should be greater than 0"); |
| double OverlapPercent = |
| static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; |
| assert(ProfOverlap.BaseSample > 0 && |
| "Total samples in base profile should be greater than 0"); |
| double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / |
| ProfOverlap.BaseSample; |
| assert(ProfOverlap.TestSample > 0 && |
| "Total samples in test profile should be greater than 0"); |
| double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / |
| ProfOverlap.TestSample; |
| |
| OS << " Whole program sample overlap: " |
| << format("%.3f%%", OverlapPercent * 100) << "\n"; |
| OS << " percentage of samples unique in base profile: " |
| << format("%.3f%%", BaseUniquePercent * 100) << "\n"; |
| OS << " percentage of samples unique in test profile: " |
| << format("%.3f%%", TestUniquePercent * 100) << "\n"; |
| OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" |
| << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; |
| |
| assert(ProfOverlap.UnionCount > 0 && |
| "There should be at least one function in two input profiles"); |
| double FuncOverlapPercent = |
| static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; |
| OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) |
| << "\n"; |
| OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; |
| OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount |
| << "\n"; |
| OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount |
| << "\n"; |
| } |
| |
| void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( |
| raw_fd_ostream &OS) const { |
| assert(HotFuncOverlap.UnionCount > 0 && |
| "There should be at least one hot function in two input profiles"); |
| OS << " Hot-function overlap: " |
| << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / |
| HotFuncOverlap.UnionCount * 100) |
| << "\n"; |
| OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; |
| OS << " hot functions unique in base profile: " |
| << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; |
| OS << " hot functions unique in test profile: " |
| << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; |
| |
| assert(HotBlockOverlap.UnionCount > 0 && |
| "There should be at least one hot block in two input profiles"); |
| OS << " Hot-block overlap: " |
| << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / |
| HotBlockOverlap.UnionCount * 100) |
| << "\n"; |
| OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; |
| OS << " hot blocks unique in base profile: " |
| << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; |
| OS << " hot blocks unique in test profile: " |
| << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; |
| } |
| |
| std::error_code SampleOverlapAggregator::loadProfiles() { |
| using namespace sampleprof; |
| |
| LLVMContext Context; |
| auto FS = vfs::getRealFileSystem(); |
| auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, |
| FSDiscriminatorPassOption); |
| if (std::error_code EC = BaseReaderOrErr.getError()) |
| exitWithErrorCode(EC, BaseFilename); |
| |
| auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, |
| FSDiscriminatorPassOption); |
| if (std::error_code EC = TestReaderOrErr.getError()) |
| exitWithErrorCode(EC, TestFilename); |
| |
| BaseReader = std::move(BaseReaderOrErr.get()); |
| TestReader = std::move(TestReaderOrErr.get()); |
| |
| if (std::error_code EC = BaseReader->read()) |
| exitWithErrorCode(EC, BaseFilename); |
| if (std::error_code EC = TestReader->read()) |
| exitWithErrorCode(EC, TestFilename); |
| if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) |
| exitWithError( |
| "cannot compare probe-based profile with non-probe-based profile"); |
| if (BaseReader->profileIsCS() != TestReader->profileIsCS()) |
| exitWithError("cannot compare CS profile with non-CS profile"); |
| |
| // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in |
| // profile summary. |
| ProfileSummary &BasePS = BaseReader->getSummary(); |
| ProfileSummary &TestPS = TestReader->getSummary(); |
| BaseHotThreshold = |
| ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); |
| TestHotThreshold = |
| ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); |
| |
| return std::error_code(); |
| } |
| |
| void overlapSampleProfile(const std::string &BaseFilename, |
| const std::string &TestFilename, |
| const OverlapFuncFilters &FuncFilter, |
| uint64_t SimilarityCutoff, raw_fd_ostream &OS) { |
| using namespace sampleprof; |
| |
| // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics |
| // report 2--3 places after decimal point in percentage numbers. |
| SampleOverlapAggregator OverlapAggr( |
| BaseFilename, TestFilename, |
| static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); |
| if (std::error_code EC = OverlapAggr.loadProfiles()) |
| exitWithErrorCode(EC); |
| |
| OverlapAggr.initializeSampleProfileOverlap(); |
| if (OverlapAggr.detectZeroSampleProfile(OS)) |
| return; |
| |
| OverlapAggr.computeSampleProfileOverlap(OS); |
| |
| OverlapAggr.dumpProgramSummary(OS); |
| OverlapAggr.dumpHotFuncAndBlockOverlap(OS); |
| OverlapAggr.dumpFuncSimilarity(OS); |
| } |
| |
| static int overlap_main(int argc, const char *argv[]) { |
| cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, |
| cl::desc("<base profile file>")); |
| cl::opt<std::string> TestFilename(cl::Positional, cl::Required, |
| cl::desc("<test profile file>")); |
| cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), |
| cl::desc("Output file")); |
| cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); |
| cl::opt<bool> IsCS( |
| "cs", cl::init(false), |
| cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); |
| cl::opt<unsigned long long> ValueCutoff( |
| "value-cutoff", cl::init(-1), |
| cl::desc( |
| "Function level overlap information for every function (with calling " |
| "context for csspgo) in test " |
| "profile with max count value greater then the parameter value")); |
| cl::opt<std::string> FuncNameFilter( |
| "function", |
| cl::desc("Function level overlap information for matching functions. For " |
| "CSSPGO this takes a a function name with calling context")); |
| cl::opt<unsigned long long> SimilarityCutoff( |
| "similarity-cutoff", cl::init(0), |
| cl::desc("For sample profiles, list function names (with calling context " |
| "for csspgo) for overlapped functions " |
| "with similarities below the cutoff (percentage times 10000).")); |
| cl::opt<ProfileKinds> ProfileKind( |
| cl::desc("Profile kind:"), cl::init(instr), |
| cl::values(clEnumVal(instr, "Instrumentation profile (default)"), |
| clEnumVal(sample, "Sample profile"))); |
| cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); |
| |
| std::error_code EC; |
| raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); |
| if (EC) |
| exitWithErrorCode(EC, Output); |
| |
| if (ProfileKind == instr) |
| overlapInstrProfile(BaseFilename, TestFilename, |
| OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, |
| IsCS); |
| else |
| overlapSampleProfile(BaseFilename, TestFilename, |
| OverlapFuncFilters{ValueCutoff, FuncNameFilter}, |
| SimilarityCutoff, OS); |
| |
| return 0; |
| } |
| |
| namespace { |
| struct ValueSitesStats { |
| ValueSitesStats() |
| : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), |
| TotalNumValues(0) {} |
| uint64_t TotalNumValueSites; |
| uint64_t TotalNumValueSitesWithValueProfile; |
| uint64_t TotalNumValues; |
| std::vector<unsigned> ValueSitesHistogram; |
| }; |
| } // namespace |
| |
| static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, |
| ValueSitesStats &Stats, raw_fd_ostream &OS, |
| InstrProfSymtab *Symtab) { |
| uint32_t NS = Func.getNumValueSites(VK); |
| Stats.TotalNumValueSites += NS; |
| for (size_t I = 0; I < NS; ++I) { |
| uint32_t NV = Func.getNumValueDataForSite(VK, I); |
| std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); |
| Stats.TotalNumValues += NV; |
| if (NV) { |
| Stats.TotalNumValueSitesWithValueProfile++; |
| if (NV > Stats.ValueSitesHistogram.size()) |
| Stats.ValueSitesHistogram.resize(NV, 0); |
| Stats.ValueSitesHistogram[NV - 1]++; |
| } |
| |
| uint64_t SiteSum = 0; |
| for (uint32_t V = 0; V < NV; V++) |
| SiteSum += VD[V].Count; |
| if (SiteSum == 0) |
| SiteSum = 1; |
| |
| for (uint32_t V = 0; V < NV; V++) { |
| OS << "\t[ " << format("%2u", I) << ", "; |
| if (Symtab == nullptr) |
| OS << format("%4" PRIu64, VD[V].Value); |
| else |
| OS << Symtab->getFuncName(VD[V].Value); |
| OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" |
| << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; |
| } |
| } |
| } |
| |
| static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, |
| ValueSitesStats &Stats) { |
| OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; |
| OS << " Total number of sites with values: " |
| << Stats.TotalNumValueSitesWithValueProfile << "\n"; |
| OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; |
| |
| OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; |
| for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { |
| if (Stats.ValueSitesHistogram[I] > 0) |
| OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; |
| } |
| } |
| |
| static int showInstrProfile( |
| const std::string &Filename, bool ShowCounts, uint32_t TopN, |
| bool ShowIndirectCallTargets, bool ShowMemOPSizes, bool ShowDetailedSummary, |
| std::vector<uint32_t> DetailedSummaryCutoffs, bool ShowAllFunctions, |
| bool ShowCS, uint64_t ValueCutoff, bool OnlyListBelow, |
| const std::string &ShowFunction, bool TextFormat, bool ShowBinaryIds, |
| bool ShowCovered, bool ShowProfileVersion, bool ShowTemporalProfTraces, |
| ShowFormat SFormat, raw_fd_ostream &OS) { |
| if (SFormat == ShowFormat::Json) |
| exitWithError("JSON output is not supported for instr profiles"); |
| if (SFormat == ShowFormat::Yaml) |
| exitWithError("YAML output is not supported for instr profiles"); |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = InstrProfReader::create(Filename, *FS); |
| std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); |
| if (ShowDetailedSummary && Cutoffs.empty()) { |
| Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; |
| } |
| InstrProfSummaryBuilder Builder(std::move(Cutoffs)); |
| if (Error E = ReaderOrErr.takeError()) |
| exitWithError(std::move(E), Filename); |
| |
| auto Reader = std::move(ReaderOrErr.get()); |
| bool IsIRInstr = Reader->isIRLevelProfile(); |
| size_t ShownFunctions = 0; |
| size_t BelowCutoffFunctions = 0; |
| int NumVPKind = IPVK_Last - IPVK_First + 1; |
| std::vector<ValueSitesStats> VPStats(NumVPKind); |
| |
| auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, |
| const std::pair<std::string, uint64_t> &v2) { |
| return v1.second > v2.second; |
| }; |
| |
| std::priority_queue<std::pair<std::string, uint64_t>, |
| std::vector<std::pair<std::string, uint64_t>>, |
| decltype(MinCmp)> |
| HottestFuncs(MinCmp); |
| |
| if (!TextFormat && OnlyListBelow) { |
| OS << "The list of functions with the maximum counter less than " |
| << ValueCutoff << ":\n"; |
| } |
| |
| // Add marker so that IR-level instrumentation round-trips properly. |
| if (TextFormat && IsIRInstr) |
| OS << ":ir\n"; |
| |
| for (const auto &Func : *Reader) { |
| if (Reader->isIRLevelProfile()) { |
| bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); |
| if (FuncIsCS != ShowCS) |
| continue; |
| } |
| bool Show = ShowAllFunctions || |
| (!ShowFunction.empty() && Func.Name.contains(ShowFunction)); |
| |
| bool doTextFormatDump = (Show && TextFormat); |
| |
| if (doTextFormatDump) { |
| InstrProfSymtab &Symtab = Reader->getSymtab(); |
| InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, |
| OS); |
| continue; |
| } |
| |
| assert(Func.Counts.size() > 0 && "function missing entry counter"); |
| Builder.addRecord(Func); |
| |
| if (ShowCovered) { |
| if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) |
| OS << Func.Name << "\n"; |
| continue; |
| } |
| |
| uint64_t FuncMax = 0; |
| uint64_t FuncSum = 0; |
| |
| auto PseudoKind = Func.getCountPseudoKind(); |
| if (PseudoKind != InstrProfRecord::NotPseudo) { |
| if (Show) { |
| if (!ShownFunctions) |
| OS << "Counters:\n"; |
| ++ShownFunctions; |
| OS << " " << Func.Name << ":\n" |
| << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" |
| << " Counters: " << Func.Counts.size(); |
| if (PseudoKind == InstrProfRecord::PseudoHot) |
| OS << " <PseudoHot>\n"; |
| else if (PseudoKind == InstrProfRecord::PseudoWarm) |
| OS << " <PseudoWarm>\n"; |
| else |
| llvm_unreachable("Unknown PseudoKind"); |
| } |
| continue; |
| } |
| |
| for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { |
| FuncMax = std::max(FuncMax, Func.Counts[I]); |
| FuncSum += Func.Counts[I]; |
| } |
| |
| if (FuncMax < ValueCutoff) { |
| ++BelowCutoffFunctions; |
| if (OnlyListBelow) { |
| OS << " " << Func.Name << ": (Max = " << FuncMax |
| << " Sum = " << FuncSum << ")\n"; |
| } |
| continue; |
| } else if (OnlyListBelow) |
| continue; |
| |
| if (TopN) { |
| if (HottestFuncs.size() == TopN) { |
| if (HottestFuncs.top().second < FuncMax) { |
| HottestFuncs.pop(); |
| HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); |
| } |
| } else |
| HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); |
| } |
| |
| if (Show) { |
| if (!ShownFunctions) |
| OS << "Counters:\n"; |
| |
| ++ShownFunctions; |
| |
| OS << " " << Func.Name << ":\n" |
| << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" |
| << " Counters: " << Func.Counts.size() << "\n"; |
| if (!IsIRInstr) |
| OS << " Function count: " << Func.Counts[0] << "\n"; |
| |
| if (ShowIndirectCallTargets) |
| OS << " Indirect Call Site Count: " |
| << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; |
| |
| uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); |
| if (ShowMemOPSizes && NumMemOPCalls > 0) |
| OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls |
| << "\n"; |
| |
| if (ShowCounts) { |
| OS << " Block counts: ["; |
| size_t Start = (IsIRInstr ? 0 : 1); |
| for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { |
| OS << (I == Start ? "" : ", ") << Func.Counts[I]; |
| } |
| OS << "]\n"; |
| } |
| |
| if (ShowIndirectCallTargets) { |
| OS << " Indirect Target Results:\n"; |
| traverseAllValueSites(Func, IPVK_IndirectCallTarget, |
| VPStats[IPVK_IndirectCallTarget], OS, |
| &(Reader->getSymtab())); |
| } |
| |
| if (ShowMemOPSizes && NumMemOPCalls > 0) { |
| OS << " Memory Intrinsic Size Results:\n"; |
| traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, |
| nullptr); |
| } |
| } |
| } |
| if (Reader->hasError()) |
| exitWithError(Reader->getError(), Filename); |
| |
| if (TextFormat || ShowCovered) |
| return 0; |
| std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); |
| bool IsIR = Reader->isIRLevelProfile(); |
| OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); |
| if (IsIR) |
| OS << " entry_first = " << Reader->instrEntryBBEnabled(); |
| OS << "\n"; |
| if (ShowAllFunctions || !ShowFunction.empty()) |
| OS << "Functions shown: " << ShownFunctions << "\n"; |
| OS << "Total functions: " << PS->getNumFunctions() << "\n"; |
| if (ValueCutoff > 0) { |
| OS << "Number of functions with maximum count (< " << ValueCutoff |
| << "): " << BelowCutoffFunctions << "\n"; |
| OS << "Number of functions with maximum count (>= " << ValueCutoff |
| << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; |
| } |
| OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; |
| OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; |
| |
| if (TopN) { |
| std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; |
| while (!HottestFuncs.empty()) { |
| SortedHottestFuncs.emplace_back(HottestFuncs.top()); |
| HottestFuncs.pop(); |
| } |
| OS << "Top " << TopN |
| << " functions with the largest internal block counts: \n"; |
| for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) |
| OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; |
| } |
| |
| if (ShownFunctions && ShowIndirectCallTargets) { |
| OS << "Statistics for indirect call sites profile:\n"; |
| showValueSitesStats(OS, IPVK_IndirectCallTarget, |
| VPStats[IPVK_IndirectCallTarget]); |
| } |
| |
| if (ShownFunctions && ShowMemOPSizes) { |
| OS << "Statistics for memory intrinsic calls sizes profile:\n"; |
| showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); |
| } |
| |
| if (ShowDetailedSummary) { |
| OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; |
| OS << "Total count: " << PS->getTotalCount() << "\n"; |
| PS->printDetailedSummary(OS); |
| } |
| |
| if (ShowBinaryIds) |
| if (Error E = Reader->printBinaryIds(OS)) |
| exitWithError(std::move(E), Filename); |
| |
| if (ShowProfileVersion) |
| OS << "Profile version: " << Reader->getVersion() << "\n"; |
| |
| if (ShowTemporalProfTraces) { |
| auto &Traces = Reader->getTemporalProfTraces(); |
| OS << "Temporal Profile Traces (samples=" << Traces.size() |
| << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; |
| for (unsigned i = 0; i < Traces.size(); i++) { |
| OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight |
| << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; |
| for (auto &NameRef : Traces[i].FunctionNameRefs) |
| OS << " " << Reader->getSymtab().getFuncName(NameRef) << "\n"; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void showSectionInfo(sampleprof::SampleProfileReader *Reader, |
| raw_fd_ostream &OS) { |
| if (!Reader->dumpSectionInfo(OS)) { |
| WithColor::warning() << "-show-sec-info-only is only supported for " |
| << "sample profile in extbinary format and is " |
| << "ignored for other formats.\n"; |
| return; |
| } |
| } |
| |
| namespace { |
| struct HotFuncInfo { |
| std::string FuncName; |
| uint64_t TotalCount; |
| double TotalCountPercent; |
| uint64_t MaxCount; |
| uint64_t EntryCount; |
| |
| HotFuncInfo() |
| : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {} |
| |
| HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) |
| : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), |
| MaxCount(MS), EntryCount(ES) {} |
| }; |
| } // namespace |
| |
| // Print out detailed information about hot functions in PrintValues vector. |
| // Users specify titles and offset of every columns through ColumnTitle and |
| // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same |
| // and at least 4. Besides, users can optionally give a HotFuncMetric string to |
| // print out or let it be an empty string. |
| static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, |
| const std::vector<int> &ColumnOffset, |
| const std::vector<HotFuncInfo> &PrintValues, |
| uint64_t HotFuncCount, uint64_t TotalFuncCount, |
| uint64_t HotProfCount, uint64_t TotalProfCount, |
| const std::string &HotFuncMetric, |
| uint32_t TopNFunctions, raw_fd_ostream &OS) { |
| assert(ColumnOffset.size() == ColumnTitle.size() && |
| "ColumnOffset and ColumnTitle should have the same size"); |
| assert(ColumnTitle.size() >= 4 && |
| "ColumnTitle should have at least 4 elements"); |
| assert(TotalFuncCount > 0 && |
| "There should be at least one function in the profile"); |
| double TotalProfPercent = 0; |
| if (TotalProfCount > 0) |
| TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; |
| |
| formatted_raw_ostream FOS(OS); |
| FOS << HotFuncCount << " out of " << TotalFuncCount |
| << " functions with profile (" |
| << format("%.2f%%", |
| (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) |
| << ") are considered hot functions"; |
| if (!HotFuncMetric.empty()) |
| FOS << " (" << HotFuncMetric << ")"; |
| FOS << ".\n"; |
| FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" |
| << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; |
| |
| for (size_t I = 0; I < ColumnTitle.size(); ++I) { |
| FOS.PadToColumn(ColumnOffset[I]); |
| FOS << ColumnTitle[I]; |
| } |
| FOS << "\n"; |
| |
| uint32_t Count = 0; |
| for (const auto &R : PrintValues) { |
| if (TopNFunctions && (Count++ == TopNFunctions)) |
| break; |
| FOS.PadToColumn(ColumnOffset[0]); |
| FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; |
| FOS.PadToColumn(ColumnOffset[1]); |
| FOS << R.MaxCount; |
| FOS.PadToColumn(ColumnOffset[2]); |
| FOS << R.EntryCount; |
| FOS.PadToColumn(ColumnOffset[3]); |
| FOS << R.FuncName << "\n"; |
| } |
| } |
| |
| static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, |
| ProfileSummary &PS, uint32_t TopN, |
| raw_fd_ostream &OS) { |
| using namespace sampleprof; |
| |
| const uint32_t HotFuncCutoff = 990000; |
| auto &SummaryVector = PS.getDetailedSummary(); |
| uint64_t MinCountThreshold = 0; |
| for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { |
| if (SummaryEntry.Cutoff == HotFuncCutoff) { |
| MinCountThreshold = SummaryEntry.MinCount; |
| break; |
| } |
| } |
| |
| // Traverse all functions in the profile and keep only hot functions. |
| // The following loop also calculates the sum of total samples of all |
| // functions. |
| std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, |
| std::greater<uint64_t>> |
| HotFunc; |
| uint64_t ProfileTotalSample = 0; |
| uint64_t HotFuncSample = 0; |
| uint64_t HotFuncCount = 0; |
| |
| for (const auto &I : Profiles) { |
| FuncSampleStats FuncStats; |
| const FunctionSamples &FuncProf = I.second; |
| ProfileTotalSample += FuncProf.getTotalSamples(); |
| getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); |
| |
| if (isFunctionHot(FuncStats, MinCountThreshold)) { |
| HotFunc.emplace(FuncProf.getTotalSamples(), |
| std::make_pair(&(I.second), FuncStats.MaxSample)); |
| HotFuncSample += FuncProf.getTotalSamples(); |
| ++HotFuncCount; |
| } |
| } |
| |
| std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", |
| "Entry sample", "Function name"}; |
| std::vector<int> ColumnOffset{0, 24, 42, 58}; |
| std::string Metric = |
| std::string("max sample >= ") + std::to_string(MinCountThreshold); |
| std::vector<HotFuncInfo> PrintValues; |
| for (const auto &FuncPair : HotFunc) { |
| const FunctionSamples &Func = *FuncPair.second.first; |
| double TotalSamplePercent = |
| (ProfileTotalSample > 0) |
| ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample |
| : 0; |
| PrintValues.emplace_back( |
| HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), |
| TotalSamplePercent, FuncPair.second.second, |
| Func.getHeadSamplesEstimate())); |
| } |
| dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, |
| Profiles.size(), HotFuncSample, ProfileTotalSample, |
| Metric, TopN, OS); |
| |
| return 0; |
| } |
| |
| static int showSampleProfile(const std::string &Filename, bool ShowCounts, |
| uint32_t TopN, bool ShowAllFunctions, |
| bool ShowDetailedSummary, |
| const std::string &ShowFunction, |
| bool ShowProfileSymbolList, |
| bool ShowSectionInfoOnly, bool ShowHotFuncList, |
| ShowFormat SFormat, raw_fd_ostream &OS) { |
| if (SFormat == ShowFormat::Yaml) |
| exitWithError("YAML output is not supported for sample profiles"); |
| using namespace sampleprof; |
| LLVMContext Context; |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, |
| FSDiscriminatorPassOption); |
| if (std::error_code EC = ReaderOrErr.getError()) |
| exitWithErrorCode(EC, Filename); |
| |
| auto Reader = std::move(ReaderOrErr.get()); |
| if (ShowSectionInfoOnly) { |
| showSectionInfo(Reader.get(), OS); |
| return 0; |
| } |
| |
| if (std::error_code EC = Reader->read()) |
| exitWithErrorCode(EC, Filename); |
| |
| if (ShowAllFunctions || ShowFunction.empty()) { |
| if (SFormat == ShowFormat::Json) |
| Reader->dumpJson(OS); |
| else |
| Reader->dump(OS); |
| } else { |
| if (SFormat == ShowFormat::Json) |
| exitWithError( |
| "the JSON format is supported only when all functions are to " |
| "be printed"); |
| |
| // TODO: parse context string to support filtering by contexts. |
| Reader->dumpFunctionProfile(StringRef(ShowFunction), OS); |
| } |
| |
| if (ShowProfileSymbolList) { |
| std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = |
| Reader->getProfileSymbolList(); |
| ReaderList->dump(OS); |
| } |
| |
| if (ShowDetailedSummary) { |
| auto &PS = Reader->getSummary(); |
| PS.printSummary(OS); |
| PS.printDetailedSummary(OS); |
| } |
| |
| if (ShowHotFuncList || TopN) |
| showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS); |
| |
| return 0; |
| } |
| |
| static int showMemProfProfile(const std::string &Filename, |
| const std::string &ProfiledBinary, |
| ShowFormat SFormat, raw_fd_ostream &OS) { |
| if (SFormat == ShowFormat::Json) |
| exitWithError("JSON output is not supported for MemProf"); |
| auto ReaderOr = llvm::memprof::RawMemProfReader::create( |
| Filename, ProfiledBinary, /*KeepNames=*/true); |
| if (Error E = ReaderOr.takeError()) |
| // Since the error can be related to the profile or the binary we do not |
| // pass whence. Instead additional context is provided where necessary in |
| // the error message. |
| exitWithError(std::move(E), /*Whence*/ ""); |
| |
| std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( |
| ReaderOr.get().release()); |
| |
| Reader->printYAML(OS); |
| return 0; |
| } |
| |
| static int showDebugInfoCorrelation(const std::string &Filename, |
| bool ShowDetailedSummary, |
| bool ShowProfileSymbolList, |
| ShowFormat SFormat, raw_fd_ostream &OS) { |
| if (SFormat == ShowFormat::Json) |
| exitWithError("JSON output is not supported for debug info correlation"); |
| std::unique_ptr<InstrProfCorrelator> Correlator; |
| if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator)) |
| exitWithError(std::move(Err), Filename); |
| if (SFormat == ShowFormat::Yaml) { |
| if (auto Err = Correlator->dumpYaml(OS)) |
| exitWithError(std::move(Err), Filename); |
| return 0; |
| } |
| |
| if (auto Err = Correlator->correlateProfileData()) |
| exitWithError(std::move(Err), Filename); |
| |
| InstrProfSymtab Symtab; |
| if (auto Err = Symtab.create( |
| StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) |
| exitWithError(std::move(Err), Filename); |
| |
| if (ShowProfileSymbolList) |
| Symtab.dumpNames(OS); |
| // TODO: Read "Profile Data Type" from debug info to compute and show how many |
| // counters the section holds. |
| if (ShowDetailedSummary) |
| OS << "Counters section size: 0x" |
| << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; |
| OS << "Found " << Correlator->getDataSize() << " functions\n"; |
| |
| return 0; |
| } |
| |
| static int show_main(int argc, const char *argv[]) { |
| cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>")); |
| |
| cl::opt<bool> ShowCounts("counts", cl::init(false), |
| cl::desc("Show counter values for shown functions")); |
| cl::opt<ShowFormat> SFormat( |
| "show-format", cl::init(ShowFormat::Text), |
| cl::desc("Emit output in the selected format if supported"), |
| cl::values(clEnumValN(ShowFormat::Text, "text", |
| "emit normal text output (default)"), |
| clEnumValN(ShowFormat::Json, "json", "emit JSON"), |
| clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); |
| // TODO: Consider replacing this with `--show-format=text-encoding`. |
| cl::opt<bool> TextFormat( |
| "text", cl::init(false), |
| cl::desc("Show instr profile data in text dump format")); |
| cl::opt<bool> JsonFormat( |
| "json", cl::desc("Show sample profile data in the JSON format " |
| "(deprecated, please use --show-format=json)")); |
| cl::opt<bool> ShowIndirectCallTargets( |
| "ic-targets", cl::init(false), |
| cl::desc("Show indirect call site target values for shown functions")); |
| cl::opt<bool> ShowMemOPSizes( |
| "memop-sizes", cl::init(false), |
| cl::desc("Show the profiled sizes of the memory intrinsic calls " |
| "for shown functions")); |
| cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), |
| cl::desc("Show detailed profile summary")); |
| cl::list<uint32_t> DetailedSummaryCutoffs( |
| cl::CommaSeparated, "detailed-summary-cutoffs", |
| cl::desc( |
| "Cutoff percentages (times 10000) for generating detailed summary"), |
| cl::value_desc("800000,901000,999999")); |
| cl::opt<bool> ShowHotFuncList( |
| "hot-func-list", cl::init(false), |
| cl::desc("Show profile summary of a list of hot functions")); |
| cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), |
| cl::desc("Details for every function")); |
| cl::opt<bool> ShowCS("showcs", cl::init(false), |
| cl::desc("Show context sensitive counts")); |
| cl::opt<std::string> ShowFunction("function", |
| cl::desc("Details for matching functions")); |
| |
| cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), |
| cl::init("-"), cl::desc("Output file")); |
| cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), |
| cl::aliasopt(OutputFilename)); |
| cl::opt<ProfileKinds> ProfileKind( |
| cl::desc("Profile kind:"), cl::init(instr), |
| cl::values(clEnumVal(instr, "Instrumentation profile (default)"), |
| clEnumVal(sample, "Sample profile"), |
| clEnumVal(memory, "MemProf memory access profile"))); |
| cl::opt<uint32_t> TopNFunctions( |
| "topn", cl::init(0), |
| cl::desc("Show the list of functions with the largest internal counts")); |
| cl::opt<uint32_t> ValueCutoff( |
| "value-cutoff", cl::init(0), |
| cl::desc("Set the count value cutoff. Functions with the maximum count " |
| "less than this value will not be printed out. (Default is 0)")); |
| cl::opt<bool> OnlyListBelow( |
| "list-below-cutoff", cl::init(false), |
| cl::desc("Only output names of functions whose max count values are " |
| "below the cutoff value")); |
| cl::opt<bool> ShowProfileSymbolList( |
| "show-prof-sym-list", cl::init(false), |
| cl::desc("Show profile symbol list if it exists in the profile. ")); |
| cl::opt<bool> ShowSectionInfoOnly( |
| "show-sec-info-only", cl::init(false), |
| cl::desc("Show the information of each section in the sample profile. " |
| "The flag is only usable when the sample profile is in " |
| "extbinary format")); |
| cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), |
| cl::desc("Show binary ids in the profile. ")); |
| cl::opt<bool> ShowTemporalProfTraces( |
| "temporal-profile-traces", |
| cl::desc("Show temporal profile traces in the profile.")); |
| cl::opt<std::string> DebugInfoFilename( |
| "debug-info", cl::init(""), |
| cl::desc("Read and extract profile metadata from debug info and show " |
| "the functions it found.")); |
| cl::opt<bool> ShowCovered( |
| "covered", cl::init(false), |
| cl::desc("Show only the functions that have been executed.")); |
| cl::opt<std::string> ProfiledBinary( |
| "profiled-binary", cl::init(""), |
| cl::desc("Path to binary from which the profile was collected.")); |
| cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), |
| cl::desc("Show profile version. ")); |
| cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); |
| |
| if (Filename.empty() && DebugInfoFilename.empty()) |
| exitWithError( |
| "the positional argument '<profdata-file>' is required unless '--" + |
| DebugInfoFilename.ArgStr + "' is provided"); |
| |
| if (Filename == OutputFilename) { |
| errs() << sys::path::filename(argv[0]) |
| << ": Input file name cannot be the same as the output file name!\n"; |
| return 1; |
| } |
| if (JsonFormat) |
| SFormat = ShowFormat::Json; |
| |
| std::error_code EC; |
| raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); |
| if (EC) |
| exitWithErrorCode(EC, OutputFilename); |
| |
| if (ShowAllFunctions && !ShowFunction.empty()) |
| WithColor::warning() << "-function argument ignored: showing all functions\n"; |
| |
| if (!DebugInfoFilename.empty()) |
| return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary, |
| ShowProfileSymbolList, SFormat, OS); |
| |
| if (ProfileKind == instr) |
| return showInstrProfile( |
| Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets, |
| ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs, |
| ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction, |
| TextFormat, ShowBinaryIds, ShowCovered, ShowProfileVersion, |
| ShowTemporalProfTraces, SFormat, OS); |
| if (ProfileKind == sample) |
| return showSampleProfile(Filename, ShowCounts, TopNFunctions, |
| ShowAllFunctions, ShowDetailedSummary, |
| ShowFunction, ShowProfileSymbolList, |
| ShowSectionInfoOnly, ShowHotFuncList, SFormat, OS); |
| return showMemProfProfile(Filename, ProfiledBinary, SFormat, OS); |
| } |
| |
| static int order_main(int argc, const char *argv[]) { |
| cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>")); |
| cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), |
| cl::init("-"), cl::desc("Output file")); |
| cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), |
| cl::aliasopt(OutputFilename)); |
| cl::ParseCommandLineOptions(argc, argv, "LLVM profile data order\n"); |
| |
| std::error_code EC; |
| raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); |
| if (EC) |
| exitWithErrorCode(EC, OutputFilename); |
| auto FS = vfs::getRealFileSystem(); |
| auto ReaderOrErr = InstrProfReader::create(Filename, *FS); |
| if (Error E = ReaderOrErr.takeError()) |
| exitWithError(std::move(E), Filename); |
| |
| auto Reader = std::move(ReaderOrErr.get()); |
| for (auto &I : *Reader) { |
| // Read all entries |
| (void)I; |
| } |
| auto &Traces = Reader->getTemporalProfTraces(); |
| auto Nodes = TemporalProfTraceTy::createBPFunctionNodes(Traces); |
| BalancedPartitioningConfig Config; |
| BalancedPartitioning BP(Config); |
| BP.run(Nodes); |
| |
| WithColor::note() << "# Ordered " << Nodes.size() << " functions\n"; |
| for (auto &N : Nodes) { |
| auto FuncName = Reader->getSymtab().getFuncName(N.Id); |
| if (FuncName.contains(':')) { |
| // GlobalValue::getGlobalIdentifier() prefixes the filename if the symbol |
| // is local. This logic will break if there is a colon in the filename, |
| // but we cannot use rsplit() because ObjC symbols can have colons. |
| auto [Filename, ParsedFuncName] = FuncName.split(':'); |
| // Emit a comment describing where this symbol came from |
| OS << "# " << Filename << "\n"; |
| FuncName = ParsedFuncName; |
| } |
| OS << FuncName << "\n"; |
| } |
| return 0; |
| } |
| |
| typedef int (*llvm_profdata_subcommand)(int, const char *[]); |
| |
| static std::tuple<StringRef, llvm_profdata_subcommand> |
| llvm_profdata_subcommands[] = { |
| {"merge", merge_main}, |
| {"show", show_main}, |
| {"order", order_main}, |
| {"overlap", overlap_main}, |
| }; |
| |
| int llvm_profdata_main(int argc, char **argvNonConst, |
| const llvm::ToolContext &) { |
| const char **argv = const_cast<const char **>(argvNonConst); |
| InitLLVM X(argc, argv); |
| |
| StringRef ProgName(sys::path::filename(argv[0])); |
| if (argc > 1) { |
| |
| llvm_profdata_subcommand func = nullptr; |
| for (auto [subcmd_name, subcmd_action] : llvm_profdata_subcommands) |
| if (subcmd_name == argv[1]) |
| func = subcmd_action; |
| |
| if (func) { |
| std::string Invocation(ProgName.str() + " " + argv[1]); |
| argv[1] = Invocation.c_str(); |
| return func(argc - 1, argv + 1); |
| } |
| |
| if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || |
| strcmp(argv[1], "--help") == 0) { |
| |
| errs() << "OVERVIEW: LLVM profile data tools\n\n" |
| << "USAGE: " << ProgName << " <command> [args...]\n" |
| << "USAGE: " << ProgName << " <command> -help\n\n" |
| << "See each individual command --help for more details.\n" |
| << "Available commands: " |
| << join(map_range(llvm_profdata_subcommands, |
| [](auto const &KV) { return std::get<0>(KV); }), |
| ", ") |
| << "\n"; |
| return 0; |
| } |
| |
| if (strcmp(argv[1], "--version") == 0) { |
| outs() << ProgName << '\n'; |
| cl::PrintVersionMessage(); |
| return 0; |
| } |
| } |
| |
| if (argc < 2) |
| errs() << ProgName << ": No command specified!\n"; |
| else |
| errs() << ProgName << ": Unknown command!\n"; |
| |
| errs() << "USAGE: " << ProgName << " <" |
| << join(map_range(llvm_profdata_subcommands, |
| [](auto const &KV) { return std::get<0>(KV); }), |
| "|") |
| << "> [args...]\n"; |
| return 1; |
| } |