blob: b8fd01e6a77975c099a351d990dae5301e69fb96 [file] [log] [blame]
//! Diagnostics related methods for `Ty`.
use std::ops::ControlFlow;
use crate::ty::{
visit::TypeVisitable, Const, ConstKind, DefIdTree, ExistentialPredicate, InferConst, InferTy,
PolyTraitPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor,
};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{Applicability, Diagnostic, DiagnosticArgValue, IntoDiagnosticArg};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::WherePredicate;
use rustc_span::Span;
use rustc_type_ir::sty::TyKind::*;
impl<'tcx> IntoDiagnosticArg for Ty<'tcx> {
fn into_diagnostic_arg(self) -> DiagnosticArgValue<'static> {
format!("{}", self).into_diagnostic_arg()
}
}
impl<'tcx> Ty<'tcx> {
/// Similar to `Ty::is_primitive`, but also considers inferred numeric values to be primitive.
pub fn is_primitive_ty(self) -> bool {
matches!(
self.kind(),
Bool | Char
| Str
| Int(_)
| Uint(_)
| Float(_)
| Infer(
InferTy::IntVar(_)
| InferTy::FloatVar(_)
| InferTy::FreshIntTy(_)
| InferTy::FreshFloatTy(_)
)
)
}
/// Whether the type is succinctly representable as a type instead of just referred to with a
/// description in error messages. This is used in the main error message.
pub fn is_simple_ty(self) -> bool {
match self.kind() {
Bool
| Char
| Str
| Int(_)
| Uint(_)
| Float(_)
| Infer(
InferTy::IntVar(_)
| InferTy::FloatVar(_)
| InferTy::FreshIntTy(_)
| InferTy::FreshFloatTy(_),
) => true,
Ref(_, x, _) | Array(x, _) | Slice(x) => x.peel_refs().is_simple_ty(),
Tuple(tys) if tys.is_empty() => true,
_ => false,
}
}
/// Whether the type is succinctly representable as a type instead of just referred to with a
/// description in error messages. This is used in the primary span label. Beyond what
/// `is_simple_ty` includes, it also accepts ADTs with no type arguments and references to
/// ADTs with no type arguments.
pub fn is_simple_text(self) -> bool {
match self.kind() {
Adt(_, substs) => substs.non_erasable_generics().next().is_none(),
Ref(_, ty, _) => ty.is_simple_text(),
_ => self.is_simple_ty(),
}
}
}
pub trait IsSuggestable<'tcx> {
/// Whether this makes sense to suggest in a diagnostic.
///
/// We filter out certain types and constants since they don't provide
/// meaningful rendered suggestions when pretty-printed. We leave some
/// nonsense, such as region vars, since those render as `'_` and are
/// usually okay to reinterpret as elided lifetimes.
///
/// Only if `infer_suggestable` is true, we consider type and const
/// inference variables to be suggestable.
fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool;
}
impl<'tcx, T> IsSuggestable<'tcx> for T
where
T: TypeVisitable<'tcx>,
{
fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool {
self.visit_with(&mut IsSuggestableVisitor { tcx, infer_suggestable }).is_continue()
}
}
pub fn suggest_arbitrary_trait_bound<'tcx>(
tcx: TyCtxt<'tcx>,
generics: &hir::Generics<'_>,
err: &mut Diagnostic,
trait_pred: PolyTraitPredicate<'tcx>,
associated_ty: Option<(&'static str, Ty<'tcx>)>,
) -> bool {
if !trait_pred.is_suggestable(tcx, false) {
return false;
}
let param_name = trait_pred.skip_binder().self_ty().to_string();
let mut constraint = trait_pred.print_modifiers_and_trait_path().to_string();
if let Some((name, term)) = associated_ty {
// FIXME: this case overlaps with code in TyCtxt::note_and_explain_type_err.
// That should be extracted into a helper function.
if constraint.ends_with('>') {
constraint = format!("{}, {} = {}>", &constraint[..constraint.len() - 1], name, term);
} else {
constraint.push_str(&format!("<{} = {}>", name, term));
}
}
let param = generics.params.iter().find(|p| p.name.ident().as_str() == param_name);
// Skip, there is a param named Self
if param.is_some() && param_name == "Self" {
return false;
}
// Suggest a where clause bound for a non-type parameter.
err.span_suggestion_verbose(
generics.tail_span_for_predicate_suggestion(),
&format!(
"consider {} `where` clause, but there might be an alternative better way to express \
this requirement",
if generics.where_clause_span.is_empty() { "introducing a" } else { "extending the" },
),
format!("{} {}: {}", generics.add_where_or_trailing_comma(), param_name, constraint),
Applicability::MaybeIncorrect,
);
true
}
#[derive(Debug)]
enum SuggestChangingConstraintsMessage<'a> {
RestrictBoundFurther,
RestrictType { ty: &'a str },
RestrictTypeFurther { ty: &'a str },
RemovingQSized,
}
fn suggest_removing_unsized_bound(
tcx: TyCtxt<'_>,
generics: &hir::Generics<'_>,
suggestions: &mut Vec<(Span, String, SuggestChangingConstraintsMessage<'_>)>,
param: &hir::GenericParam<'_>,
def_id: Option<DefId>,
) {
// See if there's a `?Sized` bound that can be removed to suggest that.
// First look at the `where` clause because we can have `where T: ?Sized`,
// then look at params.
let param_def_id = tcx.hir().local_def_id(param.hir_id);
for (where_pos, predicate) in generics.predicates.iter().enumerate() {
let WherePredicate::BoundPredicate(predicate) = predicate else {
continue;
};
if !predicate.is_param_bound(param_def_id.to_def_id()) {
continue;
};
for (pos, bound) in predicate.bounds.iter().enumerate() {
let hir::GenericBound::Trait(poly, hir::TraitBoundModifier::Maybe) = bound else {
continue;
};
if poly.trait_ref.trait_def_id() != def_id {
continue;
}
let sp = generics.span_for_bound_removal(where_pos, pos);
suggestions.push((
sp,
String::new(),
SuggestChangingConstraintsMessage::RemovingQSized,
));
}
}
}
/// Suggest restricting a type param with a new bound.
pub fn suggest_constraining_type_param(
tcx: TyCtxt<'_>,
generics: &hir::Generics<'_>,
err: &mut Diagnostic,
param_name: &str,
constraint: &str,
def_id: Option<DefId>,
) -> bool {
suggest_constraining_type_params(
tcx,
generics,
err,
[(param_name, constraint, def_id)].into_iter(),
)
}
/// Suggest restricting a type param with a new bound.
pub fn suggest_constraining_type_params<'a>(
tcx: TyCtxt<'_>,
generics: &hir::Generics<'_>,
err: &mut Diagnostic,
param_names_and_constraints: impl Iterator<Item = (&'a str, &'a str, Option<DefId>)>,
) -> bool {
let mut grouped = FxHashMap::default();
param_names_and_constraints.for_each(|(param_name, constraint, def_id)| {
grouped.entry(param_name).or_insert(Vec::new()).push((constraint, def_id))
});
let mut applicability = Applicability::MachineApplicable;
let mut suggestions = Vec::new();
for (param_name, mut constraints) in grouped {
let param = generics.params.iter().find(|p| p.name.ident().as_str() == param_name);
let Some(param) = param else { return false };
{
let mut sized_constraints =
constraints.drain_filter(|(_, def_id)| *def_id == tcx.lang_items().sized_trait());
if let Some((constraint, def_id)) = sized_constraints.next() {
applicability = Applicability::MaybeIncorrect;
err.span_label(
param.span,
&format!("this type parameter needs to be `{}`", constraint),
);
suggest_removing_unsized_bound(tcx, generics, &mut suggestions, param, def_id);
}
}
if constraints.is_empty() {
continue;
}
let mut constraint = constraints.iter().map(|&(c, _)| c).collect::<Vec<_>>();
constraint.sort();
constraint.dedup();
let constraint = constraint.join(" + ");
let mut suggest_restrict = |span, bound_list_non_empty| {
suggestions.push((
span,
if bound_list_non_empty {
format!(" + {}", constraint)
} else {
format!(" {}", constraint)
},
SuggestChangingConstraintsMessage::RestrictBoundFurther,
))
};
// When the type parameter has been provided bounds
//
// Message:
// fn foo<T>(t: T) where T: Foo { ... }
// ^^^^^^
// |
// help: consider further restricting this bound with `+ Bar`
//
// Suggestion:
// fn foo<T>(t: T) where T: Foo { ... }
// ^
// |
// replace with: ` + Bar`
//
// Or, if user has provided some bounds, suggest restricting them:
//
// fn foo<T: Foo>(t: T) { ... }
// ---
// |
// help: consider further restricting this bound with `+ Bar`
//
// Suggestion for tools in this case is:
//
// fn foo<T: Foo>(t: T) { ... }
// --
// |
// replace with: `T: Bar +`
let param_def_id = tcx.hir().local_def_id(param.hir_id);
if let Some(span) = generics.bounds_span_for_suggestions(param_def_id) {
suggest_restrict(span, true);
continue;
}
if generics.has_where_clause_predicates {
// This part is a bit tricky, because using the `where` clause user can
// provide zero, one or many bounds for the same type parameter, so we
// have following cases to consider:
//
// When the type parameter has been provided zero bounds
//
// Message:
// fn foo<X, Y>(x: X, y: Y) where Y: Foo { ... }
// - help: consider restricting this type parameter with `where X: Bar`
//
// Suggestion:
// fn foo<X, Y>(x: X, y: Y) where Y: Foo { ... }
// - insert: `, X: Bar`
suggestions.push((
generics.tail_span_for_predicate_suggestion(),
constraints
.iter()
.map(|&(constraint, _)| format!(", {}: {}", param_name, constraint))
.collect::<String>(),
SuggestChangingConstraintsMessage::RestrictTypeFurther { ty: param_name },
));
continue;
}
// Additionally, there may be no `where` clause but the generic parameter has a default:
//
// Message:
// trait Foo<T=()> {... }
// - help: consider further restricting this type parameter with `where T: Zar`
//
// Suggestion:
// trait Foo<T=()> {... }
// - insert: `where T: Zar`
if matches!(param.kind, hir::GenericParamKind::Type { default: Some(_), .. }) {
// Suggest a bound, but there is no existing `where` clause *and* the type param has a
// default (`<T=Foo>`), so we suggest adding `where T: Bar`.
suggestions.push((
generics.tail_span_for_predicate_suggestion(),
format!(" where {}: {}", param_name, constraint),
SuggestChangingConstraintsMessage::RestrictTypeFurther { ty: param_name },
));
continue;
}
// If user has provided a colon, don't suggest adding another:
//
// fn foo<T:>(t: T) { ... }
// - insert: consider restricting this type parameter with `T: Foo`
if let Some(colon_span) = param.colon_span {
suggestions.push((
colon_span.shrink_to_hi(),
format!(" {}", constraint),
SuggestChangingConstraintsMessage::RestrictType { ty: param_name },
));
continue;
}
// If user hasn't provided any bounds, suggest adding a new one:
//
// fn foo<T>(t: T) { ... }
// - help: consider restricting this type parameter with `T: Foo`
suggestions.push((
param.span.shrink_to_hi(),
format!(": {}", constraint),
SuggestChangingConstraintsMessage::RestrictType { ty: param_name },
));
}
if suggestions.len() == 1 {
let (span, suggestion, msg) = suggestions.pop().unwrap();
let s;
let msg = match msg {
SuggestChangingConstraintsMessage::RestrictBoundFurther => {
"consider further restricting this bound"
}
SuggestChangingConstraintsMessage::RestrictType { ty } => {
s = format!("consider restricting type parameter `{}`", ty);
&s
}
SuggestChangingConstraintsMessage::RestrictTypeFurther { ty } => {
s = format!("consider further restricting type parameter `{}`", ty);
&s
}
SuggestChangingConstraintsMessage::RemovingQSized => {
"consider removing the `?Sized` bound to make the type parameter `Sized`"
}
};
err.span_suggestion_verbose(span, msg, suggestion, applicability);
} else if suggestions.len() > 1 {
err.multipart_suggestion_verbose(
"consider restricting type parameters",
suggestions.into_iter().map(|(span, suggestion, _)| (span, suggestion)).collect(),
applicability,
);
}
true
}
/// Collect al types that have an implicit `'static` obligation that we could suggest `'_` for.
pub struct TraitObjectVisitor<'tcx>(pub Vec<&'tcx hir::Ty<'tcx>>, pub crate::hir::map::Map<'tcx>);
impl<'v> hir::intravisit::Visitor<'v> for TraitObjectVisitor<'v> {
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
match ty.kind {
hir::TyKind::TraitObject(
_,
hir::Lifetime {
name:
hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Static,
..
},
_,
) => {
self.0.push(ty);
}
hir::TyKind::OpaqueDef(item_id, _, _) => {
self.0.push(ty);
let item = self.1.item(item_id);
hir::intravisit::walk_item(self, item);
}
_ => {}
}
hir::intravisit::walk_ty(self, ty);
}
}
/// Collect al types that have an implicit `'static` obligation that we could suggest `'_` for.
pub struct StaticLifetimeVisitor<'tcx>(pub Vec<Span>, pub crate::hir::map::Map<'tcx>);
impl<'v> hir::intravisit::Visitor<'v> for StaticLifetimeVisitor<'v> {
fn visit_lifetime(&mut self, lt: &'v hir::Lifetime) {
if let hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Static =
lt.name
{
self.0.push(lt.span);
}
}
}
pub struct IsSuggestableVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
infer_suggestable: bool,
}
impl<'tcx> TypeVisitor<'tcx> for IsSuggestableVisitor<'tcx> {
type BreakTy = ();
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
match t.kind() {
Infer(InferTy::TyVar(_)) if self.infer_suggestable => {}
FnDef(..)
| Closure(..)
| Infer(..)
| Generator(..)
| GeneratorWitness(..)
| Bound(_, _)
| Placeholder(_)
| Error(_) => {
return ControlFlow::Break(());
}
Opaque(did, _) => {
let parent = self.tcx.parent(*did);
if let hir::def::DefKind::TyAlias | hir::def::DefKind::AssocTy = self.tcx.def_kind(parent)
&& let Opaque(parent_did, _) = self.tcx.type_of(parent).kind()
&& parent_did == did
{
// Okay
} else {
return ControlFlow::Break(());
}
}
Dynamic(dty, _, _) => {
for pred in *dty {
match pred.skip_binder() {
ExistentialPredicate::Trait(_) | ExistentialPredicate::Projection(_) => {
// Okay
}
_ => return ControlFlow::Break(()),
}
}
}
Param(param) => {
// FIXME: It would be nice to make this not use string manipulation,
// but it's pretty hard to do this, since `ty::ParamTy` is missing
// sufficient info to determine if it is synthetic, and we don't
// always have a convenient way of getting `ty::Generics` at the call
// sites we invoke `IsSuggestable::is_suggestable`.
if param.name.as_str().starts_with("impl ") {
return ControlFlow::Break(());
}
}
_ => {}
}
t.super_visit_with(self)
}
fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
match c.kind() {
ConstKind::Infer(InferConst::Var(_)) if self.infer_suggestable => {}
ConstKind::Infer(..)
| ConstKind::Bound(..)
| ConstKind::Placeholder(..)
| ConstKind::Error(..) => {
return ControlFlow::Break(());
}
_ => {}
}
c.super_visit_with(self)
}
}
#[derive(Diagnostic)]
#[diag(borrowck_const_not_used_in_type_alias)]
pub(super) struct ConstNotUsedTraitAlias {
pub ct: String,
#[primary_span]
pub span: Span,
}