| // This file contains various trait resolution methods used by codegen. |
| // They all assume regions can be erased and monomorphic types. It |
| // seems likely that they should eventually be merged into more |
| // general routines. |
| |
| use rustc_infer::infer::TyCtxtInferExt; |
| use rustc_middle::bug; |
| use rustc_middle::traits::CodegenObligationError; |
| use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt}; |
| use rustc_trait_selection::error_reporting::InferCtxtErrorExt; |
| use rustc_trait_selection::traits::{ |
| ImplSource, Obligation, ObligationCause, ObligationCtxt, ScrubbedTraitError, SelectionContext, |
| Unimplemented, |
| }; |
| use tracing::debug; |
| |
| /// Attempts to resolve an obligation to an `ImplSource`. The result is |
| /// a shallow `ImplSource` resolution, meaning that we do not |
| /// (necessarily) resolve all nested obligations on the impl. Note |
| /// that type check should guarantee to us that all nested |
| /// obligations *could be* resolved if we wanted to. |
| /// |
| /// This also expects that `trait_ref` is fully normalized. |
| pub(crate) fn codegen_select_candidate<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| (param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::TraitRef<'tcx>), |
| ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { |
| // We expect the input to be fully normalized. |
| debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(param_env, trait_ref)); |
| |
| // Do the initial selection for the obligation. This yields the |
| // shallow result we are looking for -- that is, what specific impl. |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(); |
| let mut selcx = SelectionContext::new(&infcx); |
| |
| let obligation_cause = ObligationCause::dummy(); |
| let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref); |
| |
| let selection = match selcx.select(&obligation) { |
| Ok(Some(selection)) => selection, |
| Ok(None) => return Err(CodegenObligationError::Ambiguity), |
| Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented), |
| Err(e) => { |
| bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref) |
| } |
| }; |
| |
| debug!(?selection); |
| |
| // Currently, we use a fulfillment context to completely resolve |
| // all nested obligations. This is because they can inform the |
| // inference of the impl's type parameters. |
| // FIXME(-Znext-solver): Doesn't need diagnostics if new solver. |
| let ocx = ObligationCtxt::new(&infcx); |
| let impl_source = selection.map(|obligation| { |
| ocx.register_obligation(obligation); |
| }); |
| |
| // In principle, we only need to do this so long as `impl_source` |
| // contains unbound type parameters. It could be a slight |
| // optimization to stop iterating early. |
| let errors = ocx.select_all_or_error(); |
| if !errors.is_empty() { |
| // `rustc_monomorphize::collector` assumes there are no type errors. |
| // Cycle errors are the only post-monomorphization errors possible; emit them now so |
| // `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization. |
| for err in errors { |
| if let ScrubbedTraitError::Cycle(cycle) = err { |
| infcx.err_ctxt().report_overflow_obligation_cycle(&cycle); |
| } |
| } |
| return Err(CodegenObligationError::FulfillmentError); |
| } |
| |
| let impl_source = infcx.resolve_vars_if_possible(impl_source); |
| let impl_source = infcx.tcx.erase_regions(impl_source); |
| if impl_source.has_infer() { |
| // Unused lifetimes on an impl get replaced with inference vars, but never resolved, |
| // causing the return value of a query to contain inference vars. We do not have a concept |
| // for this and will in fact ICE in stable hashing of the return value. So bail out instead. |
| infcx.tcx.dcx().has_errors().unwrap(); |
| return Err(CodegenObligationError::FulfillmentError); |
| } |
| |
| Ok(&*tcx.arena.alloc(impl_source)) |
| } |