| //! Utilities for the slice primitive type. |
| //! |
| //! *[See also the slice primitive type](slice).* |
| //! |
| //! Most of the structs in this module are iterator types which can only be created |
| //! using a certain function. For example, `slice.iter()` yields an [`Iter`]. |
| //! |
| //! A few functions are provided to create a slice from a value reference |
| //! or from a raw pointer. |
| #![stable(feature = "rust1", since = "1.0.0")] |
| // Many of the usings in this module are only used in the test configuration. |
| // It's cleaner to just turn off the unused_imports warning than to fix them. |
| #![cfg_attr(test, allow(unused_imports, dead_code))] |
| |
| use core::borrow::{Borrow, BorrowMut}; |
| #[cfg(not(no_global_oom_handling))] |
| use core::cmp::Ordering::{self, Less}; |
| #[cfg(not(no_global_oom_handling))] |
| use core::mem::{self, MaybeUninit}; |
| #[cfg(not(no_global_oom_handling))] |
| use core::ptr; |
| #[unstable(feature = "array_chunks", issue = "74985")] |
| pub use core::slice::ArrayChunks; |
| #[unstable(feature = "array_chunks", issue = "74985")] |
| pub use core::slice::ArrayChunksMut; |
| #[unstable(feature = "array_windows", issue = "75027")] |
| pub use core::slice::ArrayWindows; |
| #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] |
| pub use core::slice::EscapeAscii; |
| #[stable(feature = "slice_get_slice", since = "1.28.0")] |
| pub use core::slice::SliceIndex; |
| #[cfg(not(no_global_oom_handling))] |
| use core::slice::sort; |
| #[stable(feature = "slice_group_by", since = "1.77.0")] |
| pub use core::slice::{ChunkBy, ChunkByMut}; |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use core::slice::{Chunks, Windows}; |
| #[stable(feature = "chunks_exact", since = "1.31.0")] |
| pub use core::slice::{ChunksExact, ChunksExactMut}; |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use core::slice::{ChunksMut, Split, SplitMut}; |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use core::slice::{Iter, IterMut}; |
| #[stable(feature = "rchunks", since = "1.31.0")] |
| pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; |
| #[stable(feature = "slice_rsplit", since = "1.27.0")] |
| pub use core::slice::{RSplit, RSplitMut}; |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; |
| #[stable(feature = "split_inclusive", since = "1.51.0")] |
| pub use core::slice::{SplitInclusive, SplitInclusiveMut}; |
| #[stable(feature = "from_ref", since = "1.28.0")] |
| pub use core::slice::{from_mut, from_ref}; |
| #[unstable(feature = "slice_from_ptr_range", issue = "89792")] |
| pub use core::slice::{from_mut_ptr_range, from_ptr_range}; |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use core::slice::{from_raw_parts, from_raw_parts_mut}; |
| #[unstable(feature = "slice_range", issue = "76393")] |
| pub use core::slice::{range, try_range}; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Basic slice extension methods |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // HACK(japaric) needed for the implementation of `vec!` macro during testing |
| // N.B., see the `hack` module in this file for more details. |
| #[cfg(test)] |
| pub use hack::into_vec; |
| // HACK(japaric) needed for the implementation of `Vec::clone` during testing |
| // N.B., see the `hack` module in this file for more details. |
| #[cfg(test)] |
| pub use hack::to_vec; |
| |
| use crate::alloc::Allocator; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::alloc::Global; |
| #[cfg(not(no_global_oom_handling))] |
| use crate::borrow::ToOwned; |
| use crate::boxed::Box; |
| use crate::vec::Vec; |
| |
| // HACK(japaric): With cfg(test) `impl [T]` is not available, these three |
| // functions are actually methods that are in `impl [T]` but not in |
| // `core::slice::SliceExt` - we need to supply these functions for the |
| // `test_permutations` test |
| pub(crate) mod hack { |
| use core::alloc::Allocator; |
| |
| use crate::boxed::Box; |
| use crate::vec::Vec; |
| |
| // We shouldn't add inline attribute to this since this is used in |
| // `vec!` macro mostly and causes perf regression. See #71204 for |
| // discussion and perf results. |
| #[allow(missing_docs)] |
| pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> { |
| unsafe { |
| let len = b.len(); |
| let (b, alloc) = Box::into_raw_with_allocator(b); |
| Vec::from_raw_parts_in(b as *mut T, len, len, alloc) |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[allow(missing_docs)] |
| #[inline] |
| pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> { |
| T::to_vec(s, alloc) |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| pub trait ConvertVec { |
| fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> |
| where |
| Self: Sized; |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Clone> ConvertVec for T { |
| #[inline] |
| default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { |
| struct DropGuard<'a, T, A: Allocator> { |
| vec: &'a mut Vec<T, A>, |
| num_init: usize, |
| } |
| impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { |
| #[inline] |
| fn drop(&mut self) { |
| // SAFETY: |
| // items were marked initialized in the loop below |
| unsafe { |
| self.vec.set_len(self.num_init); |
| } |
| } |
| } |
| let mut vec = Vec::with_capacity_in(s.len(), alloc); |
| let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; |
| let slots = guard.vec.spare_capacity_mut(); |
| // .take(slots.len()) is necessary for LLVM to remove bounds checks |
| // and has better codegen than zip. |
| for (i, b) in s.iter().enumerate().take(slots.len()) { |
| guard.num_init = i; |
| slots[i].write(b.clone()); |
| } |
| core::mem::forget(guard); |
| // SAFETY: |
| // the vec was allocated and initialized above to at least this length. |
| unsafe { |
| vec.set_len(s.len()); |
| } |
| vec |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Copy> ConvertVec for T { |
| #[inline] |
| fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { |
| let mut v = Vec::with_capacity_in(s.len(), alloc); |
| // SAFETY: |
| // allocated above with the capacity of `s`, and initialize to `s.len()` in |
| // ptr::copy_to_non_overlapping below. |
| unsafe { |
| s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); |
| v.set_len(s.len()); |
| } |
| v |
| } |
| } |
| } |
| |
| #[cfg(not(test))] |
| impl<T> [T] { |
| /// Sorts the slice, preserving initial order of equal elements. |
| /// |
| /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) |
| /// worst-case. |
| /// |
| /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function |
| /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| /// is unspecified. See also the note on panicking below. |
| /// |
| /// When applicable, unstable sorting is preferred because it is generally faster than stable |
| /// sorting and it doesn't allocate auxiliary memory. See |
| /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which |
| /// may be better served with `slice::sort`. |
| /// |
| /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require |
| /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the |
| /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with |
| /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total |
| /// order] users can sort slices containing floating-point values. Alternatively, if all values |
| /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a |
| /// [total order], it's possible to sort the slice with `sort_by(|a, b| |
| /// a.partial_cmp(b).unwrap())`. |
| /// |
| /// # Current implementation |
| /// |
| /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| /// combines the fast average case of quicksort with the fast worst case and partial run |
| /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| /// |
| /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| /// clamps at `self.len() / 2`. |
| /// |
| /// # Panics |
| /// |
| /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if |
| /// the [`Ord`] implementation itself panics. |
| /// |
| /// All safe functions on slices preserve the invariant that even if the function panics, all |
| /// original elements will remain in the slice and any possible modifications via interior |
| /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| /// to dispose of all contained elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = [4, -5, 1, -3, 2]; |
| /// |
| /// v.sort(); |
| /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| /// ``` |
| /// |
| /// [driftsort]: https://github.com/Voultapher/driftsort |
| /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn sort(&mut self) |
| where |
| T: Ord, |
| { |
| stable_sort(self, T::lt); |
| } |
| |
| /// Sorts the slice with a comparison function, preserving initial order of equal elements. |
| /// |
| /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) |
| /// worst-case. |
| /// |
| /// If the comparison function `compare` does not implement a [total order], the function may |
| /// panic; even if the function exits normally, the resulting order of elements in the slice is |
| /// unspecified. See also the note on panicking below. |
| /// |
| /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor |
| /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and |
| /// examples see the [`Ord`] documentation. |
| /// |
| /// # Current implementation |
| /// |
| /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| /// combines the fast average case of quicksort with the fast worst case and partial run |
| /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| /// |
| /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| /// clamps at `self.len() / 2`. |
| /// |
| /// # Panics |
| /// |
| /// May panic if `compare` does not implement a [total order], or if `compare` itself panics. |
| /// |
| /// All safe functions on slices preserve the invariant that even if the function panics, all |
| /// original elements will remain in the slice and any possible modifications via interior |
| /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| /// to dispose of all contained elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = [4, -5, 1, -3, 2]; |
| /// v.sort_by(|a, b| a.cmp(b)); |
| /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| /// |
| /// // reverse sorting |
| /// v.sort_by(|a, b| b.cmp(a)); |
| /// assert_eq!(v, [4, 2, 1, -3, -5]); |
| /// ``` |
| /// |
| /// [driftsort]: https://github.com/Voultapher/driftsort |
| /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn sort_by<F>(&mut self, mut compare: F) |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| stable_sort(self, |a, b| compare(a, b) == Less); |
| } |
| |
| /// Sorts the slice with a key extraction function, preserving initial order of equal elements. |
| /// |
| /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) |
| /// worst-case, where the key function is *O*(*m*). |
| /// |
| /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function |
| /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| /// is unspecified. See also the note on panicking below. |
| /// |
| /// # Current implementation |
| /// |
| /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| /// combines the fast average case of quicksort with the fast worst case and partial run |
| /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| /// |
| /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| /// clamps at `self.len() / 2`. |
| /// |
| /// # Panics |
| /// |
| /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if |
| /// the [`Ord`] implementation or the key-function `f` panics. |
| /// |
| /// All safe functions on slices preserve the invariant that even if the function panics, all |
| /// original elements will remain in the slice and any possible modifications via interior |
| /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| /// to dispose of all contained elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = [4i32, -5, 1, -3, 2]; |
| /// |
| /// v.sort_by_key(|k| k.abs()); |
| /// assert_eq!(v, [1, 2, -3, 4, -5]); |
| /// ``` |
| /// |
| /// [driftsort]: https://github.com/Voultapher/driftsort |
| /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "slice_sort_by_key", since = "1.7.0")] |
| #[inline] |
| pub fn sort_by_key<K, F>(&mut self, mut f: F) |
| where |
| F: FnMut(&T) -> K, |
| K: Ord, |
| { |
| stable_sort(self, |a, b| f(a).lt(&f(b))); |
| } |
| |
| /// Sorts the slice with a key extraction function, preserving initial order of equal elements. |
| /// |
| /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* |
| /// log(*n*)) worst-case, where the key function is *O*(*m*). |
| /// |
| /// During sorting, the key function is called at most once per element, by using temporary |
| /// storage to remember the results of key evaluation. The order of calls to the key function is |
| /// unspecified and may change in future versions of the standard library. |
| /// |
| /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function |
| /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| /// is unspecified. See also the note on panicking below. |
| /// |
| /// For simple key functions (e.g., functions that are property accesses or basic operations), |
| /// [`sort_by_key`](slice::sort_by_key) is likely to be faster. |
| /// |
| /// # Current implementation |
| /// |
| /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas |
| /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst |
| /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And |
| /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages |
| /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently |
| /// perform the operation. |
| /// |
| /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the |
| /// length of the slice. |
| /// |
| /// # Panics |
| /// |
| /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if |
| /// the [`Ord`] implementation panics. |
| /// |
| /// All safe functions on slices preserve the invariant that even if the function panics, all |
| /// original elements will remain in the slice and any possible modifications via interior |
| /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| /// to dispose of all contained elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = [4i32, -5, 1, -3, 2, 10]; |
| /// |
| /// // Strings are sorted by lexicographical order. |
| /// v.sort_by_cached_key(|k| k.to_string()); |
| /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]); |
| /// ``` |
| /// |
| /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] |
| #[inline] |
| pub fn sort_by_cached_key<K, F>(&mut self, f: F) |
| where |
| F: FnMut(&T) -> K, |
| K: Ord, |
| { |
| // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. |
| macro_rules! sort_by_key { |
| ($t:ty, $slice:ident, $f:ident) => {{ |
| let mut indices: Vec<_> = |
| $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); |
| // The elements of `indices` are unique, as they are indexed, so any sort will be |
| // stable with respect to the original slice. We use `sort_unstable` here because |
| // it requires no memory allocation. |
| indices.sort_unstable(); |
| for i in 0..$slice.len() { |
| let mut index = indices[i].1; |
| while (index as usize) < i { |
| index = indices[index as usize].1; |
| } |
| indices[i].1 = index; |
| $slice.swap(i, index as usize); |
| } |
| }}; |
| } |
| |
| let len = self.len(); |
| if len < 2 { |
| return; |
| } |
| |
| // Avoids binary-size usage in cases where the alignment doesn't work out to make this |
| // beneficial or on 32-bit platforms. |
| let is_using_u32_as_idx_type_helpful = |
| const { mem::size_of::<(K, u32)>() < mem::size_of::<(K, usize)>() }; |
| |
| // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms |
| // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4 |
| // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak |
| // ~262KB. |
| if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) { |
| return sort_by_key!(u32, self, f); |
| } |
| |
| sort_by_key!(usize, self, f) |
| } |
| |
| /// Copies `self` into a new `Vec`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let s = [10, 40, 30]; |
| /// let x = s.to_vec(); |
| /// // Here, `s` and `x` can be modified independently. |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[rustc_conversion_suggestion] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn to_vec(&self) -> Vec<T> |
| where |
| T: Clone, |
| { |
| self.to_vec_in(Global) |
| } |
| |
| /// Copies `self` into a new `Vec` with an allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(allocator_api)] |
| /// |
| /// use std::alloc::System; |
| /// |
| /// let s = [10, 40, 30]; |
| /// let x = s.to_vec_in(System); |
| /// // Here, `s` and `x` can be modified independently. |
| /// ``` |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[inline] |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> |
| where |
| T: Clone, |
| { |
| // N.B., see the `hack` module in this file for more details. |
| hack::to_vec(self, alloc) |
| } |
| |
| /// Converts `self` into a vector without clones or allocation. |
| /// |
| /// The resulting vector can be converted back into a box via |
| /// `Vec<T>`'s `into_boxed_slice` method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let s: Box<[i32]> = Box::new([10, 40, 30]); |
| /// let x = s.into_vec(); |
| /// // `s` cannot be used anymore because it has been converted into `x`. |
| /// |
| /// assert_eq!(x, vec![10, 40, 30]); |
| /// ``` |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| #[cfg_attr(not(test), rustc_diagnostic_item = "slice_into_vec")] |
| pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> { |
| // N.B., see the `hack` module in this file for more details. |
| hack::into_vec(self) |
| } |
| |
| /// Creates a vector by copying a slice `n` times. |
| /// |
| /// # Panics |
| /// |
| /// This function will panic if the capacity would overflow. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); |
| /// ``` |
| /// |
| /// A panic upon overflow: |
| /// |
| /// ```should_panic |
| /// // this will panic at runtime |
| /// b"0123456789abcdef".repeat(usize::MAX); |
| /// ``` |
| #[rustc_allow_incoherent_impl] |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "repeat_generic_slice", since = "1.40.0")] |
| pub fn repeat(&self, n: usize) -> Vec<T> |
| where |
| T: Copy, |
| { |
| if n == 0 { |
| return Vec::new(); |
| } |
| |
| // If `n` is larger than zero, it can be split as |
| // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. |
| // `2^expn` is the number represented by the leftmost '1' bit of `n`, |
| // and `rem` is the remaining part of `n`. |
| |
| // Using `Vec` to access `set_len()`. |
| let capacity = self.len().checked_mul(n).expect("capacity overflow"); |
| let mut buf = Vec::with_capacity(capacity); |
| |
| // `2^expn` repetition is done by doubling `buf` `expn`-times. |
| buf.extend(self); |
| { |
| let mut m = n >> 1; |
| // If `m > 0`, there are remaining bits up to the leftmost '1'. |
| while m > 0 { |
| // `buf.extend(buf)`: |
| unsafe { |
| ptr::copy_nonoverlapping::<T>( |
| buf.as_ptr(), |
| (buf.as_mut_ptr()).add(buf.len()), |
| buf.len(), |
| ); |
| // `buf` has capacity of `self.len() * n`. |
| let buf_len = buf.len(); |
| buf.set_len(buf_len * 2); |
| } |
| |
| m >>= 1; |
| } |
| } |
| |
| // `rem` (`= n - 2^expn`) repetition is done by copying |
| // first `rem` repetitions from `buf` itself. |
| let rem_len = capacity - buf.len(); // `self.len() * rem` |
| if rem_len > 0 { |
| // `buf.extend(buf[0 .. rem_len])`: |
| unsafe { |
| // This is non-overlapping since `2^expn > rem`. |
| ptr::copy_nonoverlapping::<T>( |
| buf.as_ptr(), |
| (buf.as_mut_ptr()).add(buf.len()), |
| rem_len, |
| ); |
| // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). |
| buf.set_len(capacity); |
| } |
| } |
| buf |
| } |
| |
| /// Flattens a slice of `T` into a single value `Self::Output`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(["hello", "world"].concat(), "helloworld"); |
| /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); |
| /// ``` |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output |
| where |
| Self: Concat<Item>, |
| { |
| Concat::concat(self) |
| } |
| |
| /// Flattens a slice of `T` into a single value `Self::Output`, placing a |
| /// given separator between each. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(["hello", "world"].join(" "), "hello world"); |
| /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); |
| /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); |
| /// ``` |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rename_connect_to_join", since = "1.3.0")] |
| pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output |
| where |
| Self: Join<Separator>, |
| { |
| Join::join(self, sep) |
| } |
| |
| /// Flattens a slice of `T` into a single value `Self::Output`, placing a |
| /// given separator between each. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # #![allow(deprecated)] |
| /// assert_eq!(["hello", "world"].connect(" "), "hello world"); |
| /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); |
| /// ``` |
| #[rustc_allow_incoherent_impl] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")] |
| pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output |
| where |
| Self: Join<Separator>, |
| { |
| Join::join(self, sep) |
| } |
| } |
| |
| #[cfg(not(test))] |
| impl [u8] { |
| /// Returns a vector containing a copy of this slice where each byte |
| /// is mapped to its ASCII upper case equivalent. |
| /// |
| /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To uppercase the value in-place, use [`make_ascii_uppercase`]. |
| /// |
| /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[must_use = "this returns the uppercase bytes as a new Vec, \ |
| without modifying the original"] |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn to_ascii_uppercase(&self) -> Vec<u8> { |
| let mut me = self.to_vec(); |
| me.make_ascii_uppercase(); |
| me |
| } |
| |
| /// Returns a vector containing a copy of this slice where each byte |
| /// is mapped to its ASCII lower case equivalent. |
| /// |
| /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To lowercase the value in-place, use [`make_ascii_lowercase`]. |
| /// |
| /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase |
| #[cfg(not(no_global_oom_handling))] |
| #[rustc_allow_incoherent_impl] |
| #[must_use = "this returns the lowercase bytes as a new Vec, \ |
| without modifying the original"] |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn to_ascii_lowercase(&self) -> Vec<u8> { |
| let mut me = self.to_vec(); |
| me.make_ascii_lowercase(); |
| me |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Extension traits for slices over specific kinds of data |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Helper trait for [`[T]::concat`](slice::concat). |
| /// |
| /// Note: the `Item` type parameter is not used in this trait, |
| /// but it allows impls to be more generic. |
| /// Without it, we get this error: |
| /// |
| /// ```error |
| /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica |
| /// --> library/alloc/src/slice.rs:608:6 |
| /// | |
| /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] { |
| /// | ^ unconstrained type parameter |
| /// ``` |
| /// |
| /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, |
| /// such that multiple `T` types would apply: |
| /// |
| /// ``` |
| /// # #[allow(dead_code)] |
| /// pub struct Foo(Vec<u32>, Vec<String>); |
| /// |
| /// impl std::borrow::Borrow<[u32]> for Foo { |
| /// fn borrow(&self) -> &[u32] { &self.0 } |
| /// } |
| /// |
| /// impl std::borrow::Borrow<[String]> for Foo { |
| /// fn borrow(&self) -> &[String] { &self.1 } |
| /// } |
| /// ``` |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| pub trait Concat<Item: ?Sized> { |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| /// The resulting type after concatenation |
| type Output; |
| |
| /// Implementation of [`[T]::concat`](slice::concat) |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| fn concat(slice: &Self) -> Self::Output; |
| } |
| |
| /// Helper trait for [`[T]::join`](slice::join) |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| pub trait Join<Separator> { |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| /// The resulting type after concatenation |
| type Output; |
| |
| /// Implementation of [`[T]::join`](slice::join) |
| #[unstable(feature = "slice_concat_trait", issue = "27747")] |
| fn join(slice: &Self, sep: Separator) -> Self::Output; |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "slice_concat_ext", issue = "27747")] |
| impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] { |
| type Output = Vec<T>; |
| |
| fn concat(slice: &Self) -> Vec<T> { |
| let size = slice.iter().map(|slice| slice.borrow().len()).sum(); |
| let mut result = Vec::with_capacity(size); |
| for v in slice { |
| result.extend_from_slice(v.borrow()) |
| } |
| result |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "slice_concat_ext", issue = "27747")] |
| impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] { |
| type Output = Vec<T>; |
| |
| fn join(slice: &Self, sep: &T) -> Vec<T> { |
| let mut iter = slice.iter(); |
| let first = match iter.next() { |
| Some(first) => first, |
| None => return vec![], |
| }; |
| let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1; |
| let mut result = Vec::with_capacity(size); |
| result.extend_from_slice(first.borrow()); |
| |
| for v in iter { |
| result.push(sep.clone()); |
| result.extend_from_slice(v.borrow()) |
| } |
| result |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(feature = "slice_concat_ext", issue = "27747")] |
| impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] { |
| type Output = Vec<T>; |
| |
| fn join(slice: &Self, sep: &[T]) -> Vec<T> { |
| let mut iter = slice.iter(); |
| let first = match iter.next() { |
| Some(first) => first, |
| None => return vec![], |
| }; |
| let size = |
| slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1); |
| let mut result = Vec::with_capacity(size); |
| result.extend_from_slice(first.borrow()); |
| |
| for v in iter { |
| result.extend_from_slice(sep); |
| result.extend_from_slice(v.borrow()) |
| } |
| result |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Standard trait implementations for slices |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> { |
| fn borrow(&self) -> &[T] { |
| &self[..] |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> { |
| fn borrow_mut(&mut self) -> &mut [T] { |
| &mut self[..] |
| } |
| } |
| |
| // Specializable trait for implementing ToOwned::clone_into. This is |
| // public in the crate and has the Allocator parameter so that |
| // vec::clone_from use it too. |
| #[cfg(not(no_global_oom_handling))] |
| pub(crate) trait SpecCloneIntoVec<T, A: Allocator> { |
| fn clone_into(&self, target: &mut Vec<T, A>); |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] { |
| default fn clone_into(&self, target: &mut Vec<T, A>) { |
| // drop anything in target that will not be overwritten |
| target.truncate(self.len()); |
| |
| // target.len <= self.len due to the truncate above, so the |
| // slices here are always in-bounds. |
| let (init, tail) = self.split_at(target.len()); |
| |
| // reuse the contained values' allocations/resources. |
| target.clone_from_slice(init); |
| target.extend_from_slice(tail); |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] { |
| fn clone_into(&self, target: &mut Vec<T, A>) { |
| target.clear(); |
| target.extend_from_slice(self); |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: Clone> ToOwned for [T] { |
| type Owned = Vec<T>; |
| #[cfg(not(test))] |
| fn to_owned(&self) -> Vec<T> { |
| self.to_vec() |
| } |
| |
| #[cfg(test)] |
| fn to_owned(&self) -> Vec<T> { |
| hack::to_vec(self, Global) |
| } |
| |
| fn clone_into(&self, target: &mut Vec<T>) { |
| SpecCloneIntoVec::clone_into(self, target); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Sorting |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #[inline] |
| #[cfg(not(no_global_oom_handling))] |
| fn stable_sort<T, F>(v: &mut [T], mut is_less: F) |
| where |
| F: FnMut(&T, &T) -> bool, |
| { |
| sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less); |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[unstable(issue = "none", feature = "std_internals")] |
| impl<T> sort::stable::BufGuard<T> for Vec<T> { |
| fn with_capacity(capacity: usize) -> Self { |
| Vec::with_capacity(capacity) |
| } |
| |
| fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] { |
| self.spare_capacity_mut() |
| } |
| } |