| #![stable(feature = "duration_core", since = "1.25.0")] |
| |
| //! Temporal quantification. |
| //! |
| //! # Examples: |
| //! |
| //! There are multiple ways to create a new [`Duration`]: |
| //! |
| //! ``` |
| //! # use std::time::Duration; |
| //! let five_seconds = Duration::from_secs(5); |
| //! assert_eq!(five_seconds, Duration::from_millis(5_000)); |
| //! assert_eq!(five_seconds, Duration::from_micros(5_000_000)); |
| //! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000)); |
| //! |
| //! let ten_seconds = Duration::from_secs(10); |
| //! let seven_nanos = Duration::from_nanos(7); |
| //! let total = ten_seconds + seven_nanos; |
| //! assert_eq!(total, Duration::new(10, 7)); |
| //! ``` |
| |
| use crate::fmt; |
| use crate::iter::Sum; |
| use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; |
| |
| const NANOS_PER_SEC: u32 = 1_000_000_000; |
| const NANOS_PER_MILLI: u32 = 1_000_000; |
| const NANOS_PER_MICRO: u32 = 1_000; |
| const MILLIS_PER_SEC: u64 = 1_000; |
| const MICROS_PER_SEC: u64 = 1_000_000; |
| #[unstable(feature = "duration_units", issue = "120301")] |
| const SECS_PER_MINUTE: u64 = 60; |
| #[unstable(feature = "duration_units", issue = "120301")] |
| const MINS_PER_HOUR: u64 = 60; |
| #[unstable(feature = "duration_units", issue = "120301")] |
| const HOURS_PER_DAY: u64 = 24; |
| #[unstable(feature = "duration_units", issue = "120301")] |
| const DAYS_PER_WEEK: u64 = 7; |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| #[repr(transparent)] |
| #[rustc_layout_scalar_valid_range_start(0)] |
| #[rustc_layout_scalar_valid_range_end(999_999_999)] |
| struct Nanoseconds(u32); |
| |
| impl Nanoseconds { |
| // SAFETY: 0 is within the valid range |
| const ZERO: Self = unsafe { Nanoseconds(0) }; |
| } |
| |
| impl Default for Nanoseconds { |
| #[inline] |
| fn default() -> Self { |
| Self::ZERO |
| } |
| } |
| |
| /// A `Duration` type to represent a span of time, typically used for system |
| /// timeouts. |
| /// |
| /// Each `Duration` is composed of a whole number of seconds and a fractional part |
| /// represented in nanoseconds. If the underlying system does not support |
| /// nanosecond-level precision, APIs binding a system timeout will typically round up |
| /// the number of nanoseconds. |
| /// |
| /// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other |
| /// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`. |
| /// |
| /// [`ops`]: crate::ops |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let five_seconds = Duration::new(5, 0); |
| /// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5); |
| /// |
| /// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5); |
| /// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5); |
| /// |
| /// let ten_millis = Duration::from_millis(10); |
| /// ``` |
| /// |
| /// # Formatting `Duration` values |
| /// |
| /// `Duration` intentionally does not have a `Display` impl, as there are a |
| /// variety of ways to format spans of time for human readability. `Duration` |
| /// provides a `Debug` impl that shows the full precision of the value. |
| /// |
| /// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your |
| /// program output may appear in contexts that cannot rely on full Unicode |
| /// compatibility, you may wish to format `Duration` objects yourself or use a |
| /// crate to do so. |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] |
| #[cfg_attr(not(test), rustc_diagnostic_item = "Duration")] |
| pub struct Duration { |
| secs: u64, |
| nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC |
| } |
| |
| impl Duration { |
| /// The duration of one second. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::SECOND, Duration::from_secs(1)); |
| /// ``` |
| #[unstable(feature = "duration_constants", issue = "57391")] |
| pub const SECOND: Duration = Duration::from_secs(1); |
| |
| /// The duration of one millisecond. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1)); |
| /// ``` |
| #[unstable(feature = "duration_constants", issue = "57391")] |
| pub const MILLISECOND: Duration = Duration::from_millis(1); |
| |
| /// The duration of one microsecond. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1)); |
| /// ``` |
| #[unstable(feature = "duration_constants", issue = "57391")] |
| pub const MICROSECOND: Duration = Duration::from_micros(1); |
| |
| /// The duration of one nanosecond. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1)); |
| /// ``` |
| #[unstable(feature = "duration_constants", issue = "57391")] |
| pub const NANOSECOND: Duration = Duration::from_nanos(1); |
| |
| /// A duration of zero time. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::ZERO; |
| /// assert!(duration.is_zero()); |
| /// assert_eq!(duration.as_nanos(), 0); |
| /// ``` |
| #[stable(feature = "duration_zero", since = "1.53.0")] |
| pub const ZERO: Duration = Duration::from_nanos(0); |
| |
| /// The maximum duration. |
| /// |
| /// May vary by platform as necessary. Must be able to contain the difference between |
| /// two instances of [`Instant`] or two instances of [`SystemTime`]. |
| /// This constraint gives it a value of about 584,942,417,355 years in practice, |
| /// which is currently used on all platforms. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1)); |
| /// ``` |
| /// [`Instant`]: ../../std/time/struct.Instant.html |
| /// [`SystemTime`]: ../../std/time/struct.SystemTime.html |
| #[stable(feature = "duration_saturating_ops", since = "1.53.0")] |
| pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1); |
| |
| /// Creates a new `Duration` from the specified number of whole seconds and |
| /// additional nanoseconds. |
| /// |
| /// If the number of nanoseconds is greater than 1 billion (the number of |
| /// nanoseconds in a second), then it will carry over into the seconds provided. |
| /// |
| /// # Panics |
| /// |
| /// This constructor will panic if the carry from the nanoseconds overflows |
| /// the seconds counter. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let five_seconds = Duration::new(5, 0); |
| /// ``` |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[inline] |
| #[must_use] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn new(secs: u64, nanos: u32) -> Duration { |
| if nanos < NANOS_PER_SEC { |
| // SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range |
| Duration { secs, nanos: unsafe { Nanoseconds(nanos) } } |
| } else { |
| // FIXME(const-hack): use `.expect` once that is possible. |
| let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) { |
| Some(secs) => secs, |
| None => panic!("overflow in Duration::new"), |
| }; |
| let nanos = nanos % NANOS_PER_SEC; |
| // SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range |
| Duration { secs, nanos: unsafe { Nanoseconds(nanos) } } |
| } |
| } |
| |
| /// Creates a new `Duration` from the specified number of whole seconds. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_secs(5); |
| /// |
| /// assert_eq!(5, duration.as_secs()); |
| /// assert_eq!(0, duration.subsec_nanos()); |
| /// ``` |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| pub const fn from_secs(secs: u64) -> Duration { |
| Duration { secs, nanos: Nanoseconds::ZERO } |
| } |
| |
| /// Creates a new `Duration` from the specified number of milliseconds. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_millis(2_569); |
| /// |
| /// assert_eq!(2, duration.as_secs()); |
| /// assert_eq!(569_000_000, duration.subsec_nanos()); |
| /// ``` |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| pub const fn from_millis(millis: u64) -> Duration { |
| let secs = millis / MILLIS_PER_SEC; |
| let subsec_millis = (millis % MILLIS_PER_SEC) as u32; |
| // SAFETY: (x % 1_000) * 1_000_000 < 1_000_000_000 |
| // => x % 1_000 < 1_000 |
| let subsec_nanos = unsafe { Nanoseconds(subsec_millis * NANOS_PER_MILLI) }; |
| |
| Duration { secs, nanos: subsec_nanos } |
| } |
| |
| /// Creates a new `Duration` from the specified number of microseconds. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_micros(1_000_002); |
| /// |
| /// assert_eq!(1, duration.as_secs()); |
| /// assert_eq!(2_000, duration.subsec_nanos()); |
| /// ``` |
| #[stable(feature = "duration_from_micros", since = "1.27.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| pub const fn from_micros(micros: u64) -> Duration { |
| let secs = micros / MICROS_PER_SEC; |
| let subsec_micros = (micros % MICROS_PER_SEC) as u32; |
| // SAFETY: (x % 1_000_000) * 1_000 < 1_000_000_000 |
| // => x % 1_000_000 < 1_000_000 |
| let subsec_nanos = unsafe { Nanoseconds(subsec_micros * NANOS_PER_MICRO) }; |
| |
| Duration { secs, nanos: subsec_nanos } |
| } |
| |
| /// Creates a new `Duration` from the specified number of nanoseconds. |
| /// |
| /// Note: Using this on the return value of `as_nanos()` might cause unexpected behavior: |
| /// `as_nanos()` returns a u128, and can return values that do not fit in u64, e.g. 585 years. |
| /// Instead, consider using the pattern `Duration::new(d.as_secs(), d.subsec_nanos())` |
| /// if you cannot copy/clone the Duration directly. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_nanos(1_000_000_123); |
| /// |
| /// assert_eq!(1, duration.as_secs()); |
| /// assert_eq!(123, duration.subsec_nanos()); |
| /// ``` |
| #[stable(feature = "duration_extras", since = "1.27.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| pub const fn from_nanos(nanos: u64) -> Duration { |
| const NANOS_PER_SEC: u64 = self::NANOS_PER_SEC as u64; |
| let secs = nanos / NANOS_PER_SEC; |
| let subsec_nanos = (nanos % NANOS_PER_SEC) as u32; |
| // SAFETY: x % 1_000_000_000 < 1_000_000_000 |
| let subsec_nanos = unsafe { Nanoseconds(subsec_nanos) }; |
| |
| Duration { secs, nanos: subsec_nanos } |
| } |
| |
| /// Creates a new `Duration` from the specified number of weeks. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the given number of weeks overflows the `Duration` size. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constructors)] |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_weeks(4); |
| /// |
| /// assert_eq!(4 * 7 * 24 * 60 * 60, duration.as_secs()); |
| /// assert_eq!(0, duration.subsec_nanos()); |
| /// ``` |
| #[unstable(feature = "duration_constructors", issue = "120301")] |
| #[must_use] |
| #[inline] |
| pub const fn from_weeks(weeks: u64) -> Duration { |
| if weeks > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY * DAYS_PER_WEEK) { |
| panic!("overflow in Duration::from_weeks"); |
| } |
| |
| Duration::from_secs(weeks * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY * DAYS_PER_WEEK) |
| } |
| |
| /// Creates a new `Duration` from the specified number of days. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the given number of days overflows the `Duration` size. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constructors)] |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_days(7); |
| /// |
| /// assert_eq!(7 * 24 * 60 * 60, duration.as_secs()); |
| /// assert_eq!(0, duration.subsec_nanos()); |
| /// ``` |
| #[unstable(feature = "duration_constructors", issue = "120301")] |
| #[must_use] |
| #[inline] |
| pub const fn from_days(days: u64) -> Duration { |
| if days > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR * HOURS_PER_DAY) { |
| panic!("overflow in Duration::from_days"); |
| } |
| |
| Duration::from_secs(days * MINS_PER_HOUR * SECS_PER_MINUTE * HOURS_PER_DAY) |
| } |
| |
| /// Creates a new `Duration` from the specified number of hours. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the given number of hours overflows the `Duration` size. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constructors)] |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_hours(6); |
| /// |
| /// assert_eq!(6 * 60 * 60, duration.as_secs()); |
| /// assert_eq!(0, duration.subsec_nanos()); |
| /// ``` |
| #[unstable(feature = "duration_constructors", issue = "120301")] |
| #[must_use] |
| #[inline] |
| pub const fn from_hours(hours: u64) -> Duration { |
| if hours > u64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR) { |
| panic!("overflow in Duration::from_hours"); |
| } |
| |
| Duration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE) |
| } |
| |
| /// Creates a new `Duration` from the specified number of minutes. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the given number of minutes overflows the `Duration` size. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constructors)] |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_mins(10); |
| /// |
| /// assert_eq!(10 * 60, duration.as_secs()); |
| /// assert_eq!(0, duration.subsec_nanos()); |
| /// ``` |
| #[unstable(feature = "duration_constructors", issue = "120301")] |
| #[must_use] |
| #[inline] |
| pub const fn from_mins(mins: u64) -> Duration { |
| if mins > u64::MAX / SECS_PER_MINUTE { |
| panic!("overflow in Duration::from_mins"); |
| } |
| |
| Duration::from_secs(mins * SECS_PER_MINUTE) |
| } |
| |
| /// Returns true if this `Duration` spans no time. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert!(Duration::ZERO.is_zero()); |
| /// assert!(Duration::new(0, 0).is_zero()); |
| /// assert!(Duration::from_nanos(0).is_zero()); |
| /// assert!(Duration::from_secs(0).is_zero()); |
| /// |
| /// assert!(!Duration::new(1, 1).is_zero()); |
| /// assert!(!Duration::from_nanos(1).is_zero()); |
| /// assert!(!Duration::from_secs(1).is_zero()); |
| /// ``` |
| #[must_use] |
| #[stable(feature = "duration_zero", since = "1.53.0")] |
| #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")] |
| #[inline] |
| pub const fn is_zero(&self) -> bool { |
| self.secs == 0 && self.nanos.0 == 0 |
| } |
| |
| /// Returns the number of _whole_ seconds contained by this `Duration`. |
| /// |
| /// The returned value does not include the fractional (nanosecond) part of the |
| /// duration, which can be obtained using [`subsec_nanos`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::new(5, 730_023_852); |
| /// assert_eq!(duration.as_secs(), 5); |
| /// ``` |
| /// |
| /// To determine the total number of seconds represented by the `Duration` |
| /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`] |
| /// |
| /// [`as_secs_f64`]: Duration::as_secs_f64 |
| /// [`as_secs_f32`]: Duration::as_secs_f32 |
| /// [`subsec_nanos`]: Duration::subsec_nanos |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| #[must_use] |
| #[inline] |
| pub const fn as_secs(&self) -> u64 { |
| self.secs |
| } |
| |
| /// Returns the fractional part of this `Duration`, in whole milliseconds. |
| /// |
| /// This method does **not** return the length of the duration when |
| /// represented by milliseconds. The returned number always represents a |
| /// fractional portion of a second (i.e., it is less than one thousand). |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_millis(5_432); |
| /// assert_eq!(duration.as_secs(), 5); |
| /// assert_eq!(duration.subsec_millis(), 432); |
| /// ``` |
| #[stable(feature = "duration_extras", since = "1.27.0")] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| #[must_use] |
| #[inline] |
| pub const fn subsec_millis(&self) -> u32 { |
| self.nanos.0 / NANOS_PER_MILLI |
| } |
| |
| /// Returns the fractional part of this `Duration`, in whole microseconds. |
| /// |
| /// This method does **not** return the length of the duration when |
| /// represented by microseconds. The returned number always represents a |
| /// fractional portion of a second (i.e., it is less than one million). |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_micros(1_234_567); |
| /// assert_eq!(duration.as_secs(), 1); |
| /// assert_eq!(duration.subsec_micros(), 234_567); |
| /// ``` |
| #[stable(feature = "duration_extras", since = "1.27.0")] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| #[must_use] |
| #[inline] |
| pub const fn subsec_micros(&self) -> u32 { |
| self.nanos.0 / NANOS_PER_MICRO |
| } |
| |
| /// Returns the fractional part of this `Duration`, in nanoseconds. |
| /// |
| /// This method does **not** return the length of the duration when |
| /// represented by nanoseconds. The returned number always represents a |
| /// fractional portion of a second (i.e., it is less than one billion). |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::from_millis(5_010); |
| /// assert_eq!(duration.as_secs(), 5); |
| /// assert_eq!(duration.subsec_nanos(), 10_000_000); |
| /// ``` |
| #[stable(feature = "duration", since = "1.3.0")] |
| #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] |
| #[must_use] |
| #[inline] |
| pub const fn subsec_nanos(&self) -> u32 { |
| self.nanos.0 |
| } |
| |
| /// Returns the total number of whole milliseconds contained by this `Duration`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::new(5, 730_023_852); |
| /// assert_eq!(duration.as_millis(), 5_730); |
| /// ``` |
| #[stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[must_use] |
| #[inline] |
| pub const fn as_millis(&self) -> u128 { |
| self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MILLI) as u128 |
| } |
| |
| /// Returns the total number of whole microseconds contained by this `Duration`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::new(5, 730_023_852); |
| /// assert_eq!(duration.as_micros(), 5_730_023); |
| /// ``` |
| #[stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[must_use] |
| #[inline] |
| pub const fn as_micros(&self) -> u128 { |
| self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos.0 / NANOS_PER_MICRO) as u128 |
| } |
| |
| /// Returns the total number of nanoseconds contained by this `Duration`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let duration = Duration::new(5, 730_023_852); |
| /// assert_eq!(duration.as_nanos(), 5_730_023_852); |
| /// ``` |
| #[stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] |
| #[must_use] |
| #[inline] |
| pub const fn as_nanos(&self) -> u128 { |
| self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos.0 as u128 |
| } |
| |
| /// Computes the absolute difference between `self` and `other`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(100, 0).abs_diff(Duration::new(80, 0)), Duration::new(20, 0)); |
| /// assert_eq!(Duration::new(100, 400_000_000).abs_diff(Duration::new(110, 0)), Duration::new(9, 600_000_000)); |
| /// ``` |
| #[stable(feature = "duration_abs_diff", since = "1.81.0")] |
| #[rustc_const_stable(feature = "duration_abs_diff", since = "1.81.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| pub const fn abs_diff(self, other: Duration) -> Duration { |
| if let Some(res) = self.checked_sub(other) { res } else { other.checked_sub(self).unwrap() } |
| } |
| |
| /// Checked `Duration` addition. Computes `self + other`, returning [`None`] |
| /// if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1))); |
| /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None); |
| /// ``` |
| #[stable(feature = "duration_checked_ops", since = "1.16.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn checked_add(self, rhs: Duration) -> Option<Duration> { |
| if let Some(mut secs) = self.secs.checked_add(rhs.secs) { |
| let mut nanos = self.nanos.0 + rhs.nanos.0; |
| if nanos >= NANOS_PER_SEC { |
| nanos -= NANOS_PER_SEC; |
| if let Some(new_secs) = secs.checked_add(1) { |
| secs = new_secs; |
| } else { |
| return None; |
| } |
| } |
| debug_assert!(nanos < NANOS_PER_SEC); |
| Some(Duration::new(secs, nanos)) |
| } else { |
| None |
| } |
| } |
| |
| /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`] |
| /// if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1)); |
| /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX); |
| /// ``` |
| #[stable(feature = "duration_saturating_ops", since = "1.53.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn saturating_add(self, rhs: Duration) -> Duration { |
| match self.checked_add(rhs) { |
| Some(res) => res, |
| None => Duration::MAX, |
| } |
| } |
| |
| /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`] |
| /// if the result would be negative or if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1))); |
| /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None); |
| /// ``` |
| #[stable(feature = "duration_checked_ops", since = "1.16.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn checked_sub(self, rhs: Duration) -> Option<Duration> { |
| if let Some(mut secs) = self.secs.checked_sub(rhs.secs) { |
| let nanos = if self.nanos.0 >= rhs.nanos.0 { |
| self.nanos.0 - rhs.nanos.0 |
| } else if let Some(sub_secs) = secs.checked_sub(1) { |
| secs = sub_secs; |
| self.nanos.0 + NANOS_PER_SEC - rhs.nanos.0 |
| } else { |
| return None; |
| }; |
| debug_assert!(nanos < NANOS_PER_SEC); |
| Some(Duration::new(secs, nanos)) |
| } else { |
| None |
| } |
| } |
| |
| /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`] |
| /// if the result would be negative or if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1)); |
| /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO); |
| /// ``` |
| #[stable(feature = "duration_saturating_ops", since = "1.53.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn saturating_sub(self, rhs: Duration) -> Duration { |
| match self.checked_sub(rhs) { |
| Some(res) => res, |
| None => Duration::ZERO, |
| } |
| } |
| |
| /// Checked `Duration` multiplication. Computes `self * other`, returning |
| /// [`None`] if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2))); |
| /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None); |
| /// ``` |
| #[stable(feature = "duration_checked_ops", since = "1.16.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn checked_mul(self, rhs: u32) -> Option<Duration> { |
| // Multiply nanoseconds as u64, because it cannot overflow that way. |
| let total_nanos = self.nanos.0 as u64 * rhs as u64; |
| let extra_secs = total_nanos / (NANOS_PER_SEC as u64); |
| let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32; |
| // FIXME(const-hack): use `and_then` once that is possible. |
| if let Some(s) = self.secs.checked_mul(rhs as u64) { |
| if let Some(secs) = s.checked_add(extra_secs) { |
| debug_assert!(nanos < NANOS_PER_SEC); |
| return Some(Duration::new(secs, nanos)); |
| } |
| } |
| None |
| } |
| |
| /// Saturating `Duration` multiplication. Computes `self * other`, returning |
| /// [`Duration::MAX`] if overflow occurred. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(duration_constants)] |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2)); |
| /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX); |
| /// ``` |
| #[stable(feature = "duration_saturating_ops", since = "1.53.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn saturating_mul(self, rhs: u32) -> Duration { |
| match self.checked_mul(rhs) { |
| Some(res) => res, |
| None => Duration::MAX, |
| } |
| } |
| |
| /// Checked `Duration` division. Computes `self / other`, returning [`None`] |
| /// if `other == 0`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0))); |
| /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000))); |
| /// assert_eq!(Duration::new(2, 0).checked_div(0), None); |
| /// ``` |
| #[stable(feature = "duration_checked_ops", since = "1.16.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] |
| pub const fn checked_div(self, rhs: u32) -> Option<Duration> { |
| if rhs != 0 { |
| let (secs, extra_secs) = (self.secs / (rhs as u64), self.secs % (rhs as u64)); |
| let (mut nanos, extra_nanos) = (self.nanos.0 / rhs, self.nanos.0 % rhs); |
| nanos += |
| ((extra_secs * (NANOS_PER_SEC as u64) + extra_nanos as u64) / (rhs as u64)) as u32; |
| debug_assert!(nanos < NANOS_PER_SEC); |
| Some(Duration::new(secs, nanos)) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns the number of seconds contained by this `Duration` as `f64`. |
| /// |
| /// The returned value includes the fractional (nanosecond) part of the duration. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// assert_eq!(dur.as_secs_f64(), 2.7); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")] |
| pub const fn as_secs_f64(&self) -> f64 { |
| (self.secs as f64) + (self.nanos.0 as f64) / (NANOS_PER_SEC as f64) |
| } |
| |
| /// Returns the number of seconds contained by this `Duration` as `f32`. |
| /// |
| /// The returned value includes the fractional (nanosecond) part of the duration. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// assert_eq!(dur.as_secs_f32(), 2.7); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")] |
| pub const fn as_secs_f32(&self) -> f32 { |
| (self.secs as f32) + (self.nanos.0 as f32) / (NANOS_PER_SEC as f32) |
| } |
| |
| /// Returns the number of milliseconds contained by this `Duration` as `f64`. |
| /// |
| /// The returned value includes the fractional (nanosecond) part of the duration. |
| /// |
| /// # Examples |
| /// ``` |
| /// #![feature(duration_millis_float)] |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 345_678_000); |
| /// assert_eq!(dur.as_millis_f64(), 2_345.678); |
| /// ``` |
| #[unstable(feature = "duration_millis_float", issue = "122451")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_unstable(feature = "duration_millis_float", issue = "122451")] |
| pub const fn as_millis_f64(&self) -> f64 { |
| (self.secs as f64) * (MILLIS_PER_SEC as f64) |
| + (self.nanos.0 as f64) / (NANOS_PER_MILLI as f64) |
| } |
| |
| /// Returns the number of milliseconds contained by this `Duration` as `f32`. |
| /// |
| /// The returned value includes the fractional (nanosecond) part of the duration. |
| /// |
| /// # Examples |
| /// ``` |
| /// #![feature(duration_millis_float)] |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 345_678_000); |
| /// assert_eq!(dur.as_millis_f32(), 2_345.678); |
| /// ``` |
| #[unstable(feature = "duration_millis_float", issue = "122451")] |
| #[must_use] |
| #[inline] |
| #[rustc_const_unstable(feature = "duration_millis_float", issue = "122451")] |
| pub const fn as_millis_f32(&self) -> f32 { |
| (self.secs as f32) * (MILLIS_PER_SEC as f32) |
| + (self.nanos.0 as f32) / (NANOS_PER_MILLI as f32) |
| } |
| |
| /// Creates a new `Duration` from the specified number of seconds represented |
| /// as `f64`. |
| /// |
| /// # Panics |
| /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let res = Duration::from_secs_f64(0.0); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// let res = Duration::from_secs_f64(1e-20); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// let res = Duration::from_secs_f64(4.2e-7); |
| /// assert_eq!(res, Duration::new(0, 420)); |
| /// let res = Duration::from_secs_f64(2.7); |
| /// assert_eq!(res, Duration::new(2, 700_000_000)); |
| /// let res = Duration::from_secs_f64(3e10); |
| /// assert_eq!(res, Duration::new(30_000_000_000, 0)); |
| /// // subnormal float |
| /// let res = Duration::from_secs_f64(f64::from_bits(1)); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// // conversion uses rounding |
| /// let res = Duration::from_secs_f64(0.999e-9); |
| /// assert_eq!(res, Duration::new(0, 1)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use] |
| #[inline] |
| pub fn from_secs_f64(secs: f64) -> Duration { |
| match Duration::try_from_secs_f64(secs) { |
| Ok(v) => v, |
| Err(e) => panic!("{}", e.description()), |
| } |
| } |
| |
| /// Creates a new `Duration` from the specified number of seconds represented |
| /// as `f32`. |
| /// |
| /// # Panics |
| /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let res = Duration::from_secs_f32(0.0); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// let res = Duration::from_secs_f32(1e-20); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// let res = Duration::from_secs_f32(4.2e-7); |
| /// assert_eq!(res, Duration::new(0, 420)); |
| /// let res = Duration::from_secs_f32(2.7); |
| /// assert_eq!(res, Duration::new(2, 700_000_048)); |
| /// let res = Duration::from_secs_f32(3e10); |
| /// assert_eq!(res, Duration::new(30_000_001_024, 0)); |
| /// // subnormal float |
| /// let res = Duration::from_secs_f32(f32::from_bits(1)); |
| /// assert_eq!(res, Duration::new(0, 0)); |
| /// // conversion uses rounding |
| /// let res = Duration::from_secs_f32(0.999e-9); |
| /// assert_eq!(res, Duration::new(0, 1)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use] |
| #[inline] |
| pub fn from_secs_f32(secs: f32) -> Duration { |
| match Duration::try_from_secs_f32(secs) { |
| Ok(v) => v, |
| Err(e) => panic!("{}", e.description()), |
| } |
| } |
| |
| /// Multiplies `Duration` by `f64`. |
| /// |
| /// # Panics |
| /// This method will panic if result is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000)); |
| /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| pub fn mul_f64(self, rhs: f64) -> Duration { |
| Duration::from_secs_f64(rhs * self.as_secs_f64()) |
| } |
| |
| /// Multiplies `Duration` by `f32`. |
| /// |
| /// # Panics |
| /// This method will panic if result is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641)); |
| /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847_800, 0)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| pub fn mul_f32(self, rhs: f32) -> Duration { |
| Duration::from_secs_f32(rhs * self.as_secs_f32()) |
| } |
| |
| /// Divides `Duration` by `f64`. |
| /// |
| /// # Panics |
| /// This method will panic if result is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611)); |
| /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| pub fn div_f64(self, rhs: f64) -> Duration { |
| Duration::from_secs_f64(self.as_secs_f64() / rhs) |
| } |
| |
| /// Divides `Duration` by `f32`. |
| /// |
| /// # Panics |
| /// This method will panic if result is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur = Duration::new(2, 700_000_000); |
| /// // note that due to rounding errors result is slightly |
| /// // different from 0.859_872_611 |
| /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580)); |
| /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599)); |
| /// ``` |
| #[stable(feature = "duration_float", since = "1.38.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| pub fn div_f32(self, rhs: f32) -> Duration { |
| Duration::from_secs_f32(self.as_secs_f32() / rhs) |
| } |
| |
| /// Divides `Duration` by `Duration` and returns `f64`. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur1 = Duration::new(2, 700_000_000); |
| /// let dur2 = Duration::new(5, 400_000_000); |
| /// assert_eq!(dur1.div_duration_f64(dur2), 0.5); |
| /// ``` |
| #[stable(feature = "div_duration", since = "1.80.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")] |
| pub const fn div_duration_f64(self, rhs: Duration) -> f64 { |
| let self_nanos = (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos.0 as f64); |
| let rhs_nanos = (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos.0 as f64); |
| self_nanos / rhs_nanos |
| } |
| |
| /// Divides `Duration` by `Duration` and returns `f32`. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let dur1 = Duration::new(2, 700_000_000); |
| /// let dur2 = Duration::new(5, 400_000_000); |
| /// assert_eq!(dur1.div_duration_f32(dur2), 0.5); |
| /// ``` |
| #[stable(feature = "div_duration", since = "1.80.0")] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[inline] |
| #[rustc_const_stable(feature = "duration_consts_float", since = "1.83.0")] |
| pub const fn div_duration_f32(self, rhs: Duration) -> f32 { |
| let self_nanos = (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos.0 as f32); |
| let rhs_nanos = (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos.0 as f32); |
| self_nanos / rhs_nanos |
| } |
| } |
| |
| #[stable(feature = "duration", since = "1.3.0")] |
| impl Add for Duration { |
| type Output = Duration; |
| |
| #[inline] |
| fn add(self, rhs: Duration) -> Duration { |
| self.checked_add(rhs).expect("overflow when adding durations") |
| } |
| } |
| |
| #[stable(feature = "time_augmented_assignment", since = "1.9.0")] |
| impl AddAssign for Duration { |
| #[inline] |
| fn add_assign(&mut self, rhs: Duration) { |
| *self = *self + rhs; |
| } |
| } |
| |
| #[stable(feature = "duration", since = "1.3.0")] |
| impl Sub for Duration { |
| type Output = Duration; |
| |
| #[inline] |
| fn sub(self, rhs: Duration) -> Duration { |
| self.checked_sub(rhs).expect("overflow when subtracting durations") |
| } |
| } |
| |
| #[stable(feature = "time_augmented_assignment", since = "1.9.0")] |
| impl SubAssign for Duration { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Duration) { |
| *self = *self - rhs; |
| } |
| } |
| |
| #[stable(feature = "duration", since = "1.3.0")] |
| impl Mul<u32> for Duration { |
| type Output = Duration; |
| |
| #[inline] |
| fn mul(self, rhs: u32) -> Duration { |
| self.checked_mul(rhs).expect("overflow when multiplying duration by scalar") |
| } |
| } |
| |
| #[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")] |
| impl Mul<Duration> for u32 { |
| type Output = Duration; |
| |
| #[inline] |
| fn mul(self, rhs: Duration) -> Duration { |
| rhs * self |
| } |
| } |
| |
| #[stable(feature = "time_augmented_assignment", since = "1.9.0")] |
| impl MulAssign<u32> for Duration { |
| #[inline] |
| fn mul_assign(&mut self, rhs: u32) { |
| *self = *self * rhs; |
| } |
| } |
| |
| #[stable(feature = "duration", since = "1.3.0")] |
| impl Div<u32> for Duration { |
| type Output = Duration; |
| |
| #[inline] |
| fn div(self, rhs: u32) -> Duration { |
| self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar") |
| } |
| } |
| |
| #[stable(feature = "time_augmented_assignment", since = "1.9.0")] |
| impl DivAssign<u32> for Duration { |
| #[inline] |
| fn div_assign(&mut self, rhs: u32) { |
| *self = *self / rhs; |
| } |
| } |
| |
| macro_rules! sum_durations { |
| ($iter:expr) => {{ |
| let mut total_secs: u64 = 0; |
| let mut total_nanos: u64 = 0; |
| |
| for entry in $iter { |
| total_secs = |
| total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations"); |
| total_nanos = match total_nanos.checked_add(entry.nanos.0 as u64) { |
| Some(n) => n, |
| None => { |
| total_secs = total_secs |
| .checked_add(total_nanos / NANOS_PER_SEC as u64) |
| .expect("overflow in iter::sum over durations"); |
| (total_nanos % NANOS_PER_SEC as u64) + entry.nanos.0 as u64 |
| } |
| }; |
| } |
| total_secs = total_secs |
| .checked_add(total_nanos / NANOS_PER_SEC as u64) |
| .expect("overflow in iter::sum over durations"); |
| total_nanos = total_nanos % NANOS_PER_SEC as u64; |
| Duration::new(total_secs, total_nanos as u32) |
| }}; |
| } |
| |
| #[stable(feature = "duration_sum", since = "1.16.0")] |
| impl Sum for Duration { |
| fn sum<I: Iterator<Item = Duration>>(iter: I) -> Duration { |
| sum_durations!(iter) |
| } |
| } |
| |
| #[stable(feature = "duration_sum", since = "1.16.0")] |
| impl<'a> Sum<&'a Duration> for Duration { |
| fn sum<I: Iterator<Item = &'a Duration>>(iter: I) -> Duration { |
| sum_durations!(iter) |
| } |
| } |
| |
| #[stable(feature = "duration_debug_impl", since = "1.27.0")] |
| impl fmt::Debug for Duration { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| /// Formats a floating point number in decimal notation. |
| /// |
| /// The number is given as the `integer_part` and a fractional part. |
| /// The value of the fractional part is `fractional_part / divisor`. So |
| /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100 |
| /// represents the number `3.012`. Trailing zeros are omitted. |
| /// |
| /// `divisor` must not be above 100_000_000. It also should be a power |
| /// of 10, everything else doesn't make sense. `fractional_part` has |
| /// to be less than `10 * divisor`! |
| /// |
| /// A prefix and postfix may be added. The whole thing is padded |
| /// to the formatter's `width`, if specified. |
| fn fmt_decimal( |
| f: &mut fmt::Formatter<'_>, |
| integer_part: u64, |
| mut fractional_part: u32, |
| mut divisor: u32, |
| prefix: &str, |
| postfix: &str, |
| ) -> fmt::Result { |
| // Encode the fractional part into a temporary buffer. The buffer |
| // only need to hold 9 elements, because `fractional_part` has to |
| // be smaller than 10^9. The buffer is prefilled with '0' digits |
| // to simplify the code below. |
| let mut buf = [b'0'; 9]; |
| |
| // The next digit is written at this position |
| let mut pos = 0; |
| |
| // We keep writing digits into the buffer while there are non-zero |
| // digits left and we haven't written enough digits yet. |
| while fractional_part > 0 && pos < f.precision().unwrap_or(9) { |
| // Write new digit into the buffer |
| buf[pos] = b'0' + (fractional_part / divisor) as u8; |
| |
| fractional_part %= divisor; |
| divisor /= 10; |
| pos += 1; |
| } |
| |
| // If a precision < 9 was specified, there may be some non-zero |
| // digits left that weren't written into the buffer. In that case we |
| // need to perform rounding to match the semantics of printing |
| // normal floating point numbers. However, we only need to do work |
| // when rounding up. This happens if the first digit of the |
| // remaining ones is >= 5. |
| let integer_part = if fractional_part > 0 && fractional_part >= divisor * 5 { |
| // Round up the number contained in the buffer. We go through |
| // the buffer backwards and keep track of the carry. |
| let mut rev_pos = pos; |
| let mut carry = true; |
| while carry && rev_pos > 0 { |
| rev_pos -= 1; |
| |
| // If the digit in the buffer is not '9', we just need to |
| // increment it and can stop then (since we don't have a |
| // carry anymore). Otherwise, we set it to '0' (overflow) |
| // and continue. |
| if buf[rev_pos] < b'9' { |
| buf[rev_pos] += 1; |
| carry = false; |
| } else { |
| buf[rev_pos] = b'0'; |
| } |
| } |
| |
| // If we still have the carry bit set, that means that we set |
| // the whole buffer to '0's and need to increment the integer |
| // part. |
| if carry { |
| // If `integer_part == u64::MAX` and precision < 9, any |
| // carry of the overflow during rounding of the |
| // `fractional_part` into the `integer_part` will cause the |
| // `integer_part` itself to overflow. Avoid this by using an |
| // `Option<u64>`, with `None` representing `u64::MAX + 1`. |
| integer_part.checked_add(1) |
| } else { |
| Some(integer_part) |
| } |
| } else { |
| Some(integer_part) |
| }; |
| |
| // Determine the end of the buffer: if precision is set, we just |
| // use as many digits from the buffer (capped to 9). If it isn't |
| // set, we only use all digits up to the last non-zero one. |
| let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos); |
| |
| // This closure emits the formatted duration without emitting any |
| // padding (padding is calculated below). |
| let emit_without_padding = |f: &mut fmt::Formatter<'_>| { |
| if let Some(integer_part) = integer_part { |
| write!(f, "{}{}", prefix, integer_part)?; |
| } else { |
| // u64::MAX + 1 == 18446744073709551616 |
| write!(f, "{}18446744073709551616", prefix)?; |
| } |
| |
| // Write the decimal point and the fractional part (if any). |
| if end > 0 { |
| // SAFETY: We are only writing ASCII digits into the buffer and |
| // it was initialized with '0's, so it contains valid UTF8. |
| let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) }; |
| |
| // If the user request a precision > 9, we pad '0's at the end. |
| let w = f.precision().unwrap_or(pos); |
| write!(f, ".{:0<width$}", s, width = w)?; |
| } |
| |
| write!(f, "{}", postfix) |
| }; |
| |
| match f.width() { |
| None => { |
| // No `width` specified. There's no need to calculate the |
| // length of the output in this case, just emit it. |
| emit_without_padding(f) |
| } |
| Some(requested_w) => { |
| // A `width` was specified. Calculate the actual width of |
| // the output in order to calculate the required padding. |
| // It consists of 4 parts: |
| // 1. The prefix: is either "+" or "", so we can just use len(). |
| // 2. The postfix: can be "µs" so we have to count UTF8 characters. |
| let mut actual_w = prefix.len() + postfix.chars().count(); |
| // 3. The integer part: |
| if let Some(integer_part) = integer_part { |
| if let Some(log) = integer_part.checked_ilog10() { |
| // integer_part is > 0, so has length log10(x)+1 |
| actual_w += 1 + log as usize; |
| } else { |
| // integer_part is 0, so has length 1. |
| actual_w += 1; |
| } |
| } else { |
| // integer_part is u64::MAX + 1, so has length 20 |
| actual_w += 20; |
| } |
| // 4. The fractional part (if any): |
| if end > 0 { |
| let frac_part_w = f.precision().unwrap_or(pos); |
| actual_w += 1 + frac_part_w; |
| } |
| |
| if requested_w <= actual_w { |
| // Output is already longer than `width`, so don't pad. |
| emit_without_padding(f) |
| } else { |
| // We need to add padding. Use the `Formatter::padding` helper function. |
| let default_align = fmt::Alignment::Left; |
| let post_padding = f.padding(requested_w - actual_w, default_align)?; |
| emit_without_padding(f)?; |
| post_padding.write(f) |
| } |
| } |
| } |
| } |
| |
| // Print leading '+' sign if requested |
| let prefix = if f.sign_plus() { "+" } else { "" }; |
| |
| if self.secs > 0 { |
| fmt_decimal(f, self.secs, self.nanos.0, NANOS_PER_SEC / 10, prefix, "s") |
| } else if self.nanos.0 >= NANOS_PER_MILLI { |
| fmt_decimal( |
| f, |
| (self.nanos.0 / NANOS_PER_MILLI) as u64, |
| self.nanos.0 % NANOS_PER_MILLI, |
| NANOS_PER_MILLI / 10, |
| prefix, |
| "ms", |
| ) |
| } else if self.nanos.0 >= NANOS_PER_MICRO { |
| fmt_decimal( |
| f, |
| (self.nanos.0 / NANOS_PER_MICRO) as u64, |
| self.nanos.0 % NANOS_PER_MICRO, |
| NANOS_PER_MICRO / 10, |
| prefix, |
| "µs", |
| ) |
| } else { |
| fmt_decimal(f, self.nanos.0 as u64, 0, 1, prefix, "ns") |
| } |
| } |
| } |
| |
| /// An error which can be returned when converting a floating-point value of seconds |
| /// into a [`Duration`]. |
| /// |
| /// This error is used as the error type for [`Duration::try_from_secs_f32`] and |
| /// [`Duration::try_from_secs_f64`]. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// if let Err(e) = Duration::try_from_secs_f32(-1.0) { |
| /// println!("Failed conversion to Duration: {e}"); |
| /// } |
| /// ``` |
| #[derive(Debug, Clone, PartialEq, Eq)] |
| #[stable(feature = "duration_checked_float", since = "1.66.0")] |
| pub struct TryFromFloatSecsError { |
| kind: TryFromFloatSecsErrorKind, |
| } |
| |
| impl TryFromFloatSecsError { |
| const fn description(&self) -> &'static str { |
| match self.kind { |
| TryFromFloatSecsErrorKind::Negative => { |
| "cannot convert float seconds to Duration: value is negative" |
| } |
| TryFromFloatSecsErrorKind::OverflowOrNan => { |
| "cannot convert float seconds to Duration: value is either too big or NaN" |
| } |
| } |
| } |
| } |
| |
| #[stable(feature = "duration_checked_float", since = "1.66.0")] |
| impl fmt::Display for TryFromFloatSecsError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| self.description().fmt(f) |
| } |
| } |
| |
| #[derive(Debug, Clone, PartialEq, Eq)] |
| enum TryFromFloatSecsErrorKind { |
| // Value is negative. |
| Negative, |
| // Value is either too big to be represented as `Duration` or `NaN`. |
| OverflowOrNan, |
| } |
| |
| macro_rules! try_from_secs { |
| ( |
| secs = $secs: expr, |
| mantissa_bits = $mant_bits: literal, |
| exponent_bits = $exp_bits: literal, |
| offset = $offset: literal, |
| bits_ty = $bits_ty:ty, |
| double_ty = $double_ty:ty, |
| ) => {{ |
| const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2; |
| const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1; |
| const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1; |
| |
| if $secs < 0.0 { |
| return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::Negative }); |
| } |
| |
| let bits = $secs.to_bits(); |
| let mant = (bits & MANT_MASK) | (MANT_MASK + 1); |
| let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP; |
| |
| let (secs, nanos) = if exp < -31 { |
| // the input represents less than 1ns and can not be rounded to it |
| (0u64, 0u32) |
| } else if exp < 0 { |
| // the input is less than 1 second |
| let t = <$double_ty>::from(mant) << ($offset + exp); |
| let nanos_offset = $mant_bits + $offset; |
| let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t); |
| let nanos = (nanos_tmp >> nanos_offset) as u32; |
| |
| let rem_mask = (1 << nanos_offset) - 1; |
| let rem_msb_mask = 1 << (nanos_offset - 1); |
| let rem = nanos_tmp & rem_mask; |
| let is_tie = rem == rem_msb_mask; |
| let is_even = (nanos & 1) == 0; |
| let rem_msb = nanos_tmp & rem_msb_mask == 0; |
| let add_ns = !(rem_msb || (is_even && is_tie)); |
| |
| // f32 does not have enough precision to trigger the second branch |
| // since it can not represent numbers between 0.999_999_940_395 and 1.0. |
| let nanos = nanos + add_ns as u32; |
| if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) } |
| } else if exp < $mant_bits { |
| let secs = u64::from(mant >> ($mant_bits - exp)); |
| let t = <$double_ty>::from((mant << exp) & MANT_MASK); |
| let nanos_offset = $mant_bits; |
| let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t; |
| let nanos = (nanos_tmp >> nanos_offset) as u32; |
| |
| let rem_mask = (1 << nanos_offset) - 1; |
| let rem_msb_mask = 1 << (nanos_offset - 1); |
| let rem = nanos_tmp & rem_mask; |
| let is_tie = rem == rem_msb_mask; |
| let is_even = (nanos & 1) == 0; |
| let rem_msb = nanos_tmp & rem_msb_mask == 0; |
| let add_ns = !(rem_msb || (is_even && is_tie)); |
| |
| // f32 does not have enough precision to trigger the second branch. |
| // For example, it can not represent numbers between 1.999_999_880... |
| // and 2.0. Bigger values result in even smaller precision of the |
| // fractional part. |
| let nanos = nanos + add_ns as u32; |
| if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { |
| (secs, nanos) |
| } else { |
| (secs + 1, 0) |
| } |
| } else if exp < 64 { |
| // the input has no fractional part |
| let secs = u64::from(mant) << (exp - $mant_bits); |
| (secs, 0) |
| } else { |
| return Err(TryFromFloatSecsError { kind: TryFromFloatSecsErrorKind::OverflowOrNan }); |
| }; |
| |
| Ok(Duration::new(secs, nanos)) |
| }}; |
| } |
| |
| impl Duration { |
| /// The checked version of [`from_secs_f32`]. |
| /// |
| /// [`from_secs_f32`]: Duration::from_secs_f32 |
| /// |
| /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let res = Duration::try_from_secs_f32(0.0); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// let res = Duration::try_from_secs_f32(1e-20); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// let res = Duration::try_from_secs_f32(4.2e-7); |
| /// assert_eq!(res, Ok(Duration::new(0, 420))); |
| /// let res = Duration::try_from_secs_f32(2.7); |
| /// assert_eq!(res, Ok(Duration::new(2, 700_000_048))); |
| /// let res = Duration::try_from_secs_f32(3e10); |
| /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0))); |
| /// // subnormal float: |
| /// let res = Duration::try_from_secs_f32(f32::from_bits(1)); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// |
| /// let res = Duration::try_from_secs_f32(-5.0); |
| /// assert!(res.is_err()); |
| /// let res = Duration::try_from_secs_f32(f32::NAN); |
| /// assert!(res.is_err()); |
| /// let res = Duration::try_from_secs_f32(2e19); |
| /// assert!(res.is_err()); |
| /// |
| /// // the conversion uses rounding with tie resolution to even |
| /// let res = Duration::try_from_secs_f32(0.999e-9); |
| /// assert_eq!(res, Ok(Duration::new(0, 1))); |
| /// |
| /// // this float represents exactly 976562.5e-9 |
| /// let val = f32::from_bits(0x3A80_0000); |
| /// let res = Duration::try_from_secs_f32(val); |
| /// assert_eq!(res, Ok(Duration::new(0, 976_562))); |
| /// |
| /// // this float represents exactly 2929687.5e-9 |
| /// let val = f32::from_bits(0x3B40_0000); |
| /// let res = Duration::try_from_secs_f32(val); |
| /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); |
| /// |
| /// // this float represents exactly 1.000_976_562_5 |
| /// let val = f32::from_bits(0x3F802000); |
| /// let res = Duration::try_from_secs_f32(val); |
| /// assert_eq!(res, Ok(Duration::new(1, 976_562))); |
| /// |
| /// // this float represents exactly 1.002_929_687_5 |
| /// let val = f32::from_bits(0x3F806000); |
| /// let res = Duration::try_from_secs_f32(val); |
| /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); |
| /// ``` |
| #[stable(feature = "duration_checked_float", since = "1.66.0")] |
| #[inline] |
| pub fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError> { |
| try_from_secs!( |
| secs = secs, |
| mantissa_bits = 23, |
| exponent_bits = 8, |
| offset = 41, |
| bits_ty = u32, |
| double_ty = u64, |
| ) |
| } |
| |
| /// The checked version of [`from_secs_f64`]. |
| /// |
| /// [`from_secs_f64`]: Duration::from_secs_f64 |
| /// |
| /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::time::Duration; |
| /// |
| /// let res = Duration::try_from_secs_f64(0.0); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// let res = Duration::try_from_secs_f64(1e-20); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// let res = Duration::try_from_secs_f64(4.2e-7); |
| /// assert_eq!(res, Ok(Duration::new(0, 420))); |
| /// let res = Duration::try_from_secs_f64(2.7); |
| /// assert_eq!(res, Ok(Duration::new(2, 700_000_000))); |
| /// let res = Duration::try_from_secs_f64(3e10); |
| /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0))); |
| /// // subnormal float |
| /// let res = Duration::try_from_secs_f64(f64::from_bits(1)); |
| /// assert_eq!(res, Ok(Duration::new(0, 0))); |
| /// |
| /// let res = Duration::try_from_secs_f64(-5.0); |
| /// assert!(res.is_err()); |
| /// let res = Duration::try_from_secs_f64(f64::NAN); |
| /// assert!(res.is_err()); |
| /// let res = Duration::try_from_secs_f64(2e19); |
| /// assert!(res.is_err()); |
| /// |
| /// // the conversion uses rounding with tie resolution to even |
| /// let res = Duration::try_from_secs_f64(0.999e-9); |
| /// assert_eq!(res, Ok(Duration::new(0, 1))); |
| /// let res = Duration::try_from_secs_f64(0.999_999_999_499); |
| /// assert_eq!(res, Ok(Duration::new(0, 999_999_999))); |
| /// let res = Duration::try_from_secs_f64(0.999_999_999_501); |
| /// assert_eq!(res, Ok(Duration::new(1, 0))); |
| /// let res = Duration::try_from_secs_f64(42.999_999_999_499); |
| /// assert_eq!(res, Ok(Duration::new(42, 999_999_999))); |
| /// let res = Duration::try_from_secs_f64(42.999_999_999_501); |
| /// assert_eq!(res, Ok(Duration::new(43, 0))); |
| /// |
| /// // this float represents exactly 976562.5e-9 |
| /// let val = f64::from_bits(0x3F50_0000_0000_0000); |
| /// let res = Duration::try_from_secs_f64(val); |
| /// assert_eq!(res, Ok(Duration::new(0, 976_562))); |
| /// |
| /// // this float represents exactly 2929687.5e-9 |
| /// let val = f64::from_bits(0x3F68_0000_0000_0000); |
| /// let res = Duration::try_from_secs_f64(val); |
| /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); |
| /// |
| /// // this float represents exactly 1.000_976_562_5 |
| /// let val = f64::from_bits(0x3FF0_0400_0000_0000); |
| /// let res = Duration::try_from_secs_f64(val); |
| /// assert_eq!(res, Ok(Duration::new(1, 976_562))); |
| /// |
| /// // this float represents exactly 1.002_929_687_5 |
| /// let val = f64::from_bits(0x3_FF00_C000_0000_000); |
| /// let res = Duration::try_from_secs_f64(val); |
| /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); |
| /// ``` |
| #[stable(feature = "duration_checked_float", since = "1.66.0")] |
| #[inline] |
| pub fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError> { |
| try_from_secs!( |
| secs = secs, |
| mantissa_bits = 52, |
| exponent_bits = 11, |
| offset = 44, |
| bits_ty = u64, |
| double_ty = u128, |
| ) |
| } |
| } |