| //! Memory allocation APIs. |
| //! |
| //! In a given program, the standard library has one “global” memory allocator |
| //! that is used for example by `Box<T>` and `Vec<T>`. |
| //! |
| //! Currently the default global allocator is unspecified. Libraries, however, |
| //! like `cdylib`s and `staticlib`s are guaranteed to use the [`System`] by |
| //! default. |
| //! |
| //! # The `#[global_allocator]` attribute |
| //! |
| //! This attribute allows configuring the choice of global allocator. |
| //! You can use this to implement a completely custom global allocator |
| //! to route all default allocation requests to a custom object. |
| //! |
| //! ```rust |
| //! use std::alloc::{GlobalAlloc, System, Layout}; |
| //! |
| //! struct MyAllocator; |
| //! |
| //! unsafe impl GlobalAlloc for MyAllocator { |
| //! unsafe fn alloc(&self, layout: Layout) -> *mut u8 { |
| //! System.alloc(layout) |
| //! } |
| //! |
| //! unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) { |
| //! System.dealloc(ptr, layout) |
| //! } |
| //! } |
| //! |
| //! #[global_allocator] |
| //! static GLOBAL: MyAllocator = MyAllocator; |
| //! |
| //! fn main() { |
| //! // This `Vec` will allocate memory through `GLOBAL` above |
| //! let mut v = Vec::new(); |
| //! v.push(1); |
| //! } |
| //! ``` |
| //! |
| //! The attribute is used on a `static` item whose type implements the |
| //! [`GlobalAlloc`] trait. This type can be provided by an external library: |
| //! |
| //! ```rust,ignore (demonstrates crates.io usage) |
| //! use jemallocator::Jemalloc; |
| //! |
| //! #[global_allocator] |
| //! static GLOBAL: Jemalloc = Jemalloc; |
| //! |
| //! fn main() {} |
| //! ``` |
| //! |
| //! The `#[global_allocator]` can only be used once in a crate |
| //! or its recursive dependencies. |
| |
| #![deny(unsafe_op_in_unsafe_fn)] |
| #![stable(feature = "alloc_module", since = "1.28.0")] |
| |
| use core::ptr::NonNull; |
| use core::sync::atomic::{AtomicPtr, Ordering}; |
| use core::{hint, mem, ptr}; |
| |
| #[stable(feature = "alloc_module", since = "1.28.0")] |
| #[doc(inline)] |
| pub use alloc_crate::alloc::*; |
| |
| /// The default memory allocator provided by the operating system. |
| /// |
| /// This is based on `malloc` on Unix platforms and `HeapAlloc` on Windows, |
| /// plus related functions. However, it is not valid to mix use of the backing |
| /// system allocator with `System`, as this implementation may include extra |
| /// work, such as to serve alignment requests greater than the alignment |
| /// provided directly by the backing system allocator. |
| /// |
| /// This type implements the [`GlobalAlloc`] trait. Currently the default |
| /// global allocator is unspecified. Libraries, however, like `cdylib`s and |
| /// `staticlib`s are guaranteed to use the [`System`] by default and as such |
| /// work as if they had this definition: |
| /// |
| /// ```rust |
| /// use std::alloc::System; |
| /// |
| /// #[global_allocator] |
| /// static A: System = System; |
| /// |
| /// fn main() { |
| /// let a = Box::new(4); // Allocates from the system allocator. |
| /// println!("{a}"); |
| /// } |
| /// ``` |
| /// |
| /// You can also define your own wrapper around `System` if you'd like, such as |
| /// keeping track of the number of all bytes allocated: |
| /// |
| /// ```rust |
| /// use std::alloc::{System, GlobalAlloc, Layout}; |
| /// use std::sync::atomic::{AtomicUsize, Ordering::Relaxed}; |
| /// |
| /// struct Counter; |
| /// |
| /// static ALLOCATED: AtomicUsize = AtomicUsize::new(0); |
| /// |
| /// unsafe impl GlobalAlloc for Counter { |
| /// unsafe fn alloc(&self, layout: Layout) -> *mut u8 { |
| /// let ret = System.alloc(layout); |
| /// if !ret.is_null() { |
| /// ALLOCATED.fetch_add(layout.size(), Relaxed); |
| /// } |
| /// ret |
| /// } |
| /// |
| /// unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) { |
| /// System.dealloc(ptr, layout); |
| /// ALLOCATED.fetch_sub(layout.size(), Relaxed); |
| /// } |
| /// } |
| /// |
| /// #[global_allocator] |
| /// static A: Counter = Counter; |
| /// |
| /// fn main() { |
| /// println!("allocated bytes before main: {}", ALLOCATED.load(Relaxed)); |
| /// } |
| /// ``` |
| /// |
| /// It can also be used directly to allocate memory independently of whatever |
| /// global allocator has been selected for a Rust program. For example if a Rust |
| /// program opts in to using jemalloc as the global allocator, `System` will |
| /// still allocate memory using `malloc` and `HeapAlloc`. |
| #[stable(feature = "alloc_system_type", since = "1.28.0")] |
| #[derive(Debug, Default, Copy, Clone)] |
| pub struct System; |
| |
| impl System { |
| #[inline] |
| fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> { |
| match layout.size() { |
| 0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)), |
| // SAFETY: `layout` is non-zero in size, |
| size => unsafe { |
| let raw_ptr = if zeroed { |
| GlobalAlloc::alloc_zeroed(self, layout) |
| } else { |
| GlobalAlloc::alloc(self, layout) |
| }; |
| let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; |
| Ok(NonNull::slice_from_raw_parts(ptr, size)) |
| }, |
| } |
| } |
| |
| // SAFETY: Same as `Allocator::grow` |
| #[inline] |
| unsafe fn grow_impl( |
| &self, |
| ptr: NonNull<u8>, |
| old_layout: Layout, |
| new_layout: Layout, |
| zeroed: bool, |
| ) -> Result<NonNull<[u8]>, AllocError> { |
| debug_assert!( |
| new_layout.size() >= old_layout.size(), |
| "`new_layout.size()` must be greater than or equal to `old_layout.size()`" |
| ); |
| |
| match old_layout.size() { |
| 0 => self.alloc_impl(new_layout, zeroed), |
| |
| // SAFETY: `new_size` is non-zero as `new_size` is greater than or equal to `old_size` |
| // as required by safety conditions and the `old_size == 0` case was handled in the |
| // previous match arm. Other conditions must be upheld by the caller |
| old_size if old_layout.align() == new_layout.align() => unsafe { |
| let new_size = new_layout.size(); |
| |
| // `realloc` probably checks for `new_size >= old_layout.size()` or something similar. |
| hint::assert_unchecked(new_size >= old_layout.size()); |
| |
| let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size); |
| let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; |
| if zeroed { |
| raw_ptr.add(old_size).write_bytes(0, new_size - old_size); |
| } |
| Ok(NonNull::slice_from_raw_parts(ptr, new_size)) |
| }, |
| |
| // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`, |
| // both the old and new memory allocation are valid for reads and writes for `old_size` |
| // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap |
| // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract |
| // for `dealloc` must be upheld by the caller. |
| old_size => unsafe { |
| let new_ptr = self.alloc_impl(new_layout, zeroed)?; |
| ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size); |
| Allocator::deallocate(self, ptr, old_layout); |
| Ok(new_ptr) |
| }, |
| } |
| } |
| } |
| |
| // The Allocator impl checks the layout size to be non-zero and forwards to the GlobalAlloc impl, |
| // which is in `std::sys::*::alloc`. |
| #[unstable(feature = "allocator_api", issue = "32838")] |
| unsafe impl Allocator for System { |
| #[inline] |
| fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { |
| self.alloc_impl(layout, false) |
| } |
| |
| #[inline] |
| fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { |
| self.alloc_impl(layout, true) |
| } |
| |
| #[inline] |
| unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { |
| if layout.size() != 0 { |
| // SAFETY: `layout` is non-zero in size, |
| // other conditions must be upheld by the caller |
| unsafe { GlobalAlloc::dealloc(self, ptr.as_ptr(), layout) } |
| } |
| } |
| |
| #[inline] |
| unsafe fn grow( |
| &self, |
| ptr: NonNull<u8>, |
| old_layout: Layout, |
| new_layout: Layout, |
| ) -> Result<NonNull<[u8]>, AllocError> { |
| // SAFETY: all conditions must be upheld by the caller |
| unsafe { self.grow_impl(ptr, old_layout, new_layout, false) } |
| } |
| |
| #[inline] |
| unsafe fn grow_zeroed( |
| &self, |
| ptr: NonNull<u8>, |
| old_layout: Layout, |
| new_layout: Layout, |
| ) -> Result<NonNull<[u8]>, AllocError> { |
| // SAFETY: all conditions must be upheld by the caller |
| unsafe { self.grow_impl(ptr, old_layout, new_layout, true) } |
| } |
| |
| #[inline] |
| unsafe fn shrink( |
| &self, |
| ptr: NonNull<u8>, |
| old_layout: Layout, |
| new_layout: Layout, |
| ) -> Result<NonNull<[u8]>, AllocError> { |
| debug_assert!( |
| new_layout.size() <= old_layout.size(), |
| "`new_layout.size()` must be smaller than or equal to `old_layout.size()`" |
| ); |
| |
| match new_layout.size() { |
| // SAFETY: conditions must be upheld by the caller |
| 0 => unsafe { |
| Allocator::deallocate(self, ptr, old_layout); |
| Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0)) |
| }, |
| |
| // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller |
| new_size if old_layout.align() == new_layout.align() => unsafe { |
| // `realloc` probably checks for `new_size <= old_layout.size()` or something similar. |
| hint::assert_unchecked(new_size <= old_layout.size()); |
| |
| let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size); |
| let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?; |
| Ok(NonNull::slice_from_raw_parts(ptr, new_size)) |
| }, |
| |
| // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`, |
| // both the old and new memory allocation are valid for reads and writes for `new_size` |
| // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap |
| // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract |
| // for `dealloc` must be upheld by the caller. |
| new_size => unsafe { |
| let new_ptr = Allocator::allocate(self, new_layout)?; |
| ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size); |
| Allocator::deallocate(self, ptr, old_layout); |
| Ok(new_ptr) |
| }, |
| } |
| } |
| } |
| |
| static HOOK: AtomicPtr<()> = AtomicPtr::new(ptr::null_mut()); |
| |
| /// Registers a custom allocation error hook, replacing any that was previously registered. |
| /// |
| /// The allocation error hook is invoked when an infallible memory allocation fails — that is, |
| /// as a consequence of calling [`handle_alloc_error`] — before the runtime aborts. |
| /// |
| /// The allocation error hook is a global resource. [`take_alloc_error_hook`] may be used to |
| /// retrieve a previously registered hook and wrap or discard it. |
| /// |
| /// # What the provided `hook` function should expect |
| /// |
| /// The hook function is provided with a [`Layout`] struct which contains information |
| /// about the allocation that failed. |
| /// |
| /// The hook function may choose to panic or abort; in the event that it returns normally, this |
| /// will cause an immediate abort. |
| /// |
| /// Since [`take_alloc_error_hook`] is a safe function that allows retrieving the hook, the hook |
| /// function must be _sound_ to call even if no memory allocations were attempted. |
| /// |
| /// # The default hook |
| /// |
| /// The default hook, used if [`set_alloc_error_hook`] is never called, prints a message to |
| /// standard error (and then returns, causing the runtime to abort the process). |
| /// Compiler options may cause it to panic instead, and the default behavior may be changed |
| /// to panicking in future versions of Rust. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(alloc_error_hook)] |
| /// |
| /// use std::alloc::{Layout, set_alloc_error_hook}; |
| /// |
| /// fn custom_alloc_error_hook(layout: Layout) { |
| /// panic!("memory allocation of {} bytes failed", layout.size()); |
| /// } |
| /// |
| /// set_alloc_error_hook(custom_alloc_error_hook); |
| /// ``` |
| #[unstable(feature = "alloc_error_hook", issue = "51245")] |
| pub fn set_alloc_error_hook(hook: fn(Layout)) { |
| HOOK.store(hook as *mut (), Ordering::Release); |
| } |
| |
| /// Unregisters the current allocation error hook, returning it. |
| /// |
| /// *See also the function [`set_alloc_error_hook`].* |
| /// |
| /// If no custom hook is registered, the default hook will be returned. |
| #[unstable(feature = "alloc_error_hook", issue = "51245")] |
| pub fn take_alloc_error_hook() -> fn(Layout) { |
| let hook = HOOK.swap(ptr::null_mut(), Ordering::Acquire); |
| if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } } |
| } |
| |
| fn default_alloc_error_hook(layout: Layout) { |
| extern "Rust" { |
| // This symbol is emitted by rustc next to __rust_alloc_error_handler. |
| // Its value depends on the -Zoom={panic,abort} compiler option. |
| static __rust_alloc_error_handler_should_panic: u8; |
| } |
| |
| if unsafe { __rust_alloc_error_handler_should_panic != 0 } { |
| panic!("memory allocation of {} bytes failed", layout.size()); |
| } else { |
| // This is the default path taken on OOM, and the only path taken on stable with std. |
| // Crucially, it does *not* call any user-defined code, and therefore users do not have to |
| // worry about allocation failure causing reentrancy issues. That makes it different from |
| // the default `__rdl_oom` defined in alloc (i.e., the default alloc error handler that is |
| // called when there is no `#[alloc_error_handler]`), which triggers a regular panic and |
| // thus can invoke a user-defined panic hook, executing arbitrary user-defined code. |
| rtprintpanic!("memory allocation of {} bytes failed\n", layout.size()); |
| } |
| } |
| |
| #[cfg(not(test))] |
| #[doc(hidden)] |
| #[alloc_error_handler] |
| #[unstable(feature = "alloc_internals", issue = "none")] |
| pub fn rust_oom(layout: Layout) -> ! { |
| let hook = HOOK.load(Ordering::Acquire); |
| let hook: fn(Layout) = |
| if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } }; |
| hook(layout); |
| crate::process::abort() |
| } |
| |
| #[cfg(not(test))] |
| #[doc(hidden)] |
| #[allow(unused_attributes)] |
| #[unstable(feature = "alloc_internals", issue = "none")] |
| pub mod __default_lib_allocator { |
| use super::{GlobalAlloc, Layout, System}; |
| // These magic symbol names are used as a fallback for implementing the |
| // `__rust_alloc` etc symbols (see `src/liballoc/alloc.rs`) when there is |
| // no `#[global_allocator]` attribute. |
| |
| // for symbol names src/librustc_ast/expand/allocator.rs |
| // for signatures src/librustc_allocator/lib.rs |
| |
| // linkage directives are provided as part of the current compiler allocator |
| // ABI |
| |
| #[rustc_std_internal_symbol] |
| pub unsafe extern "C" fn __rdl_alloc(size: usize, align: usize) -> *mut u8 { |
| // SAFETY: see the guarantees expected by `Layout::from_size_align` and |
| // `GlobalAlloc::alloc`. |
| unsafe { |
| let layout = Layout::from_size_align_unchecked(size, align); |
| System.alloc(layout) |
| } |
| } |
| |
| #[rustc_std_internal_symbol] |
| pub unsafe extern "C" fn __rdl_dealloc(ptr: *mut u8, size: usize, align: usize) { |
| // SAFETY: see the guarantees expected by `Layout::from_size_align` and |
| // `GlobalAlloc::dealloc`. |
| unsafe { System.dealloc(ptr, Layout::from_size_align_unchecked(size, align)) } |
| } |
| |
| #[rustc_std_internal_symbol] |
| pub unsafe extern "C" fn __rdl_realloc( |
| ptr: *mut u8, |
| old_size: usize, |
| align: usize, |
| new_size: usize, |
| ) -> *mut u8 { |
| // SAFETY: see the guarantees expected by `Layout::from_size_align` and |
| // `GlobalAlloc::realloc`. |
| unsafe { |
| let old_layout = Layout::from_size_align_unchecked(old_size, align); |
| System.realloc(ptr, old_layout, new_size) |
| } |
| } |
| |
| #[rustc_std_internal_symbol] |
| pub unsafe extern "C" fn __rdl_alloc_zeroed(size: usize, align: usize) -> *mut u8 { |
| // SAFETY: see the guarantees expected by `Layout::from_size_align` and |
| // `GlobalAlloc::alloc_zeroed`. |
| unsafe { |
| let layout = Layout::from_size_align_unchecked(size, align); |
| System.alloc_zeroed(layout) |
| } |
| } |
| } |