| // FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy |
| #![cfg(reliable_f16)] |
| |
| use crate::f16::consts; |
| use crate::num::{FpCategory as Fp, *}; |
| |
| /// Tolerance for results on the order of 10.0e-2 |
| #[allow(unused)] |
| const TOL_N2: f16 = 0.0001; |
| |
| /// Tolerance for results on the order of 10.0e+0 |
| #[allow(unused)] |
| const TOL_0: f16 = 0.01; |
| |
| /// Tolerance for results on the order of 10.0e+2 |
| #[allow(unused)] |
| const TOL_P2: f16 = 0.5; |
| |
| /// Tolerance for results on the order of 10.0e+4 |
| #[allow(unused)] |
| const TOL_P4: f16 = 10.0; |
| |
| /// Smallest number |
| const TINY_BITS: u16 = 0x1; |
| |
| /// Next smallest number |
| const TINY_UP_BITS: u16 = 0x2; |
| |
| /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 |
| const MAX_DOWN_BITS: u16 = 0x7bfe; |
| |
| /// Zeroed exponent, full significant |
| const LARGEST_SUBNORMAL_BITS: u16 = 0x03ff; |
| |
| /// Exponent = 0b1, zeroed significand |
| const SMALLEST_NORMAL_BITS: u16 = 0x0400; |
| |
| /// First pattern over the mantissa |
| const NAN_MASK1: u16 = 0x02aa; |
| |
| /// Second pattern over the mantissa |
| const NAN_MASK2: u16 = 0x0155; |
| |
| /// Compare by representation |
| #[allow(unused_macros)] |
| macro_rules! assert_f16_biteq { |
| ($a:expr, $b:expr) => { |
| let (l, r): (&f16, &f16) = (&$a, &$b); |
| let lb = l.to_bits(); |
| let rb = r.to_bits(); |
| assert_eq!(lb, rb, "float {l:?} ({lb:#04x}) is not bitequal to {r:?} ({rb:#04x})"); |
| }; |
| } |
| |
| #[test] |
| fn test_num_f16() { |
| test_num(10f16, 2f16); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_min_nan() { |
| assert_eq!(f16::NAN.min(2.0), 2.0); |
| assert_eq!(2.0f16.min(f16::NAN), 2.0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_max_nan() { |
| assert_eq!(f16::NAN.max(2.0), 2.0); |
| assert_eq!(2.0f16.max(f16::NAN), 2.0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_minimum() { |
| assert!(f16::NAN.minimum(2.0).is_nan()); |
| assert!(2.0f16.minimum(f16::NAN).is_nan()); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_maximum() { |
| assert!(f16::NAN.maximum(2.0).is_nan()); |
| assert!(2.0f16.maximum(f16::NAN).is_nan()); |
| } |
| |
| #[test] |
| fn test_nan() { |
| let nan: f16 = f16::NAN; |
| assert!(nan.is_nan()); |
| assert!(!nan.is_infinite()); |
| assert!(!nan.is_finite()); |
| assert!(nan.is_sign_positive()); |
| assert!(!nan.is_sign_negative()); |
| assert!(!nan.is_normal()); |
| assert_eq!(Fp::Nan, nan.classify()); |
| } |
| |
| #[test] |
| fn test_infinity() { |
| let inf: f16 = f16::INFINITY; |
| assert!(inf.is_infinite()); |
| assert!(!inf.is_finite()); |
| assert!(inf.is_sign_positive()); |
| assert!(!inf.is_sign_negative()); |
| assert!(!inf.is_nan()); |
| assert!(!inf.is_normal()); |
| assert_eq!(Fp::Infinite, inf.classify()); |
| } |
| |
| #[test] |
| fn test_neg_infinity() { |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert!(neg_inf.is_infinite()); |
| assert!(!neg_inf.is_finite()); |
| assert!(!neg_inf.is_sign_positive()); |
| assert!(neg_inf.is_sign_negative()); |
| assert!(!neg_inf.is_nan()); |
| assert!(!neg_inf.is_normal()); |
| assert_eq!(Fp::Infinite, neg_inf.classify()); |
| } |
| |
| #[test] |
| fn test_zero() { |
| let zero: f16 = 0.0f16; |
| assert_eq!(0.0, zero); |
| assert!(!zero.is_infinite()); |
| assert!(zero.is_finite()); |
| assert!(zero.is_sign_positive()); |
| assert!(!zero.is_sign_negative()); |
| assert!(!zero.is_nan()); |
| assert!(!zero.is_normal()); |
| assert_eq!(Fp::Zero, zero.classify()); |
| } |
| |
| #[test] |
| fn test_neg_zero() { |
| let neg_zero: f16 = -0.0; |
| assert_eq!(0.0, neg_zero); |
| assert!(!neg_zero.is_infinite()); |
| assert!(neg_zero.is_finite()); |
| assert!(!neg_zero.is_sign_positive()); |
| assert!(neg_zero.is_sign_negative()); |
| assert!(!neg_zero.is_nan()); |
| assert!(!neg_zero.is_normal()); |
| assert_eq!(Fp::Zero, neg_zero.classify()); |
| } |
| |
| #[test] |
| fn test_one() { |
| let one: f16 = 1.0f16; |
| assert_eq!(1.0, one); |
| assert!(!one.is_infinite()); |
| assert!(one.is_finite()); |
| assert!(one.is_sign_positive()); |
| assert!(!one.is_sign_negative()); |
| assert!(!one.is_nan()); |
| assert!(one.is_normal()); |
| assert_eq!(Fp::Normal, one.classify()); |
| } |
| |
| #[test] |
| fn test_is_nan() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert!(nan.is_nan()); |
| assert!(!0.0f16.is_nan()); |
| assert!(!5.3f16.is_nan()); |
| assert!(!(-10.732f16).is_nan()); |
| assert!(!inf.is_nan()); |
| assert!(!neg_inf.is_nan()); |
| } |
| |
| #[test] |
| fn test_is_infinite() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert!(!nan.is_infinite()); |
| assert!(inf.is_infinite()); |
| assert!(neg_inf.is_infinite()); |
| assert!(!0.0f16.is_infinite()); |
| assert!(!42.8f16.is_infinite()); |
| assert!(!(-109.2f16).is_infinite()); |
| } |
| |
| #[test] |
| fn test_is_finite() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert!(!nan.is_finite()); |
| assert!(!inf.is_finite()); |
| assert!(!neg_inf.is_finite()); |
| assert!(0.0f16.is_finite()); |
| assert!(42.8f16.is_finite()); |
| assert!((-109.2f16).is_finite()); |
| } |
| |
| #[test] |
| fn test_is_normal() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let zero: f16 = 0.0f16; |
| let neg_zero: f16 = -0.0; |
| assert!(!nan.is_normal()); |
| assert!(!inf.is_normal()); |
| assert!(!neg_inf.is_normal()); |
| assert!(!zero.is_normal()); |
| assert!(!neg_zero.is_normal()); |
| assert!(1f16.is_normal()); |
| assert!(1e-4f16.is_normal()); |
| assert!(!1e-5f16.is_normal()); |
| } |
| |
| #[test] |
| fn test_classify() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let zero: f16 = 0.0f16; |
| let neg_zero: f16 = -0.0; |
| assert_eq!(nan.classify(), Fp::Nan); |
| assert_eq!(inf.classify(), Fp::Infinite); |
| assert_eq!(neg_inf.classify(), Fp::Infinite); |
| assert_eq!(zero.classify(), Fp::Zero); |
| assert_eq!(neg_zero.classify(), Fp::Zero); |
| assert_eq!(1f16.classify(), Fp::Normal); |
| assert_eq!(1e-4f16.classify(), Fp::Normal); |
| assert_eq!(1e-5f16.classify(), Fp::Subnormal); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_floor() { |
| assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0); |
| assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0); |
| assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0); |
| assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_ceil() { |
| assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0); |
| assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0); |
| assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0); |
| assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_round() { |
| assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0); |
| assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0); |
| assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0); |
| assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0); |
| assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_round_ties_even() { |
| assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0); |
| assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0); |
| assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0); |
| assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0); |
| assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_trunc() { |
| assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0); |
| assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0); |
| assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0); |
| assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_fract() { |
| assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0); |
| assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0); |
| assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0); |
| assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0); |
| assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0); |
| assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0); |
| assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0); |
| assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0); |
| assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_abs() { |
| assert_eq!(f16::INFINITY.abs(), f16::INFINITY); |
| assert_eq!(1f16.abs(), 1f16); |
| assert_eq!(0f16.abs(), 0f16); |
| assert_eq!((-0f16).abs(), 0f16); |
| assert_eq!((-1f16).abs(), 1f16); |
| assert_eq!(f16::NEG_INFINITY.abs(), f16::INFINITY); |
| assert_eq!((1f16 / f16::NEG_INFINITY).abs(), 0f16); |
| assert!(f16::NAN.abs().is_nan()); |
| } |
| |
| #[test] |
| fn test_is_sign_positive() { |
| assert!(f16::INFINITY.is_sign_positive()); |
| assert!(1f16.is_sign_positive()); |
| assert!(0f16.is_sign_positive()); |
| assert!(!(-0f16).is_sign_positive()); |
| assert!(!(-1f16).is_sign_positive()); |
| assert!(!f16::NEG_INFINITY.is_sign_positive()); |
| assert!(!(1f16 / f16::NEG_INFINITY).is_sign_positive()); |
| assert!(f16::NAN.is_sign_positive()); |
| assert!(!(-f16::NAN).is_sign_positive()); |
| } |
| |
| #[test] |
| fn test_is_sign_negative() { |
| assert!(!f16::INFINITY.is_sign_negative()); |
| assert!(!1f16.is_sign_negative()); |
| assert!(!0f16.is_sign_negative()); |
| assert!((-0f16).is_sign_negative()); |
| assert!((-1f16).is_sign_negative()); |
| assert!(f16::NEG_INFINITY.is_sign_negative()); |
| assert!((1f16 / f16::NEG_INFINITY).is_sign_negative()); |
| assert!(!f16::NAN.is_sign_negative()); |
| assert!((-f16::NAN).is_sign_negative()); |
| } |
| |
| #[test] |
| fn test_next_up() { |
| let tiny = f16::from_bits(TINY_BITS); |
| let tiny_up = f16::from_bits(TINY_UP_BITS); |
| let max_down = f16::from_bits(MAX_DOWN_BITS); |
| let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); |
| let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); |
| assert_f16_biteq!(f16::NEG_INFINITY.next_up(), f16::MIN); |
| assert_f16_biteq!(f16::MIN.next_up(), -max_down); |
| assert_f16_biteq!((-1.0 - f16::EPSILON).next_up(), -1.0); |
| assert_f16_biteq!((-smallest_normal).next_up(), -largest_subnormal); |
| assert_f16_biteq!((-tiny_up).next_up(), -tiny); |
| assert_f16_biteq!((-tiny).next_up(), -0.0f16); |
| assert_f16_biteq!((-0.0f16).next_up(), tiny); |
| assert_f16_biteq!(0.0f16.next_up(), tiny); |
| assert_f16_biteq!(tiny.next_up(), tiny_up); |
| assert_f16_biteq!(largest_subnormal.next_up(), smallest_normal); |
| assert_f16_biteq!(1.0f16.next_up(), 1.0 + f16::EPSILON); |
| assert_f16_biteq!(f16::MAX.next_up(), f16::INFINITY); |
| assert_f16_biteq!(f16::INFINITY.next_up(), f16::INFINITY); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = f16::NAN; |
| let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); |
| let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); |
| assert_f16_biteq!(nan0.next_up(), nan0); |
| assert_f16_biteq!(nan1.next_up(), nan1); |
| assert_f16_biteq!(nan2.next_up(), nan2); |
| } |
| |
| #[test] |
| fn test_next_down() { |
| let tiny = f16::from_bits(TINY_BITS); |
| let tiny_up = f16::from_bits(TINY_UP_BITS); |
| let max_down = f16::from_bits(MAX_DOWN_BITS); |
| let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); |
| let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); |
| assert_f16_biteq!(f16::NEG_INFINITY.next_down(), f16::NEG_INFINITY); |
| assert_f16_biteq!(f16::MIN.next_down(), f16::NEG_INFINITY); |
| assert_f16_biteq!((-max_down).next_down(), f16::MIN); |
| assert_f16_biteq!((-1.0f16).next_down(), -1.0 - f16::EPSILON); |
| assert_f16_biteq!((-largest_subnormal).next_down(), -smallest_normal); |
| assert_f16_biteq!((-tiny).next_down(), -tiny_up); |
| assert_f16_biteq!((-0.0f16).next_down(), -tiny); |
| assert_f16_biteq!((0.0f16).next_down(), -tiny); |
| assert_f16_biteq!(tiny.next_down(), 0.0f16); |
| assert_f16_biteq!(tiny_up.next_down(), tiny); |
| assert_f16_biteq!(smallest_normal.next_down(), largest_subnormal); |
| assert_f16_biteq!((1.0 + f16::EPSILON).next_down(), 1.0f16); |
| assert_f16_biteq!(f16::MAX.next_down(), max_down); |
| assert_f16_biteq!(f16::INFINITY.next_down(), f16::MAX); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = f16::NAN; |
| let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); |
| let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); |
| assert_f16_biteq!(nan0.next_down(), nan0); |
| assert_f16_biteq!(nan1.next_down(), nan1); |
| assert_f16_biteq!(nan2.next_down(), nan2); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_mul_add() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2); |
| assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2); |
| assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0); |
| assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0); |
| assert!(nan.mul_add(7.8, 9.0).is_nan()); |
| assert_eq!(inf.mul_add(7.8, 9.0), inf); |
| assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); |
| assert_eq!(8.9f16.mul_add(inf, 3.2), inf); |
| assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_recip() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(1.0f16.recip(), 1.0); |
| assert_eq!(2.0f16.recip(), 0.5); |
| assert_eq!((-0.4f16).recip(), -2.5); |
| assert_eq!(0.0f16.recip(), inf); |
| assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4); |
| assert!(nan.recip().is_nan()); |
| assert_eq!(inf.recip(), 0.0); |
| assert_eq!(neg_inf.recip(), 0.0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_powi() { |
| // FIXME(llvm19): LLVM misoptimizes `powi.f16` |
| // <https://github.com/llvm/llvm-project/issues/98665> |
| // let nan: f16 = f16::NAN; |
| // let inf: f16 = f16::INFINITY; |
| // let neg_inf: f16 = f16::NEG_INFINITY; |
| // assert_eq!(1.0f16.powi(1), 1.0); |
| // assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0); |
| // assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2); |
| // assert_eq!(8.3f16.powi(0), 1.0); |
| // assert!(nan.powi(2).is_nan()); |
| // assert_eq!(inf.powi(3), inf); |
| // assert_eq!(neg_inf.powi(2), inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_powf() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(1.0f16.powf(1.0), 1.0); |
| assert_approx_eq!(3.4f16.powf(4.5), 246.408183, TOL_P2); |
| assert_approx_eq!(2.7f16.powf(-3.2), 0.041652, TOL_N2); |
| assert_approx_eq!((-3.1f16).powf(2.0), 9.61, TOL_P2); |
| assert_approx_eq!(5.9f16.powf(-2.0), 0.028727, TOL_N2); |
| assert_eq!(8.3f16.powf(0.0), 1.0); |
| assert!(nan.powf(2.0).is_nan()); |
| assert_eq!(inf.powf(2.0), inf); |
| assert_eq!(neg_inf.powf(3.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_sqrt_domain() { |
| assert!(f16::NAN.sqrt().is_nan()); |
| assert!(f16::NEG_INFINITY.sqrt().is_nan()); |
| assert!((-1.0f16).sqrt().is_nan()); |
| assert_eq!((-0.0f16).sqrt(), -0.0); |
| assert_eq!(0.0f16.sqrt(), 0.0); |
| assert_eq!(1.0f16.sqrt(), 1.0); |
| assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_exp() { |
| assert_eq!(1.0, 0.0f16.exp()); |
| assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0); |
| assert_approx_eq!(148.413159, 5.0f16.exp(), TOL_0); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf, inf.exp()); |
| assert_eq!(0.0, neg_inf.exp()); |
| assert!(nan.exp().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_exp2() { |
| assert_eq!(32.0, 5.0f16.exp2()); |
| assert_eq!(1.0, 0.0f16.exp2()); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf, inf.exp2()); |
| assert_eq!(0.0, neg_inf.exp2()); |
| assert!(nan.exp2().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_ln() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_approx_eq!(1.0f16.exp().ln(), 1.0, TOL_0); |
| assert!(nan.ln().is_nan()); |
| assert_eq!(inf.ln(), inf); |
| assert!(neg_inf.ln().is_nan()); |
| assert!((-2.3f16).ln().is_nan()); |
| assert_eq!((-0.0f16).ln(), neg_inf); |
| assert_eq!(0.0f16.ln(), neg_inf); |
| assert_approx_eq!(4.0f16.ln(), 1.386294, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_log() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(10.0f16.log(10.0), 1.0); |
| assert_approx_eq!(2.3f16.log(3.5), 0.664858, TOL_0); |
| assert_eq!(1.0f16.exp().log(1.0f16.exp()), 1.0); |
| assert!(1.0f16.log(1.0).is_nan()); |
| assert!(1.0f16.log(-13.9).is_nan()); |
| assert!(nan.log(2.3).is_nan()); |
| assert_eq!(inf.log(10.0), inf); |
| assert!(neg_inf.log(8.8).is_nan()); |
| assert!((-2.3f16).log(0.1).is_nan()); |
| assert_eq!((-0.0f16).log(2.0), neg_inf); |
| assert_eq!(0.0f16.log(7.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_log2() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_approx_eq!(10.0f16.log2(), 3.321928, TOL_0); |
| assert_approx_eq!(2.3f16.log2(), 1.201634, TOL_0); |
| assert_approx_eq!(1.0f16.exp().log2(), 1.442695, TOL_0); |
| assert!(nan.log2().is_nan()); |
| assert_eq!(inf.log2(), inf); |
| assert!(neg_inf.log2().is_nan()); |
| assert!((-2.3f16).log2().is_nan()); |
| assert_eq!((-0.0f16).log2(), neg_inf); |
| assert_eq!(0.0f16.log2(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_log10() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(10.0f16.log10(), 1.0); |
| assert_approx_eq!(2.3f16.log10(), 0.361728, TOL_0); |
| assert_approx_eq!(1.0f16.exp().log10(), 0.434294, TOL_0); |
| assert_eq!(1.0f16.log10(), 0.0); |
| assert!(nan.log10().is_nan()); |
| assert_eq!(inf.log10(), inf); |
| assert!(neg_inf.log10().is_nan()); |
| assert!((-2.3f16).log10().is_nan()); |
| assert_eq!((-0.0f16).log10(), neg_inf); |
| assert_eq!(0.0f16.log10(), neg_inf); |
| } |
| |
| #[test] |
| fn test_to_degrees() { |
| let pi: f16 = consts::PI; |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(0.0f16.to_degrees(), 0.0); |
| assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2); |
| assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2); |
| assert!(nan.to_degrees().is_nan()); |
| assert_eq!(inf.to_degrees(), inf); |
| assert_eq!(neg_inf.to_degrees(), neg_inf); |
| assert_eq!(1_f16.to_degrees(), 57.2957795130823208767981548141051703); |
| } |
| |
| #[test] |
| fn test_to_radians() { |
| let pi: f16 = consts::PI; |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(0.0f16.to_radians(), 0.0); |
| assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0); |
| assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0); |
| assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0); |
| assert!(nan.to_radians().is_nan()); |
| assert_eq!(inf.to_radians(), inf); |
| assert_eq!(neg_inf.to_radians(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_asinh() { |
| assert_eq!(0.0f16.asinh(), 0.0f16); |
| assert_eq!((-0.0f16).asinh(), -0.0f16); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf.asinh(), inf); |
| assert_eq!(neg_inf.asinh(), neg_inf); |
| assert!(nan.asinh().is_nan()); |
| assert!((-0.0f16).asinh().is_sign_negative()); |
| // issue 63271 |
| assert_approx_eq!(2.0f16.asinh(), 1.443635475178810342493276740273105f16, TOL_0); |
| assert_approx_eq!((-2.0f16).asinh(), -1.443635475178810342493276740273105f16, TOL_0); |
| // regression test for the catastrophic cancellation fixed in 72486 |
| assert_approx_eq!((-200.0f16).asinh(), -5.991470797049389, TOL_0); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(10.0f16, 10.0f16.sinh().asinh(), TOL_0); |
| // mul needed for approximate comparison to be meaningful |
| assert_approx_eq!(1.0f16, 1e-3f16.sinh().asinh() * 1e3f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_acosh() { |
| assert_eq!(1.0f16.acosh(), 0.0f16); |
| assert!(0.999f16.acosh().is_nan()); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf.acosh(), inf); |
| assert!(neg_inf.acosh().is_nan()); |
| assert!(nan.acosh().is_nan()); |
| assert_approx_eq!(2.0f16.acosh(), 1.31695789692481670862504634730796844f16, TOL_0); |
| assert_approx_eq!(3.0f16.acosh(), 1.76274717403908605046521864995958461f16, TOL_0); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(10.0f16, 10.0f16.cosh().acosh(), TOL_P2); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_atanh() { |
| assert_eq!(0.0f16.atanh(), 0.0f16); |
| assert_eq!((-0.0f16).atanh(), -0.0f16); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(1.0f16.atanh(), inf); |
| assert_eq!((-1.0f16).atanh(), neg_inf); |
| assert!(2f16.atanh().atanh().is_nan()); |
| assert!((-2f16).atanh().atanh().is_nan()); |
| assert!(inf.atanh().is_nan()); |
| assert!(neg_inf.atanh().is_nan()); |
| assert!(nan.atanh().is_nan()); |
| assert_approx_eq!(0.5f16.atanh(), 0.54930614433405484569762261846126285f16, TOL_0); |
| assert_approx_eq!((-0.5f16).atanh(), -0.54930614433405484569762261846126285f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_gamma() { |
| // precision can differ among platforms |
| assert_approx_eq!(1.0f16.gamma(), 1.0f16, TOL_0); |
| assert_approx_eq!(2.0f16.gamma(), 1.0f16, TOL_0); |
| assert_approx_eq!(3.0f16.gamma(), 2.0f16, TOL_0); |
| assert_approx_eq!(4.0f16.gamma(), 6.0f16, TOL_0); |
| assert_approx_eq!(5.0f16.gamma(), 24.0f16, TOL_0); |
| assert_approx_eq!(0.5f16.gamma(), consts::PI.sqrt(), TOL_0); |
| assert_approx_eq!((-0.5f16).gamma(), -2.0 * consts::PI.sqrt(), TOL_0); |
| assert_eq!(0.0f16.gamma(), f16::INFINITY); |
| assert_eq!((-0.0f16).gamma(), f16::NEG_INFINITY); |
| assert!((-1.0f16).gamma().is_nan()); |
| assert!((-2.0f16).gamma().is_nan()); |
| assert!(f16::NAN.gamma().is_nan()); |
| assert!(f16::NEG_INFINITY.gamma().is_nan()); |
| assert_eq!(f16::INFINITY.gamma(), f16::INFINITY); |
| assert_eq!(171.71f16.gamma(), f16::INFINITY); |
| } |
| |
| #[test] |
| #[cfg(reliable_f16_math)] |
| fn test_ln_gamma() { |
| assert_approx_eq!(1.0f16.ln_gamma().0, 0.0f16, TOL_0); |
| assert_eq!(1.0f16.ln_gamma().1, 1); |
| assert_approx_eq!(2.0f16.ln_gamma().0, 0.0f16, TOL_0); |
| assert_eq!(2.0f16.ln_gamma().1, 1); |
| assert_approx_eq!(3.0f16.ln_gamma().0, 2.0f16.ln(), TOL_0); |
| assert_eq!(3.0f16.ln_gamma().1, 1); |
| assert_approx_eq!((-0.5f16).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_0); |
| assert_eq!((-0.5f16).ln_gamma().1, -1); |
| } |
| |
| #[test] |
| fn test_real_consts() { |
| // FIXME(f16_f128): add math tests when available |
| use super::consts; |
| |
| let pi: f16 = consts::PI; |
| let frac_pi_2: f16 = consts::FRAC_PI_2; |
| let frac_pi_3: f16 = consts::FRAC_PI_3; |
| let frac_pi_4: f16 = consts::FRAC_PI_4; |
| let frac_pi_6: f16 = consts::FRAC_PI_6; |
| let frac_pi_8: f16 = consts::FRAC_PI_8; |
| let frac_1_pi: f16 = consts::FRAC_1_PI; |
| let frac_2_pi: f16 = consts::FRAC_2_PI; |
| |
| assert_approx_eq!(frac_pi_2, pi / 2f16, TOL_0); |
| assert_approx_eq!(frac_pi_3, pi / 3f16, TOL_0); |
| assert_approx_eq!(frac_pi_4, pi / 4f16, TOL_0); |
| assert_approx_eq!(frac_pi_6, pi / 6f16, TOL_0); |
| assert_approx_eq!(frac_pi_8, pi / 8f16, TOL_0); |
| assert_approx_eq!(frac_1_pi, 1f16 / pi, TOL_0); |
| assert_approx_eq!(frac_2_pi, 2f16 / pi, TOL_0); |
| |
| #[cfg(reliable_f16_math)] |
| { |
| let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; |
| let sqrt2: f16 = consts::SQRT_2; |
| let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; |
| let e: f16 = consts::E; |
| let log2_e: f16 = consts::LOG2_E; |
| let log10_e: f16 = consts::LOG10_E; |
| let ln_2: f16 = consts::LN_2; |
| let ln_10: f16 = consts::LN_10; |
| |
| assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt(), TOL_0); |
| assert_approx_eq!(sqrt2, 2f16.sqrt(), TOL_0); |
| assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt(), TOL_0); |
| assert_approx_eq!(log2_e, e.log2(), TOL_0); |
| assert_approx_eq!(log10_e, e.log10(), TOL_0); |
| assert_approx_eq!(ln_2, 2f16.ln(), TOL_0); |
| assert_approx_eq!(ln_10, 10f16.ln(), TOL_0); |
| } |
| } |
| |
| #[test] |
| fn test_float_bits_conv() { |
| assert_eq!((1f16).to_bits(), 0x3c00); |
| assert_eq!((12.5f16).to_bits(), 0x4a40); |
| assert_eq!((1337f16).to_bits(), 0x6539); |
| assert_eq!((-14.25f16).to_bits(), 0xcb20); |
| assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0); |
| assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0); |
| assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4); |
| assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0); |
| |
| // Check that NaNs roundtrip their bits regardless of signaling-ness |
| let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1; |
| let masked_nan2 = f16::NAN.to_bits() ^ NAN_MASK2; |
| assert!(f16::from_bits(masked_nan1).is_nan()); |
| assert!(f16::from_bits(masked_nan2).is_nan()); |
| |
| assert_eq!(f16::from_bits(masked_nan1).to_bits(), masked_nan1); |
| assert_eq!(f16::from_bits(masked_nan2).to_bits(), masked_nan2); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_min_greater_than_max() { |
| let _ = 1.0f16.clamp(3.0, 1.0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_min_is_nan() { |
| let _ = 1.0f16.clamp(f16::NAN, 1.0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_max_is_nan() { |
| let _ = 1.0f16.clamp(3.0, f16::NAN); |
| } |
| |
| #[test] |
| fn test_total_cmp() { |
| use core::cmp::Ordering; |
| |
| fn quiet_bit_mask() -> u16 { |
| 1 << (f16::MANTISSA_DIGITS - 2) |
| } |
| |
| // FIXME(f16_f128): test subnormals when powf is available |
| // fn min_subnorm() -> f16 { |
| // f16::MIN_POSITIVE / f16::powf(2.0, f16::MANTISSA_DIGITS as f16 - 1.0) |
| // } |
| |
| // fn max_subnorm() -> f16 { |
| // f16::MIN_POSITIVE - min_subnorm() |
| // } |
| |
| fn q_nan() -> f16 { |
| f16::from_bits(f16::NAN.to_bits() | quiet_bit_mask()) |
| } |
| |
| fn s_nan() -> f16 { |
| f16::from_bits((f16::NAN.to_bits() & !quiet_bit_mask()) + 42) |
| } |
| |
| assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); |
| assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Equal, (-f16::INFINITY).total_cmp(&-f16::INFINITY)); |
| assert_eq!(Ordering::Equal, (-f16::MAX).total_cmp(&-f16::MAX)); |
| assert_eq!(Ordering::Equal, (-2.5_f16).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Equal, (-1.0_f16).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Equal, (-1.5_f16).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Equal, (-0.5_f16).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Equal, (-f16::MIN_POSITIVE).total_cmp(&-f16::MIN_POSITIVE)); |
| // assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); |
| // assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Equal, (-0.0_f16).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Equal, 0.0_f16.total_cmp(&0.0)); |
| // assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); |
| // assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Equal, f16::MIN_POSITIVE.total_cmp(&f16::MIN_POSITIVE)); |
| assert_eq!(Ordering::Equal, 0.5_f16.total_cmp(&0.5)); |
| assert_eq!(Ordering::Equal, 1.0_f16.total_cmp(&1.0)); |
| assert_eq!(Ordering::Equal, 1.5_f16.total_cmp(&1.5)); |
| assert_eq!(Ordering::Equal, 2.5_f16.total_cmp(&2.5)); |
| assert_eq!(Ordering::Equal, f16::MAX.total_cmp(&f16::MAX)); |
| assert_eq!(Ordering::Equal, f16::INFINITY.total_cmp(&f16::INFINITY)); |
| assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); |
| assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); |
| |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); |
| assert_eq!(Ordering::Less, (-f16::INFINITY).total_cmp(&-f16::MAX)); |
| assert_eq!(Ordering::Less, (-f16::MAX).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-2.5_f16).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-1.5_f16).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-1.0_f16).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-0.5_f16).total_cmp(&-f16::MIN_POSITIVE)); |
| // assert_eq!(Ordering::Less, (-f16::MIN_POSITIVE).total_cmp(&-max_subnorm())); |
| // assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); |
| // assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-0.0_f16).total_cmp(&0.0)); |
| // assert_eq!(Ordering::Less, 0.0_f16.total_cmp(&min_subnorm())); |
| // assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); |
| // assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f16::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, f16::MIN_POSITIVE.total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, 0.5_f16.total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, 1.0_f16.total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, 1.5_f16.total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, 2.5_f16.total_cmp(&f16::MAX)); |
| assert_eq!(Ordering::Less, f16::MAX.total_cmp(&f16::INFINITY)); |
| assert_eq!(Ordering::Less, f16::INFINITY.total_cmp(&s_nan())); |
| assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); |
| |
| assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); |
| assert_eq!(Ordering::Greater, (-f16::INFINITY).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Greater, (-f16::MAX).total_cmp(&-f16::INFINITY)); |
| assert_eq!(Ordering::Greater, (-2.5_f16).total_cmp(&-f16::MAX)); |
| assert_eq!(Ordering::Greater, (-1.5_f16).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Greater, (-1.0_f16).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Greater, (-0.5_f16).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Greater, (-f16::MIN_POSITIVE).total_cmp(&-0.5)); |
| // assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f16::MIN_POSITIVE)); |
| // assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); |
| // assert_eq!(Ordering::Greater, (-0.0_f16).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Greater, 0.0_f16.total_cmp(&-0.0)); |
| // assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); |
| // assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); |
| // assert_eq!(Ordering::Greater, f16::MIN_POSITIVE.total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Greater, 0.5_f16.total_cmp(&f16::MIN_POSITIVE)); |
| assert_eq!(Ordering::Greater, 1.0_f16.total_cmp(&0.5)); |
| assert_eq!(Ordering::Greater, 1.5_f16.total_cmp(&1.0)); |
| assert_eq!(Ordering::Greater, 2.5_f16.total_cmp(&1.5)); |
| assert_eq!(Ordering::Greater, f16::MAX.total_cmp(&2.5)); |
| assert_eq!(Ordering::Greater, f16::INFINITY.total_cmp(&f16::MAX)); |
| assert_eq!(Ordering::Greater, s_nan().total_cmp(&f16::INFINITY)); |
| assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); |
| |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::INFINITY)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MAX)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MIN_POSITIVE)); |
| // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); |
| // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); |
| // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); |
| // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MAX)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::INFINITY)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); |
| |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MAX)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MIN_POSITIVE)); |
| // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); |
| // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); |
| // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); |
| // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MAX)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::INFINITY)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); |
| } |