| #!/usr/bin/env python3 |
| |
| """ |
| Generate powers of five using Daniel Lemire's ``Eisel-Lemire algorithm`` for use in |
| decimal to floating point conversions. |
| |
| Specifically, computes and outputs (as Rust code) a table of 10^e for some |
| range of exponents e. The output is one array of 128 bit significands. |
| The base two exponents can be inferred using a logarithmic slope |
| of the decimal exponent. The approximations are normalized and rounded perfectly, |
| i.e., within 0.5 ULP of the true value. |
| |
| Adapted from Daniel Lemire's fast_float ``table_generation.py``, |
| available here: <https://github.com/fastfloat/fast_float/blob/main/script/table_generation.py>. |
| """ |
| from __future__ import print_function |
| from math import ceil, floor, log |
| from collections import deque |
| |
| HEADER = """ |
| //! Pre-computed tables powers-of-5 for extended-precision representations. |
| //! |
| //! These tables enable fast scaling of the significant digits |
| //! of a float to the decimal exponent, with minimal rounding |
| //! errors, in a 128 or 192-bit representation. |
| //! |
| //! DO NOT MODIFY: Generated by `src/etc/dec2flt_table.py` |
| """ |
| |
| STATIC_WARNING = """ |
| // Use static to avoid long compile times: Rust compiler errors |
| // can have the entire table compiled multiple times, and then |
| // emit code multiple times, even if it's stripped out in |
| // the final binary. |
| """ |
| |
| def main(): |
| min_exp = minimum_exponent(10) |
| max_exp = maximum_exponent(10) |
| bias = -minimum_exponent(5) |
| |
| print(HEADER.strip()) |
| print() |
| print('pub const SMALLEST_POWER_OF_FIVE: i32 = {};'.format(min_exp)) |
| print('pub const LARGEST_POWER_OF_FIVE: i32 = {};'.format(max_exp)) |
| print('pub const N_POWERS_OF_FIVE: usize = ', end='') |
| print('(LARGEST_POWER_OF_FIVE - SMALLEST_POWER_OF_FIVE + 1) as usize;') |
| print() |
| print_proper_powers(min_exp, max_exp, bias) |
| |
| |
| def minimum_exponent(base): |
| return ceil(log(5e-324, base) - log(0xFFFFFFFFFFFFFFFF, base)) |
| |
| |
| def maximum_exponent(base): |
| return floor(log(1.7976931348623157e+308, base)) |
| |
| |
| def print_proper_powers(min_exp, max_exp, bias): |
| powers = deque() |
| |
| # Add negative exponents. |
| # 2^(2b)/(5^−q) with b=64 + int(math.ceil(log2(5^−q))) |
| powers = [] |
| for q in range(min_exp, 0): |
| power5 = 5 ** -q |
| z = 0 |
| while (1 << z) < power5: |
| z += 1 |
| if q >= -27: |
| b = z + 127 |
| c = 2 ** b // power5 + 1 |
| powers.append((c, q)) |
| else: |
| b = 2 * z + 2 * 64 |
| c = 2 ** b // power5 + 1 |
| # truncate |
| while c >= (1<<128): |
| c //= 2 |
| powers.append((c, q)) |
| |
| # Add positive exponents |
| for q in range(0, max_exp + 1): |
| power5 = 5 ** q |
| # move the most significant bit in position |
| while power5 < (1<<127): |
| power5 *= 2 |
| # *truncate* |
| while power5 >= (1<<128): |
| power5 //= 2 |
| powers.append((power5, q)) |
| |
| # Print the powers. |
| print(STATIC_WARNING.strip()) |
| print('#[rustfmt::skip]') |
| typ = '[(u64, u64); N_POWERS_OF_FIVE]' |
| print('pub static POWER_OF_FIVE_128: {} = ['.format(typ)) |
| for c, exp in powers: |
| hi = '0x{:x}'.format(c // (1 << 64)) |
| lo = '0x{:x}'.format(c % (1 << 64)) |
| value = ' ({}, {}), '.format(hi, lo) |
| comment = '// {}^{}'.format(5, exp) |
| print(value.ljust(46, ' ') + comment) |
| print('];') |
| |
| |
| if __name__ == '__main__': |
| main() |