| //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interface between the inliner and a learned model. |
| // It delegates model evaluation to either the AOT compiled model (the |
| // 'release' mode) or a runtime-loaded model (the 'development' case). |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Analysis/MLInlineAdvisor.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/FunctionPropertiesAnalysis.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/InlineModelFeatureMaps.h" |
| #include "llvm/Analysis/InteractiveModelRunner.h" |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MLModelRunner.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ReleaseModeModelRunner.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> InteractiveChannelBaseName( |
| "inliner-interactive-channel-base", cl::Hidden, |
| cl::desc( |
| "Base file path for the interactive mode. The incoming filename should " |
| "have the name <inliner-interactive-channel-base>.in, while the " |
| "outgoing name should be <inliner-interactive-channel-base>.out")); |
| static const std::string InclDefaultMsg = |
| (Twine("In interactive mode, also send the default policy decision: ") + |
| DefaultDecisionName + ".") |
| .str(); |
| static cl::opt<bool> |
| InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden, |
| cl::desc(InclDefaultMsg)); |
| |
| enum class SkipMLPolicyCriteria { Never, IfCallerIsNotCold }; |
| |
| static cl::opt<SkipMLPolicyCriteria> SkipPolicy( |
| "ml-inliner-skip-policy", cl::Hidden, cl::init(SkipMLPolicyCriteria::Never), |
| cl::values(clEnumValN(SkipMLPolicyCriteria::Never, "never", "never"), |
| clEnumValN(SkipMLPolicyCriteria::IfCallerIsNotCold, |
| "if-caller-not-cold", "if the caller is not cold"))); |
| |
| static cl::opt<std::string> ModelSelector("ml-inliner-model-selector", |
| cl::Hidden, cl::init("")); |
| |
| #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL) |
| // codegen-ed file |
| #include "InlinerSizeModel.h" // NOLINT |
| using CompiledModelType = llvm::InlinerSizeModel; |
| #else |
| using CompiledModelType = NoopSavedModelImpl; |
| #endif |
| |
| std::unique_ptr<InlineAdvisor> |
| llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM, |
| std::function<bool(CallBase &)> GetDefaultAdvice) { |
| if (!llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() && |
| InteractiveChannelBaseName.empty()) |
| return nullptr; |
| std::unique_ptr<MLModelRunner> AOTRunner; |
| if (InteractiveChannelBaseName.empty()) |
| AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( |
| M.getContext(), FeatureMap, DecisionName, |
| EmbeddedModelRunnerOptions().setModelSelector(ModelSelector)); |
| else { |
| auto Features = FeatureMap; |
| if (InteractiveIncludeDefault) |
| Features.push_back(DefaultDecisionSpec); |
| AOTRunner = std::make_unique<InteractiveModelRunner>( |
| M.getContext(), Features, InlineDecisionSpec, |
| InteractiveChannelBaseName + ".out", |
| InteractiveChannelBaseName + ".in"); |
| } |
| return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner), |
| GetDefaultAdvice); |
| } |
| |
| #define DEBUG_TYPE "inline-ml" |
| |
| static cl::opt<float> SizeIncreaseThreshold( |
| "ml-advisor-size-increase-threshold", cl::Hidden, |
| cl::desc("Maximum factor by which expected native size may increase before " |
| "blocking any further inlining."), |
| cl::init(2.0)); |
| |
| static cl::opt<bool> KeepFPICache( |
| "ml-advisor-keep-fpi-cache", cl::Hidden, |
| cl::desc( |
| "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"), |
| cl::init(false)); |
| |
| // clang-format off |
| const std::vector<TensorSpec> llvm::FeatureMap{ |
| #define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE), |
| // InlineCost features - these must come first |
| INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES) |
| |
| // Non-cost features |
| INLINE_FEATURE_ITERATOR(POPULATE_NAMES) |
| #undef POPULATE_NAMES |
| }; |
| // clang-format on |
| |
| const char *const llvm::DecisionName = "inlining_decision"; |
| const TensorSpec llvm::InlineDecisionSpec = |
| TensorSpec::createSpec<int64_t>(DecisionName, {1}); |
| const char *const llvm::DefaultDecisionName = "inlining_default"; |
| const TensorSpec llvm::DefaultDecisionSpec = |
| TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}); |
| const char *const llvm::RewardName = "delta_size"; |
| |
| CallBase *getInlinableCS(Instruction &I) { |
| if (auto *CS = dyn_cast<CallBase>(&I)) |
| if (Function *Callee = CS->getCalledFunction()) { |
| if (!Callee->isDeclaration()) { |
| return CS; |
| } |
| } |
| return nullptr; |
| } |
| |
| MLInlineAdvisor::MLInlineAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::unique_ptr<MLModelRunner> Runner, |
| std::function<bool(CallBase &)> GetDefaultAdvice) |
| : InlineAdvisor( |
| M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), |
| ModelRunner(std::move(Runner)), GetDefaultAdvice(GetDefaultAdvice), |
| CG(MAM.getResult<LazyCallGraphAnalysis>(M)), |
| InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize), |
| PSI(MAM.getResult<ProfileSummaryAnalysis>(M)) { |
| assert(ModelRunner); |
| ModelRunner->switchContext(""); |
| // Extract the 'call site height' feature - the position of a call site |
| // relative to the farthest statically reachable SCC node. We don't mutate |
| // this value while inlining happens. Empirically, this feature proved |
| // critical in behavioral cloning - i.e. training a model to mimic the manual |
| // heuristic's decisions - and, thus, equally important for training for |
| // improvement. |
| CallGraph CGraph(M); |
| for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) { |
| const std::vector<CallGraphNode *> &CGNodes = *I; |
| unsigned Level = 0; |
| for (auto *CGNode : CGNodes) { |
| Function *F = CGNode->getFunction(); |
| if (!F || F->isDeclaration()) |
| continue; |
| for (auto &I : instructions(F)) { |
| if (auto *CS = getInlinableCS(I)) { |
| auto *Called = CS->getCalledFunction(); |
| auto Pos = FunctionLevels.find(&CG.get(*Called)); |
| // In bottom up traversal, an inlinable callee is either in the |
| // same SCC, or to a function in a visited SCC. So not finding its |
| // level means we haven't visited it yet, meaning it's in this SCC. |
| if (Pos == FunctionLevels.end()) |
| continue; |
| Level = std::max(Level, Pos->second + 1); |
| } |
| } |
| } |
| for (auto *CGNode : CGNodes) { |
| Function *F = CGNode->getFunction(); |
| if (F && !F->isDeclaration()) |
| FunctionLevels[&CG.get(*F)] = Level; |
| } |
| } |
| for (auto KVP : FunctionLevels) { |
| AllNodes.insert(KVP.first); |
| EdgeCount += getLocalCalls(KVP.first->getFunction()); |
| } |
| NodeCount = AllNodes.size(); |
| } |
| |
| unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const { |
| return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0; |
| } |
| |
| void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *CurSCC) { |
| if (!CurSCC || ForceStop) |
| return; |
| FPICache.clear(); |
| // Function passes executed between InlinerPass runs may have changed the |
| // module-wide features. |
| // The cgscc pass manager rules are such that: |
| // - if a pass leads to merging SCCs, then the pipeline is restarted on the |
| // merged SCC |
| // - if a pass leads to splitting the SCC, then we continue with one of the |
| // splits |
| // This means that the NodesInLastSCC is a superset (not strict) of the nodes |
| // that subsequent passes would have processed |
| // - in addition, if new Nodes were created by a pass (e.g. CoroSplit), |
| // they'd be adjacent to Nodes in the last SCC. So we just need to check the |
| // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't |
| // care about the nature of the Edge (call or ref). `FunctionLevels`-wise, we |
| // record them at the same level as the original node (this is a choice, may |
| // need revisiting). |
| // - nodes are only deleted at the end of a call graph walk where they are |
| // batch deleted, so we shouldn't see any dead nodes here. |
| while (!NodesInLastSCC.empty()) { |
| const auto *N = *NodesInLastSCC.begin(); |
| assert(!N->isDead()); |
| NodesInLastSCC.erase(N); |
| EdgeCount += getLocalCalls(N->getFunction()); |
| const auto NLevel = FunctionLevels.at(N); |
| for (const auto &E : *(*N)) { |
| const auto *AdjNode = &E.getNode(); |
| assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration()); |
| auto I = AllNodes.insert(AdjNode); |
| // We've discovered a new function. |
| if (I.second) { |
| ++NodeCount; |
| NodesInLastSCC.insert(AdjNode); |
| FunctionLevels[AdjNode] = NLevel; |
| } |
| } |
| } |
| |
| EdgeCount -= EdgesOfLastSeenNodes; |
| EdgesOfLastSeenNodes = 0; |
| |
| // (Re)use NodesInLastSCC to remember the nodes in the SCC right now, |
| // in case the SCC is split before onPassExit and some nodes are split out |
| assert(NodesInLastSCC.empty()); |
| for (const auto &N : *CurSCC) |
| NodesInLastSCC.insert(&N); |
| } |
| |
| void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *CurSCC) { |
| // No need to keep this around - function passes will invalidate it. |
| if (!KeepFPICache) |
| FPICache.clear(); |
| if (!CurSCC || ForceStop) |
| return; |
| // Keep track of the nodes and edges we last saw. Then, in onPassEntry, |
| // we update the node count and edge count from the subset of these nodes that |
| // survived. |
| EdgesOfLastSeenNodes = 0; |
| |
| // Check on nodes that were in SCC onPassEntry |
| for (const LazyCallGraph::Node *N : NodesInLastSCC) { |
| assert(!N->isDead()); |
| EdgesOfLastSeenNodes += getLocalCalls(N->getFunction()); |
| } |
| |
| // Check on nodes that may have got added to SCC |
| for (const auto &N : *CurSCC) { |
| assert(!N.isDead()); |
| auto I = NodesInLastSCC.insert(&N); |
| if (I.second) |
| EdgesOfLastSeenNodes += getLocalCalls(N.getFunction()); |
| } |
| assert(NodeCount >= NodesInLastSCC.size()); |
| assert(EdgeCount >= EdgesOfLastSeenNodes); |
| } |
| |
| int64_t MLInlineAdvisor::getLocalCalls(Function &F) { |
| return getCachedFPI(F).DirectCallsToDefinedFunctions; |
| } |
| |
| // Update the internal state of the advisor, and force invalidate feature |
| // analysis. Currently, we maintain minimal (and very simple) global state - the |
| // number of functions and the number of static calls. We also keep track of the |
| // total IR size in this module, to stop misbehaving policies at a certain bloat |
| // factor (SizeIncreaseThreshold) |
| void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice, |
| bool CalleeWasDeleted) { |
| assert(!ForceStop); |
| Function *Caller = Advice.getCaller(); |
| Function *Callee = Advice.getCallee(); |
| // The caller features aren't valid anymore. |
| { |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| PA.abandon<FunctionPropertiesAnalysis>(); |
| PA.abandon<DominatorTreeAnalysis>(); |
| PA.abandon<LoopAnalysis>(); |
| FAM.invalidate(*Caller, PA); |
| } |
| Advice.updateCachedCallerFPI(FAM); |
| int64_t IRSizeAfter = |
| getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize); |
| CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize); |
| if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize) |
| ForceStop = true; |
| |
| // We can delta-update module-wide features. We know the inlining only changed |
| // the caller, and maybe the callee (by deleting the latter). |
| // Nodes are simple to update. |
| // For edges, we 'forget' the edges that the caller and callee used to have |
| // before inlining, and add back what they currently have together. |
| int64_t NewCallerAndCalleeEdges = |
| getCachedFPI(*Caller).DirectCallsToDefinedFunctions; |
| |
| // A dead function's node is not actually removed from the call graph until |
| // the end of the call graph walk, but the node no longer belongs to any valid |
| // SCC. |
| if (CalleeWasDeleted) { |
| --NodeCount; |
| NodesInLastSCC.erase(CG.lookup(*Callee)); |
| DeadFunctions.insert(Callee); |
| } else { |
| NewCallerAndCalleeEdges += |
| getCachedFPI(*Callee).DirectCallsToDefinedFunctions; |
| } |
| EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges); |
| assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0); |
| } |
| |
| int64_t MLInlineAdvisor::getModuleIRSize() const { |
| int64_t Ret = 0; |
| for (auto &F : M) |
| if (!F.isDeclaration()) |
| Ret += getIRSize(F); |
| return Ret; |
| } |
| |
| FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const { |
| auto InsertPair = |
| FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo())); |
| if (!InsertPair.second) |
| return InsertPair.first->second; |
| InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F); |
| return InsertPair.first->second; |
| } |
| |
| std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) { |
| if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB)) |
| return Skip; |
| |
| auto &Caller = *CB.getCaller(); |
| auto &Callee = *CB.getCalledFunction(); |
| |
| auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| return FAM.getResult<AssumptionAnalysis>(F); |
| }; |
| auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee); |
| auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller); |
| |
| if (SkipPolicy == SkipMLPolicyCriteria::IfCallerIsNotCold) { |
| if (!PSI.isFunctionEntryCold(&Caller)) |
| return std::make_unique<InlineAdvice>(this, CB, ORE, |
| GetDefaultAdvice(CB)); |
| } |
| auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE); |
| // If this is a "never inline" case, there won't be any changes to internal |
| // state we need to track, so we can just return the base InlineAdvice, which |
| // will do nothing interesting. |
| // Same thing if this is a recursive case. |
| if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never || |
| &Caller == &Callee) |
| return getMandatoryAdvice(CB, false); |
| |
| bool Mandatory = |
| MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always; |
| |
| // If we need to stop, we won't want to track anymore any state changes, so |
| // we just return the base InlineAdvice, which acts as a noop. |
| if (ForceStop) { |
| ORE.emit([&] { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB) |
| << "Won't attempt inlining because module size grew too much."; |
| }); |
| return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory); |
| } |
| |
| int CostEstimate = 0; |
| if (!Mandatory) { |
| auto IsCallSiteInlinable = |
| llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache); |
| if (!IsCallSiteInlinable) { |
| // We can't inline this for correctness reasons, so return the base |
| // InlineAdvice, as we don't care about tracking any state changes (which |
| // won't happen). |
| return std::make_unique<InlineAdvice>(this, CB, ORE, false); |
| } |
| CostEstimate = *IsCallSiteInlinable; |
| } |
| |
| const auto CostFeatures = |
| llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache); |
| if (!CostFeatures) { |
| return std::make_unique<InlineAdvice>(this, CB, ORE, false); |
| } |
| |
| if (Mandatory) |
| return getMandatoryAdvice(CB, true); |
| |
| auto NrCtantParams = 0; |
| for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { |
| NrCtantParams += (isa<Constant>(*I)); |
| } |
| |
| auto &CallerBefore = getCachedFPI(Caller); |
| auto &CalleeBefore = getCachedFPI(Callee); |
| |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) = |
| CalleeBefore.BasicBlockCount; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) = |
| getInitialFunctionLevel(Caller); |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) = |
| NrCtantParams; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) = |
| CallerBefore.Uses; |
| *ModelRunner->getTensor<int64_t>( |
| FeatureIndex::caller_conditionally_executed_blocks) = |
| CallerBefore.BlocksReachedFromConditionalInstruction; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) = |
| CallerBefore.BasicBlockCount; |
| *ModelRunner->getTensor<int64_t>( |
| FeatureIndex::callee_conditionally_executed_blocks) = |
| CalleeBefore.BlocksReachedFromConditionalInstruction; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) = |
| CalleeBefore.Uses; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate; |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::is_callee_avail_external) = |
| Callee.hasAvailableExternallyLinkage(); |
| *ModelRunner->getTensor<int64_t>(FeatureIndex::is_caller_avail_external) = |
| Caller.hasAvailableExternallyLinkage(); |
| |
| // Add the cost features |
| for (size_t I = 0; |
| I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) { |
| *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature( |
| static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I); |
| } |
| // This one would have been set up to be right at the end. |
| if (!InteractiveChannelBaseName.empty() && InteractiveIncludeDefault) |
| *ModelRunner->getTensor<int64_t>(InlineCostFeatureIndex::NumberOfFeatures) = |
| GetDefaultAdvice(CB); |
| return getAdviceFromModel(CB, ORE); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| MLInlineAdvisor::getAdviceFromModel(CallBase &CB, |
| OptimizationRemarkEmitter &ORE) { |
| return std::make_unique<MLInlineAdvice>( |
| this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>())); |
| } |
| |
| std::unique_ptr<InlineAdvice> |
| MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) { |
| if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller()) |
| .isReachableFromEntry(CB.getParent())) |
| return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false); |
| return nullptr; |
| } |
| |
| std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, |
| bool Advice) { |
| // Make sure we track inlinings in all cases - mandatory or not. |
| if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB)) |
| return Skip; |
| if (Advice && !ForceStop) |
| return getMandatoryAdviceImpl(CB); |
| |
| // If this is a "never inline" case, there won't be any changes to internal |
| // state we need to track, so we can just return the base InlineAdvice, which |
| // will do nothing interesting. |
| // Same if we are forced to stop - we don't track anymore. |
| return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { |
| return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true); |
| } |
| |
| void MLInlineAdvisor::print(raw_ostream &OS) const { |
| OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount |
| << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n"; |
| OS << "[MLInlineAdvisor] FPI:\n"; |
| for (auto I : FPICache) { |
| OS << I.first->getName() << ":\n"; |
| I.second.print(OS); |
| OS << "\n"; |
| } |
| OS << "\n"; |
| OS << "[MLInlineAdvisor] FuncLevels:\n"; |
| for (auto I : FunctionLevels) |
| OS << (DeadFunctions.contains(&I.first->getFunction()) |
| ? "<deleted>" |
| : I.first->getFunction().getName()) |
| << " : " << I.second << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB, |
| OptimizationRemarkEmitter &ORE, |
| bool Recommendation) |
| : InlineAdvice(Advisor, CB, ORE, Recommendation), |
| CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)), |
| CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)), |
| CallerAndCalleeEdges(Advisor->isForcedToStop() |
| ? 0 |
| : (Advisor->getLocalCalls(*Caller) + |
| Advisor->getLocalCalls(*Callee))), |
| PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) { |
| if (Recommendation) |
| FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB); |
| } |
| |
| void MLInlineAdvice::reportContextForRemark( |
| DiagnosticInfoOptimizationBase &OR) { |
| using namespace ore; |
| OR << NV("Callee", Callee->getName()); |
| for (size_t I = 0; I < NumberOfFeatures; ++I) |
| OR << NV(FeatureMap[I].name(), |
| *getAdvisor()->getModelRunner().getTensor<int64_t>(I)); |
| OR << NV("ShouldInline", isInliningRecommended()); |
| } |
| |
| void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const { |
| FPU->finish(FAM); |
| } |
| |
| void MLInlineAdvice::recordInliningImpl() { |
| ORE.emit([&]() { |
| OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block); |
| reportContextForRemark(R); |
| return R; |
| }); |
| getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false); |
| } |
| |
| void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() { |
| ORE.emit([&]() { |
| OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc, |
| Block); |
| reportContextForRemark(R); |
| return R; |
| }); |
| getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true); |
| } |
| |
| void MLInlineAdvice::recordUnsuccessfulInliningImpl( |
| const InlineResult &Result) { |
| getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI; |
| ORE.emit([&]() { |
| OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful", |
| DLoc, Block); |
| reportContextForRemark(R); |
| return R; |
| }); |
| } |
| void MLInlineAdvice::recordUnattemptedInliningImpl() { |
| assert(!FPU); |
| ORE.emit([&]() { |
| OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block); |
| reportContextForRemark(R); |
| return R; |
| }); |
| } |