| //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions identifies calls to builtin functions that allocate |
| // or free memory. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <numeric> |
| #include <optional> |
| #include <type_traits> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "memory-builtins" |
| |
| static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions( |
| "object-size-offset-visitor-max-visit-instructions", |
| cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to " |
| "look at"), |
| cl::init(100)); |
| |
| enum AllocType : uint8_t { |
| OpNewLike = 1<<0, // allocates; never returns null |
| MallocLike = 1<<1, // allocates; may return null |
| StrDupLike = 1<<2, |
| MallocOrOpNewLike = MallocLike | OpNewLike, |
| AllocLike = MallocOrOpNewLike | StrDupLike, |
| AnyAlloc = AllocLike |
| }; |
| |
| enum class MallocFamily { |
| Malloc, |
| CPPNew, // new(unsigned int) |
| CPPNewAligned, // new(unsigned int, align_val_t) |
| CPPNewArray, // new[](unsigned int) |
| CPPNewArrayAligned, // new[](unsigned long, align_val_t) |
| MSVCNew, // new(unsigned int) |
| MSVCArrayNew, // new[](unsigned int) |
| VecMalloc, |
| KmpcAllocShared, |
| }; |
| |
| StringRef mangledNameForMallocFamily(const MallocFamily &Family) { |
| switch (Family) { |
| case MallocFamily::Malloc: |
| return "malloc"; |
| case MallocFamily::CPPNew: |
| return "_Znwm"; |
| case MallocFamily::CPPNewAligned: |
| return "_ZnwmSt11align_val_t"; |
| case MallocFamily::CPPNewArray: |
| return "_Znam"; |
| case MallocFamily::CPPNewArrayAligned: |
| return "_ZnamSt11align_val_t"; |
| case MallocFamily::MSVCNew: |
| return "??2@YAPAXI@Z"; |
| case MallocFamily::MSVCArrayNew: |
| return "??_U@YAPAXI@Z"; |
| case MallocFamily::VecMalloc: |
| return "vec_malloc"; |
| case MallocFamily::KmpcAllocShared: |
| return "__kmpc_alloc_shared"; |
| } |
| llvm_unreachable("missing an alloc family"); |
| } |
| |
| struct AllocFnsTy { |
| AllocType AllocTy; |
| unsigned NumParams; |
| // First and Second size parameters (or -1 if unused) |
| int FstParam, SndParam; |
| // Alignment parameter for aligned_alloc and aligned new |
| int AlignParam; |
| // Name of default allocator function to group malloc/free calls by family |
| MallocFamily Family; |
| }; |
| |
| // clang-format off |
| // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to |
| // know which functions are nounwind, noalias, nocapture parameters, etc. |
| static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { |
| {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) |
| {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) |
| {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) |
| {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) |
| {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) |
| {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t) |
| {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) |
| {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t) |
| {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) |
| {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t) |
| {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) |
| {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t) |
| {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) |
| {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) |
| {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) |
| {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) |
| {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) |
| {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t) |
| {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) |
| {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t) |
| {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) |
| {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t) |
| {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) |
| {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t) |
| {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) |
| {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) |
| {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) |
| {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) |
| {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) |
| {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) |
| {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) |
| {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) |
| {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, |
| {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, |
| {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, |
| {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, |
| {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, |
| }; |
| // clang-format on |
| |
| static const Function *getCalledFunction(const Value *V, |
| bool &IsNoBuiltin) { |
| // Don't care about intrinsics in this case. |
| if (isa<IntrinsicInst>(V)) |
| return nullptr; |
| |
| const auto *CB = dyn_cast<CallBase>(V); |
| if (!CB) |
| return nullptr; |
| |
| IsNoBuiltin = CB->isNoBuiltin(); |
| |
| if (const Function *Callee = CB->getCalledFunction()) |
| return Callee; |
| return nullptr; |
| } |
| |
| /// Returns the allocation data for the given value if it's a call to a known |
| /// allocation function. |
| static std::optional<AllocFnsTy> |
| getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, |
| const TargetLibraryInfo *TLI) { |
| // Don't perform a slow TLI lookup, if this function doesn't return a pointer |
| // and thus can't be an allocation function. |
| if (!Callee->getReturnType()->isPointerTy()) |
| return std::nullopt; |
| |
| // Make sure that the function is available. |
| LibFunc TLIFn; |
| if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) |
| return std::nullopt; |
| |
| const auto *Iter = find_if( |
| AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { |
| return P.first == TLIFn; |
| }); |
| |
| if (Iter == std::end(AllocationFnData)) |
| return std::nullopt; |
| |
| const AllocFnsTy *FnData = &Iter->second; |
| if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) |
| return std::nullopt; |
| |
| // Check function prototype. |
| int FstParam = FnData->FstParam; |
| int SndParam = FnData->SndParam; |
| FunctionType *FTy = Callee->getFunctionType(); |
| |
| if (FTy->getReturnType()->isPointerTy() && |
| FTy->getNumParams() == FnData->NumParams && |
| (FstParam < 0 || |
| (FTy->getParamType(FstParam)->isIntegerTy(32) || |
| FTy->getParamType(FstParam)->isIntegerTy(64))) && |
| (SndParam < 0 || |
| FTy->getParamType(SndParam)->isIntegerTy(32) || |
| FTy->getParamType(SndParam)->isIntegerTy(64))) |
| return *FnData; |
| return std::nullopt; |
| } |
| |
| static std::optional<AllocFnsTy> |
| getAllocationData(const Value *V, AllocType AllocTy, |
| const TargetLibraryInfo *TLI) { |
| bool IsNoBuiltinCall; |
| if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) |
| if (!IsNoBuiltinCall) |
| return getAllocationDataForFunction(Callee, AllocTy, TLI); |
| return std::nullopt; |
| } |
| |
| static std::optional<AllocFnsTy> |
| getAllocationData(const Value *V, AllocType AllocTy, |
| function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { |
| bool IsNoBuiltinCall; |
| if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) |
| if (!IsNoBuiltinCall) |
| return getAllocationDataForFunction( |
| Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); |
| return std::nullopt; |
| } |
| |
| static std::optional<AllocFnsTy> |
| getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) { |
| bool IsNoBuiltinCall; |
| const Function *Callee = |
| getCalledFunction(V, IsNoBuiltinCall); |
| if (!Callee) |
| return std::nullopt; |
| |
| // Prefer to use existing information over allocsize. This will give us an |
| // accurate AllocTy. |
| if (!IsNoBuiltinCall) |
| if (std::optional<AllocFnsTy> Data = |
| getAllocationDataForFunction(Callee, AnyAlloc, TLI)) |
| return Data; |
| |
| Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); |
| if (Attr == Attribute()) |
| return std::nullopt; |
| |
| std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs(); |
| |
| AllocFnsTy Result; |
| // Because allocsize only tells us how many bytes are allocated, we're not |
| // really allowed to assume anything, so we use MallocLike. |
| Result.AllocTy = MallocLike; |
| Result.NumParams = Callee->getNumOperands(); |
| Result.FstParam = Args.first; |
| Result.SndParam = Args.second.value_or(-1); |
| // Allocsize has no way to specify an alignment argument |
| Result.AlignParam = -1; |
| return Result; |
| } |
| |
| static AllocFnKind getAllocFnKind(const Value *V) { |
| if (const auto *CB = dyn_cast<CallBase>(V)) { |
| Attribute Attr = CB->getFnAttr(Attribute::AllocKind); |
| if (Attr.isValid()) |
| return AllocFnKind(Attr.getValueAsInt()); |
| } |
| return AllocFnKind::Unknown; |
| } |
| |
| static AllocFnKind getAllocFnKind(const Function *F) { |
| return F->getAttributes().getAllocKind(); |
| } |
| |
| static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { |
| return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; |
| } |
| |
| static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { |
| return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; |
| } |
| |
| /// Tests if a value is a call or invoke to a library function that |
| /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup |
| /// like). |
| bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { |
| return getAllocationData(V, AnyAlloc, TLI).has_value() || |
| checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); |
| } |
| bool llvm::isAllocationFn( |
| const Value *V, |
| function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { |
| return getAllocationData(V, AnyAlloc, GetTLI).has_value() || |
| checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); |
| } |
| |
| /// Tests if a value is a call or invoke to a library function that |
| /// allocates memory via new. |
| bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { |
| return getAllocationData(V, OpNewLike, TLI).has_value(); |
| } |
| |
| /// Tests if a value is a call or invoke to a library function that |
| /// allocates memory similar to malloc or calloc. |
| bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { |
| // TODO: Function behavior does not match name. |
| return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); |
| } |
| |
| /// Tests if a value is a call or invoke to a library function that |
| /// allocates memory (either malloc, calloc, or strdup like). |
| bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { |
| return getAllocationData(V, AllocLike, TLI).has_value() || |
| checkFnAllocKind(V, AllocFnKind::Alloc); |
| } |
| |
| /// Tests if a functions is a call or invoke to a library function that |
| /// reallocates memory (e.g., realloc). |
| bool llvm::isReallocLikeFn(const Function *F) { |
| return checkFnAllocKind(F, AllocFnKind::Realloc); |
| } |
| |
| Value *llvm::getReallocatedOperand(const CallBase *CB) { |
| if (checkFnAllocKind(CB, AllocFnKind::Realloc)) |
| return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); |
| return nullptr; |
| } |
| |
| bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { |
| // Note: Removability is highly dependent on the source language. For |
| // example, recent C++ requires direct calls to the global allocation |
| // [basic.stc.dynamic.allocation] to be observable unless part of a new |
| // expression [expr.new paragraph 13]. |
| |
| // Historically we've treated the C family allocation routines and operator |
| // new as removable |
| return isAllocLikeFn(CB, TLI); |
| } |
| |
| Value *llvm::getAllocAlignment(const CallBase *V, |
| const TargetLibraryInfo *TLI) { |
| const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); |
| if (FnData && FnData->AlignParam >= 0) { |
| return V->getOperand(FnData->AlignParam); |
| } |
| return V->getArgOperandWithAttribute(Attribute::AllocAlign); |
| } |
| |
| /// When we're compiling N-bit code, and the user uses parameters that are |
| /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into |
| /// trouble with APInt size issues. This function handles resizing + overflow |
| /// checks for us. Check and zext or trunc \p I depending on IntTyBits and |
| /// I's value. |
| static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { |
| // More bits than we can handle. Checking the bit width isn't necessary, but |
| // it's faster than checking active bits, and should give `false` in the |
| // vast majority of cases. |
| if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) |
| return false; |
| if (I.getBitWidth() != IntTyBits) |
| I = I.zextOrTrunc(IntTyBits); |
| return true; |
| } |
| |
| std::optional<APInt> |
| llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, |
| function_ref<const Value *(const Value *)> Mapper) { |
| // Note: This handles both explicitly listed allocation functions and |
| // allocsize. The code structure could stand to be cleaned up a bit. |
| std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); |
| if (!FnData) |
| return std::nullopt; |
| |
| // Get the index type for this address space, results and intermediate |
| // computations are performed at that width. |
| auto &DL = CB->getDataLayout(); |
| const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); |
| |
| // Handle strdup-like functions separately. |
| if (FnData->AllocTy == StrDupLike) { |
| APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); |
| if (!Size) |
| return std::nullopt; |
| |
| // Strndup limits strlen. |
| if (FnData->FstParam > 0) { |
| const ConstantInt *Arg = |
| dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); |
| if (!Arg) |
| return std::nullopt; |
| |
| APInt MaxSize = Arg->getValue().zext(IntTyBits); |
| if (Size.ugt(MaxSize)) |
| Size = MaxSize + 1; |
| } |
| return Size; |
| } |
| |
| const ConstantInt *Arg = |
| dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); |
| if (!Arg) |
| return std::nullopt; |
| |
| APInt Size = Arg->getValue(); |
| if (!CheckedZextOrTrunc(Size, IntTyBits)) |
| return std::nullopt; |
| |
| // Size is determined by just 1 parameter. |
| if (FnData->SndParam < 0) |
| return Size; |
| |
| Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); |
| if (!Arg) |
| return std::nullopt; |
| |
| APInt NumElems = Arg->getValue(); |
| if (!CheckedZextOrTrunc(NumElems, IntTyBits)) |
| return std::nullopt; |
| |
| bool Overflow; |
| Size = Size.umul_ov(NumElems, Overflow); |
| if (Overflow) |
| return std::nullopt; |
| return Size; |
| } |
| |
| Constant *llvm::getInitialValueOfAllocation(const Value *V, |
| const TargetLibraryInfo *TLI, |
| Type *Ty) { |
| auto *Alloc = dyn_cast<CallBase>(V); |
| if (!Alloc) |
| return nullptr; |
| |
| // malloc are uninitialized (undef) |
| if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) |
| return UndefValue::get(Ty); |
| |
| AllocFnKind AK = getAllocFnKind(Alloc); |
| if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) |
| return UndefValue::get(Ty); |
| if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) |
| return Constant::getNullValue(Ty); |
| |
| return nullptr; |
| } |
| |
| struct FreeFnsTy { |
| unsigned NumParams; |
| // Name of default allocator function to group malloc/free calls by family |
| MallocFamily Family; |
| }; |
| |
| // clang-format off |
| static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { |
| {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) |
| {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) |
| {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) |
| {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) |
| {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) |
| {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) |
| {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) |
| {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) |
| {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) |
| {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) |
| {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) |
| {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) |
| {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) |
| {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) |
| {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) |
| {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) |
| {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) |
| {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) |
| {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) |
| {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) |
| {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) |
| {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) |
| {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free |
| {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) |
| {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) |
| {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) |
| {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) |
| {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) |
| {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) |
| }; |
| // clang-format on |
| |
| std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, |
| const LibFunc TLIFn) { |
| const auto *Iter = |
| find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { |
| return P.first == TLIFn; |
| }); |
| if (Iter == std::end(FreeFnData)) |
| return std::nullopt; |
| return Iter->second; |
| } |
| |
| std::optional<StringRef> |
| llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { |
| bool IsNoBuiltin; |
| const Function *Callee = getCalledFunction(I, IsNoBuiltin); |
| if (Callee == nullptr || IsNoBuiltin) |
| return std::nullopt; |
| LibFunc TLIFn; |
| |
| if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { |
| // Callee is some known library function. |
| const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI); |
| if (AllocData) |
| return mangledNameForMallocFamily(AllocData->Family); |
| const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); |
| if (FreeData) |
| return mangledNameForMallocFamily(FreeData->Family); |
| } |
| // Callee isn't a known library function, still check attributes. |
| if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | |
| AllocFnKind::Realloc)) { |
| Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); |
| if (Attr.isValid()) |
| return Attr.getValueAsString(); |
| } |
| return std::nullopt; |
| } |
| |
| /// isLibFreeFunction - Returns true if the function is a builtin free() |
| bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { |
| std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); |
| if (!FnData) |
| return checkFnAllocKind(F, AllocFnKind::Free); |
| |
| // Check free prototype. |
| // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin |
| // attribute will exist. |
| FunctionType *FTy = F->getFunctionType(); |
| if (!FTy->getReturnType()->isVoidTy()) |
| return false; |
| if (FTy->getNumParams() != FnData->NumParams) |
| return false; |
| if (!FTy->getParamType(0)->isPointerTy()) |
| return false; |
| |
| return true; |
| } |
| |
| Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { |
| bool IsNoBuiltinCall; |
| const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall); |
| if (Callee == nullptr || IsNoBuiltinCall) |
| return nullptr; |
| |
| LibFunc TLIFn; |
| if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && |
| isLibFreeFunction(Callee, TLIFn)) { |
| // All currently supported free functions free the first argument. |
| return CB->getArgOperand(0); |
| } |
| |
| if (checkFnAllocKind(CB, AllocFnKind::Free)) |
| return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility functions to compute size of objects. |
| // |
| static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) { |
| APInt Size = Data.Size; |
| APInt Offset = Data.Offset; |
| if (Offset.isNegative() || Size.ult(Offset)) |
| return APInt(Size.getBitWidth(), 0); |
| return Size - Offset; |
| } |
| |
| /// Compute the size of the object pointed by Ptr. Returns true and the |
| /// object size in Size if successful, and false otherwise. |
| /// If RoundToAlign is true, then Size is rounded up to the alignment of |
| /// allocas, byval arguments, and global variables. |
| bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, |
| const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { |
| ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); |
| SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr)); |
| if (!Data.bothKnown()) |
| return false; |
| |
| Size = getSizeWithOverflow(Data).getZExtValue(); |
| return true; |
| } |
| |
| Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI, |
| bool MustSucceed) { |
| return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, |
| MustSucceed); |
| } |
| |
| Value *llvm::lowerObjectSizeCall( |
| IntrinsicInst *ObjectSize, const DataLayout &DL, |
| const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed, |
| SmallVectorImpl<Instruction *> *InsertedInstructions) { |
| assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && |
| "ObjectSize must be a call to llvm.objectsize!"); |
| |
| bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); |
| ObjectSizeOpts EvalOptions; |
| EvalOptions.AA = AA; |
| |
| // Unless we have to fold this to something, try to be as accurate as |
| // possible. |
| if (MustSucceed) |
| EvalOptions.EvalMode = |
| MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; |
| else |
| EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; |
| |
| EvalOptions.NullIsUnknownSize = |
| cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); |
| |
| auto *ResultType = cast<IntegerType>(ObjectSize->getType()); |
| bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); |
| if (StaticOnly) { |
| // FIXME: Does it make sense to just return a failure value if the size won't |
| // fit in the output and `!MustSucceed`? |
| uint64_t Size; |
| if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && |
| isUIntN(ResultType->getBitWidth(), Size)) |
| return ConstantInt::get(ResultType, Size); |
| } else { |
| LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); |
| ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); |
| SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); |
| |
| if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { |
| IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( |
| Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) { |
| if (InsertedInstructions) |
| InsertedInstructions->push_back(I); |
| })); |
| Builder.SetInsertPoint(ObjectSize); |
| |
| Value *Size = SizeOffsetPair.Size; |
| Value *Offset = SizeOffsetPair.Offset; |
| |
| // If we've outside the end of the object, then we can always access |
| // exactly 0 bytes. |
| Value *ResultSize = Builder.CreateSub(Size, Offset); |
| Value *UseZero = Builder.CreateICmpULT(Size, Offset); |
| ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); |
| Value *Ret = Builder.CreateSelect( |
| UseZero, ConstantInt::get(ResultType, 0), ResultSize); |
| |
| // The non-constant size expression cannot evaluate to -1. |
| if (!isa<Constant>(Size) || !isa<Constant>(Offset)) |
| Builder.CreateAssumption( |
| Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); |
| |
| return Ret; |
| } |
| } |
| |
| if (!MustSucceed) |
| return nullptr; |
| |
| return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); |
| } |
| |
| STATISTIC(ObjectVisitorArgument, |
| "Number of arguments with unsolved size and offset"); |
| STATISTIC(ObjectVisitorLoad, |
| "Number of load instructions with unsolved size and offset"); |
| |
| APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { |
| if (Options.RoundToAlign && Alignment) |
| return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); |
| return Size; |
| } |
| |
| ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, |
| const TargetLibraryInfo *TLI, |
| LLVMContext &Context, |
| ObjectSizeOpts Options) |
| : DL(DL), TLI(TLI), Options(Options) { |
| // Pointer size must be rechecked for each object visited since it could have |
| // a different address space. |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) { |
| InstructionsVisited = 0; |
| return computeImpl(V); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::computeImpl(Value *V) { |
| unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); |
| |
| // Stripping pointer casts can strip address space casts which can change the |
| // index type size. The invariant is that we use the value type to determine |
| // the index type size and if we stripped address space casts we have to |
| // readjust the APInt as we pass it upwards in order for the APInt to match |
| // the type the caller passed in. |
| APInt Offset(InitialIntTyBits, 0); |
| V = V->stripAndAccumulateConstantOffsets( |
| DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); |
| |
| // Later we use the index type size and zero but it will match the type of the |
| // value that is passed to computeImpl. |
| IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); |
| Zero = APInt::getZero(IntTyBits); |
| |
| SizeOffsetAPInt SOT = computeValue(V); |
| |
| bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; |
| if (!IndexTypeSizeChanged && Offset.isZero()) |
| return SOT; |
| |
| // We stripped an address space cast that changed the index type size or we |
| // accumulated some constant offset (or both). Readjust the bit width to match |
| // the argument index type size and apply the offset, as required. |
| if (IndexTypeSizeChanged) { |
| if (SOT.knownSize() && !::CheckedZextOrTrunc(SOT.Size, InitialIntTyBits)) |
| SOT.Size = APInt(); |
| if (SOT.knownOffset() && |
| !::CheckedZextOrTrunc(SOT.Offset, InitialIntTyBits)) |
| SOT.Offset = APInt(); |
| } |
| // If the computed offset is "unknown" we cannot add the stripped offset. |
| return {SOT.Size, |
| SOT.Offset.getBitWidth() > 1 ? SOT.Offset + Offset : SOT.Offset}; |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::computeValue(Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // If we have already seen this instruction, bail out. Cycles can happen in |
| // unreachable code after constant propagation. |
| auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown()); |
| if (!P.second) |
| return P.first->second; |
| ++InstructionsVisited; |
| if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions) |
| return ObjectSizeOffsetVisitor::unknown(); |
| SizeOffsetAPInt Res = visit(*I); |
| // Cache the result for later visits. If we happened to visit this during |
| // the above recursion, we would consider it unknown until now. |
| SeenInsts[I] = Res; |
| return Res; |
| } |
| if (Argument *A = dyn_cast<Argument>(V)) |
| return visitArgument(*A); |
| if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) |
| return visitConstantPointerNull(*P); |
| if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return visitGlobalAlias(*GA); |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return visitGlobalVariable(*GV); |
| if (UndefValue *UV = dyn_cast<UndefValue>(V)) |
| return visitUndefValue(*UV); |
| |
| LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " |
| << *V << '\n'); |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { |
| return ::CheckedZextOrTrunc(I, IntTyBits); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { |
| TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); |
| if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) |
| return ObjectSizeOffsetVisitor::unknown(); |
| APInt Size(IntTyBits, ElemSize.getKnownMinValue()); |
| if (!I.isArrayAllocation()) |
| return SizeOffsetAPInt(align(Size, I.getAlign()), Zero); |
| |
| Value *ArraySize = I.getArraySize(); |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { |
| APInt NumElems = C->getValue(); |
| if (!CheckedZextOrTrunc(NumElems)) |
| return ObjectSizeOffsetVisitor::unknown(); |
| |
| bool Overflow; |
| Size = Size.umul_ov(NumElems, Overflow); |
| return Overflow ? ObjectSizeOffsetVisitor::unknown() |
| : SizeOffsetAPInt(align(Size, I.getAlign()), Zero); |
| } |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitArgument(Argument &A) { |
| Type *MemoryTy = A.getPointeeInMemoryValueType(); |
| // No interprocedural analysis is done at the moment. |
| if (!MemoryTy|| !MemoryTy->isSized()) { |
| ++ObjectVisitorArgument; |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); |
| return SizeOffsetAPInt(align(Size, A.getParamAlign()), Zero); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { |
| if (std::optional<APInt> Size = getAllocSize(&CB, TLI)) |
| return SizeOffsetAPInt(*Size, Zero); |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SizeOffsetAPInt |
| ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) { |
| // If null is unknown, there's nothing we can do. Additionally, non-zero |
| // address spaces can make use of null, so we don't presume to know anything |
| // about that. |
| // |
| // TODO: How should this work with address space casts? We currently just drop |
| // them on the floor, but it's unclear what we should do when a NULL from |
| // addrspace(1) gets casted to addrspace(0) (or vice-versa). |
| if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) |
| return ObjectSizeOffsetVisitor::unknown(); |
| return SizeOffsetAPInt(Zero, Zero); |
| } |
| |
| SizeOffsetAPInt |
| ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) { |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SizeOffsetAPInt |
| ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) { |
| // Easy cases were already folded by previous passes. |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { |
| if (GA.isInterposable()) |
| return ObjectSizeOffsetVisitor::unknown(); |
| return computeImpl(GA.getAliasee()); |
| } |
| |
| SizeOffsetAPInt |
| ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) { |
| if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() || |
| ((!GV.hasInitializer() || GV.isInterposable()) && |
| Options.EvalMode != ObjectSizeOpts::Mode::Min)) |
| return ObjectSizeOffsetVisitor::unknown(); |
| |
| APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); |
| return SizeOffsetAPInt(align(Size, GV.getAlign()), Zero); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) { |
| // clueless |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::findLoadSizeOffset( |
| LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, |
| SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> &VisitedBlocks, |
| unsigned &ScannedInstCount) { |
| constexpr unsigned MaxInstsToScan = 128; |
| |
| auto Where = VisitedBlocks.find(&BB); |
| if (Where != VisitedBlocks.end()) |
| return Where->second; |
| |
| auto Unknown = [&BB, &VisitedBlocks]() { |
| return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown(); |
| }; |
| auto Known = [&BB, &VisitedBlocks](SizeOffsetAPInt SO) { |
| return VisitedBlocks[&BB] = SO; |
| }; |
| |
| do { |
| Instruction &I = *From; |
| |
| if (I.isDebugOrPseudoInst()) |
| continue; |
| |
| if (++ScannedInstCount > MaxInstsToScan) |
| return Unknown(); |
| |
| if (!I.mayWriteToMemory()) |
| continue; |
| |
| if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| AliasResult AR = |
| Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); |
| switch ((AliasResult::Kind)AR) { |
| case AliasResult::NoAlias: |
| continue; |
| case AliasResult::MustAlias: |
| if (SI->getValueOperand()->getType()->isPointerTy()) |
| return Known(computeImpl(SI->getValueOperand())); |
| else |
| return Unknown(); // No handling of non-pointer values by `compute`. |
| default: |
| return Unknown(); |
| } |
| } |
| |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| Function *Callee = CB->getCalledFunction(); |
| // Bail out on indirect call. |
| if (!Callee) |
| return Unknown(); |
| |
| LibFunc TLIFn; |
| if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || |
| !TLI->has(TLIFn)) |
| return Unknown(); |
| |
| // TODO: There's probably more interesting case to support here. |
| if (TLIFn != LibFunc_posix_memalign) |
| return Unknown(); |
| |
| AliasResult AR = |
| Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); |
| switch ((AliasResult::Kind)AR) { |
| case AliasResult::NoAlias: |
| continue; |
| case AliasResult::MustAlias: |
| break; |
| default: |
| return Unknown(); |
| } |
| |
| // Is the error status of posix_memalign correctly checked? If not it |
| // would be incorrect to assume it succeeds and load doesn't see the |
| // previous value. |
| std::optional<bool> Checked = isImpliedByDomCondition( |
| ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); |
| if (!Checked || !*Checked) |
| return Unknown(); |
| |
| Value *Size = CB->getOperand(2); |
| auto *C = dyn_cast<ConstantInt>(Size); |
| if (!C) |
| return Unknown(); |
| |
| return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)}); |
| } |
| |
| return Unknown(); |
| } while (From-- != BB.begin()); |
| |
| SmallVector<SizeOffsetAPInt> PredecessorSizeOffsets; |
| for (auto *PredBB : predecessors(&BB)) { |
| PredecessorSizeOffsets.push_back(findLoadSizeOffset( |
| Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), |
| VisitedBlocks, ScannedInstCount)); |
| if (!PredecessorSizeOffsets.back().bothKnown()) |
| return Unknown(); |
| } |
| |
| if (PredecessorSizeOffsets.empty()) |
| return Unknown(); |
| |
| return Known(std::accumulate( |
| PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(), |
| PredecessorSizeOffsets.front(), |
| [this](SizeOffsetAPInt LHS, SizeOffsetAPInt RHS) { |
| return combineSizeOffset(LHS, RHS); |
| })); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { |
| if (!Options.AA) { |
| ++ObjectVisitorLoad; |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> VisitedBlocks; |
| unsigned ScannedInstCount = 0; |
| SizeOffsetAPInt SO = |
| findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI), |
| VisitedBlocks, ScannedInstCount); |
| if (!SO.bothKnown()) |
| ++ObjectVisitorLoad; |
| return SO; |
| } |
| |
| SizeOffsetAPInt |
| ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetAPInt LHS, |
| SizeOffsetAPInt RHS) { |
| if (!LHS.bothKnown() || !RHS.bothKnown()) |
| return ObjectSizeOffsetVisitor::unknown(); |
| |
| switch (Options.EvalMode) { |
| case ObjectSizeOpts::Mode::Min: |
| return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS; |
| case ObjectSizeOpts::Mode::Max: |
| return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS; |
| case ObjectSizeOpts::Mode::ExactSizeFromOffset: |
| return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) |
| ? LHS |
| : ObjectSizeOffsetVisitor::unknown(); |
| case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: |
| return LHS == RHS ? LHS : ObjectSizeOffsetVisitor::unknown(); |
| } |
| llvm_unreachable("missing an eval mode"); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { |
| if (PN.getNumIncomingValues() == 0) |
| return ObjectSizeOffsetVisitor::unknown(); |
| auto IncomingValues = PN.incoming_values(); |
| return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), |
| computeImpl(*IncomingValues.begin()), |
| [this](SizeOffsetAPInt LHS, Value *VRHS) { |
| return combineSizeOffset(LHS, computeImpl(VRHS)); |
| }); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { |
| return combineSizeOffset(computeImpl(I.getTrueValue()), |
| computeImpl(I.getFalseValue())); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) { |
| return SizeOffsetAPInt(Zero, Zero); |
| } |
| |
| SizeOffsetAPInt ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { |
| LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I |
| << '\n'); |
| return ObjectSizeOffsetVisitor::unknown(); |
| } |
| |
| // Just set these right here... |
| SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT) |
| : SizeOffsetType(SOT.Size, SOT.Offset) {} |
| |
| ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( |
| const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, |
| ObjectSizeOpts EvalOpts) |
| : DL(DL), TLI(TLI), Context(Context), |
| Builder(Context, TargetFolder(DL), |
| IRBuilderCallbackInserter( |
| [&](Instruction *I) { InsertedInstructions.insert(I); })), |
| EvalOpts(EvalOpts) { |
| // IntTy and Zero must be set for each compute() since the address space may |
| // be different for later objects. |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) { |
| // XXX - Are vectors of pointers possible here? |
| IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); |
| Zero = ConstantInt::get(IntTy, 0); |
| |
| SizeOffsetValue Result = compute_(V); |
| |
| if (!Result.bothKnown()) { |
| // Erase everything that was computed in this iteration from the cache, so |
| // that no dangling references are left behind. We could be a bit smarter if |
| // we kept a dependency graph. It's probably not worth the complexity. |
| for (const Value *SeenVal : SeenVals) { |
| CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); |
| // non-computable results can be safely cached |
| if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown()) |
| CacheMap.erase(CacheIt); |
| } |
| |
| // Erase any instructions we inserted as part of the traversal. |
| for (Instruction *I : InsertedInstructions) { |
| I->replaceAllUsesWith(PoisonValue::get(I->getType())); |
| I->eraseFromParent(); |
| } |
| } |
| |
| SeenVals.clear(); |
| InsertedInstructions.clear(); |
| return Result; |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) { |
| ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); |
| SizeOffsetAPInt Const = Visitor.compute(V); |
| if (Const.bothKnown()) |
| return SizeOffsetValue(ConstantInt::get(Context, Const.Size), |
| ConstantInt::get(Context, Const.Offset)); |
| |
| V = V->stripPointerCasts(); |
| |
| // Check cache. |
| CacheMapTy::iterator CacheIt = CacheMap.find(V); |
| if (CacheIt != CacheMap.end()) |
| return CacheIt->second; |
| |
| // Always generate code immediately before the instruction being |
| // processed, so that the generated code dominates the same BBs. |
| BuilderTy::InsertPointGuard Guard(Builder); |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| Builder.SetInsertPoint(I); |
| |
| // Now compute the size and offset. |
| SizeOffsetValue Result; |
| |
| // Record the pointers that were handled in this run, so that they can be |
| // cleaned later if something fails. We also use this set to break cycles that |
| // can occur in dead code. |
| if (!SeenVals.insert(V).second) { |
| Result = ObjectSizeOffsetEvaluator::unknown(); |
| } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { |
| Result = visitGEPOperator(*GEP); |
| } else if (Instruction *I = dyn_cast<Instruction>(V)) { |
| Result = visit(*I); |
| } else if (isa<Argument>(V) || |
| (isa<ConstantExpr>(V) && |
| cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || |
| isa<GlobalAlias>(V) || |
| isa<GlobalVariable>(V)) { |
| // Ignore values where we cannot do more than ObjectSizeVisitor. |
| Result = ObjectSizeOffsetEvaluator::unknown(); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V |
| << '\n'); |
| Result = ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| // Don't reuse CacheIt since it may be invalid at this point. |
| CacheMap[V] = SizeOffsetWeakTrackingVH(Result); |
| return Result; |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { |
| if (!I.getAllocatedType()->isSized()) |
| return ObjectSizeOffsetEvaluator::unknown(); |
| |
| // must be a VLA or vscale. |
| assert(I.isArrayAllocation() || I.getAllocatedType()->isScalableTy()); |
| |
| // If needed, adjust the alloca's operand size to match the pointer indexing |
| // size. Subsequent math operations expect the types to match. |
| Value *ArraySize = Builder.CreateZExtOrTrunc( |
| I.getArraySize(), |
| DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace())); |
| assert(ArraySize->getType() == Zero->getType() && |
| "Expected zero constant to have pointer index type"); |
| |
| Value *Size = Builder.CreateTypeSize( |
| ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); |
| Size = Builder.CreateMul(Size, ArraySize); |
| return SizeOffsetValue(Size, Zero); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { |
| std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); |
| if (!FnData) |
| return ObjectSizeOffsetEvaluator::unknown(); |
| |
| // Handle strdup-like functions separately. |
| if (FnData->AllocTy == StrDupLike) { |
| // TODO: implement evaluation of strdup/strndup |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| Value *FirstArg = CB.getArgOperand(FnData->FstParam); |
| FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); |
| if (FnData->SndParam < 0) |
| return SizeOffsetValue(FirstArg, Zero); |
| |
| Value *SecondArg = CB.getArgOperand(FnData->SndParam); |
| SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); |
| Value *Size = Builder.CreateMul(FirstArg, SecondArg); |
| return SizeOffsetValue(Size, Zero); |
| } |
| |
| SizeOffsetValue |
| ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) { |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| SizeOffsetValue |
| ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) { |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { |
| SizeOffsetValue PtrData = compute_(GEP.getPointerOperand()); |
| if (!PtrData.bothKnown()) |
| return ObjectSizeOffsetEvaluator::unknown(); |
| |
| Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); |
| Offset = Builder.CreateAdd(PtrData.Offset, Offset); |
| return SizeOffsetValue(PtrData.Size, Offset); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) { |
| // clueless |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { |
| // Create 2 PHIs: one for size and another for offset. |
| PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); |
| PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); |
| |
| // Insert right away in the cache to handle recursive PHIs. |
| CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI); |
| |
| // Compute offset/size for each PHI incoming pointer. |
| for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *IncomingBlock = PHI.getIncomingBlock(i); |
| Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt()); |
| SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i)); |
| |
| if (!EdgeData.bothKnown()) { |
| OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); |
| OffsetPHI->eraseFromParent(); |
| InsertedInstructions.erase(OffsetPHI); |
| SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); |
| SizePHI->eraseFromParent(); |
| InsertedInstructions.erase(SizePHI); |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |
| SizePHI->addIncoming(EdgeData.Size, IncomingBlock); |
| OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock); |
| } |
| |
| Value *Size = SizePHI, *Offset = OffsetPHI; |
| if (Value *Tmp = SizePHI->hasConstantValue()) { |
| Size = Tmp; |
| SizePHI->replaceAllUsesWith(Size); |
| SizePHI->eraseFromParent(); |
| InsertedInstructions.erase(SizePHI); |
| } |
| if (Value *Tmp = OffsetPHI->hasConstantValue()) { |
| Offset = Tmp; |
| OffsetPHI->replaceAllUsesWith(Offset); |
| OffsetPHI->eraseFromParent(); |
| InsertedInstructions.erase(OffsetPHI); |
| } |
| return SizeOffsetValue(Size, Offset); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { |
| SizeOffsetValue TrueSide = compute_(I.getTrueValue()); |
| SizeOffsetValue FalseSide = compute_(I.getFalseValue()); |
| |
| if (!TrueSide.bothKnown() || !FalseSide.bothKnown()) |
| return ObjectSizeOffsetEvaluator::unknown(); |
| if (TrueSide == FalseSide) |
| return TrueSide; |
| |
| Value *Size = |
| Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size); |
| Value *Offset = |
| Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset); |
| return SizeOffsetValue(Size, Offset); |
| } |
| |
| SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { |
| LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I |
| << '\n'); |
| return ObjectSizeOffsetEvaluator::unknown(); |
| } |