| //===- TFUtils.cpp - TFLite-based evaluation utilities --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements utilities for interfacing with TFLite. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TFLITE) |
| |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/Support/Base64.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/JSON.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/model_builder.h" |
| #include "tensorflow/lite/op_resolver.h" |
| #include "tensorflow/lite/logger.h" |
| |
| #include <cassert> |
| #include <numeric> |
| #include <optional> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| class EvaluationResultImpl { |
| public: |
| EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs) |
| : Outputs(Outputs){}; |
| |
| const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; } |
| |
| EvaluationResultImpl(const EvaluationResultImpl &) = delete; |
| EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; |
| |
| private: |
| const std::vector<const TfLiteTensor *> Outputs; |
| }; |
| |
| class TFModelEvaluatorImpl { |
| public: |
| TFModelEvaluatorImpl(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| const std::vector<TensorSpec> &OutputSpecs, |
| const char *Tags); |
| |
| bool isValid() const { return IsValid; } |
| size_t outputSize() const { return Output.size(); } |
| |
| std::unique_ptr<EvaluationResultImpl> evaluate() { |
| Interpreter->Invoke(); |
| return std::make_unique<EvaluationResultImpl>(Output); |
| } |
| |
| const std::vector<TfLiteTensor *> &getInput() const { return Input; } |
| |
| ~TFModelEvaluatorImpl(); |
| |
| private: |
| std::unique_ptr<tflite::FlatBufferModel> Model; |
| |
| /// The objects necessary for carrying out an evaluation of the SavedModel. |
| /// They are expensive to set up, and we maintain them accross all the |
| /// evaluations of the model. |
| std::unique_ptr<tflite::Interpreter> Interpreter; |
| |
| /// The input tensors. We set up the tensors once and just mutate theirs |
| /// scalars before each evaluation. The input tensors keep their value after |
| /// an evaluation. |
| std::vector<TfLiteTensor *> Input; |
| |
| /// The output nodes. |
| std::vector<const TfLiteTensor *> Output; |
| |
| void invalidate() { IsValid = false; } |
| |
| bool IsValid = true; |
| |
| /// Reusable utility for ensuring we can bind the requested Name to a node in |
| /// the SavedModel Graph. |
| bool checkReportAndInvalidate(const TfLiteTensor *Tensor, |
| const TensorSpec &Spec); |
| }; |
| |
| } // namespace llvm |
| |
| TFModelEvaluatorImpl::TFModelEvaluatorImpl( |
| StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs, |
| const std::vector<TensorSpec> &OutputSpecs, const char *Tags = "serve") |
| : Input(InputSpecs.size()), Output(OutputSpecs.size()) { |
| // INFO and DEBUG messages could be numerous and not particularly interesting |
| tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING); |
| // FIXME: make ErrorReporter a member (may also need subclassing |
| // StatefulErrorReporter) to easily get the latest error status, for |
| // debugging. |
| tflite::StderrReporter ErrorReporter; |
| SmallVector<char, 128> TFLitePathBuff; |
| llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite"); |
| StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size()); |
| Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(), |
| &ErrorReporter); |
| if (!Model) { |
| invalidate(); |
| return; |
| } |
| |
| tflite::ops::builtin::BuiltinOpResolver Resolver; |
| tflite::InterpreterBuilder Builder(*Model, Resolver); |
| Builder(&Interpreter); |
| |
| if (!Interpreter) { |
| invalidate(); |
| return; |
| } |
| |
| // We assume the input buffers are valid for the lifetime of the interpreter. |
| // By default, tflite allocates memory in an arena and will periodically take |
| // away memory and reallocate it in a different location after evaluations in |
| // order to improve utilization of the buffers owned in the arena. So, we |
| // explicitly mark our input buffers as persistent to avoid this behavior. |
| for (size_t I = 0; I < Interpreter->inputs().size(); ++I) |
| Interpreter->tensor(I)->allocation_type = |
| TfLiteAllocationType::kTfLiteArenaRwPersistent; |
| |
| if (Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) { |
| invalidate(); |
| return; |
| } |
| // Known inputs and outputs |
| StringMap<int> InputsMap; |
| StringMap<int> OutputsMap; |
| for (size_t I = 0; I < Interpreter->inputs().size(); ++I) |
| InputsMap[Interpreter->GetInputName(I)] = I; |
| for (size_t I = 0; I < Interpreter->outputs().size(); ++I) |
| OutputsMap[Interpreter->GetOutputName(I)] = I; |
| |
| size_t NumberFeaturesPassed = 0; |
| for (size_t I = 0; I < InputSpecs.size(); ++I) { |
| auto &InputSpec = InputSpecs[I]; |
| auto MapI = InputsMap.find(InputSpec.name() + ":" + |
| std::to_string(InputSpec.port())); |
| if (MapI == InputsMap.end()) { |
| Input[I] = nullptr; |
| continue; |
| } |
| Input[I] = Interpreter->tensor(MapI->second); |
| if (!checkReportAndInvalidate(Input[I], InputSpec)) |
| return; |
| std::memset(Input[I]->data.data, 0, |
| InputSpecs[I].getTotalTensorBufferSize()); |
| ++NumberFeaturesPassed; |
| } |
| |
| if (NumberFeaturesPassed < Interpreter->inputs().size()) { |
| // we haven't passed all the required features to the model, throw an error. |
| errs() << "Required feature(s) have not been passed to the ML model"; |
| invalidate(); |
| return; |
| } |
| |
| for (size_t I = 0; I < OutputSpecs.size(); ++I) { |
| const auto &OutputSpec = OutputSpecs[I]; |
| Output[I] = Interpreter->output_tensor( |
| OutputsMap[OutputSpec.name() + ":" + |
| std::to_string(OutputSpec.port())]); |
| if (!checkReportAndInvalidate(Output[I], OutputSpec)) |
| return; |
| } |
| } |
| |
| TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| const std::vector<TensorSpec> &OutputSpecs, |
| const char *Tags) |
| : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, OutputSpecs, |
| Tags)) { |
| if (!Impl->isValid()) |
| Impl.reset(); |
| } |
| |
| TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {} |
| |
| bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor, |
| const TensorSpec &Spec) { |
| if (!Tensor) { |
| errs() << "Could not find TF_Output named: " + Spec.name(); |
| IsValid = false; |
| } |
| if (Spec.getTotalTensorBufferSize() != Tensor->bytes) |
| IsValid = false; |
| |
| // If the total sizes match, there could still be a mismatch in the shape. |
| // We ignore that for now. |
| |
| return IsValid; |
| } |
| |
| std::optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() { |
| if (!isValid()) |
| return std::nullopt; |
| return EvaluationResult(Impl->evaluate()); |
| } |
| |
| void *TFModelEvaluator::getUntypedInput(size_t Index) { |
| TfLiteTensor *T = Impl->getInput()[Index]; |
| if (!T) |
| return nullptr; |
| return T->data.data; |
| } |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult( |
| std::unique_ptr<EvaluationResultImpl> Impl) |
| : Impl(std::move(Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) |
| : Impl(std::move(Other.Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult & |
| TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) { |
| Impl = std::move(Other.Impl); |
| return *this; |
| } |
| |
| void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { |
| return Impl->getOutput(Index)->data.data; |
| } |
| |
| const void * |
| TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const { |
| return Impl->getOutput(Index)->data.data; |
| } |
| |
| TFModelEvaluator::EvaluationResult::~EvaluationResult() {} |
| TFModelEvaluator::~TFModelEvaluator() {} |
| |
| #endif // defined(LLVM_HAVE_TFLITE) |