| //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the debug info Metadata classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "LLVMContextImpl.h" |
| #include "MetadataImpl.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/DebugProgramInstruction.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| |
| #include <numeric> |
| #include <optional> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| // Use FS-AFDO discriminator. |
| cl::opt<bool> EnableFSDiscriminator( |
| "enable-fs-discriminator", cl::Hidden, |
| cl::desc("Enable adding flow sensitive discriminators")); |
| } // namespace llvm |
| |
| uint32_t DIType::getAlignInBits() const { |
| return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32); |
| } |
| |
| const DIExpression::FragmentInfo DebugVariable::DefaultFragment = { |
| std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()}; |
| |
| DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII) |
| : Variable(DII->getVariable()), |
| Fragment(DII->getExpression()->getFragmentInfo()), |
| InlinedAt(DII->getDebugLoc().getInlinedAt()) {} |
| |
| DebugVariable::DebugVariable(const DbgVariableRecord *DVR) |
| : Variable(DVR->getVariable()), |
| Fragment(DVR->getExpression()->getFragmentInfo()), |
| InlinedAt(DVR->getDebugLoc().getInlinedAt()) {} |
| |
| DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI) |
| : DebugVariable(DVI->getVariable(), std::nullopt, |
| DVI->getDebugLoc()->getInlinedAt()) {} |
| |
| DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, |
| unsigned Column, ArrayRef<Metadata *> MDs, |
| bool ImplicitCode) |
| : MDNode(C, DILocationKind, Storage, MDs) { |
| assert((MDs.size() == 1 || MDs.size() == 2) && |
| "Expected a scope and optional inlined-at"); |
| |
| // Set line and column. |
| assert(Column < (1u << 16) && "Expected 16-bit column"); |
| |
| SubclassData32 = Line; |
| SubclassData16 = Column; |
| |
| setImplicitCode(ImplicitCode); |
| } |
| |
| static void adjustColumn(unsigned &Column) { |
| // Set to unknown on overflow. We only have 16 bits to play with here. |
| if (Column >= (1u << 16)) |
| Column = 0; |
| } |
| |
| DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, |
| unsigned Column, Metadata *Scope, |
| Metadata *InlinedAt, bool ImplicitCode, |
| StorageType Storage, bool ShouldCreate) { |
| // Fixup column. |
| adjustColumn(Column); |
| |
| if (Storage == Uniqued) { |
| if (auto *N = getUniqued(Context.pImpl->DILocations, |
| DILocationInfo::KeyTy(Line, Column, Scope, |
| InlinedAt, ImplicitCode))) |
| return N; |
| if (!ShouldCreate) |
| return nullptr; |
| } else { |
| assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); |
| } |
| |
| SmallVector<Metadata *, 2> Ops; |
| Ops.push_back(Scope); |
| if (InlinedAt) |
| Ops.push_back(InlinedAt); |
| return storeImpl(new (Ops.size(), Storage) DILocation( |
| Context, Storage, Line, Column, Ops, ImplicitCode), |
| Storage, Context.pImpl->DILocations); |
| } |
| |
| DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) { |
| if (Locs.empty()) |
| return nullptr; |
| if (Locs.size() == 1) |
| return Locs[0]; |
| auto *Merged = Locs[0]; |
| for (DILocation *L : llvm::drop_begin(Locs)) { |
| Merged = getMergedLocation(Merged, L); |
| if (Merged == nullptr) |
| break; |
| } |
| return Merged; |
| } |
| |
| DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) { |
| if (!LocA || !LocB) |
| return nullptr; |
| |
| if (LocA == LocB) |
| return LocA; |
| |
| LLVMContext &C = LocA->getContext(); |
| |
| using LocVec = SmallVector<const DILocation *>; |
| LocVec ALocs; |
| LocVec BLocs; |
| SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned, |
| 4> |
| ALookup; |
| |
| // Walk through LocA and its inlined-at locations, populate them in ALocs and |
| // save the index for the subprogram and inlined-at pair, which we use to find |
| // a matching starting location in LocB's chain. |
| for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) { |
| ALocs.push_back(L); |
| auto Res = ALookup.try_emplace( |
| {L->getScope()->getSubprogram(), L->getInlinedAt()}, I); |
| assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?"); |
| (void)Res; |
| } |
| |
| LocVec::reverse_iterator ARIt = ALocs.rend(); |
| LocVec::reverse_iterator BRIt = BLocs.rend(); |
| |
| // Populate BLocs and look for a matching starting location, the first |
| // location with the same subprogram and inlined-at location as in LocA's |
| // chain. Since the two locations have the same inlined-at location we do |
| // not need to look at those parts of the chains. |
| for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) { |
| BLocs.push_back(L); |
| |
| if (ARIt != ALocs.rend()) |
| // We have already found a matching starting location. |
| continue; |
| |
| auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()}); |
| if (IT == ALookup.end()) |
| continue; |
| |
| // The + 1 is to account for the &*rev_it = &(it - 1) relationship. |
| ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1); |
| BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1); |
| |
| // If we have found a matching starting location we do not need to add more |
| // locations to BLocs, since we will only look at location pairs preceding |
| // the matching starting location, and adding more elements to BLocs could |
| // invalidate the iterator that we initialized here. |
| break; |
| } |
| |
| // Merge the two locations if possible, using the supplied |
| // inlined-at location for the created location. |
| auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2, |
| DILocation *InlinedAt) -> DILocation * { |
| if (L1 == L2) |
| return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(), |
| InlinedAt); |
| |
| // If the locations originate from different subprograms we can't produce |
| // a common location. |
| if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram()) |
| return nullptr; |
| |
| // Return the nearest common scope inside a subprogram. |
| auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * { |
| SmallPtrSet<DIScope *, 8> Scopes; |
| for (; S1; S1 = S1->getScope()) { |
| Scopes.insert(S1); |
| if (isa<DISubprogram>(S1)) |
| break; |
| } |
| |
| for (; S2; S2 = S2->getScope()) { |
| if (Scopes.count(S2)) |
| return S2; |
| if (isa<DISubprogram>(S2)) |
| break; |
| } |
| |
| return nullptr; |
| }; |
| |
| auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope()); |
| assert(Scope && "No common scope in the same subprogram?"); |
| |
| bool SameLine = L1->getLine() == L2->getLine(); |
| bool SameCol = L1->getColumn() == L2->getColumn(); |
| unsigned Line = SameLine ? L1->getLine() : 0; |
| unsigned Col = SameLine && SameCol ? L1->getColumn() : 0; |
| |
| return DILocation::get(C, Line, Col, Scope, InlinedAt); |
| }; |
| |
| DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr; |
| |
| // If we have found a common starting location, walk up the inlined-at chains |
| // and try to produce common locations. |
| for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) { |
| DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result); |
| |
| if (!Tmp) |
| // We have walked up to a point in the chains where the two locations |
| // are irreconsilable. At this point Result contains the nearest common |
| // location in the inlined-at chains of LocA and LocB, so we break here. |
| break; |
| |
| Result = Tmp; |
| } |
| |
| if (Result) |
| return Result; |
| |
| // We ended up with LocA and LocB as irreconsilable locations. Produce a |
| // location at 0:0 with one of the locations' scope. The function has |
| // historically picked A's scope, and a nullptr inlined-at location, so that |
| // behavior is mimicked here but I am not sure if this is always the correct |
| // way to handle this. |
| return DILocation::get(C, 0, 0, LocA->getScope(), nullptr); |
| } |
| |
| std::optional<unsigned> |
| DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) { |
| std::array<unsigned, 3> Components = {BD, DF, CI}; |
| uint64_t RemainingWork = 0U; |
| // We use RemainingWork to figure out if we have no remaining components to |
| // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to |
| // encode anything for the latter 2. |
| // Since any of the input components is at most 32 bits, their sum will be |
| // less than 34 bits, and thus RemainingWork won't overflow. |
| RemainingWork = |
| std::accumulate(Components.begin(), Components.end(), RemainingWork); |
| |
| int I = 0; |
| unsigned Ret = 0; |
| unsigned NextBitInsertionIndex = 0; |
| while (RemainingWork > 0) { |
| unsigned C = Components[I++]; |
| RemainingWork -= C; |
| unsigned EC = encodeComponent(C); |
| Ret |= (EC << NextBitInsertionIndex); |
| NextBitInsertionIndex += encodingBits(C); |
| } |
| |
| // Encoding may be unsuccessful because of overflow. We determine success by |
| // checking equivalence of components before & after encoding. Alternatively, |
| // we could determine Success during encoding, but the current alternative is |
| // simpler. |
| unsigned TBD, TDF, TCI = 0; |
| decodeDiscriminator(Ret, TBD, TDF, TCI); |
| if (TBD == BD && TDF == DF && TCI == CI) |
| return Ret; |
| return std::nullopt; |
| } |
| |
| void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, |
| unsigned &CI) { |
| BD = getUnsignedFromPrefixEncoding(D); |
| DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D)); |
| CI = getUnsignedFromPrefixEncoding( |
| getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); |
| } |
| dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; } |
| |
| DINode::DIFlags DINode::getFlag(StringRef Flag) { |
| return StringSwitch<DIFlags>(Flag) |
| #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) |
| #include "llvm/IR/DebugInfoFlags.def" |
| .Default(DINode::FlagZero); |
| } |
| |
| StringRef DINode::getFlagString(DIFlags Flag) { |
| switch (Flag) { |
| #define HANDLE_DI_FLAG(ID, NAME) \ |
| case Flag##NAME: \ |
| return "DIFlag" #NAME; |
| #include "llvm/IR/DebugInfoFlags.def" |
| } |
| return ""; |
| } |
| |
| DINode::DIFlags DINode::splitFlags(DIFlags Flags, |
| SmallVectorImpl<DIFlags> &SplitFlags) { |
| // Flags that are packed together need to be specially handled, so |
| // that, for example, we emit "DIFlagPublic" and not |
| // "DIFlagPrivate | DIFlagProtected". |
| if (DIFlags A = Flags & FlagAccessibility) { |
| if (A == FlagPrivate) |
| SplitFlags.push_back(FlagPrivate); |
| else if (A == FlagProtected) |
| SplitFlags.push_back(FlagProtected); |
| else |
| SplitFlags.push_back(FlagPublic); |
| Flags &= ~A; |
| } |
| if (DIFlags R = Flags & FlagPtrToMemberRep) { |
| if (R == FlagSingleInheritance) |
| SplitFlags.push_back(FlagSingleInheritance); |
| else if (R == FlagMultipleInheritance) |
| SplitFlags.push_back(FlagMultipleInheritance); |
| else |
| SplitFlags.push_back(FlagVirtualInheritance); |
| Flags &= ~R; |
| } |
| if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { |
| Flags &= ~FlagIndirectVirtualBase; |
| SplitFlags.push_back(FlagIndirectVirtualBase); |
| } |
| |
| #define HANDLE_DI_FLAG(ID, NAME) \ |
| if (DIFlags Bit = Flags & Flag##NAME) { \ |
| SplitFlags.push_back(Bit); \ |
| Flags &= ~Bit; \ |
| } |
| #include "llvm/IR/DebugInfoFlags.def" |
| return Flags; |
| } |
| |
| DIScope *DIScope::getScope() const { |
| if (auto *T = dyn_cast<DIType>(this)) |
| return T->getScope(); |
| |
| if (auto *SP = dyn_cast<DISubprogram>(this)) |
| return SP->getScope(); |
| |
| if (auto *LB = dyn_cast<DILexicalBlockBase>(this)) |
| return LB->getScope(); |
| |
| if (auto *NS = dyn_cast<DINamespace>(this)) |
| return NS->getScope(); |
| |
| if (auto *CB = dyn_cast<DICommonBlock>(this)) |
| return CB->getScope(); |
| |
| if (auto *M = dyn_cast<DIModule>(this)) |
| return M->getScope(); |
| |
| assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) && |
| "Unhandled type of scope."); |
| return nullptr; |
| } |
| |
| StringRef DIScope::getName() const { |
| if (auto *T = dyn_cast<DIType>(this)) |
| return T->getName(); |
| if (auto *SP = dyn_cast<DISubprogram>(this)) |
| return SP->getName(); |
| if (auto *NS = dyn_cast<DINamespace>(this)) |
| return NS->getName(); |
| if (auto *CB = dyn_cast<DICommonBlock>(this)) |
| return CB->getName(); |
| if (auto *M = dyn_cast<DIModule>(this)) |
| return M->getName(); |
| assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) || |
| isa<DICompileUnit>(this)) && |
| "Unhandled type of scope."); |
| return ""; |
| } |
| |
| #ifndef NDEBUG |
| static bool isCanonical(const MDString *S) { |
| return !S || !S->getString().empty(); |
| } |
| #endif |
| |
| dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; } |
| GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, |
| MDString *Header, |
| ArrayRef<Metadata *> DwarfOps, |
| StorageType Storage, bool ShouldCreate) { |
| unsigned Hash = 0; |
| if (Storage == Uniqued) { |
| GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); |
| if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) |
| return N; |
| if (!ShouldCreate) |
| return nullptr; |
| Hash = Key.getHash(); |
| } else { |
| assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); |
| } |
| |
| // Use a nullptr for empty headers. |
| assert(isCanonical(Header) && "Expected canonical MDString"); |
| Metadata *PreOps[] = {Header}; |
| return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode( |
| Context, Storage, Hash, Tag, PreOps, DwarfOps), |
| Storage, Context.pImpl->GenericDINodes); |
| } |
| |
| void GenericDINode::recalculateHash() { |
| setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); |
| } |
| |
| #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ |
| #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS |
| #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \ |
| do { \ |
| if (Storage == Uniqued) { \ |
| if (auto *N = getUniqued(Context.pImpl->CLASS##s, \ |
| CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \ |
| return N; \ |
| if (!ShouldCreate) \ |
| return nullptr; \ |
| } else { \ |
| assert(ShouldCreate && \ |
| "Expected non-uniqued nodes to always be created"); \ |
| } \ |
| } while (false) |
| #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \ |
| return storeImpl(new (std::size(OPS), Storage) \ |
| CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ |
| Storage, Context.pImpl->CLASS##s) |
| #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \ |
| return storeImpl(new (0u, Storage) \ |
| CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \ |
| Storage, Context.pImpl->CLASS##s) |
| #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \ |
| return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \ |
| Storage, Context.pImpl->CLASS##s) |
| #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \ |
| return storeImpl(new (NUM_OPS, Storage) \ |
| CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ |
| Storage, Context.pImpl->CLASS##s) |
| |
| DISubrange::DISubrange(LLVMContext &C, StorageType Storage, |
| ArrayRef<Metadata *> Ops) |
| : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {} |
| DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, |
| StorageType Storage, bool ShouldCreate) { |
| auto *CountNode = ConstantAsMetadata::get( |
| ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); |
| auto *LB = ConstantAsMetadata::get( |
| ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); |
| return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, |
| ShouldCreate); |
| } |
| |
| DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, |
| int64_t Lo, StorageType Storage, |
| bool ShouldCreate) { |
| auto *LB = ConstantAsMetadata::get( |
| ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); |
| return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, |
| ShouldCreate); |
| } |
| |
| DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, |
| Metadata *LB, Metadata *UB, Metadata *Stride, |
| StorageType Storage, bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride)); |
| Metadata *Ops[] = {CountNode, LB, UB, Stride}; |
| DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops); |
| } |
| |
| DISubrange::BoundType DISubrange::getCount() const { |
| Metadata *CB = getRawCountNode(); |
| if (!CB) |
| return BoundType(); |
| |
| assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) || |
| isa<DIExpression>(CB)) && |
| "Count must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<ConstantAsMetadata>(CB)) |
| return BoundType(cast<ConstantInt>(MD->getValue())); |
| |
| if (auto *MD = dyn_cast<DIVariable>(CB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(CB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DISubrange::BoundType DISubrange::getLowerBound() const { |
| Metadata *LB = getRawLowerBound(); |
| if (!LB) |
| return BoundType(); |
| |
| assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) || |
| isa<DIExpression>(LB)) && |
| "LowerBound must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<ConstantAsMetadata>(LB)) |
| return BoundType(cast<ConstantInt>(MD->getValue())); |
| |
| if (auto *MD = dyn_cast<DIVariable>(LB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(LB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DISubrange::BoundType DISubrange::getUpperBound() const { |
| Metadata *UB = getRawUpperBound(); |
| if (!UB) |
| return BoundType(); |
| |
| assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) || |
| isa<DIExpression>(UB)) && |
| "UpperBound must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<ConstantAsMetadata>(UB)) |
| return BoundType(cast<ConstantInt>(MD->getValue())); |
| |
| if (auto *MD = dyn_cast<DIVariable>(UB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(UB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DISubrange::BoundType DISubrange::getStride() const { |
| Metadata *ST = getRawStride(); |
| if (!ST) |
| return BoundType(); |
| |
| assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) || |
| isa<DIExpression>(ST)) && |
| "Stride must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<ConstantAsMetadata>(ST)) |
| return BoundType(cast<ConstantInt>(MD->getValue())); |
| |
| if (auto *MD = dyn_cast<DIVariable>(ST)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(ST)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage, |
| ArrayRef<Metadata *> Ops) |
| : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange, |
| Ops) {} |
| |
| DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context, |
| Metadata *CountNode, Metadata *LB, |
| Metadata *UB, Metadata *Stride, |
| StorageType Storage, |
| bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride)); |
| Metadata *Ops[] = {CountNode, LB, UB, Stride}; |
| DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops); |
| } |
| |
| DIGenericSubrange::BoundType DIGenericSubrange::getCount() const { |
| Metadata *CB = getRawCountNode(); |
| if (!CB) |
| return BoundType(); |
| |
| assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) && |
| "Count must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<DIVariable>(CB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(CB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const { |
| Metadata *LB = getRawLowerBound(); |
| if (!LB) |
| return BoundType(); |
| |
| assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) && |
| "LowerBound must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<DIVariable>(LB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(LB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const { |
| Metadata *UB = getRawUpperBound(); |
| if (!UB) |
| return BoundType(); |
| |
| assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) && |
| "UpperBound must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<DIVariable>(UB)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(UB)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DIGenericSubrange::BoundType DIGenericSubrange::getStride() const { |
| Metadata *ST = getRawStride(); |
| if (!ST) |
| return BoundType(); |
| |
| assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) && |
| "Stride must be signed constant or DIVariable or DIExpression"); |
| |
| if (auto *MD = dyn_cast<DIVariable>(ST)) |
| return BoundType(MD); |
| |
| if (auto *MD = dyn_cast<DIExpression>(ST)) |
| return BoundType(MD); |
| |
| return BoundType(); |
| } |
| |
| DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage, |
| const APInt &Value, bool IsUnsigned, |
| ArrayRef<Metadata *> Ops) |
| : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops), |
| Value(Value) { |
| SubclassData32 = IsUnsigned; |
| } |
| DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value, |
| bool IsUnsigned, MDString *Name, |
| StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); |
| Metadata *Ops[] = {Name}; |
| DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); |
| } |
| |
| DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, |
| MDString *Name, uint64_t SizeInBits, |
| uint32_t AlignInBits, unsigned Encoding, |
| DIFlags Flags, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIBasicType, |
| (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)); |
| Metadata *Ops[] = {nullptr, nullptr, Name}; |
| DEFINE_GETIMPL_STORE(DIBasicType, |
| (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops); |
| } |
| |
| std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const { |
| switch (getEncoding()) { |
| case dwarf::DW_ATE_signed: |
| case dwarf::DW_ATE_signed_char: |
| return Signedness::Signed; |
| case dwarf::DW_ATE_unsigned: |
| case dwarf::DW_ATE_unsigned_char: |
| return Signedness::Unsigned; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag, |
| MDString *Name, Metadata *StringLength, |
| Metadata *StringLengthExp, |
| Metadata *StringLocationExp, |
| uint64_t SizeInBits, uint32_t AlignInBits, |
| unsigned Encoding, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIStringType, |
| (Tag, Name, StringLength, StringLengthExp, |
| StringLocationExp, SizeInBits, AlignInBits, Encoding)); |
| Metadata *Ops[] = {nullptr, nullptr, Name, |
| StringLength, StringLengthExp, StringLocationExp}; |
| DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding), |
| Ops); |
| } |
| DIType *DIDerivedType::getClassType() const { |
| assert(getTag() == dwarf::DW_TAG_ptr_to_member_type); |
| return cast_or_null<DIType>(getExtraData()); |
| } |
| uint32_t DIDerivedType::getVBPtrOffset() const { |
| assert(getTag() == dwarf::DW_TAG_inheritance); |
| if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData())) |
| if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue())) |
| return static_cast<uint32_t>(CI->getZExtValue()); |
| return 0; |
| } |
| Constant *DIDerivedType::getStorageOffsetInBits() const { |
| assert(getTag() == dwarf::DW_TAG_member && isBitField()); |
| if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) |
| return C->getValue(); |
| return nullptr; |
| } |
| |
| Constant *DIDerivedType::getConstant() const { |
| assert((getTag() == dwarf::DW_TAG_member || |
| getTag() == dwarf::DW_TAG_variable) && |
| isStaticMember()); |
| if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) |
| return C->getValue(); |
| return nullptr; |
| } |
| Constant *DIDerivedType::getDiscriminantValue() const { |
| assert(getTag() == dwarf::DW_TAG_member && !isStaticMember()); |
| if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) |
| return C->getValue(); |
| return nullptr; |
| } |
| |
| DIDerivedType *DIDerivedType::getImpl( |
| LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, |
| unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, |
| uint32_t AlignInBits, uint64_t OffsetInBits, |
| std::optional<unsigned> DWARFAddressSpace, |
| std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData, |
| Metadata *Annotations, StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIDerivedType, |
| (Tag, Name, File, Line, Scope, BaseType, SizeInBits, |
| AlignInBits, OffsetInBits, DWARFAddressSpace, |
| PtrAuthData, Flags, ExtraData, Annotations)); |
| Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations}; |
| DEFINE_GETIMPL_STORE(DIDerivedType, |
| (Tag, Line, SizeInBits, AlignInBits, OffsetInBits, |
| DWARFAddressSpace, PtrAuthData, Flags), |
| Ops); |
| } |
| |
| std::optional<DIDerivedType::PtrAuthData> |
| DIDerivedType::getPtrAuthData() const { |
| return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type |
| ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32)) |
| : std::nullopt; |
| } |
| |
| DICompositeType *DICompositeType::getImpl( |
| LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, |
| unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, |
| uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, |
| Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, |
| Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, |
| Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, |
| Metadata *Rank, Metadata *Annotations, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| |
| // Keep this in sync with buildODRType. |
| DEFINE_GETIMPL_LOOKUP(DICompositeType, |
| (Tag, Name, File, Line, Scope, BaseType, SizeInBits, |
| AlignInBits, OffsetInBits, Flags, Elements, |
| RuntimeLang, VTableHolder, TemplateParams, Identifier, |
| Discriminator, DataLocation, Associated, Allocated, |
| Rank, Annotations)); |
| Metadata *Ops[] = {File, Scope, Name, BaseType, |
| Elements, VTableHolder, TemplateParams, Identifier, |
| Discriminator, DataLocation, Associated, Allocated, |
| Rank, Annotations}; |
| DEFINE_GETIMPL_STORE( |
| DICompositeType, |
| (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags), |
| Ops); |
| } |
| |
| DICompositeType *DICompositeType::buildODRType( |
| LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, |
| Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, |
| uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, |
| DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, |
| Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, |
| Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, |
| Metadata *Rank, Metadata *Annotations) { |
| assert(!Identifier.getString().empty() && "Expected valid identifier"); |
| if (!Context.isODRUniquingDebugTypes()) |
| return nullptr; |
| auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; |
| if (!CT) |
| return CT = DICompositeType::getDistinct( |
| Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, |
| AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, |
| VTableHolder, TemplateParams, &Identifier, Discriminator, |
| DataLocation, Associated, Allocated, Rank, Annotations); |
| |
| if (CT->getTag() != Tag) |
| return nullptr; |
| |
| // Only mutate CT if it's a forward declaration and the new operands aren't. |
| assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); |
| if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) |
| return CT; |
| |
| // Mutate CT in place. Keep this in sync with getImpl. |
| CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, |
| Flags); |
| Metadata *Ops[] = {File, Scope, Name, BaseType, |
| Elements, VTableHolder, TemplateParams, &Identifier, |
| Discriminator, DataLocation, Associated, Allocated, |
| Rank, Annotations}; |
| assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && |
| "Mismatched number of operands"); |
| for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) |
| if (Ops[I] != CT->getOperand(I)) |
| CT->setOperand(I, Ops[I]); |
| return CT; |
| } |
| |
| DICompositeType *DICompositeType::getODRType( |
| LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, |
| Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, |
| uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, |
| DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, |
| Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, |
| Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, |
| Metadata *Rank, Metadata *Annotations) { |
| assert(!Identifier.getString().empty() && "Expected valid identifier"); |
| if (!Context.isODRUniquingDebugTypes()) |
| return nullptr; |
| auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; |
| if (!CT) { |
| CT = DICompositeType::getDistinct( |
| Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, |
| AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, |
| TemplateParams, &Identifier, Discriminator, DataLocation, Associated, |
| Allocated, Rank, Annotations); |
| } else { |
| if (CT->getTag() != Tag) |
| return nullptr; |
| } |
| return CT; |
| } |
| |
| DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, |
| MDString &Identifier) { |
| assert(!Identifier.getString().empty() && "Expected valid identifier"); |
| if (!Context.isODRUniquingDebugTypes()) |
| return nullptr; |
| return Context.pImpl->DITypeMap->lookup(&Identifier); |
| } |
| DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage, |
| DIFlags Flags, uint8_t CC, |
| ArrayRef<Metadata *> Ops) |
| : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0, |
| 0, 0, 0, Flags, Ops), |
| CC(CC) {} |
| |
| DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, |
| uint8_t CC, Metadata *TypeArray, |
| StorageType Storage, |
| bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); |
| Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray}; |
| DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); |
| } |
| |
| DIFile::DIFile(LLVMContext &C, StorageType Storage, |
| std::optional<ChecksumInfo<MDString *>> CS, MDString *Src, |
| ArrayRef<Metadata *> Ops) |
| : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops), |
| Checksum(CS), Source(Src) {} |
| |
| // FIXME: Implement this string-enum correspondence with a .def file and macros, |
| // so that the association is explicit rather than implied. |
| static const char *ChecksumKindName[DIFile::CSK_Last] = { |
| "CSK_MD5", |
| "CSK_SHA1", |
| "CSK_SHA256", |
| }; |
| |
| StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { |
| assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); |
| // The first space was originally the CSK_None variant, which is now |
| // obsolete, but the space is still reserved in ChecksumKind, so we account |
| // for it here. |
| return ChecksumKindName[CSKind - 1]; |
| } |
| |
| std::optional<DIFile::ChecksumKind> |
| DIFile::getChecksumKind(StringRef CSKindStr) { |
| return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr) |
| .Case("CSK_MD5", DIFile::CSK_MD5) |
| .Case("CSK_SHA1", DIFile::CSK_SHA1) |
| .Case("CSK_SHA256", DIFile::CSK_SHA256) |
| .Default(std::nullopt); |
| } |
| |
| DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, |
| MDString *Directory, |
| std::optional<DIFile::ChecksumInfo<MDString *>> CS, |
| MDString *Source, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Filename) && "Expected canonical MDString"); |
| assert(isCanonical(Directory) && "Expected canonical MDString"); |
| assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); |
| // We do *NOT* expect Source to be a canonical MDString because nullptr |
| // means none, so we need something to represent the empty file. |
| DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); |
| Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source}; |
| DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); |
| } |
| DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage, |
| unsigned SourceLanguage, bool IsOptimized, |
| unsigned RuntimeVersion, unsigned EmissionKind, |
| uint64_t DWOId, bool SplitDebugInlining, |
| bool DebugInfoForProfiling, unsigned NameTableKind, |
| bool RangesBaseAddress, ArrayRef<Metadata *> Ops) |
| : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops), |
| SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion), |
| DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind), |
| IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining), |
| DebugInfoForProfiling(DebugInfoForProfiling), |
| RangesBaseAddress(RangesBaseAddress) { |
| assert(Storage != Uniqued); |
| } |
| |
| DICompileUnit *DICompileUnit::getImpl( |
| LLVMContext &Context, unsigned SourceLanguage, Metadata *File, |
| MDString *Producer, bool IsOptimized, MDString *Flags, |
| unsigned RuntimeVersion, MDString *SplitDebugFilename, |
| unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, |
| Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, |
| uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, |
| unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, |
| MDString *SDK, StorageType Storage, bool ShouldCreate) { |
| assert(Storage != Uniqued && "Cannot unique DICompileUnit"); |
| assert(isCanonical(Producer) && "Expected canonical MDString"); |
| assert(isCanonical(Flags) && "Expected canonical MDString"); |
| assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); |
| |
| Metadata *Ops[] = {File, |
| Producer, |
| Flags, |
| SplitDebugFilename, |
| EnumTypes, |
| RetainedTypes, |
| GlobalVariables, |
| ImportedEntities, |
| Macros, |
| SysRoot, |
| SDK}; |
| return storeImpl(new (std::size(Ops), Storage) DICompileUnit( |
| Context, Storage, SourceLanguage, IsOptimized, |
| RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, |
| DebugInfoForProfiling, NameTableKind, RangesBaseAddress, |
| Ops), |
| Storage); |
| } |
| |
| std::optional<DICompileUnit::DebugEmissionKind> |
| DICompileUnit::getEmissionKind(StringRef Str) { |
| return StringSwitch<std::optional<DebugEmissionKind>>(Str) |
| .Case("NoDebug", NoDebug) |
| .Case("FullDebug", FullDebug) |
| .Case("LineTablesOnly", LineTablesOnly) |
| .Case("DebugDirectivesOnly", DebugDirectivesOnly) |
| .Default(std::nullopt); |
| } |
| |
| std::optional<DICompileUnit::DebugNameTableKind> |
| DICompileUnit::getNameTableKind(StringRef Str) { |
| return StringSwitch<std::optional<DebugNameTableKind>>(Str) |
| .Case("Default", DebugNameTableKind::Default) |
| .Case("GNU", DebugNameTableKind::GNU) |
| .Case("Apple", DebugNameTableKind::Apple) |
| .Case("None", DebugNameTableKind::None) |
| .Default(std::nullopt); |
| } |
| |
| const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { |
| switch (EK) { |
| case NoDebug: |
| return "NoDebug"; |
| case FullDebug: |
| return "FullDebug"; |
| case LineTablesOnly: |
| return "LineTablesOnly"; |
| case DebugDirectivesOnly: |
| return "DebugDirectivesOnly"; |
| } |
| return nullptr; |
| } |
| |
| const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) { |
| switch (NTK) { |
| case DebugNameTableKind::Default: |
| return nullptr; |
| case DebugNameTableKind::GNU: |
| return "GNU"; |
| case DebugNameTableKind::Apple: |
| return "Apple"; |
| case DebugNameTableKind::None: |
| return "None"; |
| } |
| return nullptr; |
| } |
| DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, |
| unsigned ScopeLine, unsigned VirtualIndex, |
| int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, |
| ArrayRef<Metadata *> Ops) |
| : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops), |
| Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex), |
| ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) { |
| static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range"); |
| } |
| DISubprogram::DISPFlags |
| DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, |
| unsigned Virtuality, bool IsMainSubprogram) { |
| // We're assuming virtuality is the low-order field. |
| static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) && |
| int(SPFlagPureVirtual) == |
| int(dwarf::DW_VIRTUALITY_pure_virtual), |
| "Virtuality constant mismatch"); |
| return static_cast<DISPFlags>( |
| (Virtuality & SPFlagVirtuality) | |
| (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) | |
| (IsDefinition ? SPFlagDefinition : SPFlagZero) | |
| (IsOptimized ? SPFlagOptimized : SPFlagZero) | |
| (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero)); |
| } |
| |
| DISubprogram *DILocalScope::getSubprogram() const { |
| if (auto *Block = dyn_cast<DILexicalBlockBase>(this)) |
| return Block->getScope()->getSubprogram(); |
| return const_cast<DISubprogram *>(cast<DISubprogram>(this)); |
| } |
| |
| DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { |
| if (auto *File = dyn_cast<DILexicalBlockFile>(this)) |
| return File->getScope()->getNonLexicalBlockFileScope(); |
| return const_cast<DILocalScope *>(this); |
| } |
| |
| DILocalScope *DILocalScope::cloneScopeForSubprogram( |
| DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, |
| DenseMap<const MDNode *, MDNode *> &Cache) { |
| SmallVector<DIScope *> ScopeChain; |
| DIScope *CachedResult = nullptr; |
| |
| for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope); |
| Scope = Scope->getScope()) { |
| if (auto It = Cache.find(Scope); It != Cache.end()) { |
| CachedResult = cast<DIScope>(It->second); |
| break; |
| } |
| ScopeChain.push_back(Scope); |
| } |
| |
| // Recreate the scope chain, bottom-up, starting at the new subprogram (or a |
| // cached result). |
| DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP; |
| for (DIScope *ScopeToUpdate : reverse(ScopeChain)) { |
| TempMDNode ClonedScope = ScopeToUpdate->clone(); |
| cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope); |
| UpdatedScope = |
| cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope))); |
| Cache[ScopeToUpdate] = UpdatedScope; |
| } |
| |
| return cast<DILocalScope>(UpdatedScope); |
| } |
| |
| DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) { |
| return StringSwitch<DISPFlags>(Flag) |
| #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME) |
| #include "llvm/IR/DebugInfoFlags.def" |
| .Default(SPFlagZero); |
| } |
| |
| StringRef DISubprogram::getFlagString(DISPFlags Flag) { |
| switch (Flag) { |
| // Appease a warning. |
| case SPFlagVirtuality: |
| return ""; |
| #define HANDLE_DISP_FLAG(ID, NAME) \ |
| case SPFlag##NAME: \ |
| return "DISPFlag" #NAME; |
| #include "llvm/IR/DebugInfoFlags.def" |
| } |
| return ""; |
| } |
| |
| DISubprogram::DISPFlags |
| DISubprogram::splitFlags(DISPFlags Flags, |
| SmallVectorImpl<DISPFlags> &SplitFlags) { |
| // Multi-bit fields can require special handling. In our case, however, the |
| // only multi-bit field is virtuality, and all its values happen to be |
| // single-bit values, so the right behavior just falls out. |
| #define HANDLE_DISP_FLAG(ID, NAME) \ |
| if (DISPFlags Bit = Flags & SPFlag##NAME) { \ |
| SplitFlags.push_back(Bit); \ |
| Flags &= ~Bit; \ |
| } |
| #include "llvm/IR/DebugInfoFlags.def" |
| return Flags; |
| } |
| |
| DISubprogram *DISubprogram::getImpl( |
| LLVMContext &Context, Metadata *Scope, MDString *Name, |
| MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, |
| unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, |
| int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, |
| Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, |
| Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, |
| StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| assert(isCanonical(LinkageName) && "Expected canonical MDString"); |
| assert(isCanonical(TargetFuncName) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DISubprogram, |
| (Scope, Name, LinkageName, File, Line, Type, ScopeLine, |
| ContainingType, VirtualIndex, ThisAdjustment, Flags, |
| SPFlags, Unit, TemplateParams, Declaration, |
| RetainedNodes, ThrownTypes, Annotations, |
| TargetFuncName)); |
| SmallVector<Metadata *, 13> Ops = { |
| File, Scope, Name, LinkageName, |
| Type, Unit, Declaration, RetainedNodes, |
| ContainingType, TemplateParams, ThrownTypes, Annotations, |
| TargetFuncName}; |
| if (!TargetFuncName) { |
| Ops.pop_back(); |
| if (!Annotations) { |
| Ops.pop_back(); |
| if (!ThrownTypes) { |
| Ops.pop_back(); |
| if (!TemplateParams) { |
| Ops.pop_back(); |
| if (!ContainingType) |
| Ops.pop_back(); |
| } |
| } |
| } |
| } |
| DEFINE_GETIMPL_STORE_N( |
| DISubprogram, |
| (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops, |
| Ops.size()); |
| } |
| |
| bool DISubprogram::describes(const Function *F) const { |
| assert(F && "Invalid function"); |
| return F->getSubprogram() == this; |
| } |
| DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID, |
| StorageType Storage, |
| ArrayRef<Metadata *> Ops) |
| : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {} |
| |
| DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, |
| Metadata *File, unsigned Line, |
| unsigned Column, StorageType Storage, |
| bool ShouldCreate) { |
| // Fixup column. |
| adjustColumn(Column); |
| |
| assert(Scope && "Expected scope"); |
| DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); |
| Metadata *Ops[] = {File, Scope}; |
| DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); |
| } |
| |
| DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, |
| Metadata *Scope, Metadata *File, |
| unsigned Discriminator, |
| StorageType Storage, |
| bool ShouldCreate) { |
| assert(Scope && "Expected scope"); |
| DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); |
| Metadata *Ops[] = {File, Scope}; |
| DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); |
| } |
| |
| DINamespace::DINamespace(LLVMContext &Context, StorageType Storage, |
| bool ExportSymbols, ArrayRef<Metadata *> Ops) |
| : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) { |
| SubclassData1 = ExportSymbols; |
| } |
| DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, |
| MDString *Name, bool ExportSymbols, |
| StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); |
| // The nullptr is for DIScope's File operand. This should be refactored. |
| Metadata *Ops[] = {nullptr, Scope, Name}; |
| DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); |
| } |
| |
| DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage, |
| unsigned LineNo, ArrayRef<Metadata *> Ops) |
| : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block, |
| Ops) { |
| SubclassData32 = LineNo; |
| } |
| DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope, |
| Metadata *Decl, MDString *Name, |
| Metadata *File, unsigned LineNo, |
| StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo)); |
| // The nullptr is for DIScope's File operand. This should be refactored. |
| Metadata *Ops[] = {Scope, Decl, Name, File}; |
| DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops); |
| } |
| |
| DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, |
| bool IsDecl, ArrayRef<Metadata *> Ops) |
| : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) { |
| SubclassData1 = IsDecl; |
| SubclassData32 = LineNo; |
| } |
| DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File, |
| Metadata *Scope, MDString *Name, |
| MDString *ConfigurationMacros, |
| MDString *IncludePath, MDString *APINotesFile, |
| unsigned LineNo, bool IsDecl, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros, |
| IncludePath, APINotesFile, LineNo, IsDecl)); |
| Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros, |
| IncludePath, APINotesFile}; |
| DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops); |
| } |
| DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context, |
| StorageType Storage, |
| bool IsDefault, |
| ArrayRef<Metadata *> Ops) |
| : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage, |
| dwarf::DW_TAG_template_type_parameter, IsDefault, |
| Ops) {} |
| |
| DITemplateTypeParameter * |
| DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, |
| Metadata *Type, bool isDefault, |
| StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault)); |
| Metadata *Ops[] = {Name, Type}; |
| DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops); |
| } |
| |
| DITemplateValueParameter *DITemplateValueParameter::getImpl( |
| LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, |
| bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, |
| (Tag, Name, Type, isDefault, Value)); |
| Metadata *Ops[] = {Name, Type, Value}; |
| DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops); |
| } |
| |
| DIGlobalVariable * |
| DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, |
| MDString *LinkageName, Metadata *File, unsigned Line, |
| Metadata *Type, bool IsLocalToUnit, bool IsDefinition, |
| Metadata *StaticDataMemberDeclaration, |
| Metadata *TemplateParams, uint32_t AlignInBits, |
| Metadata *Annotations, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| assert(isCanonical(LinkageName) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP( |
| DIGlobalVariable, |
| (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, |
| StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)); |
| Metadata *Ops[] = {Scope, |
| Name, |
| File, |
| Type, |
| Name, |
| LinkageName, |
| StaticDataMemberDeclaration, |
| TemplateParams, |
| Annotations}; |
| DEFINE_GETIMPL_STORE(DIGlobalVariable, |
| (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); |
| } |
| |
| DILocalVariable * |
| DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, |
| Metadata *File, unsigned Line, Metadata *Type, |
| unsigned Arg, DIFlags Flags, uint32_t AlignInBits, |
| Metadata *Annotations, StorageType Storage, |
| bool ShouldCreate) { |
| // 64K ought to be enough for any frontend. |
| assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); |
| |
| assert(Scope && "Expected scope"); |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, |
| Flags, AlignInBits, Annotations)); |
| Metadata *Ops[] = {Scope, Name, File, Type, Annotations}; |
| DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); |
| } |
| |
| DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, |
| signed Line, ArrayRef<Metadata *> Ops, |
| uint32_t AlignInBits) |
| : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) { |
| SubclassData32 = AlignInBits; |
| } |
| std::optional<uint64_t> DIVariable::getSizeInBits() const { |
| // This is used by the Verifier so be mindful of broken types. |
| const Metadata *RawType = getRawType(); |
| while (RawType) { |
| // Try to get the size directly. |
| if (auto *T = dyn_cast<DIType>(RawType)) |
| if (uint64_t Size = T->getSizeInBits()) |
| return Size; |
| |
| if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { |
| // Look at the base type. |
| RawType = DT->getRawBaseType(); |
| continue; |
| } |
| |
| // Missing type or size. |
| break; |
| } |
| |
| // Fail gracefully. |
| return std::nullopt; |
| } |
| |
| DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line, |
| ArrayRef<Metadata *> Ops) |
| : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) { |
| SubclassData32 = Line; |
| } |
| DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, |
| Metadata *File, unsigned Line, StorageType Storage, |
| bool ShouldCreate) { |
| assert(Scope && "Expected scope"); |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line)); |
| Metadata *Ops[] = {Scope, Name, File}; |
| DEFINE_GETIMPL_STORE(DILabel, (Line), Ops); |
| } |
| |
| DIExpression *DIExpression::getImpl(LLVMContext &Context, |
| ArrayRef<uint64_t> Elements, |
| StorageType Storage, bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); |
| DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); |
| } |
| bool DIExpression::isEntryValue() const { |
| if (auto singleLocElts = getSingleLocationExpressionElements()) { |
| return singleLocElts->size() > 0 && |
| (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value; |
| } |
| return false; |
| } |
| bool DIExpression::startsWithDeref() const { |
| if (auto singleLocElts = getSingleLocationExpressionElements()) |
| return singleLocElts->size() > 0 && |
| (*singleLocElts)[0] == dwarf::DW_OP_deref; |
| return false; |
| } |
| bool DIExpression::isDeref() const { |
| if (auto singleLocElts = getSingleLocationExpressionElements()) |
| return singleLocElts->size() == 1 && |
| (*singleLocElts)[0] == dwarf::DW_OP_deref; |
| return false; |
| } |
| |
| DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage, |
| bool ShouldCreate) { |
| // Uniqued DIAssignID are not supported as the instance address *is* the ID. |
| assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported"); |
| return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage); |
| } |
| |
| unsigned DIExpression::ExprOperand::getSize() const { |
| uint64_t Op = getOp(); |
| |
| if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31) |
| return 2; |
| |
| switch (Op) { |
| case dwarf::DW_OP_LLVM_convert: |
| case dwarf::DW_OP_LLVM_fragment: |
| case dwarf::DW_OP_LLVM_extract_bits_sext: |
| case dwarf::DW_OP_LLVM_extract_bits_zext: |
| case dwarf::DW_OP_bregx: |
| return 3; |
| case dwarf::DW_OP_constu: |
| case dwarf::DW_OP_consts: |
| case dwarf::DW_OP_deref_size: |
| case dwarf::DW_OP_plus_uconst: |
| case dwarf::DW_OP_LLVM_tag_offset: |
| case dwarf::DW_OP_LLVM_entry_value: |
| case dwarf::DW_OP_LLVM_arg: |
| case dwarf::DW_OP_regx: |
| return 2; |
| default: |
| return 1; |
| } |
| } |
| |
| bool DIExpression::isValid() const { |
| for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { |
| // Check that there's space for the operand. |
| if (I->get() + I->getSize() > E->get()) |
| return false; |
| |
| uint64_t Op = I->getOp(); |
| if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) || |
| (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)) |
| return true; |
| |
| // Check that the operand is valid. |
| switch (Op) { |
| default: |
| return false; |
| case dwarf::DW_OP_LLVM_fragment: |
| // A fragment operator must appear at the end. |
| return I->get() + I->getSize() == E->get(); |
| case dwarf::DW_OP_stack_value: { |
| // Must be the last one or followed by a DW_OP_LLVM_fragment. |
| if (I->get() + I->getSize() == E->get()) |
| break; |
| auto J = I; |
| if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) |
| return false; |
| break; |
| } |
| case dwarf::DW_OP_swap: { |
| // Must be more than one implicit element on the stack. |
| |
| // FIXME: A better way to implement this would be to add a local variable |
| // that keeps track of the stack depth and introduce something like a |
| // DW_LLVM_OP_implicit_location as a placeholder for the location this |
| // DIExpression is attached to, or else pass the number of implicit stack |
| // elements into isValid. |
| if (getNumElements() == 1) |
| return false; |
| break; |
| } |
| case dwarf::DW_OP_LLVM_entry_value: { |
| // An entry value operator must appear at the beginning or immediately |
| // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can |
| // currently only be 1, because we support only entry values of a simple |
| // register location. One reason for this is that we currently can't |
| // calculate the size of the resulting DWARF block for other expressions. |
| auto FirstOp = expr_op_begin(); |
| if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0) |
| ++FirstOp; |
| return I->get() == FirstOp->get() && I->getArg(0) == 1; |
| } |
| case dwarf::DW_OP_LLVM_implicit_pointer: |
| case dwarf::DW_OP_LLVM_convert: |
| case dwarf::DW_OP_LLVM_arg: |
| case dwarf::DW_OP_LLVM_tag_offset: |
| case dwarf::DW_OP_LLVM_extract_bits_sext: |
| case dwarf::DW_OP_LLVM_extract_bits_zext: |
| case dwarf::DW_OP_constu: |
| case dwarf::DW_OP_plus_uconst: |
| case dwarf::DW_OP_plus: |
| case dwarf::DW_OP_minus: |
| case dwarf::DW_OP_mul: |
| case dwarf::DW_OP_div: |
| case dwarf::DW_OP_mod: |
| case dwarf::DW_OP_or: |
| case dwarf::DW_OP_and: |
| case dwarf::DW_OP_xor: |
| case dwarf::DW_OP_shl: |
| case dwarf::DW_OP_shr: |
| case dwarf::DW_OP_shra: |
| case dwarf::DW_OP_deref: |
| case dwarf::DW_OP_deref_size: |
| case dwarf::DW_OP_xderef: |
| case dwarf::DW_OP_lit0: |
| case dwarf::DW_OP_not: |
| case dwarf::DW_OP_dup: |
| case dwarf::DW_OP_regx: |
| case dwarf::DW_OP_bregx: |
| case dwarf::DW_OP_push_object_address: |
| case dwarf::DW_OP_over: |
| case dwarf::DW_OP_consts: |
| case dwarf::DW_OP_eq: |
| case dwarf::DW_OP_ne: |
| case dwarf::DW_OP_gt: |
| case dwarf::DW_OP_ge: |
| case dwarf::DW_OP_lt: |
| case dwarf::DW_OP_le: |
| break; |
| } |
| } |
| return true; |
| } |
| |
| bool DIExpression::isImplicit() const { |
| if (!isValid()) |
| return false; |
| |
| if (getNumElements() == 0) |
| return false; |
| |
| for (const auto &It : expr_ops()) { |
| switch (It.getOp()) { |
| default: |
| break; |
| case dwarf::DW_OP_stack_value: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool DIExpression::isComplex() const { |
| if (!isValid()) |
| return false; |
| |
| if (getNumElements() == 0) |
| return false; |
| |
| // If there are any elements other than fragment or tag_offset, then some |
| // kind of complex computation occurs. |
| for (const auto &It : expr_ops()) { |
| switch (It.getOp()) { |
| case dwarf::DW_OP_LLVM_tag_offset: |
| case dwarf::DW_OP_LLVM_fragment: |
| case dwarf::DW_OP_LLVM_arg: |
| continue; |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool DIExpression::isSingleLocationExpression() const { |
| if (!isValid()) |
| return false; |
| |
| if (getNumElements() == 0) |
| return true; |
| |
| auto ExprOpBegin = expr_ops().begin(); |
| auto ExprOpEnd = expr_ops().end(); |
| if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) { |
| if (ExprOpBegin->getArg(0) != 0) |
| return false; |
| ++ExprOpBegin; |
| } |
| |
| return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) { |
| return Op.getOp() == dwarf::DW_OP_LLVM_arg; |
| }); |
| } |
| |
| std::optional<ArrayRef<uint64_t>> |
| DIExpression::getSingleLocationExpressionElements() const { |
| // Check for `isValid` covered by `isSingleLocationExpression`. |
| if (!isSingleLocationExpression()) |
| return std::nullopt; |
| |
| // An empty expression is already non-variadic. |
| if (!getNumElements()) |
| return ArrayRef<uint64_t>(); |
| |
| // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do |
| // anything. |
| if (getElements()[0] == dwarf::DW_OP_LLVM_arg) |
| return getElements().drop_front(2); |
| return getElements(); |
| } |
| |
| const DIExpression * |
| DIExpression::convertToUndefExpression(const DIExpression *Expr) { |
| SmallVector<uint64_t, 3> UndefOps; |
| if (auto FragmentInfo = Expr->getFragmentInfo()) { |
| UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits, |
| FragmentInfo->SizeInBits}); |
| } |
| return DIExpression::get(Expr->getContext(), UndefOps); |
| } |
| |
| const DIExpression * |
| DIExpression::convertToVariadicExpression(const DIExpression *Expr) { |
| if (any_of(Expr->expr_ops(), [](auto ExprOp) { |
| return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; |
| })) |
| return Expr; |
| SmallVector<uint64_t> NewOps; |
| NewOps.reserve(Expr->getNumElements() + 2); |
| NewOps.append({dwarf::DW_OP_LLVM_arg, 0}); |
| NewOps.append(Expr->elements_begin(), Expr->elements_end()); |
| return DIExpression::get(Expr->getContext(), NewOps); |
| } |
| |
| std::optional<const DIExpression *> |
| DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) { |
| if (!Expr) |
| return std::nullopt; |
| |
| if (auto Elts = Expr->getSingleLocationExpressionElements()) |
| return DIExpression::get(Expr->getContext(), *Elts); |
| |
| return std::nullopt; |
| } |
| |
| void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops, |
| const DIExpression *Expr, |
| bool IsIndirect) { |
| // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0` |
| // to the existing expression ops. |
| if (none_of(Expr->expr_ops(), [](auto ExprOp) { |
| return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; |
| })) |
| Ops.append({dwarf::DW_OP_LLVM_arg, 0}); |
| // If Expr is not indirect, we only need to insert the expression elements and |
| // we're done. |
| if (!IsIndirect) { |
| Ops.append(Expr->elements_begin(), Expr->elements_end()); |
| return; |
| } |
| // If Expr is indirect, insert the implied DW_OP_deref at the end of the |
| // expression but before DW_OP_{stack_value, LLVM_fragment} if they are |
| // present. |
| for (auto Op : Expr->expr_ops()) { |
| if (Op.getOp() == dwarf::DW_OP_stack_value || |
| Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
| Ops.push_back(dwarf::DW_OP_deref); |
| IsIndirect = false; |
| } |
| Op.appendToVector(Ops); |
| } |
| if (IsIndirect) |
| Ops.push_back(dwarf::DW_OP_deref); |
| } |
| |
| bool DIExpression::isEqualExpression(const DIExpression *FirstExpr, |
| bool FirstIndirect, |
| const DIExpression *SecondExpr, |
| bool SecondIndirect) { |
| SmallVector<uint64_t> FirstOps; |
| DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect); |
| SmallVector<uint64_t> SecondOps; |
| DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr, |
| SecondIndirect); |
| return FirstOps == SecondOps; |
| } |
| |
| std::optional<DIExpression::FragmentInfo> |
| DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { |
| for (auto I = Start; I != End; ++I) |
| if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { |
| DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; |
| return Info; |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) { |
| std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits(); |
| std::optional<uint64_t> ActiveBits = InitialActiveBits; |
| for (auto Op : expr_ops()) { |
| switch (Op.getOp()) { |
| default: |
| // We assume the worst case for anything we don't currently handle and |
| // revert to the initial active bits. |
| ActiveBits = InitialActiveBits; |
| break; |
| case dwarf::DW_OP_LLVM_extract_bits_zext: |
| case dwarf::DW_OP_LLVM_extract_bits_sext: { |
| // We can't handle an extract whose sign doesn't match that of the |
| // variable. |
| std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness(); |
| bool VarSigned = (VarSign == DIBasicType::Signedness::Signed); |
| bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext); |
| if (!VarSign || VarSigned != OpSigned) { |
| ActiveBits = InitialActiveBits; |
| break; |
| } |
| [[fallthrough]]; |
| } |
| case dwarf::DW_OP_LLVM_fragment: |
| // Extract or fragment narrows the active bits |
| if (ActiveBits) |
| ActiveBits = std::min(*ActiveBits, Op.getArg(1)); |
| else |
| ActiveBits = Op.getArg(1); |
| break; |
| } |
| } |
| return ActiveBits; |
| } |
| |
| void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops, |
| int64_t Offset) { |
| if (Offset > 0) { |
| Ops.push_back(dwarf::DW_OP_plus_uconst); |
| Ops.push_back(Offset); |
| } else if (Offset < 0) { |
| Ops.push_back(dwarf::DW_OP_constu); |
| // Avoid UB when encountering LLONG_MIN, because in 2's complement |
| // abs(LLONG_MIN) is LLONG_MAX+1. |
| uint64_t AbsMinusOne = -(Offset+1); |
| Ops.push_back(AbsMinusOne + 1); |
| Ops.push_back(dwarf::DW_OP_minus); |
| } |
| } |
| |
| bool DIExpression::extractIfOffset(int64_t &Offset) const { |
| auto SingleLocEltsOpt = getSingleLocationExpressionElements(); |
| if (!SingleLocEltsOpt) |
| return false; |
| auto SingleLocElts = *SingleLocEltsOpt; |
| |
| if (SingleLocElts.size() == 0) { |
| Offset = 0; |
| return true; |
| } |
| |
| if (SingleLocElts.size() == 2 && |
| SingleLocElts[0] == dwarf::DW_OP_plus_uconst) { |
| Offset = SingleLocElts[1]; |
| return true; |
| } |
| |
| if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) { |
| if (SingleLocElts[2] == dwarf::DW_OP_plus) { |
| Offset = SingleLocElts[1]; |
| return true; |
| } |
| if (SingleLocElts[2] == dwarf::DW_OP_minus) { |
| Offset = -SingleLocElts[1]; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool DIExpression::extractLeadingOffset( |
| int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const { |
| OffsetInBytes = 0; |
| RemainingOps.clear(); |
| |
| auto SingleLocEltsOpt = getSingleLocationExpressionElements(); |
| if (!SingleLocEltsOpt) |
| return false; |
| |
| auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end()); |
| auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin()); |
| while (ExprOpIt != ExprOpEnd) { |
| uint64_t Op = ExprOpIt->getOp(); |
| if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size || |
| Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment || |
| Op == dwarf::DW_OP_LLVM_extract_bits_zext || |
| Op == dwarf::DW_OP_LLVM_extract_bits_sext) { |
| break; |
| } else if (Op == dwarf::DW_OP_plus_uconst) { |
| OffsetInBytes += ExprOpIt->getArg(0); |
| } else if (Op == dwarf::DW_OP_constu) { |
| uint64_t Value = ExprOpIt->getArg(0); |
| ++ExprOpIt; |
| if (ExprOpIt->getOp() == dwarf::DW_OP_plus) |
| OffsetInBytes += Value; |
| else if (ExprOpIt->getOp() == dwarf::DW_OP_minus) |
| OffsetInBytes -= Value; |
| else |
| return false; |
| } else { |
| // Not a const plus/minus operation or deref. |
| return false; |
| } |
| ++ExprOpIt; |
| } |
| RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase()); |
| return true; |
| } |
| |
| bool DIExpression::hasAllLocationOps(unsigned N) const { |
| SmallDenseSet<uint64_t, 4> SeenOps; |
| for (auto ExprOp : expr_ops()) |
| if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) |
| SeenOps.insert(ExprOp.getArg(0)); |
| for (uint64_t Idx = 0; Idx < N; ++Idx) |
| if (!SeenOps.contains(Idx)) |
| return false; |
| return true; |
| } |
| |
| const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr, |
| unsigned &AddrClass) { |
| // FIXME: This seems fragile. Nothing that verifies that these elements |
| // actually map to ops and not operands. |
| auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements(); |
| if (!SingleLocEltsOpt) |
| return nullptr; |
| auto SingleLocElts = *SingleLocEltsOpt; |
| |
| const unsigned PatternSize = 4; |
| if (SingleLocElts.size() >= PatternSize && |
| SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu && |
| SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap && |
| SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) { |
| AddrClass = SingleLocElts[PatternSize - 3]; |
| |
| if (SingleLocElts.size() == PatternSize) |
| return nullptr; |
| return DIExpression::get( |
| Expr->getContext(), |
| ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize)); |
| } |
| return Expr; |
| } |
| |
| DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags, |
| int64_t Offset) { |
| SmallVector<uint64_t, 8> Ops; |
| if (Flags & DIExpression::DerefBefore) |
| Ops.push_back(dwarf::DW_OP_deref); |
| |
| appendOffset(Ops, Offset); |
| if (Flags & DIExpression::DerefAfter) |
| Ops.push_back(dwarf::DW_OP_deref); |
| |
| bool StackValue = Flags & DIExpression::StackValue; |
| bool EntryValue = Flags & DIExpression::EntryValue; |
| |
| return prependOpcodes(Expr, Ops, StackValue, EntryValue); |
| } |
| |
| DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr, |
| ArrayRef<uint64_t> Ops, |
| unsigned ArgNo, bool StackValue) { |
| assert(Expr && "Can't add ops to this expression"); |
| |
| // Handle non-variadic intrinsics by prepending the opcodes. |
| if (!any_of(Expr->expr_ops(), |
| [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) { |
| assert(ArgNo == 0 && |
| "Location Index must be 0 for a non-variadic expression."); |
| SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end()); |
| return DIExpression::prependOpcodes(Expr, NewOps, StackValue); |
| } |
| |
| SmallVector<uint64_t, 8> NewOps; |
| for (auto Op : Expr->expr_ops()) { |
| // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. |
| if (StackValue) { |
| if (Op.getOp() == dwarf::DW_OP_stack_value) |
| StackValue = false; |
| else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
| NewOps.push_back(dwarf::DW_OP_stack_value); |
| StackValue = false; |
| } |
| } |
| Op.appendToVector(NewOps); |
| if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo) |
| NewOps.insert(NewOps.end(), Ops.begin(), Ops.end()); |
| } |
| if (StackValue) |
| NewOps.push_back(dwarf::DW_OP_stack_value); |
| |
| return DIExpression::get(Expr->getContext(), NewOps); |
| } |
| |
| DIExpression *DIExpression::replaceArg(const DIExpression *Expr, |
| uint64_t OldArg, uint64_t NewArg) { |
| assert(Expr && "Can't replace args in this expression"); |
| |
| SmallVector<uint64_t, 8> NewOps; |
| |
| for (auto Op : Expr->expr_ops()) { |
| if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) { |
| Op.appendToVector(NewOps); |
| continue; |
| } |
| NewOps.push_back(dwarf::DW_OP_LLVM_arg); |
| uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0); |
| // OldArg has been deleted from the Op list, so decrement all indices |
| // greater than it. |
| if (Arg > OldArg) |
| --Arg; |
| NewOps.push_back(Arg); |
| } |
| return DIExpression::get(Expr->getContext(), NewOps); |
| } |
| |
| DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, |
| SmallVectorImpl<uint64_t> &Ops, |
| bool StackValue, bool EntryValue) { |
| assert(Expr && "Can't prepend ops to this expression"); |
| |
| if (EntryValue) { |
| Ops.push_back(dwarf::DW_OP_LLVM_entry_value); |
| // Use a block size of 1 for the target register operand. The |
| // DWARF backend currently cannot emit entry values with a block |
| // size > 1. |
| Ops.push_back(1); |
| } |
| |
| // If there are no ops to prepend, do not even add the DW_OP_stack_value. |
| if (Ops.empty()) |
| StackValue = false; |
| for (auto Op : Expr->expr_ops()) { |
| // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. |
| if (StackValue) { |
| if (Op.getOp() == dwarf::DW_OP_stack_value) |
| StackValue = false; |
| else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
| Ops.push_back(dwarf::DW_OP_stack_value); |
| StackValue = false; |
| } |
| } |
| Op.appendToVector(Ops); |
| } |
| if (StackValue) |
| Ops.push_back(dwarf::DW_OP_stack_value); |
| return DIExpression::get(Expr->getContext(), Ops); |
| } |
| |
| DIExpression *DIExpression::append(const DIExpression *Expr, |
| ArrayRef<uint64_t> Ops) { |
| assert(Expr && !Ops.empty() && "Can't append ops to this expression"); |
| |
| // Copy Expr's current op list. |
| SmallVector<uint64_t, 16> NewOps; |
| for (auto Op : Expr->expr_ops()) { |
| // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. |
| if (Op.getOp() == dwarf::DW_OP_stack_value || |
| Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
| NewOps.append(Ops.begin(), Ops.end()); |
| |
| // Ensure that the new opcodes are only appended once. |
| Ops = std::nullopt; |
| } |
| Op.appendToVector(NewOps); |
| } |
| NewOps.append(Ops.begin(), Ops.end()); |
| auto *result = |
| DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath(); |
| assert(result->isValid() && "concatenated expression is not valid"); |
| return result; |
| } |
| |
| DIExpression *DIExpression::appendToStack(const DIExpression *Expr, |
| ArrayRef<uint64_t> Ops) { |
| assert(Expr && !Ops.empty() && "Can't append ops to this expression"); |
| assert(std::none_of(expr_op_iterator(Ops.begin()), |
| expr_op_iterator(Ops.end()), |
| [](auto Op) { |
| return Op.getOp() == dwarf::DW_OP_stack_value || |
| Op.getOp() == dwarf::DW_OP_LLVM_fragment; |
| }) && |
| "Can't append this op"); |
| |
| // Append a DW_OP_deref after Expr's current op list if it's non-empty and |
| // has no DW_OP_stack_value. |
| // |
| // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. |
| std::optional<FragmentInfo> FI = Expr->getFragmentInfo(); |
| unsigned DropUntilStackValue = FI ? 3 : 0; |
| ArrayRef<uint64_t> ExprOpsBeforeFragment = |
| Expr->getElements().drop_back(DropUntilStackValue); |
| bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && |
| (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); |
| bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); |
| |
| // Append a DW_OP_deref after Expr's current op list if needed, then append |
| // the new ops, and finally ensure that a single DW_OP_stack_value is present. |
| SmallVector<uint64_t, 16> NewOps; |
| if (NeedsDeref) |
| NewOps.push_back(dwarf::DW_OP_deref); |
| NewOps.append(Ops.begin(), Ops.end()); |
| if (NeedsStackValue) |
| NewOps.push_back(dwarf::DW_OP_stack_value); |
| return DIExpression::append(Expr, NewOps); |
| } |
| |
| std::optional<DIExpression *> DIExpression::createFragmentExpression( |
| const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { |
| SmallVector<uint64_t, 8> Ops; |
| // Track whether it's safe to split the value at the top of the DWARF stack, |
| // assuming that it'll be used as an implicit location value. |
| bool CanSplitValue = true; |
| // Track whether we need to add a fragment expression to the end of Expr. |
| bool EmitFragment = true; |
| // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. |
| if (Expr) { |
| for (auto Op : Expr->expr_ops()) { |
| switch (Op.getOp()) { |
| default: |
| break; |
| case dwarf::DW_OP_shr: |
| case dwarf::DW_OP_shra: |
| case dwarf::DW_OP_shl: |
| case dwarf::DW_OP_plus: |
| case dwarf::DW_OP_plus_uconst: |
| case dwarf::DW_OP_minus: |
| // We can't safely split arithmetic or shift operations into multiple |
| // fragments because we can't express carry-over between fragments. |
| // |
| // FIXME: We *could* preserve the lowest fragment of a constant offset |
| // operation if the offset fits into SizeInBits. |
| CanSplitValue = false; |
| break; |
| case dwarf::DW_OP_deref: |
| case dwarf::DW_OP_deref_size: |
| case dwarf::DW_OP_deref_type: |
| case dwarf::DW_OP_xderef: |
| case dwarf::DW_OP_xderef_size: |
| case dwarf::DW_OP_xderef_type: |
| // Preceeding arithmetic operations have been applied to compute an |
| // address. It's okay to split the value loaded from that address. |
| CanSplitValue = true; |
| break; |
| case dwarf::DW_OP_stack_value: |
| // Bail if this expression computes a value that cannot be split. |
| if (!CanSplitValue) |
| return std::nullopt; |
| break; |
| case dwarf::DW_OP_LLVM_fragment: { |
| // If we've decided we don't need a fragment then give up if we see that |
| // there's already a fragment expression. |
| // FIXME: We could probably do better here |
| if (!EmitFragment) |
| return std::nullopt; |
| // Make the new offset point into the existing fragment. |
| uint64_t FragmentOffsetInBits = Op.getArg(0); |
| uint64_t FragmentSizeInBits = Op.getArg(1); |
| (void)FragmentSizeInBits; |
| assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && |
| "new fragment outside of original fragment"); |
| OffsetInBits += FragmentOffsetInBits; |
| continue; |
| } |
| case dwarf::DW_OP_LLVM_extract_bits_zext: |
| case dwarf::DW_OP_LLVM_extract_bits_sext: { |
| // If we're extracting bits from inside of the fragment that we're |
| // creating then we don't have a fragment after all, and just need to |
| // adjust the offset that we're extracting from. |
| uint64_t ExtractOffsetInBits = Op.getArg(0); |
| uint64_t ExtractSizeInBits = Op.getArg(1); |
| if (ExtractOffsetInBits >= OffsetInBits && |
| ExtractOffsetInBits + ExtractSizeInBits <= |
| OffsetInBits + SizeInBits) { |
| Ops.push_back(Op.getOp()); |
| Ops.push_back(ExtractOffsetInBits - OffsetInBits); |
| Ops.push_back(ExtractSizeInBits); |
| EmitFragment = false; |
| continue; |
| } |
| // If the extracted bits aren't fully contained within the fragment then |
| // give up. |
| // FIXME: We could probably do better here |
| return std::nullopt; |
| } |
| } |
| Op.appendToVector(Ops); |
| } |
| } |
| assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split"); |
| assert(Expr && "Unknown DIExpression"); |
| if (EmitFragment) { |
| Ops.push_back(dwarf::DW_OP_LLVM_fragment); |
| Ops.push_back(OffsetInBits); |
| Ops.push_back(SizeInBits); |
| } |
| return DIExpression::get(Expr->getContext(), Ops); |
| } |
| |
| /// See declaration for more info. |
| bool DIExpression::calculateFragmentIntersect( |
| const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, |
| uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, |
| int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, |
| std::optional<DIExpression::FragmentInfo> &Result, |
| int64_t &OffsetFromLocationInBits) { |
| |
| if (VarFrag.SizeInBits == 0) |
| return false; // Variable size is unknown. |
| |
| // Difference between mem slice start and the dbg location start. |
| // 0 4 8 12 16 ... |
| // | | |
| // dbg location start |
| // | |
| // mem slice start |
| // Here MemStartRelToDbgStartInBits is 8. Note this can be negative. |
| int64_t MemStartRelToDbgStartInBits; |
| { |
| auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL); |
| if (!MemOffsetFromDbgInBytes) |
| return false; // Can't calculate difference in addresses. |
| // Difference between the pointers. |
| MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8; |
| // Add the difference of the offsets. |
| MemStartRelToDbgStartInBits += |
| SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits); |
| } |
| |
| // Out-param. Invert offset to get offset from debug location. |
| OffsetFromLocationInBits = -MemStartRelToDbgStartInBits; |
| |
| // Check if the variable fragment sits outside (before) this memory slice. |
| int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits; |
| if (MemEndRelToDbgStart < 0) { |
| Result = {0, 0}; // Out-param. |
| return true; |
| } |
| |
| // Work towards creating SliceOfVariable which is the bits of the variable |
| // that the memory region covers. |
| // 0 4 8 12 16 ... |
| // | | |
| // dbg location start with VarFrag offset=32 |
| // | |
| // mem slice start: SliceOfVariable offset=40 |
| int64_t MemStartRelToVarInBits = |
| MemStartRelToDbgStartInBits + VarFrag.OffsetInBits; |
| int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits; |
| // If the memory region starts before the debug location the fragment |
| // offset would be negative, which we can't encode. Limit those to 0. This |
| // is fine because those bits necessarily don't overlap with the existing |
| // variable fragment. |
| int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits); |
| int64_t MemFragSize = |
| std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart); |
| DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart); |
| |
| // Intersect the memory region fragment with the variable location fragment. |
| DIExpression::FragmentInfo TrimmedSliceOfVariable = |
| DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag); |
| if (TrimmedSliceOfVariable == VarFrag) |
| Result = std::nullopt; // Out-param. |
| else |
| Result = TrimmedSliceOfVariable; // Out-param. |
| return true; |
| } |
| |
| std::pair<DIExpression *, const ConstantInt *> |
| DIExpression::constantFold(const ConstantInt *CI) { |
| // Copy the APInt so we can modify it. |
| APInt NewInt = CI->getValue(); |
| SmallVector<uint64_t, 8> Ops; |
| |
| // Fold operators only at the beginning of the expression. |
| bool First = true; |
| bool Changed = false; |
| for (auto Op : expr_ops()) { |
| switch (Op.getOp()) { |
| default: |
| // We fold only the leading part of the expression; if we get to a part |
| // that we're going to copy unchanged, and haven't done any folding, |
| // then the entire expression is unchanged and we can return early. |
| if (!Changed) |
| return {this, CI}; |
| First = false; |
| break; |
| case dwarf::DW_OP_LLVM_convert: |
| if (!First) |
| break; |
| Changed = true; |
| if (Op.getArg(1) == dwarf::DW_ATE_signed) |
| NewInt = NewInt.sextOrTrunc(Op.getArg(0)); |
| else { |
| assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand"); |
| NewInt = NewInt.zextOrTrunc(Op.getArg(0)); |
| } |
| continue; |
| } |
| Op.appendToVector(Ops); |
| } |
| if (!Changed) |
| return {this, CI}; |
| return {DIExpression::get(getContext(), Ops), |
| ConstantInt::get(getContext(), NewInt)}; |
| } |
| |
| uint64_t DIExpression::getNumLocationOperands() const { |
| uint64_t Result = 0; |
| for (auto ExprOp : expr_ops()) |
| if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) |
| Result = std::max(Result, ExprOp.getArg(0) + 1); |
| assert(hasAllLocationOps(Result) && |
| "Expression is missing one or more location operands."); |
| return Result; |
| } |
| |
| std::optional<DIExpression::SignedOrUnsignedConstant> |
| DIExpression::isConstant() const { |
| |
| // Recognize signed and unsigned constants. |
| // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value |
| // (DW_OP_LLVM_fragment of Len). |
| // An unsigned constant can be represented as |
| // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len). |
| |
| if ((getNumElements() != 2 && getNumElements() != 3 && |
| getNumElements() != 6) || |
| (getElement(0) != dwarf::DW_OP_consts && |
| getElement(0) != dwarf::DW_OP_constu)) |
| return std::nullopt; |
| |
| if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts) |
| return SignedOrUnsignedConstant::SignedConstant; |
| |
| if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) || |
| (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value || |
| getElement(3) != dwarf::DW_OP_LLVM_fragment))) |
| return std::nullopt; |
| return getElement(0) == dwarf::DW_OP_constu |
| ? SignedOrUnsignedConstant::UnsignedConstant |
| : SignedOrUnsignedConstant::SignedConstant; |
| } |
| |
| DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize, |
| bool Signed) { |
| dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; |
| DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK, |
| dwarf::DW_OP_LLVM_convert, ToSize, TK}}; |
| return Ops; |
| } |
| |
| DIExpression *DIExpression::appendExt(const DIExpression *Expr, |
| unsigned FromSize, unsigned ToSize, |
| bool Signed) { |
| return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed)); |
| } |
| |
| DIGlobalVariableExpression * |
| DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, |
| Metadata *Expression, StorageType Storage, |
| bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); |
| Metadata *Ops[] = {Variable, Expression}; |
| DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); |
| } |
| DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage, |
| unsigned Line, unsigned Attributes, |
| ArrayRef<Metadata *> Ops) |
| : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops), |
| Line(Line), Attributes(Attributes) {} |
| |
| DIObjCProperty *DIObjCProperty::getImpl( |
| LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, |
| MDString *GetterName, MDString *SetterName, unsigned Attributes, |
| Metadata *Type, StorageType Storage, bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| assert(isCanonical(GetterName) && "Expected canonical MDString"); |
| assert(isCanonical(SetterName) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, |
| SetterName, Attributes, Type)); |
| Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; |
| DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); |
| } |
| |
| DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, |
| Metadata *Scope, Metadata *Entity, |
| Metadata *File, unsigned Line, |
| MDString *Name, Metadata *Elements, |
| StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIImportedEntity, |
| (Tag, Scope, Entity, File, Line, Name, Elements)); |
| Metadata *Ops[] = {Scope, Entity, Name, File, Elements}; |
| DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); |
| } |
| |
| DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, |
| MDString *Name, MDString *Value, StorageType Storage, |
| bool ShouldCreate) { |
| assert(isCanonical(Name) && "Expected canonical MDString"); |
| DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); |
| Metadata *Ops[] = {Name, Value}; |
| DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); |
| } |
| |
| DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, |
| unsigned Line, Metadata *File, |
| Metadata *Elements, StorageType Storage, |
| bool ShouldCreate) { |
| DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); |
| Metadata *Ops[] = {File, Elements}; |
| DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); |
| } |
| |
| DIArgList *DIArgList::get(LLVMContext &Context, |
| ArrayRef<ValueAsMetadata *> Args) { |
| auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args)); |
| if (ExistingIt != Context.pImpl->DIArgLists.end()) |
| return *ExistingIt; |
| DIArgList *NewArgList = new DIArgList(Context, Args); |
| Context.pImpl->DIArgLists.insert(NewArgList); |
| return NewArgList; |
| } |
| |
| void DIArgList::handleChangedOperand(void *Ref, Metadata *New) { |
| ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref); |
| assert((!New || isa<ValueAsMetadata>(New)) && |
| "DIArgList must be passed a ValueAsMetadata"); |
| untrack(); |
| // We need to update the set storage once the Args are updated since they |
| // form the key to the DIArgLists store. |
| getContext().pImpl->DIArgLists.erase(this); |
| ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New); |
| for (ValueAsMetadata *&VM : Args) { |
| if (&VM == OldVMPtr) { |
| if (NewVM) |
| VM = NewVM; |
| else |
| VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType())); |
| } |
| } |
| // We've changed the contents of this DIArgList, and the set storage may |
| // already contain a DIArgList with our new set of args; if it does, then we |
| // must RAUW this with the existing DIArgList, otherwise we simply insert this |
| // back into the set storage. |
| DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this); |
| if (ExistingArgList) { |
| replaceAllUsesWith(ExistingArgList); |
| // Clear this here so we don't try to untrack in the destructor. |
| Args.clear(); |
| delete this; |
| return; |
| } |
| getContext().pImpl->DIArgLists.insert(this); |
| track(); |
| } |
| void DIArgList::track() { |
| for (ValueAsMetadata *&VAM : Args) |
| if (VAM) |
| MetadataTracking::track(&VAM, *VAM, *this); |
| } |
| void DIArgList::untrack() { |
| for (ValueAsMetadata *&VAM : Args) |
| if (VAM) |
| MetadataTracking::untrack(&VAM, *VAM); |
| } |
| void DIArgList::dropAllReferences(bool Untrack) { |
| if (Untrack) |
| untrack(); |
| Args.clear(); |
| ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false); |
| } |