| //===- ELF.cpp - ELF object file implementation ---------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Object/ELF.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/DataExtractor.h" |
| |
| using namespace llvm; |
| using namespace object; |
| |
| #define STRINGIFY_ENUM_CASE(ns, name) \ |
| case ns::name: \ |
| return #name; |
| |
| #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name) |
| |
| StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine, |
| uint32_t Type) { |
| switch (Machine) { |
| case ELF::EM_68K: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/M68k.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_X86_64: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_386: |
| case ELF::EM_IAMCU: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/i386.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_MIPS: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/Mips.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_AARCH64: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_ARM: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/ARM.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_ARC_COMPACT: |
| case ELF::EM_ARC_COMPACT2: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/ARC.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_AVR: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/AVR.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_HEXAGON: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_LANAI: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_PPC: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_PPC64: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_RISCV: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_S390: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_SPARC: |
| case ELF::EM_SPARC32PLUS: |
| case ELF::EM_SPARCV9: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_AMDGPU: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_BPF: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/BPF.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_MSP430: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/MSP430.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_VE: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/VE.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_CSKY: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/CSKY.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_LOONGARCH: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def" |
| default: |
| break; |
| } |
| break; |
| case ELF::EM_XTENSA: |
| switch (Type) { |
| #include "llvm/BinaryFormat/ELFRelocs/Xtensa.def" |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| return "Unknown"; |
| } |
| |
| #undef ELF_RELOC |
| |
| uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) { |
| switch (Machine) { |
| case ELF::EM_X86_64: |
| return ELF::R_X86_64_RELATIVE; |
| case ELF::EM_386: |
| case ELF::EM_IAMCU: |
| return ELF::R_386_RELATIVE; |
| case ELF::EM_MIPS: |
| break; |
| case ELF::EM_AARCH64: |
| return ELF::R_AARCH64_RELATIVE; |
| case ELF::EM_ARM: |
| return ELF::R_ARM_RELATIVE; |
| case ELF::EM_ARC_COMPACT: |
| case ELF::EM_ARC_COMPACT2: |
| return ELF::R_ARC_RELATIVE; |
| case ELF::EM_AVR: |
| break; |
| case ELF::EM_HEXAGON: |
| return ELF::R_HEX_RELATIVE; |
| case ELF::EM_LANAI: |
| break; |
| case ELF::EM_PPC: |
| break; |
| case ELF::EM_PPC64: |
| return ELF::R_PPC64_RELATIVE; |
| case ELF::EM_RISCV: |
| return ELF::R_RISCV_RELATIVE; |
| case ELF::EM_S390: |
| return ELF::R_390_RELATIVE; |
| case ELF::EM_SPARC: |
| case ELF::EM_SPARC32PLUS: |
| case ELF::EM_SPARCV9: |
| return ELF::R_SPARC_RELATIVE; |
| case ELF::EM_CSKY: |
| return ELF::R_CKCORE_RELATIVE; |
| case ELF::EM_VE: |
| return ELF::R_VE_RELATIVE; |
| case ELF::EM_AMDGPU: |
| break; |
| case ELF::EM_BPF: |
| break; |
| case ELF::EM_LOONGARCH: |
| return ELF::R_LARCH_RELATIVE; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { |
| switch (Machine) { |
| case ELF::EM_ARM: |
| switch (Type) { |
| STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); |
| } |
| break; |
| case ELF::EM_HEXAGON: |
| switch (Type) { |
| STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); |
| STRINGIFY_ENUM_CASE(ELF, SHT_HEXAGON_ATTRIBUTES); |
| } |
| break; |
| case ELF::EM_X86_64: |
| switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } |
| break; |
| case ELF::EM_MIPS: |
| case ELF::EM_MIPS_RS3_LE: |
| switch (Type) { |
| STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); |
| STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); |
| STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF); |
| STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); |
| } |
| break; |
| case ELF::EM_MSP430: |
| switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); } |
| break; |
| case ELF::EM_RISCV: |
| switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); } |
| break; |
| case ELF::EM_AARCH64: |
| switch (Type) { |
| STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_AUTH_RELR); |
| STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC); |
| STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC); |
| } |
| default: |
| break; |
| } |
| |
| switch (Type) { |
| STRINGIFY_ENUM_CASE(ELF, SHT_NULL); |
| STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS); |
| STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB); |
| STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB); |
| STRINGIFY_ENUM_CASE(ELF, SHT_RELA); |
| STRINGIFY_ENUM_CASE(ELF, SHT_HASH); |
| STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC); |
| STRINGIFY_ENUM_CASE(ELF, SHT_NOTE); |
| STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS); |
| STRINGIFY_ENUM_CASE(ELF, SHT_REL); |
| STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB); |
| STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM); |
| STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); |
| STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); |
| STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); |
| STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); |
| STRINGIFY_ENUM_CASE(ELF, SHT_RELR); |
| STRINGIFY_ENUM_CASE(ELF, SHT_CREL); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); |
| STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING); |
| STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); |
| STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| template <class ELFT> |
| std::vector<typename ELFT::Rel> |
| ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const { |
| // This function decodes the contents of an SHT_RELR packed relocation |
| // section. |
| // |
| // Proposal for adding SHT_RELR sections to generic-abi is here: |
| // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg |
| // |
| // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks |
| // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| // |
| // i.e. start with an address, followed by any number of bitmaps. The address |
| // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 |
| // relocations each, at subsequent offsets following the last address entry. |
| // |
| // The bitmap entries must have 1 in the least significant bit. The assumption |
| // here is that an address cannot have 1 in lsb. Odd addresses are not |
| // supported. |
| // |
| // Excluding the least significant bit in the bitmap, each non-zero bit in |
| // the bitmap represents a relocation to be applied to a corresponding machine |
| // word that follows the base address word. The second least significant bit |
| // represents the machine word immediately following the initial address, and |
| // each bit that follows represents the next word, in linear order. As such, |
| // a single bitmap can encode up to 31 relocations in a 32-bit object, and |
| // 63 relocations in a 64-bit object. |
| // |
| // This encoding has a couple of interesting properties: |
| // 1. Looking at any entry, it is clear whether it's an address or a bitmap: |
| // even means address, odd means bitmap. |
| // 2. Just a simple list of addresses is a valid encoding. |
| |
| Elf_Rel Rel; |
| Rel.r_info = 0; |
| Rel.setType(getRelativeRelocationType(), false); |
| std::vector<Elf_Rel> Relocs; |
| |
| // Word type: uint32_t for Elf32, and uint64_t for Elf64. |
| using Addr = typename ELFT::uint; |
| |
| Addr Base = 0; |
| for (Elf_Relr R : relrs) { |
| typename ELFT::uint Entry = R; |
| if ((Entry & 1) == 0) { |
| // Even entry: encodes the offset for next relocation. |
| Rel.r_offset = Entry; |
| Relocs.push_back(Rel); |
| // Set base offset for subsequent bitmap entries. |
| Base = Entry + sizeof(Addr); |
| } else { |
| // Odd entry: encodes bitmap for relocations starting at base. |
| for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr)) |
| if ((Entry & 1) != 0) { |
| Rel.r_offset = Offset; |
| Relocs.push_back(Rel); |
| } |
| Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr); |
| } |
| } |
| |
| return Relocs; |
| } |
| |
| template <class ELFT> |
| Expected<uint64_t> |
| ELFFile<ELFT>::getCrelHeader(ArrayRef<uint8_t> Content) const { |
| DataExtractor Data(Content, isLE(), sizeof(typename ELFT::Addr)); |
| Error Err = Error::success(); |
| uint64_t Hdr = 0; |
| Hdr = Data.getULEB128(&Hdr, &Err); |
| if (Err) |
| return Err; |
| return Hdr; |
| } |
| |
| template <class ELFT> |
| Expected<typename ELFFile<ELFT>::RelsOrRelas> |
| ELFFile<ELFT>::decodeCrel(ArrayRef<uint8_t> Content) const { |
| std::vector<Elf_Rel> Rels; |
| std::vector<Elf_Rela> Relas; |
| size_t I = 0; |
| bool HasAddend; |
| Error Err = object::decodeCrel<ELFT::Is64Bits>( |
| Content, |
| [&](uint64_t Count, bool HasA) { |
| HasAddend = HasA; |
| if (HasAddend) |
| Relas.resize(Count); |
| else |
| Rels.resize(Count); |
| }, |
| [&](Elf_Crel Crel) { |
| if (HasAddend) { |
| Relas[I].r_offset = Crel.r_offset; |
| Relas[I].setSymbolAndType(Crel.r_symidx, Crel.r_type, false); |
| Relas[I++].r_addend = Crel.r_addend; |
| } else { |
| Rels[I].r_offset = Crel.r_offset; |
| Rels[I++].setSymbolAndType(Crel.r_symidx, Crel.r_type, false); |
| } |
| }); |
| if (Err) |
| return std::move(Err); |
| return std::make_pair(std::move(Rels), std::move(Relas)); |
| } |
| |
| template <class ELFT> |
| Expected<typename ELFFile<ELFT>::RelsOrRelas> |
| ELFFile<ELFT>::crels(const Elf_Shdr &Sec) const { |
| Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); |
| if (!ContentsOrErr) |
| return ContentsOrErr.takeError(); |
| return decodeCrel(*ContentsOrErr); |
| } |
| |
| template <class ELFT> |
| Expected<std::vector<typename ELFT::Rela>> |
| ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const { |
| // This function reads relocations in Android's packed relocation format, |
| // which is based on SLEB128 and delta encoding. |
| Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); |
| if (!ContentsOrErr) |
| return ContentsOrErr.takeError(); |
| ArrayRef<uint8_t> Content = *ContentsOrErr; |
| if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' || |
| Content[2] != 'S' || Content[3] != '2') |
| return createError("invalid packed relocation header"); |
| DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4); |
| DataExtractor::Cursor Cur(/*Offset=*/4); |
| |
| uint64_t NumRelocs = Data.getSLEB128(Cur); |
| uint64_t Offset = Data.getSLEB128(Cur); |
| uint64_t Addend = 0; |
| |
| if (!Cur) |
| return std::move(Cur.takeError()); |
| |
| std::vector<Elf_Rela> Relocs; |
| Relocs.reserve(NumRelocs); |
| while (NumRelocs) { |
| uint64_t NumRelocsInGroup = Data.getSLEB128(Cur); |
| if (!Cur) |
| return std::move(Cur.takeError()); |
| if (NumRelocsInGroup > NumRelocs) |
| return createError("relocation group unexpectedly large"); |
| NumRelocs -= NumRelocsInGroup; |
| |
| uint64_t GroupFlags = Data.getSLEB128(Cur); |
| bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG; |
| bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG; |
| bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG; |
| bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG; |
| |
| uint64_t GroupOffsetDelta; |
| if (GroupedByOffsetDelta) |
| GroupOffsetDelta = Data.getSLEB128(Cur); |
| |
| uint64_t GroupRInfo; |
| if (GroupedByInfo) |
| GroupRInfo = Data.getSLEB128(Cur); |
| |
| if (GroupedByAddend && GroupHasAddend) |
| Addend += Data.getSLEB128(Cur); |
| |
| if (!GroupHasAddend) |
| Addend = 0; |
| |
| for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) { |
| Elf_Rela R; |
| Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur); |
| R.r_offset = Offset; |
| R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur); |
| if (GroupHasAddend && !GroupedByAddend) |
| Addend += Data.getSLEB128(Cur); |
| R.r_addend = Addend; |
| Relocs.push_back(R); |
| } |
| if (!Cur) |
| return std::move(Cur.takeError()); |
| } |
| |
| return Relocs; |
| } |
| |
| template <class ELFT> |
| std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch, |
| uint64_t Type) const { |
| #define DYNAMIC_STRINGIFY_ENUM(tag, value) \ |
| case value: \ |
| return #tag; |
| |
| #define DYNAMIC_TAG(n, v) |
| switch (Arch) { |
| case ELF::EM_AARCH64: |
| switch (Type) { |
| #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef AARCH64_DYNAMIC_TAG |
| } |
| break; |
| |
| case ELF::EM_HEXAGON: |
| switch (Type) { |
| #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef HEXAGON_DYNAMIC_TAG |
| } |
| break; |
| |
| case ELF::EM_MIPS: |
| switch (Type) { |
| #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef MIPS_DYNAMIC_TAG |
| } |
| break; |
| |
| case ELF::EM_PPC: |
| switch (Type) { |
| #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef PPC_DYNAMIC_TAG |
| } |
| break; |
| |
| case ELF::EM_PPC64: |
| switch (Type) { |
| #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef PPC64_DYNAMIC_TAG |
| } |
| break; |
| |
| case ELF::EM_RISCV: |
| switch (Type) { |
| #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef RISCV_DYNAMIC_TAG |
| } |
| break; |
| } |
| #undef DYNAMIC_TAG |
| switch (Type) { |
| // Now handle all dynamic tags except the architecture specific ones |
| #define AARCH64_DYNAMIC_TAG(name, value) |
| #define MIPS_DYNAMIC_TAG(name, value) |
| #define HEXAGON_DYNAMIC_TAG(name, value) |
| #define PPC_DYNAMIC_TAG(name, value) |
| #define PPC64_DYNAMIC_TAG(name, value) |
| #define RISCV_DYNAMIC_TAG(name, value) |
| // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. |
| #define DYNAMIC_TAG_MARKER(name, value) |
| #define DYNAMIC_TAG(name, value) case value: return #name; |
| #include "llvm/BinaryFormat/DynamicTags.def" |
| #undef DYNAMIC_TAG |
| #undef AARCH64_DYNAMIC_TAG |
| #undef MIPS_DYNAMIC_TAG |
| #undef HEXAGON_DYNAMIC_TAG |
| #undef PPC_DYNAMIC_TAG |
| #undef PPC64_DYNAMIC_TAG |
| #undef RISCV_DYNAMIC_TAG |
| #undef DYNAMIC_TAG_MARKER |
| #undef DYNAMIC_STRINGIFY_ENUM |
| default: |
| return "<unknown:>0x" + utohexstr(Type, true); |
| } |
| } |
| |
| template <class ELFT> |
| std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const { |
| return getDynamicTagAsString(getHeader().e_machine, Type); |
| } |
| |
| template <class ELFT> |
| Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const { |
| ArrayRef<Elf_Dyn> Dyn; |
| |
| auto ProgramHeadersOrError = program_headers(); |
| if (!ProgramHeadersOrError) |
| return ProgramHeadersOrError.takeError(); |
| |
| for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) { |
| if (Phdr.p_type == ELF::PT_DYNAMIC) { |
| const uint8_t *DynOffset = base() + Phdr.p_offset; |
| if (DynOffset > end()) |
| return createError( |
| "dynamic section offset past file size: corrupted ELF"); |
| Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(DynOffset), |
| Phdr.p_filesz / sizeof(Elf_Dyn)); |
| break; |
| } |
| } |
| |
| // If we can't find the dynamic section in the program headers, we just fall |
| // back on the sections. |
| if (Dyn.empty()) { |
| auto SectionsOrError = sections(); |
| if (!SectionsOrError) |
| return SectionsOrError.takeError(); |
| |
| for (const Elf_Shdr &Sec : *SectionsOrError) { |
| if (Sec.sh_type == ELF::SHT_DYNAMIC) { |
| Expected<ArrayRef<Elf_Dyn>> DynOrError = |
| getSectionContentsAsArray<Elf_Dyn>(Sec); |
| if (!DynOrError) |
| return DynOrError.takeError(); |
| Dyn = *DynOrError; |
| break; |
| } |
| } |
| |
| if (!Dyn.data()) |
| return ArrayRef<Elf_Dyn>(); |
| } |
| |
| if (Dyn.empty()) |
| return createError("invalid empty dynamic section"); |
| |
| if (Dyn.back().d_tag != ELF::DT_NULL) |
| return createError("dynamic sections must be DT_NULL terminated"); |
| |
| return Dyn; |
| } |
| |
| template <class ELFT> |
| Expected<const uint8_t *> |
| ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const { |
| auto ProgramHeadersOrError = program_headers(); |
| if (!ProgramHeadersOrError) |
| return ProgramHeadersOrError.takeError(); |
| |
| llvm::SmallVector<Elf_Phdr *, 4> LoadSegments; |
| |
| for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) |
| if (Phdr.p_type == ELF::PT_LOAD) |
| LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr)); |
| |
| auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A, |
| const Elf_Phdr_Impl<ELFT> *B) { |
| return A->p_vaddr < B->p_vaddr; |
| }; |
| if (!llvm::is_sorted(LoadSegments, SortPred)) { |
| if (Error E = |
| WarnHandler("loadable segments are unsorted by virtual address")) |
| return std::move(E); |
| llvm::stable_sort(LoadSegments, SortPred); |
| } |
| |
| const Elf_Phdr *const *I = llvm::upper_bound( |
| LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) { |
| return VAddr < Phdr->p_vaddr; |
| }); |
| |
| if (I == LoadSegments.begin()) |
| return createError("virtual address is not in any segment: 0x" + |
| Twine::utohexstr(VAddr)); |
| --I; |
| const Elf_Phdr &Phdr = **I; |
| uint64_t Delta = VAddr - Phdr.p_vaddr; |
| if (Delta >= Phdr.p_filesz) |
| return createError("virtual address is not in any segment: 0x" + |
| Twine::utohexstr(VAddr)); |
| |
| uint64_t Offset = Phdr.p_offset + Delta; |
| if (Offset >= getBufSize()) |
| return createError("can't map virtual address 0x" + |
| Twine::utohexstr(VAddr) + " to the segment with index " + |
| Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) + |
| ": the segment ends at 0x" + |
| Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) + |
| ", which is greater than the file size (0x" + |
| Twine::utohexstr(getBufSize()) + ")"); |
| |
| return base() + Offset; |
| } |
| |
| // Helper to extract and decode the next ULEB128 value as unsigned int. |
| // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the unsigned |
| // int limit. |
| // Also returns zero if ULEBSizeErr is already in an error state. |
| // ULEBSizeErr is an out variable if an error occurs. |
| template <typename IntTy, std::enable_if_t<std::is_unsigned_v<IntTy>, int> = 0> |
| static IntTy readULEB128As(DataExtractor &Data, DataExtractor::Cursor &Cur, |
| Error &ULEBSizeErr) { |
| // Bail out and do not extract data if ULEBSizeErr is already set. |
| if (ULEBSizeErr) |
| return 0; |
| uint64_t Offset = Cur.tell(); |
| uint64_t Value = Data.getULEB128(Cur); |
| if (Value > std::numeric_limits<IntTy>::max()) { |
| ULEBSizeErr = createError("ULEB128 value at offset 0x" + |
| Twine::utohexstr(Offset) + " exceeds UINT" + |
| Twine(std::numeric_limits<IntTy>::digits) + |
| "_MAX (0x" + Twine::utohexstr(Value) + ")"); |
| return 0; |
| } |
| return static_cast<IntTy>(Value); |
| } |
| |
| template <typename ELFT> |
| static Expected<std::vector<BBAddrMap>> |
| decodeBBAddrMapImpl(const ELFFile<ELFT> &EF, |
| const typename ELFFile<ELFT>::Elf_Shdr &Sec, |
| const typename ELFFile<ELFT>::Elf_Shdr *RelaSec, |
| std::vector<PGOAnalysisMap> *PGOAnalyses) { |
| bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL; |
| |
| // This DenseMap maps the offset of each function (the location of the |
| // reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the |
| // addend (the location of the function in the text section). |
| llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations; |
| if (IsRelocatable && RelaSec) { |
| assert(RelaSec && |
| "Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable " |
| "object file without providing a relocation section."); |
| Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = EF.relas(*RelaSec); |
| if (!Relas) |
| return createError("unable to read relocations for section " + |
| describe(EF, Sec) + ": " + |
| toString(Relas.takeError())); |
| for (typename ELFFile<ELFT>::Elf_Rela Rela : *Relas) |
| FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend; |
| } |
| auto GetAddressForRelocation = |
| [&](unsigned RelocationOffsetInSection) -> Expected<unsigned> { |
| auto FOTIterator = |
| FunctionOffsetTranslations.find(RelocationOffsetInSection); |
| if (FOTIterator == FunctionOffsetTranslations.end()) { |
| return createError("failed to get relocation data for offset: " + |
| Twine::utohexstr(RelocationOffsetInSection) + |
| " in section " + describe(EF, Sec)); |
| } |
| return FOTIterator->second; |
| }; |
| Expected<ArrayRef<uint8_t>> ContentsOrErr = EF.getSectionContents(Sec); |
| if (!ContentsOrErr) |
| return ContentsOrErr.takeError(); |
| ArrayRef<uint8_t> Content = *ContentsOrErr; |
| DataExtractor Data(Content, EF.isLE(), ELFT::Is64Bits ? 8 : 4); |
| std::vector<BBAddrMap> FunctionEntries; |
| |
| DataExtractor::Cursor Cur(0); |
| Error ULEBSizeErr = Error::success(); |
| Error MetadataDecodeErr = Error::success(); |
| |
| // Helper lampda to extract the (possiblly relocatable) address stored at Cur. |
| auto ExtractAddress = [&]() -> Expected<typename ELFFile<ELFT>::uintX_t> { |
| uint64_t RelocationOffsetInSection = Cur.tell(); |
| auto Address = |
| static_cast<typename ELFFile<ELFT>::uintX_t>(Data.getAddress(Cur)); |
| if (!Cur) |
| return Cur.takeError(); |
| if (!IsRelocatable) |
| return Address; |
| assert(Address == 0); |
| Expected<unsigned> AddressOrErr = |
| GetAddressForRelocation(RelocationOffsetInSection); |
| if (!AddressOrErr) |
| return AddressOrErr.takeError(); |
| return *AddressOrErr; |
| }; |
| |
| uint8_t Version = 0; |
| uint8_t Feature = 0; |
| BBAddrMap::Features FeatEnable{}; |
| while (!ULEBSizeErr && !MetadataDecodeErr && Cur && |
| Cur.tell() < Content.size()) { |
| if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) { |
| Version = Data.getU8(Cur); |
| if (!Cur) |
| break; |
| if (Version > 2) |
| return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " + |
| Twine(static_cast<int>(Version))); |
| Feature = Data.getU8(Cur); // Feature byte |
| if (!Cur) |
| break; |
| auto FeatEnableOrErr = BBAddrMap::Features::decode(Feature); |
| if (!FeatEnableOrErr) |
| return FeatEnableOrErr.takeError(); |
| FeatEnable = *FeatEnableOrErr; |
| if (Feature != 0 && Version < 2 && Cur) |
| return createError( |
| "version should be >= 2 for SHT_LLVM_BB_ADDR_MAP when " |
| "PGO features are enabled: version = " + |
| Twine(static_cast<int>(Version)) + |
| " feature = " + Twine(static_cast<int>(Feature))); |
| } |
| uint32_t NumBlocksInBBRange = 0; |
| uint32_t NumBBRanges = 1; |
| typename ELFFile<ELFT>::uintX_t RangeBaseAddress = 0; |
| std::vector<BBAddrMap::BBEntry> BBEntries; |
| if (FeatEnable.MultiBBRange) { |
| NumBBRanges = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| if (!Cur || ULEBSizeErr) |
| break; |
| if (!NumBBRanges) |
| return createError("invalid zero number of BB ranges at offset " + |
| Twine::utohexstr(Cur.tell()) + " in " + |
| describe(EF, Sec)); |
| } else { |
| auto AddressOrErr = ExtractAddress(); |
| if (!AddressOrErr) |
| return AddressOrErr.takeError(); |
| RangeBaseAddress = *AddressOrErr; |
| NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| } |
| std::vector<BBAddrMap::BBRangeEntry> BBRangeEntries; |
| uint32_t TotalNumBlocks = 0; |
| for (uint32_t BBRangeIndex = 0; BBRangeIndex < NumBBRanges; |
| ++BBRangeIndex) { |
| uint32_t PrevBBEndOffset = 0; |
| if (FeatEnable.MultiBBRange) { |
| auto AddressOrErr = ExtractAddress(); |
| if (!AddressOrErr) |
| return AddressOrErr.takeError(); |
| RangeBaseAddress = *AddressOrErr; |
| NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| } |
| for (uint32_t BlockIndex = 0; !MetadataDecodeErr && !ULEBSizeErr && Cur && |
| (BlockIndex < NumBlocksInBBRange); |
| ++BlockIndex) { |
| uint32_t ID = Version >= 2 |
| ? readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr) |
| : BlockIndex; |
| uint32_t Offset = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| uint32_t Size = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| uint32_t MD = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| if (Version >= 1) { |
| // Offset is calculated relative to the end of the previous BB. |
| Offset += PrevBBEndOffset; |
| PrevBBEndOffset = Offset + Size; |
| } |
| Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr = |
| BBAddrMap::BBEntry::Metadata::decode(MD); |
| if (!MetadataOrErr) { |
| MetadataDecodeErr = MetadataOrErr.takeError(); |
| break; |
| } |
| BBEntries.push_back({ID, Offset, Size, *MetadataOrErr}); |
| } |
| TotalNumBlocks += BBEntries.size(); |
| BBRangeEntries.push_back({RangeBaseAddress, std::move(BBEntries)}); |
| } |
| FunctionEntries.push_back({std::move(BBRangeEntries)}); |
| |
| if (PGOAnalyses || FeatEnable.hasPGOAnalysis()) { |
| // Function entry count |
| uint64_t FuncEntryCount = |
| FeatEnable.FuncEntryCount |
| ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr) |
| : 0; |
| |
| std::vector<PGOAnalysisMap::PGOBBEntry> PGOBBEntries; |
| for (uint32_t BlockIndex = 0; |
| FeatEnable.hasPGOAnalysisBBData() && !MetadataDecodeErr && |
| !ULEBSizeErr && Cur && (BlockIndex < TotalNumBlocks); |
| ++BlockIndex) { |
| // Block frequency |
| uint64_t BBF = FeatEnable.BBFreq |
| ? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr) |
| : 0; |
| |
| // Branch probability |
| llvm::SmallVector<PGOAnalysisMap::PGOBBEntry::SuccessorEntry, 2> |
| Successors; |
| if (FeatEnable.BrProb) { |
| auto SuccCount = readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr); |
| for (uint64_t I = 0; I < SuccCount; ++I) { |
| uint32_t BBID = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| uint32_t BrProb = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr); |
| if (PGOAnalyses) |
| Successors.push_back({BBID, BranchProbability::getRaw(BrProb)}); |
| } |
| } |
| |
| if (PGOAnalyses) |
| PGOBBEntries.push_back({BlockFrequency(BBF), std::move(Successors)}); |
| } |
| |
| if (PGOAnalyses) |
| PGOAnalyses->push_back( |
| {FuncEntryCount, std::move(PGOBBEntries), FeatEnable}); |
| } |
| } |
| // Either Cur is in the error state, or we have an error in ULEBSizeErr or |
| // MetadataDecodeErr (but not both), but we join all errors here to be safe. |
| if (!Cur || ULEBSizeErr || MetadataDecodeErr) |
| return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)), |
| std::move(MetadataDecodeErr)); |
| return FunctionEntries; |
| } |
| |
| template <class ELFT> |
| Expected<std::vector<BBAddrMap>> |
| ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec, |
| std::vector<PGOAnalysisMap> *PGOAnalyses) const { |
| size_t OriginalPGOSize = PGOAnalyses ? PGOAnalyses->size() : 0; |
| auto AddrMapsOrErr = decodeBBAddrMapImpl(*this, Sec, RelaSec, PGOAnalyses); |
| // remove new analyses when an error occurs |
| if (!AddrMapsOrErr && PGOAnalyses) |
| PGOAnalyses->resize(OriginalPGOSize); |
| return std::move(AddrMapsOrErr); |
| } |
| |
| template <class ELFT> |
| Expected< |
| MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>> |
| ELFFile<ELFT>::getSectionAndRelocations( |
| std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const { |
| MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap; |
| Error Errors = Error::success(); |
| for (const Elf_Shdr &Sec : cantFail(this->sections())) { |
| Expected<bool> DoesSectionMatch = IsMatch(Sec); |
| if (!DoesSectionMatch) { |
| Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError()); |
| continue; |
| } |
| if (*DoesSectionMatch) { |
| if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr)) |
| .second) |
| continue; |
| } |
| |
| if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL) |
| continue; |
| |
| Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info); |
| if (!RelSecOrErr) { |
| Errors = joinErrors(std::move(Errors), |
| createError(describe(*this, Sec) + |
| ": failed to get a relocated section: " + |
| toString(RelSecOrErr.takeError()))); |
| continue; |
| } |
| const Elf_Shdr *ContentsSec = *RelSecOrErr; |
| Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec); |
| if (!DoesRelTargetMatch) { |
| Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError()); |
| continue; |
| } |
| if (*DoesRelTargetMatch) |
| SecToRelocMap[ContentsSec] = &Sec; |
| } |
| if(Errors) |
| return std::move(Errors); |
| return SecToRelocMap; |
| } |
| |
| template class llvm::object::ELFFile<ELF32LE>; |
| template class llvm::object::ELFFile<ELF32BE>; |
| template class llvm::object::ELFFile<ELF64LE>; |
| template class llvm::object::ELFFile<ELF64BE>; |