| //@ compile-flags: -Zmir-opt-level=0 |
| //@ run-pass |
| |
| // This tests the float classification functions, for regular runtime code and for const evaluation. |
| |
| #![feature(f16)] |
| #![feature(f128)] |
| #![allow(unused_macro_rules)] |
| |
| use std::hint::black_box; |
| |
| macro_rules! both_assert { |
| ($a:expr) => { |
| { |
| const _: () = assert!($a); |
| // `black_box` prevents promotion, and MIR opts are disabled above, so this is truly |
| // going through LLVM. |
| assert!(black_box($a)); |
| } |
| }; |
| ($a:expr, $b:expr) => { |
| { |
| const _: () = assert!($a == $b); |
| assert_eq!(black_box($a), black_box($b)); |
| } |
| }; |
| } |
| |
| fn has_broken_floats() -> bool { |
| // i586 targets are broken due to <https://github.com/rust-lang/rust/issues/114479>. |
| cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) |
| } |
| |
| #[cfg(target_arch = "x86_64")] |
| fn f16(){ |
| both_assert!((1f16).to_bits(), 0x3c00); |
| both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00); |
| both_assert!((12.5f16).to_bits(), 0x4a40); |
| both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40); |
| both_assert!((1337f16).to_bits(), 0x6539); |
| both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539); |
| both_assert!((-14.25f16).to_bits(), 0xcb20); |
| both_assert!(f16::from_bits(0x3c00), 1.0); |
| both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0); |
| both_assert!(f16::from_bits(0x4a40), 12.5); |
| both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5); |
| both_assert!(f16::from_bits(0x5be0), 252.0); |
| both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0); |
| both_assert!(f16::from_bits(0xcb20), -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signalingness |
| // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits |
| // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! |
| const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155; |
| const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA; |
| |
| both_assert!(f16::from_bits(QUIET_NAN).is_nan()); |
| both_assert!(f16::from_bits(SIGNALING_NAN).is_nan()); |
| both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); |
| if !has_broken_floats() { |
| both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); |
| } |
| } |
| |
| fn f32() { |
| both_assert!((1f32).to_bits(), 0x3f800000); |
| both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000); |
| both_assert!((12.5f32).to_bits(), 0x41480000); |
| both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000); |
| both_assert!((1337f32).to_bits(), 0x44a72000); |
| both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000); |
| both_assert!((-14.25f32).to_bits(), 0xc1640000); |
| both_assert!(f32::from_bits(0x3f800000), 1.0); |
| both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0); |
| both_assert!(f32::from_bits(0x41480000), 12.5); |
| both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5); |
| both_assert!(f32::from_bits(0x44a72000), 1337.0); |
| both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0); |
| both_assert!(f32::from_bits(0xc1640000), -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signalingness |
| // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits |
| // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! |
| const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA; |
| const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555; |
| |
| both_assert!(f32::from_bits(QUIET_NAN).is_nan()); |
| both_assert!(f32::from_bits(SIGNALING_NAN).is_nan()); |
| both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); |
| if !has_broken_floats() { |
| both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); |
| } |
| } |
| |
| fn f64() { |
| both_assert!((1f64).to_bits(), 0x3ff0000000000000); |
| both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000); |
| both_assert!((12.5f64).to_bits(), 0x4029000000000000); |
| both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000); |
| both_assert!((1337f64).to_bits(), 0x4094e40000000000); |
| both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000); |
| both_assert!((-14.25f64).to_bits(), 0xc02c800000000000); |
| both_assert!(f64::from_bits(0x3ff0000000000000), 1.0); |
| both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0); |
| both_assert!(f64::from_bits(0x4029000000000000), 12.5); |
| both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5); |
| both_assert!(f64::from_bits(0x4094e40000000000), 1337.0); |
| both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0); |
| both_assert!(f64::from_bits(0xc02c800000000000), -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signalingness |
| // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits |
| // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! |
| const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555; |
| const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA; |
| |
| both_assert!(f64::from_bits(QUIET_NAN).is_nan()); |
| both_assert!(f64::from_bits(SIGNALING_NAN).is_nan()); |
| both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); |
| if !has_broken_floats() { |
| both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); |
| } |
| } |
| |
| #[cfg(target_arch = "x86_64")] |
| fn f128() { |
| both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000); |
| both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000); |
| both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000); |
| both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000); |
| both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000); |
| both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000); |
| both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); |
| both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); |
| both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0); |
| both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5); |
| both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5); |
| both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); |
| assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0); |
| both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signalingness |
| // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits |
| // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! |
| const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA; |
| const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555; |
| |
| both_assert!(f128::from_bits(QUIET_NAN).is_nan()); |
| both_assert!(f128::from_bits(SIGNALING_NAN).is_nan()); |
| both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); |
| if !has_broken_floats() { |
| both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); |
| } |
| } |
| |
| fn main() { |
| f32(); |
| f64(); |
| |
| #[cfg(target_arch = "x86_64")] |
| { |
| f16(); |
| f128(); |
| } |
| } |