| use crate::Adler32; |
| use std::ops::{AddAssign, MulAssign, RemAssign}; |
| |
| impl Adler32 { |
| pub(crate) fn compute(&mut self, bytes: &[u8]) { |
| // The basic algorithm is, for every byte: |
| // a = (a + byte) % MOD |
| // b = (b + a) % MOD |
| // where MOD = 65521. |
| // |
| // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: |
| // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. |
| // - We use 32-bit arithmetic in this function. |
| // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` |
| // operation. |
| // |
| // According to Wikipedia, b is calculated as follows for non-incremental checksumming: |
| // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) |
| // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account |
| // for the previous values of a and b, as well as treat every input Byte as being 255: |
| // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 |
| // Or in other words: |
| // b_inc = n*65520 + n(n+1)/2*255 |
| // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. |
| // 2^32-65521 = n*65520 + n(n+1)/2*255 |
| // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. |
| // |
| // On top of the optimization outlined above, the algorithm can also be parallelized with a |
| // bit more work: |
| // |
| // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). |
| // |
| // If we fix some value k<N and rewrite indices 1, ..., N as |
| // |
| // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k, |
| // |
| // then we can express a and b in terms of sums of smaller sequences kb and ka: |
| // |
| // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k |
| // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k |
| // |
| // a = ka(1) + ka(2) + ... + ka(k) + 1 |
| // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N |
| // |
| // We use this insight to unroll the main loop and process k=4 bytes at a time. |
| // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups |
| // stem from increased pipeline parallelism rather than auto-vectorization. |
| // |
| // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\ |
| // en/develop/articles/fast-computation-of-fletcher-checksums.html] |
| |
| const MOD: u32 = 65521; |
| const CHUNK_SIZE: usize = 5552 * 4; |
| |
| let mut a = u32::from(self.a); |
| let mut b = u32::from(self.b); |
| let mut a_vec = U32X4([0; 4]); |
| let mut b_vec = a_vec; |
| |
| let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4); |
| |
| // iterate over 4 bytes at a time |
| let chunk_iter = bytes.chunks_exact(CHUNK_SIZE); |
| let remainder_chunk = chunk_iter.remainder(); |
| for chunk in chunk_iter { |
| for byte_vec in chunk.chunks_exact(4) { |
| let val = U32X4::from(byte_vec); |
| a_vec += val; |
| b_vec += a_vec; |
| } |
| |
| b += CHUNK_SIZE as u32 * a; |
| a_vec %= MOD; |
| b_vec %= MOD; |
| b %= MOD; |
| } |
| // special-case the final chunk because it may be shorter than the rest |
| for byte_vec in remainder_chunk.chunks_exact(4) { |
| let val = U32X4::from(byte_vec); |
| a_vec += val; |
| b_vec += a_vec; |
| } |
| b += remainder_chunk.len() as u32 * a; |
| a_vec %= MOD; |
| b_vec %= MOD; |
| b %= MOD; |
| |
| // combine the sub-sum results into the main sum |
| b_vec *= 4; |
| b_vec.0[1] += MOD - a_vec.0[1]; |
| b_vec.0[2] += (MOD - a_vec.0[2]) * 2; |
| b_vec.0[3] += (MOD - a_vec.0[3]) * 3; |
| for &av in a_vec.0.iter() { |
| a += av; |
| } |
| for &bv in b_vec.0.iter() { |
| b += bv; |
| } |
| |
| // iterate over the remaining few bytes in serial |
| for &byte in remainder.iter() { |
| a += u32::from(byte); |
| b += a; |
| } |
| |
| self.a = (a % MOD) as u16; |
| self.b = (b % MOD) as u16; |
| } |
| } |
| |
| #[derive(Copy, Clone)] |
| struct U32X4([u32; 4]); |
| |
| impl U32X4 { |
| #[inline] |
| fn from(bytes: &[u8]) -> Self { |
| U32X4([ |
| u32::from(bytes[0]), |
| u32::from(bytes[1]), |
| u32::from(bytes[2]), |
| u32::from(bytes[3]), |
| ]) |
| } |
| } |
| |
| impl AddAssign<Self> for U32X4 { |
| #[inline] |
| fn add_assign(&mut self, other: Self) { |
| // Implement this in a primitive manner to help out the compiler a bit. |
| self.0[0] += other.0[0]; |
| self.0[1] += other.0[1]; |
| self.0[2] += other.0[2]; |
| self.0[3] += other.0[3]; |
| } |
| } |
| |
| impl RemAssign<u32> for U32X4 { |
| #[inline] |
| fn rem_assign(&mut self, quotient: u32) { |
| self.0[0] %= quotient; |
| self.0[1] %= quotient; |
| self.0[2] %= quotient; |
| self.0[3] %= quotient; |
| } |
| } |
| |
| impl MulAssign<u32> for U32X4 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: u32) { |
| self.0[0] *= rhs; |
| self.0[1] *= rhs; |
| self.0[2] *= rhs; |
| self.0[3] *= rhs; |
| } |
| } |