| //! Adler-32 checksum implementation. |
| //! |
| //! This implementation features: |
| //! |
| //! - Permissively licensed (0BSD) clean-room implementation. |
| //! - Zero dependencies. |
| //! - Zero `unsafe`. |
| //! - Decent performance (3-4 GB/s). |
| //! - `#![no_std]` support (with `default-features = false`). |
| |
| #![doc(html_root_url = "https://docs.rs/adler2/2.0.0")] |
| // Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default |
| #![doc(test(attr(deny(unused_imports, unused_must_use))))] |
| #![cfg_attr(docsrs, feature(doc_cfg))] |
| #![warn(missing_debug_implementations)] |
| #![forbid(unsafe_code)] |
| #![cfg_attr(not(feature = "std"), no_std)] |
| |
| #[cfg(not(feature = "std"))] |
| extern crate core as std; |
| |
| mod algo; |
| |
| use std::hash::Hasher; |
| |
| #[cfg(feature = "std")] |
| use std::io::{self, BufRead}; |
| |
| /// Adler-32 checksum calculator. |
| /// |
| /// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default |
| /// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via |
| /// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`]. |
| /// |
| /// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any |
| /// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although |
| /// that is not recommended (while every checksum is a hash function, they are not necessarily a |
| /// good one). |
| /// |
| /// # Examples |
| /// |
| /// Basic, piecewise checksum calculation: |
| /// |
| /// ``` |
| /// use adler2::Adler32; |
| /// |
| /// let mut adler = Adler32::new(); |
| /// |
| /// adler.write_slice(&[0, 1, 2]); |
| /// adler.write_slice(&[3, 4, 5]); |
| /// |
| /// assert_eq!(adler.checksum(), 0x00290010); |
| /// ``` |
| /// |
| /// Using `Hash` to process structures: |
| /// |
| /// ``` |
| /// use std::hash::Hash; |
| /// use adler2::Adler32; |
| /// |
| /// #[derive(Hash)] |
| /// struct Data { |
| /// byte: u8, |
| /// word: u16, |
| /// big: u64, |
| /// } |
| /// |
| /// let mut adler = Adler32::new(); |
| /// |
| /// let data = Data { byte: 0x1F, word: 0xABCD, big: !0 }; |
| /// data.hash(&mut adler); |
| /// |
| /// // hash value depends on architecture endianness |
| /// if cfg!(target_endian = "little") { |
| /// assert_eq!(adler.checksum(), 0x33410990); |
| /// } |
| /// if cfg!(target_endian = "big") { |
| /// assert_eq!(adler.checksum(), 0x331F0990); |
| /// } |
| /// |
| /// ``` |
| /// |
| /// [`new`]: #method.new |
| /// [`from_checksum`]: #method.from_checksum |
| /// [`checksum`]: #method.checksum |
| #[derive(Debug, Copy, Clone)] |
| pub struct Adler32 { |
| a: u16, |
| b: u16, |
| } |
| |
| impl Adler32 { |
| /// Creates a new Adler-32 instance with default state. |
| #[inline] |
| pub fn new() -> Self { |
| Self::default() |
| } |
| |
| /// Creates an `Adler32` instance from a precomputed Adler-32 checksum. |
| /// |
| /// This allows resuming checksum calculation without having to keep the `Adler32` instance |
| /// around. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// # use adler2::Adler32; |
| /// let parts = [ |
| /// "rust", |
| /// "acean", |
| /// ]; |
| /// let whole = adler2::adler32_slice(b"rustacean"); |
| /// |
| /// let mut sum = Adler32::new(); |
| /// sum.write_slice(parts[0].as_bytes()); |
| /// let partial = sum.checksum(); |
| /// |
| /// // ...later |
| /// |
| /// let mut sum = Adler32::from_checksum(partial); |
| /// sum.write_slice(parts[1].as_bytes()); |
| /// assert_eq!(sum.checksum(), whole); |
| /// ``` |
| #[inline] |
| pub const fn from_checksum(sum: u32) -> Self { |
| Adler32 { |
| a: sum as u16, |
| b: (sum >> 16) as u16, |
| } |
| } |
| |
| /// Returns the calculated checksum at this point in time. |
| #[inline] |
| pub fn checksum(&self) -> u32 { |
| (u32::from(self.b) << 16) | u32::from(self.a) |
| } |
| |
| /// Adds `bytes` to the checksum calculation. |
| /// |
| /// If efficiency matters, this should be called with Byte slices that contain at least a few |
| /// thousand Bytes. |
| pub fn write_slice(&mut self, bytes: &[u8]) { |
| self.compute(bytes); |
| } |
| } |
| |
| impl Default for Adler32 { |
| #[inline] |
| fn default() -> Self { |
| Adler32 { a: 1, b: 0 } |
| } |
| } |
| |
| impl Hasher for Adler32 { |
| #[inline] |
| fn finish(&self) -> u64 { |
| u64::from(self.checksum()) |
| } |
| |
| fn write(&mut self, bytes: &[u8]) { |
| self.write_slice(bytes); |
| } |
| } |
| |
| /// Calculates the Adler-32 checksum of a byte slice. |
| /// |
| /// This is a convenience function around the [`Adler32`] type. |
| /// |
| /// [`Adler32`]: struct.Adler32.html |
| pub fn adler32_slice(data: &[u8]) -> u32 { |
| let mut h = Adler32::new(); |
| h.write_slice(data); |
| h.checksum() |
| } |
| |
| /// Calculates the Adler-32 checksum of a `BufRead`'s contents. |
| /// |
| /// The passed `BufRead` implementor will be read until it reaches EOF (or until it reports an |
| /// error). |
| /// |
| /// If you only have a `Read` implementor, you can wrap it in `std::io::BufReader` before calling |
| /// this function. |
| /// |
| /// # Errors |
| /// |
| /// Any error returned by the reader are bubbled up by this function. |
| /// |
| /// # Examples |
| /// |
| /// ```no_run |
| /// # fn run() -> Result<(), Box<dyn std::error::Error>> { |
| /// use adler2::adler32; |
| /// |
| /// use std::fs::File; |
| /// use std::io::BufReader; |
| /// |
| /// let file = File::open("input.txt")?; |
| /// let mut file = BufReader::new(file); |
| /// |
| /// adler32(&mut file)?; |
| /// # Ok(()) } |
| /// # fn main() { run().unwrap() } |
| /// ``` |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| pub fn adler32<R: BufRead>(mut reader: R) -> io::Result<u32> { |
| let mut h = Adler32::new(); |
| loop { |
| let len = { |
| let buf = reader.fill_buf()?; |
| if buf.is_empty() { |
| return Ok(h.checksum()); |
| } |
| |
| h.write_slice(buf); |
| buf.len() |
| }; |
| reader.consume(len); |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn zeroes() { |
| assert_eq!(adler32_slice(&[]), 1); |
| assert_eq!(adler32_slice(&[0]), 1 | 1 << 16); |
| assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16); |
| assert_eq!(adler32_slice(&[0; 100]), 0x00640001); |
| assert_eq!(adler32_slice(&[0; 1024]), 0x04000001); |
| assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001); |
| } |
| |
| #[test] |
| fn ones() { |
| assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e); |
| assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11); |
| } |
| |
| #[test] |
| fn mixed() { |
| assert_eq!(adler32_slice(&[1]), 2 | 2 << 16); |
| assert_eq!(adler32_slice(&[40]), 41 | 41 << 16); |
| |
| assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1); |
| } |
| |
| /// Example calculation from https://en.wikipedia.org/wiki/Adler-32. |
| #[test] |
| fn wiki() { |
| assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398); |
| } |
| |
| #[test] |
| fn resume() { |
| let mut adler = Adler32::new(); |
| adler.write_slice(&[0xff; 1024]); |
| let partial = adler.checksum(); |
| assert_eq!(partial, 0x79a6fc2e); // from above |
| adler.write_slice(&[0xff; 1024 * 1024 - 1024]); |
| assert_eq!(adler.checksum(), 0x8e88ef11); // from above |
| |
| // Make sure that we can resume computing from the partial checksum via `from_checksum`. |
| let mut adler = Adler32::from_checksum(partial); |
| adler.write_slice(&[0xff; 1024 * 1024 - 1024]); |
| assert_eq!(adler.checksum(), 0x8e88ef11); // from above |
| } |
| |
| #[cfg(feature = "std")] |
| #[test] |
| fn bufread() { |
| use std::io::BufReader; |
| fn test(data: &[u8], checksum: u32) { |
| // `BufReader` uses an 8 KB buffer, so this will test buffer refilling. |
| let mut buf = BufReader::new(data); |
| let real_sum = adler32(&mut buf).unwrap(); |
| assert_eq!(checksum, real_sum); |
| } |
| |
| test(&[], 1); |
| test(&[0; 1024], 0x04000001); |
| test(&[0; 1024 * 1024], 0x00f00001); |
| test(&[0xA5; 1024 * 1024], 0xd5009ab1); |
| } |
| } |