| #include "blake3_impl.h" |
| |
| #include <immintrin.h> |
| |
| #define DEGREE 8 |
| |
| INLINE __m256i loadu(const uint8_t src[32]) { |
| return _mm256_loadu_si256((const __m256i *)src); |
| } |
| |
| INLINE void storeu(__m256i src, uint8_t dest[16]) { |
| _mm256_storeu_si256((__m256i *)dest, src); |
| } |
| |
| INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } |
| |
| // Note that clang-format doesn't like the name "xor" for some reason. |
| INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } |
| |
| INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } |
| |
| INLINE __m256i rot16(__m256i x) { |
| return _mm256_shuffle_epi8( |
| x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2, |
| 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); |
| } |
| |
| INLINE __m256i rot12(__m256i x) { |
| return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12)); |
| } |
| |
| INLINE __m256i rot8(__m256i x) { |
| return _mm256_shuffle_epi8( |
| x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1, |
| 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); |
| } |
| |
| INLINE __m256i rot7(__m256i x) { |
| return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7)); |
| } |
| |
| INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) { |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = addv(v[0], v[4]); |
| v[1] = addv(v[1], v[5]); |
| v[2] = addv(v[2], v[6]); |
| v[3] = addv(v[3], v[7]); |
| v[12] = xorv(v[12], v[0]); |
| v[13] = xorv(v[13], v[1]); |
| v[14] = xorv(v[14], v[2]); |
| v[15] = xorv(v[15], v[3]); |
| v[12] = rot16(v[12]); |
| v[13] = rot16(v[13]); |
| v[14] = rot16(v[14]); |
| v[15] = rot16(v[15]); |
| v[8] = addv(v[8], v[12]); |
| v[9] = addv(v[9], v[13]); |
| v[10] = addv(v[10], v[14]); |
| v[11] = addv(v[11], v[15]); |
| v[4] = xorv(v[4], v[8]); |
| v[5] = xorv(v[5], v[9]); |
| v[6] = xorv(v[6], v[10]); |
| v[7] = xorv(v[7], v[11]); |
| v[4] = rot12(v[4]); |
| v[5] = rot12(v[5]); |
| v[6] = rot12(v[6]); |
| v[7] = rot12(v[7]); |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = addv(v[0], v[4]); |
| v[1] = addv(v[1], v[5]); |
| v[2] = addv(v[2], v[6]); |
| v[3] = addv(v[3], v[7]); |
| v[12] = xorv(v[12], v[0]); |
| v[13] = xorv(v[13], v[1]); |
| v[14] = xorv(v[14], v[2]); |
| v[15] = xorv(v[15], v[3]); |
| v[12] = rot8(v[12]); |
| v[13] = rot8(v[13]); |
| v[14] = rot8(v[14]); |
| v[15] = rot8(v[15]); |
| v[8] = addv(v[8], v[12]); |
| v[9] = addv(v[9], v[13]); |
| v[10] = addv(v[10], v[14]); |
| v[11] = addv(v[11], v[15]); |
| v[4] = xorv(v[4], v[8]); |
| v[5] = xorv(v[5], v[9]); |
| v[6] = xorv(v[6], v[10]); |
| v[7] = xorv(v[7], v[11]); |
| v[4] = rot7(v[4]); |
| v[5] = rot7(v[5]); |
| v[6] = rot7(v[6]); |
| v[7] = rot7(v[7]); |
| |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = addv(v[0], v[5]); |
| v[1] = addv(v[1], v[6]); |
| v[2] = addv(v[2], v[7]); |
| v[3] = addv(v[3], v[4]); |
| v[15] = xorv(v[15], v[0]); |
| v[12] = xorv(v[12], v[1]); |
| v[13] = xorv(v[13], v[2]); |
| v[14] = xorv(v[14], v[3]); |
| v[15] = rot16(v[15]); |
| v[12] = rot16(v[12]); |
| v[13] = rot16(v[13]); |
| v[14] = rot16(v[14]); |
| v[10] = addv(v[10], v[15]); |
| v[11] = addv(v[11], v[12]); |
| v[8] = addv(v[8], v[13]); |
| v[9] = addv(v[9], v[14]); |
| v[5] = xorv(v[5], v[10]); |
| v[6] = xorv(v[6], v[11]); |
| v[7] = xorv(v[7], v[8]); |
| v[4] = xorv(v[4], v[9]); |
| v[5] = rot12(v[5]); |
| v[6] = rot12(v[6]); |
| v[7] = rot12(v[7]); |
| v[4] = rot12(v[4]); |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = addv(v[0], v[5]); |
| v[1] = addv(v[1], v[6]); |
| v[2] = addv(v[2], v[7]); |
| v[3] = addv(v[3], v[4]); |
| v[15] = xorv(v[15], v[0]); |
| v[12] = xorv(v[12], v[1]); |
| v[13] = xorv(v[13], v[2]); |
| v[14] = xorv(v[14], v[3]); |
| v[15] = rot8(v[15]); |
| v[12] = rot8(v[12]); |
| v[13] = rot8(v[13]); |
| v[14] = rot8(v[14]); |
| v[10] = addv(v[10], v[15]); |
| v[11] = addv(v[11], v[12]); |
| v[8] = addv(v[8], v[13]); |
| v[9] = addv(v[9], v[14]); |
| v[5] = xorv(v[5], v[10]); |
| v[6] = xorv(v[6], v[11]); |
| v[7] = xorv(v[7], v[8]); |
| v[4] = xorv(v[4], v[9]); |
| v[5] = rot7(v[5]); |
| v[6] = rot7(v[6]); |
| v[7] = rot7(v[7]); |
| v[4] = rot7(v[4]); |
| } |
| |
| INLINE void transpose_vecs(__m256i vecs[DEGREE]) { |
| // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high |
| // is 22/33/66/77. |
| __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); |
| __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); |
| __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); |
| __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); |
| __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); |
| __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); |
| __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); |
| __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); |
| |
| // Interleave 64-bit lanes. The low unpack is lanes 00/22 and the high is |
| // 11/33. |
| __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); |
| __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); |
| __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); |
| __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); |
| __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); |
| __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); |
| __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); |
| __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); |
| |
| // Interleave 128-bit lanes. |
| vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); |
| vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); |
| vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); |
| vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); |
| vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); |
| vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); |
| vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); |
| vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); |
| } |
| |
| INLINE void transpose_msg_vecs(const uint8_t *const *inputs, |
| size_t block_offset, __m256i out[16]) { |
| out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]); |
| out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]); |
| out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]); |
| out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]); |
| out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]); |
| out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]); |
| out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]); |
| out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]); |
| out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]); |
| out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]); |
| out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]); |
| out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]); |
| out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]); |
| out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]); |
| out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]); |
| out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]); |
| for (size_t i = 0; i < 8; ++i) { |
| _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); |
| } |
| transpose_vecs(&out[0]); |
| transpose_vecs(&out[8]); |
| } |
| |
| INLINE void load_counters(uint64_t counter, bool increment_counter, |
| __m256i *out_lo, __m256i *out_hi) { |
| const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter); |
| const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); |
| const __m256i add1 = _mm256_and_si256(mask, add0); |
| __m256i l = _mm256_add_epi32(_mm256_set1_epi32((int32_t)counter), add1); |
| __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)), |
| _mm256_xor_si256( l, _mm256_set1_epi32(0x80000000))); |
| __m256i h = _mm256_sub_epi32(_mm256_set1_epi32((int32_t)(counter >> 32)), carry); |
| *out_lo = l; |
| *out_hi = h; |
| } |
| |
| static |
| void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
| __m256i h_vecs[8] = { |
| set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), |
| set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), |
| }; |
| __m256i counter_low_vec, counter_high_vec; |
| load_counters(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN); |
| __m256i block_flags_vec = set1(block_flags); |
| __m256i msg_vecs[16]; |
| transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| __m256i v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn(v, msg_vecs, 0); |
| round_fn(v, msg_vecs, 1); |
| round_fn(v, msg_vecs, 2); |
| round_fn(v, msg_vecs, 3); |
| round_fn(v, msg_vecs, 4); |
| round_fn(v, msg_vecs, 5); |
| round_fn(v, msg_vecs, 6); |
| h_vecs[0] = xorv(v[0], v[8]); |
| h_vecs[1] = xorv(v[1], v[9]); |
| h_vecs[2] = xorv(v[2], v[10]); |
| h_vecs[3] = xorv(v[3], v[11]); |
| h_vecs[4] = xorv(v[4], v[12]); |
| h_vecs[5] = xorv(v[5], v[13]); |
| h_vecs[6] = xorv(v[6], v[14]); |
| h_vecs[7] = xorv(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| transpose_vecs(h_vecs); |
| storeu(h_vecs[0], &out[0 * sizeof(__m256i)]); |
| storeu(h_vecs[1], &out[1 * sizeof(__m256i)]); |
| storeu(h_vecs[2], &out[2 * sizeof(__m256i)]); |
| storeu(h_vecs[3], &out[3 * sizeof(__m256i)]); |
| storeu(h_vecs[4], &out[4 * sizeof(__m256i)]); |
| storeu(h_vecs[5], &out[5 * sizeof(__m256i)]); |
| storeu(h_vecs[6], &out[6 * sizeof(__m256i)]); |
| storeu(h_vecs[7], &out[7 * sizeof(__m256i)]); |
| } |
| |
| #if !defined(BLAKE3_NO_SSE41) |
| void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out); |
| #else |
| void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out); |
| #endif |
| |
| void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out) { |
| while (num_inputs >= DEGREE) { |
| blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += DEGREE; |
| } |
| inputs += DEGREE; |
| num_inputs -= DEGREE; |
| out = &out[DEGREE * BLAKE3_OUT_LEN]; |
| } |
| #if !defined(BLAKE3_NO_SSE41) |
| blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter, |
| increment_counter, flags, flags_start, flags_end, out); |
| #else |
| blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter, |
| increment_counter, flags, flags_start, flags_end, |
| out); |
| #endif |
| } |