| //! A frontend for building Cranelift IR from other languages. |
| use crate::ssa::{SSABuilder, SideEffects}; |
| use crate::variable::Variable; |
| use alloc::vec::Vec; |
| use core::fmt::{self, Debug}; |
| use cranelift_codegen::cursor::{Cursor, CursorPosition, FuncCursor}; |
| use cranelift_codegen::entity::{EntityRef, EntitySet, SecondaryMap}; |
| use cranelift_codegen::ir; |
| use cranelift_codegen::ir::condcodes::IntCC; |
| use cranelift_codegen::ir::{ |
| types, AbiParam, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData, ExtFuncData, |
| ExternalName, FuncRef, Function, GlobalValue, GlobalValueData, Inst, InstBuilder, |
| InstBuilderBase, InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, RelSourceLoc, |
| SigRef, Signature, StackSlot, StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments, |
| ValueLabelStart, |
| }; |
| use cranelift_codegen::isa::TargetFrontendConfig; |
| use cranelift_codegen::packed_option::PackedOption; |
| use cranelift_codegen::traversals::Dfs; |
| use smallvec::SmallVec; |
| |
| mod safepoints; |
| |
| /// Structure used for translating a series of functions into Cranelift IR. |
| /// |
| /// In order to reduce memory reallocations when compiling multiple functions, |
| /// [`FunctionBuilderContext`] holds various data structures which are cleared between |
| /// functions, rather than dropped, preserving the underlying allocations. |
| #[derive(Default)] |
| pub struct FunctionBuilderContext { |
| ssa: SSABuilder, |
| status: SecondaryMap<Block, BlockStatus>, |
| types: SecondaryMap<Variable, Type>, |
| stack_map_vars: EntitySet<Variable>, |
| stack_map_values: EntitySet<Value>, |
| safepoints: safepoints::SafepointSpiller, |
| } |
| |
| /// Temporary object used to build a single Cranelift IR [`Function`]. |
| pub struct FunctionBuilder<'a> { |
| /// The function currently being built. |
| /// This field is public so the function can be re-borrowed. |
| pub func: &'a mut Function, |
| |
| /// Source location to assign to all new instructions. |
| srcloc: ir::SourceLoc, |
| |
| func_ctx: &'a mut FunctionBuilderContext, |
| position: PackedOption<Block>, |
| } |
| |
| #[derive(Clone, Default, Eq, PartialEq)] |
| enum BlockStatus { |
| /// No instructions have been added. |
| #[default] |
| Empty, |
| /// Some instructions have been added, but no terminator. |
| Partial, |
| /// A terminator has been added; no further instructions may be added. |
| Filled, |
| } |
| |
| impl FunctionBuilderContext { |
| /// Creates a [`FunctionBuilderContext`] structure. The structure is automatically cleared after |
| /// each [`FunctionBuilder`] completes translating a function. |
| pub fn new() -> Self { |
| Self::default() |
| } |
| |
| fn clear(&mut self) { |
| let FunctionBuilderContext { |
| ssa, |
| status, |
| types, |
| stack_map_vars, |
| stack_map_values, |
| safepoints, |
| } = self; |
| ssa.clear(); |
| status.clear(); |
| types.clear(); |
| stack_map_values.clear(); |
| stack_map_vars.clear(); |
| safepoints.clear(); |
| } |
| |
| fn is_empty(&self) -> bool { |
| self.ssa.is_empty() && self.status.is_empty() && self.types.is_empty() |
| } |
| } |
| |
| /// Implementation of the [`InstBuilder`] that has |
| /// one convenience method per Cranelift IR instruction. |
| pub struct FuncInstBuilder<'short, 'long: 'short> { |
| builder: &'short mut FunctionBuilder<'long>, |
| block: Block, |
| } |
| |
| impl<'short, 'long> FuncInstBuilder<'short, 'long> { |
| fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self { |
| Self { builder, block } |
| } |
| } |
| |
| impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> { |
| fn data_flow_graph(&self) -> &DataFlowGraph { |
| &self.builder.func.dfg |
| } |
| |
| fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph { |
| &mut self.builder.func.dfg |
| } |
| |
| // This implementation is richer than `InsertBuilder` because we use the data of the |
| // instruction being inserted to add related info to the DFG and the SSA building system, |
| // and perform debug sanity checks. |
| fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) { |
| // We only insert the Block in the layout when an instruction is added to it |
| self.builder.ensure_inserted_block(); |
| |
| let inst = self.builder.func.dfg.make_inst(data); |
| self.builder.func.dfg.make_inst_results(inst, ctrl_typevar); |
| self.builder.func.layout.append_inst(inst, self.block); |
| if !self.builder.srcloc.is_default() { |
| self.builder.func.set_srcloc(inst, self.builder.srcloc); |
| } |
| |
| match &self.builder.func.dfg.insts[inst] { |
| ir::InstructionData::Jump { |
| destination: dest, .. |
| } => { |
| // If the user has supplied jump arguments we must adapt the arguments of |
| // the destination block |
| let block = dest.block(&self.builder.func.dfg.value_lists); |
| self.builder.declare_successor(block, inst); |
| } |
| |
| ir::InstructionData::Brif { |
| blocks: [branch_then, branch_else], |
| .. |
| } => { |
| let block_then = branch_then.block(&self.builder.func.dfg.value_lists); |
| let block_else = branch_else.block(&self.builder.func.dfg.value_lists); |
| |
| self.builder.declare_successor(block_then, inst); |
| if block_then != block_else { |
| self.builder.declare_successor(block_else, inst); |
| } |
| } |
| |
| ir::InstructionData::BranchTable { table, .. } => { |
| let pool = &self.builder.func.dfg.value_lists; |
| |
| // Unlike all other jumps/branches, jump tables are |
| // capable of having the same successor appear |
| // multiple times, so we must deduplicate. |
| let mut unique = EntitySet::<Block>::new(); |
| for dest_block in self |
| .builder |
| .func |
| .stencil |
| .dfg |
| .jump_tables |
| .get(*table) |
| .expect("you are referencing an undeclared jump table") |
| .all_branches() |
| { |
| let block = dest_block.block(pool); |
| if !unique.insert(block) { |
| continue; |
| } |
| |
| // Call `declare_block_predecessor` instead of `declare_successor` for |
| // avoiding the borrow checker. |
| self.builder |
| .func_ctx |
| .ssa |
| .declare_block_predecessor(block, inst); |
| } |
| } |
| |
| inst => debug_assert!(!inst.opcode().is_branch()), |
| } |
| |
| if data.opcode().is_terminator() { |
| self.builder.fill_current_block() |
| } |
| (inst, &mut self.builder.func.dfg) |
| } |
| } |
| |
| #[derive(Debug, Copy, Clone, PartialEq, Eq)] |
| /// An error encountered when calling [`FunctionBuilder::try_use_var`]. |
| pub enum UseVariableError { |
| UsedBeforeDeclared(Variable), |
| } |
| |
| impl fmt::Display for UseVariableError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| UseVariableError::UsedBeforeDeclared(variable) => { |
| write!( |
| f, |
| "variable {} was used before it was defined", |
| variable.index() |
| )?; |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| impl std::error::Error for UseVariableError {} |
| |
| #[derive(Debug, Copy, Clone, Eq, PartialEq)] |
| /// An error encountered when calling [`FunctionBuilder::try_declare_var`]. |
| pub enum DeclareVariableError { |
| DeclaredMultipleTimes(Variable), |
| } |
| |
| impl std::error::Error for DeclareVariableError {} |
| |
| impl fmt::Display for DeclareVariableError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| DeclareVariableError::DeclaredMultipleTimes(variable) => { |
| write!( |
| f, |
| "variable {} was declared multiple times", |
| variable.index() |
| )?; |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| #[derive(Debug, Copy, Clone, Eq, PartialEq)] |
| /// An error encountered when defining the initial value of a variable. |
| pub enum DefVariableError { |
| /// The variable was instantiated with a value of the wrong type. |
| /// |
| /// note: to obtain the type of the value, you can call |
| /// [`cranelift_codegen::ir::dfg::DataFlowGraph::value_type`] (using the |
| /// `FunctionBuilder.func.dfg` field) |
| TypeMismatch(Variable, Value), |
| /// The value was defined (in a call to [`FunctionBuilder::def_var`]) before |
| /// it was declared (in a call to [`FunctionBuilder::declare_var`]). |
| DefinedBeforeDeclared(Variable), |
| } |
| |
| impl fmt::Display for DefVariableError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| DefVariableError::TypeMismatch(variable, value) => { |
| write!( |
| f, |
| "the types of variable {} and value {} are not the same. |
| The `Value` supplied to `def_var` must be of the same type as |
| the variable was declared to be of in `declare_var`.", |
| variable.index(), |
| value.as_u32() |
| )?; |
| } |
| DefVariableError::DefinedBeforeDeclared(variable) => { |
| write!( |
| f, |
| "the value of variable {} was declared before it was defined", |
| variable.index() |
| )?; |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| /// This module allows you to create a function in Cranelift IR in a straightforward way, hiding |
| /// all the complexity of its internal representation. |
| /// |
| /// The module is parametrized by one type which is the representation of variables in your |
| /// origin language. It offers a way to conveniently append instruction to your program flow. |
| /// You are responsible to split your instruction flow into extended blocks (declared with |
| /// [`create_block`](Self::create_block)) whose properties are: |
| /// |
| /// - branch and jump instructions can only point at the top of extended blocks; |
| /// - the last instruction of each block is a terminator instruction which has no natural successor, |
| /// and those instructions can only appear at the end of extended blocks. |
| /// |
| /// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created |
| /// as results of other Cranelift IR instructions. To be able to create variables redefined multiple |
| /// times in your program, use the [`def_var`](Self::def_var) and [`use_var`](Self::use_var) command, |
| /// that will maintain the correspondence between your variables and Cranelift IR SSA values. |
| /// |
| /// The first block for which you call [`switch_to_block`](Self::switch_to_block) will be assumed to |
| /// be the beginning of the function. |
| /// |
| /// At creation, a [`FunctionBuilder`] instance borrows an already allocated `Function` which it |
| /// modifies with the information stored in the mutable borrowed |
| /// [`FunctionBuilderContext`]. The function passed in argument should be newly created with |
| /// [`Function::with_name_signature()`], whereas the [`FunctionBuilderContext`] can be kept as is |
| /// between two function translations. |
| /// |
| /// # Errors |
| /// |
| /// The functions below will panic in debug mode whenever you try to modify the Cranelift IR |
| /// function in a way that violate the coherence of the code. For instance: switching to a new |
| /// [`Block`] when you haven't filled the current one with a terminator instruction, inserting a |
| /// return instruction with arguments that don't match the function's signature. |
| impl<'a> FunctionBuilder<'a> { |
| /// Creates a new [`FunctionBuilder`] structure that will operate on a [`Function`] using a |
| /// [`FunctionBuilderContext`]. |
| pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self { |
| debug_assert!(func_ctx.is_empty()); |
| Self { |
| func, |
| srcloc: Default::default(), |
| func_ctx, |
| position: Default::default(), |
| } |
| } |
| |
| /// Get the block that this builder is currently at. |
| pub fn current_block(&self) -> Option<Block> { |
| self.position.expand() |
| } |
| |
| /// Set the source location that should be assigned to all new instructions. |
| pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) { |
| self.srcloc = srcloc; |
| } |
| |
| /// Creates a new [`Block`] and returns its reference. |
| pub fn create_block(&mut self) -> Block { |
| let block = self.func.dfg.make_block(); |
| self.func_ctx.ssa.declare_block(block); |
| block |
| } |
| |
| /// Mark a block as "cold". |
| /// |
| /// This will try to move it out of the ordinary path of execution |
| /// when lowered to machine code. |
| pub fn set_cold_block(&mut self, block: Block) { |
| self.func.layout.set_cold(block); |
| } |
| |
| /// Insert `block` in the layout *after* the existing block `after`. |
| pub fn insert_block_after(&mut self, block: Block, after: Block) { |
| self.func.layout.insert_block_after(block, after); |
| } |
| |
| /// After the call to this function, new instructions will be inserted into the designated |
| /// block, in the order they are declared. You must declare the types of the [`Block`] arguments |
| /// you will use here. |
| /// |
| /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate |
| /// successor), the block will be declared filled and it will not be possible to append |
| /// instructions to it. |
| pub fn switch_to_block(&mut self, block: Block) { |
| // First we check that the previous block has been filled. |
| debug_assert!( |
| self.position.is_none() |
| || self.is_unreachable() |
| || self.is_pristine(self.position.unwrap()) |
| || self.is_filled(self.position.unwrap()), |
| "you have to fill your block before switching" |
| ); |
| // We cannot switch to a filled block |
| debug_assert!( |
| !self.is_filled(block), |
| "you cannot switch to a block which is already filled" |
| ); |
| |
| // Then we change the cursor position. |
| self.position = PackedOption::from(block); |
| } |
| |
| /// Declares that all the predecessors of this block are known. |
| /// |
| /// Function to call with `block` as soon as the last branch instruction to `block` has been |
| /// created. Forgetting to call this method on every block will cause inconsistencies in the |
| /// produced functions. |
| pub fn seal_block(&mut self, block: Block) { |
| let side_effects = self.func_ctx.ssa.seal_block(block, self.func); |
| self.handle_ssa_side_effects(side_effects); |
| } |
| |
| /// Effectively calls [seal_block](Self::seal_block) on all unsealed blocks in the function. |
| /// |
| /// It's more efficient to seal [`Block`]s as soon as possible, during |
| /// translation, but for frontends where this is impractical to do, this |
| /// function can be used at the end of translating all blocks to ensure |
| /// that everything is sealed. |
| pub fn seal_all_blocks(&mut self) { |
| let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func); |
| self.handle_ssa_side_effects(side_effects); |
| } |
| |
| /// Declares the type of a variable. |
| /// |
| /// This allows the variable to be used later (by calling |
| /// [`FunctionBuilder::use_var`]). |
| /// |
| /// # Errors |
| /// |
| /// This function will return an error if the variable has been previously |
| /// declared. |
| pub fn try_declare_var(&mut self, var: Variable, ty: Type) -> Result<(), DeclareVariableError> { |
| if self.func_ctx.types[var] != types::INVALID { |
| return Err(DeclareVariableError::DeclaredMultipleTimes(var)); |
| } |
| self.func_ctx.types[var] = ty; |
| Ok(()) |
| } |
| |
| /// Declares the type of a variable, panicking if it is already declared. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the variable has already been declared. |
| pub fn declare_var(&mut self, var: Variable, ty: Type) { |
| self.try_declare_var(var, ty) |
| .unwrap_or_else(|_| panic!("the variable {:?} has been declared multiple times", var)) |
| } |
| |
| /// Declare that all uses of the given variable must be included in stack |
| /// map metadata. |
| /// |
| /// All values that are uses of this variable will be spilled to the stack |
| /// before each safepoint and their location on the stack included in stack |
| /// maps. Stack maps allow the garbage collector to identify the on-stack GC |
| /// roots. |
| /// |
| /// This does not affect any pre-existing uses of the variable. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the variable's type is larger than 16 bytes or if this |
| /// variable has not been declared yet. |
| pub fn declare_var_needs_stack_map(&mut self, var: Variable) { |
| let ty = self.func_ctx.types[var]; |
| assert!(ty != types::INVALID); |
| assert!(ty.bytes() <= 16); |
| self.func_ctx.stack_map_vars.insert(var); |
| } |
| |
| /// Returns the Cranelift IR necessary to use a previously defined user |
| /// variable, returning an error if this is not possible. |
| pub fn try_use_var(&mut self, var: Variable) -> Result<Value, UseVariableError> { |
| // Assert that we're about to add instructions to this block using the definition of the |
| // given variable. ssa.use_var is the only part of this crate which can add block parameters |
| // behind the caller's back. If we disallow calling append_block_param as soon as use_var is |
| // called, then we enforce a strict separation between user parameters and SSA parameters. |
| self.ensure_inserted_block(); |
| |
| let (val, side_effects) = { |
| let ty = *self |
| .func_ctx |
| .types |
| .get(var) |
| .ok_or(UseVariableError::UsedBeforeDeclared(var))?; |
| debug_assert_ne!( |
| ty, |
| types::INVALID, |
| "variable {:?} is used but its type has not been declared", |
| var |
| ); |
| self.func_ctx |
| .ssa |
| .use_var(self.func, var, ty, self.position.unwrap()) |
| }; |
| self.handle_ssa_side_effects(side_effects); |
| |
| // If the variable was declared as needing stack maps, then propagate |
| // that requirement to all values derived from using the variable. |
| if self.func_ctx.stack_map_vars.contains(var) { |
| self.declare_value_needs_stack_map(val); |
| } |
| |
| Ok(val) |
| } |
| |
| /// Returns the Cranelift IR value corresponding to the utilization at the current program |
| /// position of a previously defined user variable. |
| pub fn use_var(&mut self, var: Variable) -> Value { |
| self.try_use_var(var).unwrap_or_else(|_| { |
| panic!( |
| "variable {:?} is used but its type has not been declared", |
| var |
| ) |
| }) |
| } |
| |
| /// Registers a new definition of a user variable. This function will return |
| /// an error if the value supplied does not match the type the variable was |
| /// declared to have. |
| pub fn try_def_var(&mut self, var: Variable, val: Value) -> Result<(), DefVariableError> { |
| let var_ty = *self |
| .func_ctx |
| .types |
| .get(var) |
| .ok_or(DefVariableError::DefinedBeforeDeclared(var))?; |
| if var_ty != self.func.dfg.value_type(val) { |
| return Err(DefVariableError::TypeMismatch(var, val)); |
| } |
| |
| // If `var` needs inclusion in stack maps, then `val` does too. |
| if self.func_ctx.stack_map_vars.contains(var) { |
| self.declare_value_needs_stack_map(val); |
| } |
| |
| self.func_ctx.ssa.def_var(var, val, self.position.unwrap()); |
| Ok(()) |
| } |
| |
| /// Register a new definition of a user variable. The type of the value must be |
| /// the same as the type registered for the variable. |
| pub fn def_var(&mut self, var: Variable, val: Value) { |
| self.try_def_var(var, val) |
| .unwrap_or_else(|error| match error { |
| DefVariableError::TypeMismatch(var, val) => { |
| panic!( |
| "declared type of variable {:?} doesn't match type of value {}", |
| var, val |
| ); |
| } |
| DefVariableError::DefinedBeforeDeclared(var) => { |
| panic!( |
| "variable {:?} is used but its type has not been declared", |
| var |
| ); |
| } |
| }) |
| } |
| |
| /// Set label for [`Value`] |
| /// |
| /// This will not do anything unless |
| /// [`func.dfg.collect_debug_info`](DataFlowGraph::collect_debug_info) is called first. |
| pub fn set_val_label(&mut self, val: Value, label: ValueLabel) { |
| if let Some(values_labels) = self.func.stencil.dfg.values_labels.as_mut() { |
| use alloc::collections::btree_map::Entry; |
| |
| let start = ValueLabelStart { |
| from: RelSourceLoc::from_base_offset(self.func.params.base_srcloc(), self.srcloc), |
| label, |
| }; |
| |
| match values_labels.entry(val) { |
| Entry::Occupied(mut e) => match e.get_mut() { |
| ValueLabelAssignments::Starts(starts) => starts.push(start), |
| _ => panic!("Unexpected ValueLabelAssignments at this stage"), |
| }, |
| Entry::Vacant(e) => { |
| e.insert(ValueLabelAssignments::Starts(vec![start])); |
| } |
| } |
| } |
| } |
| |
| /// Declare that the given value is a GC reference that requires inclusion |
| /// in a stack map when it is live across GC safepoints. |
| /// |
| /// At the current moment, values that need inclusion in stack maps are |
| /// spilled before safepoints, but they are not reloaded afterwards. This |
| /// means that moving GCs are not yet supported, however the intention is to |
| /// add this support in the near future. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `val` is larger than 16 bytes. |
| pub fn declare_value_needs_stack_map(&mut self, val: Value) { |
| // We rely on these properties in `insert_safepoint_spills`. |
| let size = self.func.dfg.value_type(val).bytes(); |
| assert!(size <= 16); |
| assert!(size.is_power_of_two()); |
| |
| self.func_ctx.stack_map_values.insert(val); |
| } |
| |
| /// Creates a jump table in the function, to be used by [`br_table`](InstBuilder::br_table) instructions. |
| pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable { |
| self.func.create_jump_table(data) |
| } |
| |
| /// Creates a sized stack slot in the function, to be used by [`stack_load`](InstBuilder::stack_load), |
| /// [`stack_store`](InstBuilder::stack_store) and [`stack_addr`](InstBuilder::stack_addr) instructions. |
| pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot { |
| self.func.create_sized_stack_slot(data) |
| } |
| |
| /// Creates a dynamic stack slot in the function, to be used by |
| /// [`dynamic_stack_load`](InstBuilder::dynamic_stack_load), |
| /// [`dynamic_stack_store`](InstBuilder::dynamic_stack_store) and |
| /// [`dynamic_stack_addr`](InstBuilder::dynamic_stack_addr) instructions. |
| pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot { |
| self.func.create_dynamic_stack_slot(data) |
| } |
| |
| /// Adds a signature which can later be used to declare an external function import. |
| pub fn import_signature(&mut self, signature: Signature) -> SigRef { |
| self.func.import_signature(signature) |
| } |
| |
| /// Declare an external function import. |
| pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef { |
| self.func.import_function(data) |
| } |
| |
| /// Declares a global value accessible to the function. |
| pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue { |
| self.func.create_global_value(data) |
| } |
| |
| /// Returns an object with the [`InstBuilder`] |
| /// trait that allows to conveniently append an instruction to the current [`Block`] being built. |
| pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> { |
| let block = self |
| .position |
| .expect("Please call switch_to_block before inserting instructions"); |
| FuncInstBuilder::new(self, block) |
| } |
| |
| /// Make sure that the current block is inserted in the layout. |
| pub fn ensure_inserted_block(&mut self) { |
| let block = self.position.unwrap(); |
| if self.is_pristine(block) { |
| if !self.func.layout.is_block_inserted(block) { |
| self.func.layout.append_block(block); |
| } |
| self.func_ctx.status[block] = BlockStatus::Partial; |
| } else { |
| debug_assert!( |
| !self.is_filled(block), |
| "you cannot add an instruction to a block already filled" |
| ); |
| } |
| } |
| |
| /// Returns a [`FuncCursor`] pointed at the current position ready for inserting instructions. |
| /// |
| /// This can be used to insert SSA code that doesn't need to access locals and that doesn't |
| /// need to know about [`FunctionBuilder`] at all. |
| pub fn cursor(&mut self) -> FuncCursor { |
| self.ensure_inserted_block(); |
| FuncCursor::new(self.func) |
| .with_srcloc(self.srcloc) |
| .at_bottom(self.position.unwrap()) |
| } |
| |
| /// Append parameters to the given [`Block`] corresponding to the function |
| /// parameters. This can be used to set up the block parameters for the |
| /// entry block. |
| pub fn append_block_params_for_function_params(&mut self, block: Block) { |
| debug_assert!( |
| !self.func_ctx.ssa.has_any_predecessors(block), |
| "block parameters for function parameters should only be added to the entry block" |
| ); |
| |
| // These parameters count as "user" parameters here because they aren't |
| // inserted by the SSABuilder. |
| debug_assert!( |
| self.is_pristine(block), |
| "You can't add block parameters after adding any instruction" |
| ); |
| |
| for argtyp in &self.func.stencil.signature.params { |
| self.func |
| .stencil |
| .dfg |
| .append_block_param(block, argtyp.value_type); |
| } |
| } |
| |
| /// Append parameters to the given [`Block`] corresponding to the function |
| /// return values. This can be used to set up the block parameters for a |
| /// function exit block. |
| pub fn append_block_params_for_function_returns(&mut self, block: Block) { |
| // These parameters count as "user" parameters here because they aren't |
| // inserted by the SSABuilder. |
| debug_assert!( |
| self.is_pristine(block), |
| "You can't add block parameters after adding any instruction" |
| ); |
| |
| for argtyp in &self.func.stencil.signature.returns { |
| self.func |
| .stencil |
| .dfg |
| .append_block_param(block, argtyp.value_type); |
| } |
| } |
| |
| /// Declare that translation of the current function is complete. |
| /// |
| /// This resets the state of the [`FunctionBuilderContext`] in preparation to |
| /// be used for another function. |
| pub fn finalize(mut self) { |
| // Check that all the `Block`s are filled and sealed. |
| #[cfg(debug_assertions)] |
| { |
| for block in self.func_ctx.status.keys() { |
| if !self.is_pristine(block) { |
| assert!( |
| self.func_ctx.ssa.is_sealed(block), |
| "FunctionBuilder finalized, but block {} is not sealed", |
| block, |
| ); |
| assert!( |
| self.is_filled(block), |
| "FunctionBuilder finalized, but block {} is not filled", |
| block, |
| ); |
| } |
| } |
| } |
| |
| // In debug mode, check that all blocks are valid basic blocks. |
| #[cfg(debug_assertions)] |
| { |
| // Iterate manually to provide more helpful error messages. |
| for block in self.func_ctx.status.keys() { |
| if let Err((inst, msg)) = self.func.is_block_basic(block) { |
| let inst_str = self.func.dfg.display_inst(inst); |
| panic!( |
| "{} failed basic block invariants on {}: {}", |
| block, inst_str, msg |
| ); |
| } |
| } |
| } |
| |
| if !self.func_ctx.stack_map_values.is_empty() { |
| self.func_ctx |
| .safepoints |
| .run(&mut self.func, &self.func_ctx.stack_map_values); |
| } |
| |
| // Clear the state (but preserve the allocated buffers) in preparation |
| // for translation another function. |
| self.func_ctx.clear(); |
| } |
| } |
| |
| /// All the functions documented in the previous block are write-only and help you build a valid |
| /// Cranelift IR functions via multiple debug asserts. However, you might need to improve the |
| /// performance of your translation perform more complex transformations to your Cranelift IR |
| /// function. The functions below help you inspect the function you're creating and modify it |
| /// in ways that can be unsafe if used incorrectly. |
| impl<'a> FunctionBuilder<'a> { |
| /// Retrieves all the parameters for a [`Block`] currently inferred from the jump instructions |
| /// inserted that target it and the SSA construction. |
| pub fn block_params(&self, block: Block) -> &[Value] { |
| self.func.dfg.block_params(block) |
| } |
| |
| /// Retrieves the signature with reference `sigref` previously added with |
| /// [`import_signature`](Self::import_signature). |
| pub fn signature(&self, sigref: SigRef) -> Option<&Signature> { |
| self.func.dfg.signatures.get(sigref) |
| } |
| |
| /// Creates a parameter for a specific [`Block`] by appending it to the list of already existing |
| /// parameters. |
| /// |
| /// **Note:** this function has to be called at the creation of the `Block` before adding |
| /// instructions to it, otherwise this could interfere with SSA construction. |
| pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value { |
| debug_assert!( |
| self.is_pristine(block), |
| "You can't add block parameters after adding any instruction" |
| ); |
| self.func.dfg.append_block_param(block, ty) |
| } |
| |
| /// Returns the result values of an instruction. |
| pub fn inst_results(&self, inst: Inst) -> &[Value] { |
| self.func.dfg.inst_results(inst) |
| } |
| |
| /// Changes the destination of a jump instruction after creation. |
| /// |
| /// **Note:** You are responsible for maintaining the coherence with the arguments of |
| /// other jump instructions. |
| pub fn change_jump_destination(&mut self, inst: Inst, old_block: Block, new_block: Block) { |
| let dfg = &mut self.func.dfg; |
| for block in dfg.insts[inst].branch_destination_mut(&mut dfg.jump_tables) { |
| if block.block(&dfg.value_lists) == old_block { |
| self.func_ctx.ssa.remove_block_predecessor(old_block, inst); |
| block.set_block(new_block, &mut dfg.value_lists); |
| self.func_ctx.ssa.declare_block_predecessor(new_block, inst); |
| } |
| } |
| } |
| |
| /// Returns `true` if and only if the current [`Block`] is sealed and has no predecessors declared. |
| /// |
| /// The entry block of a function is never unreachable. |
| pub fn is_unreachable(&self) -> bool { |
| let is_entry = match self.func.layout.entry_block() { |
| None => false, |
| Some(entry) => self.position.unwrap() == entry, |
| }; |
| !is_entry |
| && self.func_ctx.ssa.is_sealed(self.position.unwrap()) |
| && !self |
| .func_ctx |
| .ssa |
| .has_any_predecessors(self.position.unwrap()) |
| } |
| |
| /// Returns `true` if and only if no instructions have been added since the last call to |
| /// [`switch_to_block`](Self::switch_to_block). |
| fn is_pristine(&self, block: Block) -> bool { |
| self.func_ctx.status[block] == BlockStatus::Empty |
| } |
| |
| /// Returns `true` if and only if a terminator instruction has been inserted since the |
| /// last call to [`switch_to_block`](Self::switch_to_block). |
| fn is_filled(&self, block: Block) -> bool { |
| self.func_ctx.status[block] == BlockStatus::Filled |
| } |
| } |
| |
| /// Helper functions |
| impl<'a> FunctionBuilder<'a> { |
| /// Calls libc.memcpy |
| /// |
| /// Copies the `size` bytes from `src` to `dest`, assumes that `src + size` |
| /// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is |
| /// undefined. Applications in which `dest` and `src` might overlap should |
| /// use `call_memmove` instead. |
| pub fn call_memcpy( |
| &mut self, |
| config: TargetFrontendConfig, |
| dest: Value, |
| src: Value, |
| size: Value, |
| ) { |
| let pointer_type = config.pointer_type(); |
| let signature = { |
| let mut s = Signature::new(config.default_call_conv); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.returns.push(AbiParam::new(pointer_type)); |
| self.import_signature(s) |
| }; |
| |
| let libc_memcpy = self.import_function(ExtFuncData { |
| name: ExternalName::LibCall(LibCall::Memcpy), |
| signature, |
| colocated: false, |
| }); |
| |
| self.ins().call(libc_memcpy, &[dest, src, size]); |
| } |
| |
| /// Optimised memcpy or memmove for small copies. |
| /// |
| /// # Codegen safety |
| /// |
| /// The following properties must hold to prevent UB: |
| /// |
| /// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`. |
| /// * If `non_overlapping` is true, then this must be correct. |
| pub fn emit_small_memory_copy( |
| &mut self, |
| config: TargetFrontendConfig, |
| dest: Value, |
| src: Value, |
| size: u64, |
| dest_align: u8, |
| src_align: u8, |
| non_overlapping: bool, |
| mut flags: MemFlags, |
| ) { |
| // Currently the result of guess work, not actual profiling. |
| const THRESHOLD: u64 = 4; |
| |
| if size == 0 { |
| return; |
| } |
| |
| let access_size = greatest_divisible_power_of_two(size); |
| assert!( |
| access_size.is_power_of_two(), |
| "`size` is not a power of two" |
| ); |
| assert!( |
| access_size >= u64::from(::core::cmp::min(src_align, dest_align)), |
| "`size` is smaller than `dest` and `src`'s alignment value." |
| ); |
| |
| let (access_size, int_type) = if access_size <= 8 { |
| (access_size, Type::int((access_size * 8) as u16).unwrap()) |
| } else { |
| (8, types::I64) |
| }; |
| |
| let load_and_store_amount = size / access_size; |
| |
| if load_and_store_amount > THRESHOLD { |
| let size_value = self.ins().iconst(config.pointer_type(), size as i64); |
| if non_overlapping { |
| self.call_memcpy(config, dest, src, size_value); |
| } else { |
| self.call_memmove(config, dest, src, size_value); |
| } |
| return; |
| } |
| |
| if u64::from(src_align) >= access_size && u64::from(dest_align) >= access_size { |
| flags.set_aligned(); |
| } |
| |
| // Load all of the memory first. This is necessary in case `dest` overlaps. |
| // It can also improve performance a bit. |
| let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount) |
| .map(|i| { |
| let offset = (access_size * i) as i32; |
| (self.ins().load(int_type, flags, src, offset), offset) |
| }) |
| .collect(); |
| |
| for (value, offset) in registers { |
| self.ins().store(flags, value, dest, offset); |
| } |
| } |
| |
| /// Calls libc.memset |
| /// |
| /// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`. |
| pub fn call_memset( |
| &mut self, |
| config: TargetFrontendConfig, |
| buffer: Value, |
| ch: Value, |
| size: Value, |
| ) { |
| let pointer_type = config.pointer_type(); |
| let signature = { |
| let mut s = Signature::new(config.default_call_conv); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(types::I32)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.returns.push(AbiParam::new(pointer_type)); |
| self.import_signature(s) |
| }; |
| |
| let libc_memset = self.import_function(ExtFuncData { |
| name: ExternalName::LibCall(LibCall::Memset), |
| signature, |
| colocated: false, |
| }); |
| |
| let ch = self.ins().uextend(types::I32, ch); |
| self.ins().call(libc_memset, &[buffer, ch, size]); |
| } |
| |
| /// Calls libc.memset |
| /// |
| /// Writes `size` bytes of value `ch` to memory starting at `buffer`. |
| pub fn emit_small_memset( |
| &mut self, |
| config: TargetFrontendConfig, |
| buffer: Value, |
| ch: u8, |
| size: u64, |
| buffer_align: u8, |
| mut flags: MemFlags, |
| ) { |
| // Currently the result of guess work, not actual profiling. |
| const THRESHOLD: u64 = 4; |
| |
| if size == 0 { |
| return; |
| } |
| |
| let access_size = greatest_divisible_power_of_two(size); |
| assert!( |
| access_size.is_power_of_two(), |
| "`size` is not a power of two" |
| ); |
| assert!( |
| access_size >= u64::from(buffer_align), |
| "`size` is smaller than `dest` and `src`'s alignment value." |
| ); |
| |
| let (access_size, int_type) = if access_size <= 8 { |
| (access_size, Type::int((access_size * 8) as u16).unwrap()) |
| } else { |
| (8, types::I64) |
| }; |
| |
| let load_and_store_amount = size / access_size; |
| |
| if load_and_store_amount > THRESHOLD { |
| let ch = self.ins().iconst(types::I8, i64::from(ch)); |
| let size = self.ins().iconst(config.pointer_type(), size as i64); |
| self.call_memset(config, buffer, ch, size); |
| } else { |
| if u64::from(buffer_align) >= access_size { |
| flags.set_aligned(); |
| } |
| |
| let ch = u64::from(ch); |
| let raw_value = if int_type == types::I64 { |
| ch * 0x0101010101010101_u64 |
| } else if int_type == types::I32 { |
| ch * 0x01010101_u64 |
| } else if int_type == types::I16 { |
| (ch << 8) | ch |
| } else { |
| assert_eq!(int_type, types::I8); |
| ch |
| }; |
| |
| let value = self.ins().iconst(int_type, raw_value as i64); |
| for i in 0..load_and_store_amount { |
| let offset = (access_size * i) as i32; |
| self.ins().store(flags, value, buffer, offset); |
| } |
| } |
| } |
| |
| /// Calls libc.memmove |
| /// |
| /// Copies `size` bytes from memory starting at `source` to memory starting |
| /// at `dest`. `source` is always read before writing to `dest`. |
| pub fn call_memmove( |
| &mut self, |
| config: TargetFrontendConfig, |
| dest: Value, |
| source: Value, |
| size: Value, |
| ) { |
| let pointer_type = config.pointer_type(); |
| let signature = { |
| let mut s = Signature::new(config.default_call_conv); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.returns.push(AbiParam::new(pointer_type)); |
| self.import_signature(s) |
| }; |
| |
| let libc_memmove = self.import_function(ExtFuncData { |
| name: ExternalName::LibCall(LibCall::Memmove), |
| signature, |
| colocated: false, |
| }); |
| |
| self.ins().call(libc_memmove, &[dest, source, size]); |
| } |
| |
| /// Calls libc.memcmp |
| /// |
| /// Compares `size` bytes from memory starting at `left` to memory starting |
| /// at `right`. Returns `0` if all `n` bytes are equal. If the first difference |
| /// is at offset `i`, returns a positive integer if `ugt(left[i], right[i])` |
| /// and a negative integer if `ult(left[i], right[i])`. |
| /// |
| /// Returns a C `int`, which is currently always [`types::I32`]. |
| pub fn call_memcmp( |
| &mut self, |
| config: TargetFrontendConfig, |
| left: Value, |
| right: Value, |
| size: Value, |
| ) -> Value { |
| let pointer_type = config.pointer_type(); |
| let signature = { |
| let mut s = Signature::new(config.default_call_conv); |
| s.params.reserve(3); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.params.push(AbiParam::new(pointer_type)); |
| s.returns.push(AbiParam::new(types::I32)); |
| self.import_signature(s) |
| }; |
| |
| let libc_memcmp = self.import_function(ExtFuncData { |
| name: ExternalName::LibCall(LibCall::Memcmp), |
| signature, |
| colocated: false, |
| }); |
| |
| let call = self.ins().call(libc_memcmp, &[left, right, size]); |
| self.func.dfg.first_result(call) |
| } |
| |
| /// Optimised [`Self::call_memcmp`] for small copies. |
| /// |
| /// This implements the byte slice comparison `int_cc(left[..size], right[..size])`. |
| /// |
| /// `left_align` and `right_align` are the statically-known alignments of the |
| /// `left` and `right` pointers respectively. These are used to know whether |
| /// to mark `load`s as aligned. It's always fine to pass `1` for these, but |
| /// passing something higher than the true alignment may trap or otherwise |
| /// misbehave as described in [`MemFlags::aligned`]. |
| /// |
| /// Note that `memcmp` is a *big-endian* and *unsigned* comparison. |
| /// As such, this panics when called with `IntCC::Signed*`. |
| pub fn emit_small_memory_compare( |
| &mut self, |
| config: TargetFrontendConfig, |
| int_cc: IntCC, |
| left: Value, |
| right: Value, |
| size: u64, |
| left_align: std::num::NonZeroU8, |
| right_align: std::num::NonZeroU8, |
| flags: MemFlags, |
| ) -> Value { |
| use IntCC::*; |
| let (zero_cc, empty_imm) = match int_cc { |
| // |
| Equal => (Equal, 1), |
| NotEqual => (NotEqual, 0), |
| |
| UnsignedLessThan => (SignedLessThan, 0), |
| UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, 1), |
| UnsignedGreaterThan => (SignedGreaterThan, 0), |
| UnsignedLessThanOrEqual => (SignedLessThanOrEqual, 1), |
| |
| SignedLessThan |
| | SignedGreaterThanOrEqual |
| | SignedGreaterThan |
| | SignedLessThanOrEqual => { |
| panic!("Signed comparison {} not supported by memcmp", int_cc) |
| } |
| }; |
| |
| if size == 0 { |
| return self.ins().iconst(types::I8, empty_imm); |
| } |
| |
| // Future work could consider expanding this to handle more-complex scenarios. |
| if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) { |
| if let Equal | NotEqual = zero_cc { |
| let mut left_flags = flags; |
| if size == left_align.get() as u64 { |
| left_flags.set_aligned(); |
| } |
| let mut right_flags = flags; |
| if size == right_align.get() as u64 { |
| right_flags.set_aligned(); |
| } |
| let left_val = self.ins().load(small_type, left_flags, left, 0); |
| let right_val = self.ins().load(small_type, right_flags, right, 0); |
| return self.ins().icmp(int_cc, left_val, right_val); |
| } else if small_type == types::I8 { |
| // Once the big-endian loads from wasmtime#2492 are implemented in |
| // the backends, we could easily handle comparisons for more sizes here. |
| // But for now, just handle single bytes where we don't need to worry. |
| |
| let mut aligned_flags = flags; |
| aligned_flags.set_aligned(); |
| let left_val = self.ins().load(small_type, aligned_flags, left, 0); |
| let right_val = self.ins().load(small_type, aligned_flags, right, 0); |
| return self.ins().icmp(int_cc, left_val, right_val); |
| } |
| } |
| |
| let pointer_type = config.pointer_type(); |
| let size = self.ins().iconst(pointer_type, size as i64); |
| let cmp = self.call_memcmp(config, left, right, size); |
| self.ins().icmp_imm(zero_cc, cmp, 0) |
| } |
| } |
| |
| fn greatest_divisible_power_of_two(size: u64) -> u64 { |
| (size as i64 & -(size as i64)) as u64 |
| } |
| |
| // Helper functions |
| impl<'a> FunctionBuilder<'a> { |
| /// A Block is 'filled' when a terminator instruction is present. |
| fn fill_current_block(&mut self) { |
| self.func_ctx.status[self.position.unwrap()] = BlockStatus::Filled; |
| } |
| |
| fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) { |
| self.func_ctx |
| .ssa |
| .declare_block_predecessor(dest_block, jump_inst); |
| } |
| |
| fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) { |
| for modified_block in side_effects.instructions_added_to_blocks { |
| if self.is_pristine(modified_block) { |
| self.func_ctx.status[modified_block] = BlockStatus::Partial; |
| } |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::greatest_divisible_power_of_two; |
| use crate::frontend::{ |
| DeclareVariableError, DefVariableError, FunctionBuilder, FunctionBuilderContext, |
| UseVariableError, |
| }; |
| use crate::Variable; |
| use alloc::string::ToString; |
| use cranelift_codegen::entity::EntityRef; |
| use cranelift_codegen::ir::condcodes::IntCC; |
| use cranelift_codegen::ir::{types::*, UserFuncName}; |
| use cranelift_codegen::ir::{AbiParam, Function, InstBuilder, MemFlags, Signature, Value}; |
| use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa}; |
| use cranelift_codegen::settings; |
| use cranelift_codegen::verifier::verify_function; |
| use target_lexicon::PointerWidth; |
| |
| fn sample_function(lazy_seal: bool) { |
| let mut sig = Signature::new(CallConv::SystemV); |
| sig.returns.push(AbiParam::new(I32)); |
| sig.params.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let block1 = builder.create_block(); |
| let block2 = builder.create_block(); |
| let block3 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(1); |
| let z = Variable::new(2); |
| builder.declare_var(x, I32); |
| builder.declare_var(y, I32); |
| builder.declare_var(z, I32); |
| builder.append_block_params_for_function_params(block0); |
| |
| builder.switch_to_block(block0); |
| if !lazy_seal { |
| builder.seal_block(block0); |
| } |
| { |
| let tmp = builder.block_params(block0)[0]; // the first function parameter |
| builder.def_var(x, tmp); |
| } |
| { |
| let tmp = builder.ins().iconst(I32, 2); |
| builder.def_var(y, tmp); |
| } |
| { |
| let arg1 = builder.use_var(x); |
| let arg2 = builder.use_var(y); |
| let tmp = builder.ins().iadd(arg1, arg2); |
| builder.def_var(z, tmp); |
| } |
| builder.ins().jump(block1, &[]); |
| |
| builder.switch_to_block(block1); |
| { |
| let arg1 = builder.use_var(y); |
| let arg2 = builder.use_var(z); |
| let tmp = builder.ins().iadd(arg1, arg2); |
| builder.def_var(z, tmp); |
| } |
| { |
| let arg = builder.use_var(y); |
| builder.ins().brif(arg, block3, &[], block2, &[]); |
| } |
| |
| builder.switch_to_block(block2); |
| if !lazy_seal { |
| builder.seal_block(block2); |
| } |
| { |
| let arg1 = builder.use_var(z); |
| let arg2 = builder.use_var(x); |
| let tmp = builder.ins().isub(arg1, arg2); |
| builder.def_var(z, tmp); |
| } |
| { |
| let arg = builder.use_var(y); |
| builder.ins().return_(&[arg]); |
| } |
| |
| builder.switch_to_block(block3); |
| if !lazy_seal { |
| builder.seal_block(block3); |
| } |
| |
| { |
| let arg1 = builder.use_var(y); |
| let arg2 = builder.use_var(x); |
| let tmp = builder.ins().isub(arg1, arg2); |
| builder.def_var(y, tmp); |
| } |
| builder.ins().jump(block1, &[]); |
| if !lazy_seal { |
| builder.seal_block(block1); |
| } |
| |
| if lazy_seal { |
| builder.seal_all_blocks(); |
| } |
| |
| builder.finalize(); |
| } |
| |
| let flags = settings::Flags::new(settings::builder()); |
| // println!("{}", func.display(None)); |
| if let Err(errors) = verify_function(&func, &flags) { |
| panic!("{}\n{}", func.display(), errors) |
| } |
| } |
| |
| #[test] |
| fn sample() { |
| sample_function(false) |
| } |
| |
| #[test] |
| fn sample_with_lazy_seal() { |
| sample_function(true) |
| } |
| |
| #[track_caller] |
| fn check(func: &Function, expected_ir: &str) { |
| let expected_ir = expected_ir.trim(); |
| let actual_ir = func.display().to_string(); |
| let actual_ir = actual_ir.trim(); |
| assert!( |
| expected_ir == actual_ir, |
| "Expected:\n{}\nGot:\n{}", |
| expected_ir, |
| actual_ir |
| ); |
| } |
| |
| /// Helper function to construct a fixed frontend configuration. |
| fn systemv_frontend_config() -> TargetFrontendConfig { |
| TargetFrontendConfig { |
| default_call_conv: CallConv::SystemV, |
| pointer_width: PointerWidth::U64, |
| page_size_align_log2: 12, |
| } |
| } |
| |
| #[test] |
| fn memcpy() { |
| let frontend_config = systemv_frontend_config(); |
| let mut sig = Signature::new(frontend_config.default_call_conv); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(1); |
| let z = Variable::new(2); |
| builder.declare_var(x, frontend_config.pointer_type()); |
| builder.declare_var(y, frontend_config.pointer_type()); |
| builder.declare_var(z, I32); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let src = builder.use_var(x); |
| let dest = builder.use_var(y); |
| let size = builder.use_var(y); |
| builder.call_memcpy(frontend_config, dest, src, size); |
| builder.ins().return_(&[size]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| sig0 = (i64, i64, i64) -> i64 system_v |
| fn0 = %Memcpy sig0 |
| |
| block0: |
| v4 = iconst.i64 0 |
| v1 -> v4 |
| v3 = iconst.i64 0 |
| v0 -> v3 |
| v2 = call fn0(v1, v0, v1) ; v1 = 0, v0 = 0, v1 = 0 |
| return v1 ; v1 = 0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn small_memcpy() { |
| let frontend_config = systemv_frontend_config(); |
| let mut sig = Signature::new(frontend_config.default_call_conv); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(16); |
| builder.declare_var(x, frontend_config.pointer_type()); |
| builder.declare_var(y, frontend_config.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let src = builder.use_var(x); |
| let dest = builder.use_var(y); |
| let size = 8; |
| builder.emit_small_memory_copy( |
| frontend_config, |
| dest, |
| src, |
| size, |
| 8, |
| 8, |
| true, |
| MemFlags::new(), |
| ); |
| builder.ins().return_(&[dest]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| block0: |
| v4 = iconst.i64 0 |
| v1 -> v4 |
| v3 = iconst.i64 0 |
| v0 -> v3 |
| v2 = load.i64 aligned v0 ; v0 = 0 |
| store aligned v2, v1 ; v1 = 0 |
| return v1 ; v1 = 0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn not_so_small_memcpy() { |
| let frontend_config = systemv_frontend_config(); |
| let mut sig = Signature::new(frontend_config.default_call_conv); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(16); |
| builder.declare_var(x, frontend_config.pointer_type()); |
| builder.declare_var(y, frontend_config.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let src = builder.use_var(x); |
| let dest = builder.use_var(y); |
| let size = 8192; |
| builder.emit_small_memory_copy( |
| frontend_config, |
| dest, |
| src, |
| size, |
| 8, |
| 8, |
| true, |
| MemFlags::new(), |
| ); |
| builder.ins().return_(&[dest]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| sig0 = (i64, i64, i64) -> i64 system_v |
| fn0 = %Memcpy sig0 |
| |
| block0: |
| v5 = iconst.i64 0 |
| v1 -> v5 |
| v4 = iconst.i64 0 |
| v0 -> v4 |
| v2 = iconst.i64 8192 |
| v3 = call fn0(v1, v0, v2) ; v1 = 0, v0 = 0, v2 = 8192 |
| return v1 ; v1 = 0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn small_memset() { |
| let frontend_config = systemv_frontend_config(); |
| let mut sig = Signature::new(frontend_config.default_call_conv); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let y = Variable::new(16); |
| builder.declare_var(y, frontend_config.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let dest = builder.use_var(y); |
| let size = 8; |
| builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new()); |
| builder.ins().return_(&[dest]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| block0: |
| v2 = iconst.i64 0 |
| v0 -> v2 |
| v1 = iconst.i64 0x0101_0101_0101_0101 |
| store aligned v1, v0 ; v1 = 0x0101_0101_0101_0101, v0 = 0 |
| return v0 ; v0 = 0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn not_so_small_memset() { |
| let frontend_config = systemv_frontend_config(); |
| let mut sig = Signature::new(frontend_config.default_call_conv); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let y = Variable::new(16); |
| builder.declare_var(y, frontend_config.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let dest = builder.use_var(y); |
| let size = 8192; |
| builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new()); |
| builder.ins().return_(&[dest]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| sig0 = (i64, i32, i64) -> i64 system_v |
| fn0 = %Memset sig0 |
| |
| block0: |
| v5 = iconst.i64 0 |
| v0 -> v5 |
| v1 = iconst.i8 1 |
| v2 = iconst.i64 8192 |
| v3 = uextend.i32 v1 ; v1 = 1 |
| v4 = call fn0(v0, v3, v2) ; v0 = 0, v2 = 8192 |
| return v0 ; v0 = 0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn memcmp() { |
| use core::str::FromStr; |
| use cranelift_codegen::isa; |
| |
| let shared_builder = settings::builder(); |
| let shared_flags = settings::Flags::new(shared_builder); |
| |
| let triple = |
| ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple"); |
| |
| let target = isa::lookup(triple) |
| .ok() |
| .map(|b| b.finish(shared_flags)) |
| .expect("This test requires x86_64 support.") |
| .expect("Should be able to create backend with default flags"); |
| |
| let mut sig = Signature::new(target.default_call_conv()); |
| sig.returns.push(AbiParam::new(I32)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(1); |
| let z = Variable::new(2); |
| builder.declare_var(x, target.pointer_type()); |
| builder.declare_var(y, target.pointer_type()); |
| builder.declare_var(z, target.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let left = builder.use_var(x); |
| let right = builder.use_var(y); |
| let size = builder.use_var(z); |
| let cmp = builder.call_memcmp(target.frontend_config(), left, right, size); |
| builder.ins().return_(&[cmp]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i32 system_v { |
| sig0 = (i64, i64, i64) -> i32 system_v |
| fn0 = %Memcmp sig0 |
| |
| block0: |
| v6 = iconst.i64 0 |
| v2 -> v6 |
| v5 = iconst.i64 0 |
| v1 -> v5 |
| v4 = iconst.i64 0 |
| v0 -> v4 |
| v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 0 |
| return v3 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn small_memcmp_zero_size() { |
| let align_eight = std::num::NonZeroU8::new(8).unwrap(); |
| small_memcmp_helper( |
| " |
| block0: |
| v4 = iconst.i64 0 |
| v1 -> v4 |
| v3 = iconst.i64 0 |
| v0 -> v3 |
| v2 = iconst.i8 1 |
| return v2 ; v2 = 1", |
| |builder, target, x, y| { |
| builder.emit_small_memory_compare( |
| target.frontend_config(), |
| IntCC::UnsignedGreaterThanOrEqual, |
| x, |
| y, |
| 0, |
| align_eight, |
| align_eight, |
| MemFlags::new(), |
| ) |
| }, |
| ); |
| } |
| |
| #[test] |
| fn small_memcmp_byte_ugt() { |
| let align_one = std::num::NonZeroU8::new(1).unwrap(); |
| small_memcmp_helper( |
| " |
| block0: |
| v6 = iconst.i64 0 |
| v1 -> v6 |
| v5 = iconst.i64 0 |
| v0 -> v5 |
| v2 = load.i8 aligned v0 ; v0 = 0 |
| v3 = load.i8 aligned v1 ; v1 = 0 |
| v4 = icmp ugt v2, v3 |
| return v4", |
| |builder, target, x, y| { |
| builder.emit_small_memory_compare( |
| target.frontend_config(), |
| IntCC::UnsignedGreaterThan, |
| x, |
| y, |
| 1, |
| align_one, |
| align_one, |
| MemFlags::new(), |
| ) |
| }, |
| ); |
| } |
| |
| #[test] |
| fn small_memcmp_aligned_eq() { |
| let align_four = std::num::NonZeroU8::new(4).unwrap(); |
| small_memcmp_helper( |
| " |
| block0: |
| v6 = iconst.i64 0 |
| v1 -> v6 |
| v5 = iconst.i64 0 |
| v0 -> v5 |
| v2 = load.i32 aligned v0 ; v0 = 0 |
| v3 = load.i32 aligned v1 ; v1 = 0 |
| v4 = icmp eq v2, v3 |
| return v4", |
| |builder, target, x, y| { |
| builder.emit_small_memory_compare( |
| target.frontend_config(), |
| IntCC::Equal, |
| x, |
| y, |
| 4, |
| align_four, |
| align_four, |
| MemFlags::new(), |
| ) |
| }, |
| ); |
| } |
| |
| #[test] |
| fn small_memcmp_ipv6_ne() { |
| let align_two = std::num::NonZeroU8::new(2).unwrap(); |
| small_memcmp_helper( |
| " |
| block0: |
| v6 = iconst.i64 0 |
| v1 -> v6 |
| v5 = iconst.i64 0 |
| v0 -> v5 |
| v2 = load.i128 v0 ; v0 = 0 |
| v3 = load.i128 v1 ; v1 = 0 |
| v4 = icmp ne v2, v3 |
| return v4", |
| |builder, target, x, y| { |
| builder.emit_small_memory_compare( |
| target.frontend_config(), |
| IntCC::NotEqual, |
| x, |
| y, |
| 16, |
| align_two, |
| align_two, |
| MemFlags::new(), |
| ) |
| }, |
| ); |
| } |
| |
| #[test] |
| fn small_memcmp_odd_size_uge() { |
| let one = std::num::NonZeroU8::new(1).unwrap(); |
| small_memcmp_helper( |
| " |
| sig0 = (i64, i64, i64) -> i32 system_v |
| fn0 = %Memcmp sig0 |
| |
| block0: |
| v6 = iconst.i64 0 |
| v1 -> v6 |
| v5 = iconst.i64 0 |
| v0 -> v5 |
| v2 = iconst.i64 3 |
| v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 3 |
| v4 = icmp_imm sge v3, 0 |
| return v4", |
| |builder, target, x, y| { |
| builder.emit_small_memory_compare( |
| target.frontend_config(), |
| IntCC::UnsignedGreaterThanOrEqual, |
| x, |
| y, |
| 3, |
| one, |
| one, |
| MemFlags::new(), |
| ) |
| }, |
| ); |
| } |
| |
| fn small_memcmp_helper( |
| expected: &str, |
| f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value, |
| ) { |
| use core::str::FromStr; |
| use cranelift_codegen::isa; |
| |
| let shared_builder = settings::builder(); |
| let shared_flags = settings::Flags::new(shared_builder); |
| |
| let triple = |
| ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple"); |
| |
| let target = isa::lookup(triple) |
| .ok() |
| .map(|b| b.finish(shared_flags)) |
| .expect("This test requires x86_64 support.") |
| .expect("Should be able to create backend with default flags"); |
| |
| let mut sig = Signature::new(target.default_call_conv()); |
| sig.returns.push(AbiParam::new(I8)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let x = Variable::new(0); |
| let y = Variable::new(1); |
| builder.declare_var(x, target.pointer_type()); |
| builder.declare_var(y, target.pointer_type()); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| let left = builder.use_var(x); |
| let right = builder.use_var(y); |
| let ret = f(&mut builder, &*target, left, right); |
| builder.ins().return_(&[ret]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| &format!("function %sample() -> i8 system_v {{{}\n}}\n", expected), |
| ); |
| } |
| |
| #[test] |
| fn undef_vector_vars() { |
| let mut sig = Signature::new(CallConv::SystemV); |
| sig.returns.push(AbiParam::new(I8X16)); |
| sig.returns.push(AbiParam::new(I8X16)); |
| sig.returns.push(AbiParam::new(F32X4)); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| let a = Variable::new(0); |
| let b = Variable::new(1); |
| let c = Variable::new(2); |
| builder.declare_var(a, I8X16); |
| builder.declare_var(b, I8X16); |
| builder.declare_var(c, F32X4); |
| builder.switch_to_block(block0); |
| |
| let a = builder.use_var(a); |
| let b = builder.use_var(b); |
| let c = builder.use_var(c); |
| builder.ins().return_(&[a, b, c]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| } |
| |
| check( |
| &func, |
| "function %sample() -> i8x16, i8x16, f32x4 system_v { |
| const0 = 0x00000000000000000000000000000000 |
| |
| block0: |
| v5 = f32const 0.0 |
| v6 = splat.f32x4 v5 ; v5 = 0.0 |
| v2 -> v6 |
| v4 = vconst.i8x16 const0 |
| v1 -> v4 |
| v3 = vconst.i8x16 const0 |
| v0 -> v3 |
| return v0, v1, v2 ; v0 = const0, v1 = const0 |
| } |
| ", |
| ); |
| } |
| |
| #[test] |
| fn test_greatest_divisible_power_of_two() { |
| assert_eq!(64, greatest_divisible_power_of_two(64)); |
| assert_eq!(16, greatest_divisible_power_of_two(48)); |
| assert_eq!(8, greatest_divisible_power_of_two(24)); |
| assert_eq!(1, greatest_divisible_power_of_two(25)); |
| } |
| |
| #[test] |
| fn try_use_var() { |
| let sig = Signature::new(CallConv::SystemV); |
| |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| { |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| builder.append_block_params_for_function_params(block0); |
| builder.switch_to_block(block0); |
| |
| assert_eq!( |
| builder.try_use_var(Variable::from_u32(0)), |
| Err(UseVariableError::UsedBeforeDeclared(Variable::from_u32(0))) |
| ); |
| |
| let value = builder.ins().iconst(cranelift_codegen::ir::types::I32, 0); |
| |
| assert_eq!( |
| builder.try_def_var(Variable::from_u32(0), value), |
| Err(DefVariableError::DefinedBeforeDeclared(Variable::from_u32( |
| 0 |
| ))) |
| ); |
| |
| builder.declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32); |
| assert_eq!( |
| builder.try_declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32), |
| Err(DeclareVariableError::DeclaredMultipleTimes( |
| Variable::from_u32(0) |
| )) |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_builder_with_iconst_and_negative_constant() { |
| let sig = Signature::new(CallConv::SystemV); |
| let mut fn_ctx = FunctionBuilderContext::new(); |
| let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig); |
| |
| let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); |
| |
| let block0 = builder.create_block(); |
| builder.switch_to_block(block0); |
| builder.ins().iconst(I32, -1); |
| builder.ins().return_(&[]); |
| |
| builder.seal_all_blocks(); |
| builder.finalize(); |
| |
| let flags = cranelift_codegen::settings::Flags::new(cranelift_codegen::settings::builder()); |
| let ctx = cranelift_codegen::Context::for_function(func); |
| ctx.verify(&flags).expect("should be valid"); |
| |
| check( |
| &ctx.func, |
| "function %sample() system_v { |
| block0: |
| v0 = iconst.i32 -1 |
| return |
| }", |
| ); |
| } |
| } |