| //! Implementation of [`DisjointSets`], to store disjoint sets and provide efficient operations to |
| //! merge sets |
| |
| use std::collections::HashMap; |
| use std::hash::Hash; |
| |
| /// Stores disjoint sets and provides efficient operations to merge two sets, and to find a |
| /// representative member of a set given any member of that set. In this implementation, sets always |
| /// have at least two members, and can only be formed by the `merge` operation. |
| #[derive(Clone, Debug, Default)] |
| pub struct DisjointSets<T> { |
| parent: HashMap<T, (T, u8)>, |
| } |
| |
| impl<T: Copy + std::fmt::Debug + Eq + Hash> DisjointSets<T> { |
| /// Find a representative member of the set containing `x`. If `x` has not been merged with any |
| /// other items using `merge`, returns `None`. This method updates the data structure to make |
| /// future queries faster, and takes amortized constant time. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// sets.merge(1, 2); |
| /// sets.merge(1, 3); |
| /// sets.merge(2, 4); |
| /// assert_eq!(sets.find_mut(3).unwrap(), sets.find_mut(4).unwrap()); |
| /// assert_eq!(sets.find_mut(10), None); |
| /// ``` |
| pub fn find_mut(&mut self, mut x: T) -> Option<T> { |
| while let Some(node) = self.parent.get(&x) { |
| if node.0 == x { |
| return Some(x); |
| } |
| let grandparent = self.parent[&node.0].0; |
| // Re-do the lookup but take a mutable borrow this time |
| self.parent.get_mut(&x).unwrap().0 = grandparent; |
| x = grandparent; |
| } |
| None |
| } |
| |
| /// Find a representative member of the set containing `x`. If `x` has not been merged with any |
| /// other items using `merge`, returns `None`. This method does not update the data structure to |
| /// make future queries faster, so `find_mut` should be preferred. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// sets.merge(1, 2); |
| /// sets.merge(1, 3); |
| /// sets.merge(2, 4); |
| /// assert_eq!(sets.find(3).unwrap(), sets.find(4).unwrap()); |
| /// assert_eq!(sets.find(10), None); |
| /// ``` |
| pub fn find(&self, mut x: T) -> Option<T> { |
| while let Some(node) = self.parent.get(&x) { |
| if node.0 == x { |
| return Some(x); |
| } |
| x = node.0; |
| } |
| None |
| } |
| |
| /// Merge the set containing `x` with the set containing `y`. This method takes amortized |
| /// constant time. |
| pub fn merge(&mut self, x: T, y: T) { |
| assert_ne!(x, y); |
| let mut x = if let Some(x) = self.find_mut(x) { |
| self.parent[&x] |
| } else { |
| self.parent.insert(x, (x, 0)); |
| (x, 0) |
| }; |
| let mut y = if let Some(y) = self.find_mut(y) { |
| self.parent[&y] |
| } else { |
| self.parent.insert(y, (y, 0)); |
| (y, 0) |
| }; |
| |
| if x == y { |
| return; |
| } |
| |
| if x.1 < y.1 { |
| std::mem::swap(&mut x, &mut y); |
| } |
| |
| self.parent.get_mut(&y.0).unwrap().0 = x.0; |
| if x.1 == y.1 { |
| let x_rank = &mut self.parent.get_mut(&x.0).unwrap().1; |
| *x_rank = x_rank.saturating_add(1); |
| } |
| } |
| |
| /// Returns whether the given items have both been merged into the same set. If either is not |
| /// part of any set, returns `false`. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// sets.merge(1, 2); |
| /// sets.merge(1, 3); |
| /// sets.merge(2, 4); |
| /// sets.merge(5, 6); |
| /// assert!(sets.in_same_set(2, 3)); |
| /// assert!(sets.in_same_set(1, 4)); |
| /// assert!(sets.in_same_set(3, 4)); |
| /// assert!(!sets.in_same_set(4, 5)); |
| /// ``` |
| pub fn in_same_set(&self, x: T, y: T) -> bool { |
| let x = self.find(x); |
| let y = self.find(y); |
| x.zip(y).filter(|(x, y)| x == y).is_some() |
| } |
| |
| /// Remove the set containing the given item, and return all members of that set. The set is |
| /// returned in sorted order. This method takes time linear in the total size of all sets. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// sets.merge(1, 2); |
| /// sets.merge(1, 3); |
| /// sets.merge(2, 4); |
| /// assert_eq!(sets.remove_set_of(4), &[1, 2, 3, 4]); |
| /// assert_eq!(sets.remove_set_of(1), &[]); |
| /// assert!(sets.is_empty()); |
| /// ``` |
| pub fn remove_set_of(&mut self, x: T) -> Vec<T> |
| where |
| T: Ord, |
| { |
| let mut set = Vec::new(); |
| if let Some(x) = self.find_mut(x) { |
| set.extend(self.parent.keys().copied()); |
| // It's important to use `find_mut` here to avoid quadratic worst-case time. |
| set.retain(|&y| self.find_mut(y).unwrap() == x); |
| for y in set.iter() { |
| self.parent.remove(y); |
| } |
| set.sort_unstable(); |
| } |
| set |
| } |
| |
| /// Returns true if there are no sets. This method takes constant time. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// assert!(sets.is_empty()); |
| /// sets.merge(1, 2); |
| /// assert!(!sets.is_empty()); |
| /// ``` |
| pub fn is_empty(&self) -> bool { |
| self.parent.is_empty() |
| } |
| |
| /// Returns the total number of elements in all sets. This method takes constant time. |
| /// |
| /// ``` |
| /// let mut sets = cranelift_isle::disjointsets::DisjointSets::default(); |
| /// sets.merge(1, 2); |
| /// assert_eq!(sets.len(), 2); |
| /// sets.merge(3, 4); |
| /// sets.merge(3, 5); |
| /// assert_eq!(sets.len(), 5); |
| /// ``` |
| pub fn len(&self) -> usize { |
| self.parent.len() |
| } |
| } |