| const GF2_DIM: usize = 32; |
| |
| fn gf2_matrix_times(mat: &[u32; GF2_DIM], mut vec: u32) -> u32 { |
| let mut sum = 0; |
| let mut idx = 0; |
| while vec > 0 { |
| if vec & 1 == 1 { |
| sum ^= mat[idx]; |
| } |
| vec >>= 1; |
| idx += 1; |
| } |
| return sum; |
| } |
| |
| fn gf2_matrix_square(square: &mut [u32; GF2_DIM], mat: &[u32; GF2_DIM]) { |
| for n in 0..GF2_DIM { |
| square[n] = gf2_matrix_times(mat, mat[n]); |
| } |
| } |
| |
| pub(crate) fn combine(mut crc1: u32, crc2: u32, mut len2: u64) -> u32 { |
| let mut row: u32; |
| let mut even = [0u32; GF2_DIM]; /* even-power-of-two zeros operator */ |
| let mut odd = [0u32; GF2_DIM]; /* odd-power-of-two zeros operator */ |
| |
| /* degenerate case (also disallow negative lengths) */ |
| if len2 <= 0 { |
| return crc1; |
| } |
| |
| /* put operator for one zero bit in odd */ |
| odd[0] = 0xedb88320; /* CRC-32 polynomial */ |
| row = 1; |
| for n in 1..GF2_DIM { |
| odd[n] = row; |
| row <<= 1; |
| } |
| |
| /* put operator for two zero bits in even */ |
| gf2_matrix_square(&mut even, &odd); |
| |
| /* put operator for four zero bits in odd */ |
| gf2_matrix_square(&mut odd, &even); |
| |
| /* apply len2 zeros to crc1 (first square will put the operator for one |
| zero byte, eight zero bits, in even) */ |
| loop { |
| /* apply zeros operator for this bit of len2 */ |
| gf2_matrix_square(&mut even, &odd); |
| if len2 & 1 == 1 { |
| crc1 = gf2_matrix_times(&even, crc1); |
| } |
| len2 >>= 1; |
| |
| /* if no more bits set, then done */ |
| if len2 == 0 { |
| break; |
| } |
| |
| /* another iteration of the loop with odd and even swapped */ |
| gf2_matrix_square(&mut odd, &even); |
| if len2 & 1 == 1 { |
| crc1 = gf2_matrix_times(&odd, crc1); |
| } |
| len2 >>= 1; |
| |
| /* if no more bits set, then done */ |
| if len2 == 0 { |
| break; |
| } |
| } |
| |
| /* return combined crc */ |
| crc1 ^= crc2; |
| return crc1; |
| } |