| //! Complete projective formulas for prime order elliptic curves as described |
| //! in [Renes-Costello-Batina 2015]. |
| //! |
| //! [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| |
| #![allow(clippy::op_ref)] |
| |
| use ff::Field; |
| |
| /// Affine point whose coordinates are represented by the given field element. |
| pub type AffinePoint<Fe> = (Fe, Fe); |
| |
| /// Projective point whose coordinates are represented by the given field element. |
| pub type ProjectivePoint<Fe> = (Fe, Fe, Fe); |
| |
| /// Implements the complete addition formula from [Renes-Costello-Batina 2015] |
| /// (Algorithm 4). |
| /// |
| /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| #[inline(always)] |
| pub fn add<Fe>( |
| (ax, ay, az): ProjectivePoint<Fe>, |
| (bx, by, bz): ProjectivePoint<Fe>, |
| curve_equation_b: Fe, |
| ) -> ProjectivePoint<Fe> |
| where |
| Fe: Field, |
| { |
| // The comments after each line indicate which algorithm steps are being |
| // performed. |
| let xx = ax * bx; // 1 |
| let yy = ay * by; // 2 |
| let zz = az * bz; // 3 |
| let xy_pairs = ((ax + ay) * &(bx + by)) - &(xx + &yy); // 4, 5, 6, 7, 8 |
| let yz_pairs = ((ay + az) * &(by + bz)) - &(yy + &zz); // 9, 10, 11, 12, 13 |
| let xz_pairs = ((ax + az) * &(bx + bz)) - &(xx + &zz); // 14, 15, 16, 17, 18 |
| |
| let bzz_part = xz_pairs - &(curve_equation_b * &zz); // 19, 20 |
| let bzz3_part = bzz_part.double() + &bzz_part; // 21, 22 |
| let yy_m_bzz3 = yy - &bzz3_part; // 23 |
| let yy_p_bzz3 = yy + &bzz3_part; // 24 |
| |
| let zz3 = zz.double() + &zz; // 26, 27 |
| let bxz_part = (curve_equation_b * &xz_pairs) - &(zz3 + &xx); // 25, 28, 29 |
| let bxz3_part = bxz_part.double() + &bxz_part; // 30, 31 |
| let xx3_m_zz3 = xx.double() + &xx - &zz3; // 32, 33, 34 |
| |
| ( |
| (yy_p_bzz3 * &xy_pairs) - &(yz_pairs * &bxz3_part), // 35, 39, 40 |
| (yy_p_bzz3 * &yy_m_bzz3) + &(xx3_m_zz3 * &bxz3_part), // 36, 37, 38 |
| (yy_m_bzz3 * &yz_pairs) + &(xy_pairs * &xx3_m_zz3), // 41, 42, 43 |
| ) |
| } |
| |
| /// Implements the complete mixed addition formula from |
| /// [Renes-Costello-Batina 2015] (Algorithm 5). |
| /// |
| /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| #[inline(always)] |
| pub fn add_mixed<Fe>( |
| (ax, ay, az): ProjectivePoint<Fe>, |
| (bx, by): AffinePoint<Fe>, |
| curve_equation_b: Fe, |
| ) -> ProjectivePoint<Fe> |
| where |
| Fe: Field, |
| { |
| // The comments after each line indicate which algorithm steps are being |
| // performed. |
| let xx = ax * &bx; // 1 |
| let yy = ay * &by; // 2 |
| let xy_pairs = ((ax + &ay) * &(bx + &by)) - &(xx + &yy); // 3, 4, 5, 6, 7 |
| let yz_pairs = (by * &az) + &ay; // 8, 9 (t4) |
| let xz_pairs = (bx * &az) + &ax; // 10, 11 (y3) |
| |
| let bz_part = xz_pairs - &(curve_equation_b * &az); // 12, 13 |
| let bz3_part = bz_part.double() + &bz_part; // 14, 15 |
| let yy_m_bzz3 = yy - &bz3_part; // 16 |
| let yy_p_bzz3 = yy + &bz3_part; // 17 |
| |
| let z3 = az.double() + &az; // 19, 20 |
| let bxz_part = (curve_equation_b * &xz_pairs) - &(z3 + &xx); // 18, 21, 22 |
| let bxz3_part = bxz_part.double() + &bxz_part; // 23, 24 |
| let xx3_m_zz3 = xx.double() + &xx - &z3; // 25, 26, 27 |
| |
| ( |
| (yy_p_bzz3 * &xy_pairs) - &(yz_pairs * &bxz3_part), // 28, 32, 33 |
| (yy_p_bzz3 * &yy_m_bzz3) + &(xx3_m_zz3 * &bxz3_part), // 29, 30, 31 |
| (yy_m_bzz3 * &yz_pairs) + &(xy_pairs * &xx3_m_zz3), // 34, 35, 36 |
| ) |
| } |
| |
| /// Implements the exception-free point doubling formula from |
| /// [Renes-Costello-Batina 2015] (Algorithm 6). |
| /// |
| /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| #[inline(always)] |
| pub fn double<Fe>((x, y, z): ProjectivePoint<Fe>, curve_equation_b: Fe) -> ProjectivePoint<Fe> |
| where |
| Fe: Field, |
| { |
| // The comments after each line indicate which algorithm steps are being |
| // performed. |
| let xx = x.square(); // 1 |
| let yy = y.square(); // 2 |
| let zz = z.square(); // 3 |
| let xy2 = (x * &y).double(); // 4, 5 |
| let xz2 = (x * &z).double(); // 6, 7 |
| |
| let bzz_part = (curve_equation_b * &zz) - &xz2; // 8, 9 |
| let bzz3_part = bzz_part.double() + &bzz_part; // 10, 11 |
| let yy_m_bzz3 = yy - &bzz3_part; // 12 |
| let yy_p_bzz3 = yy + &bzz3_part; // 13 |
| let y_frag = yy_p_bzz3 * &yy_m_bzz3; // 14 |
| let x_frag = yy_m_bzz3 * &xy2; // 15 |
| |
| let zz3 = zz.double() + &zz; // 16, 17 |
| let bxz2_part = (curve_equation_b * &xz2) - &(zz3 + &xx); // 18, 19, 20 |
| let bxz6_part = bxz2_part.double() + &bxz2_part; // 21, 22 |
| let xx3_m_zz3 = xx.double() + &xx - &zz3; // 23, 24, 25 |
| |
| let dy = y_frag + &(xx3_m_zz3 * &bxz6_part); // 26, 27 |
| let yz2 = (y * &z).double(); // 28, 29 |
| let dx = x_frag - &(bxz6_part * &yz2); // 30, 31 |
| let dz = (yz2 * &yy).double().double(); // 32, 33, 34 |
| |
| (dx, dy, dz) |
| } |