blob: b0a12c779763aaf72ab93aed6c7ce037b28ff05b [file] [log] [blame] [edit]
#![no_std]
#![cfg_attr(fieldoffset_assert_in_const_fn, feature(const_panic))]
// Explicit lifetimes are clearer when we are working with raw pointers,
// as the compiler will not warn us if we specify lifetime constraints
// which are too lax.
#![allow(clippy::needless_lifetimes)]
#[cfg(all(test, fieldoffset_has_alloc))]
extern crate alloc;
use core::fmt;
use core::marker::PhantomData;
use core::mem;
use core::ops::Add;
use core::pin::Pin;
#[doc(hidden)]
pub extern crate memoffset as __memoffset; // `pub` for macro availability
/// Represents a pointer to a field of type `U` within the type `T`
///
/// The `PinFlag` parameter can be set to `AllowPin` to enable the projection
/// from Pin<&T> to Pin<&U>
#[repr(transparent)]
pub struct FieldOffset<T, U, PinFlag = NotPinned>(
/// Offset in bytes of the field within the struct
usize,
/// A pointer-to-member can be thought of as a function from
/// `&T` to `&U` with matching lifetimes
///
/// ```compile_fail
/// use field_offset::FieldOffset;
/// struct Foo<'a>(&'a str);
/// fn test<'a>(foo: &Foo<'a>, of: FieldOffset<Foo<'static>, &'static str>) -> &'static str {
/// let of2 : FieldOffset<Foo<'a>, &'static str> = of; // This must not compile
/// of2.apply(foo)
/// }
/// ```
/// That should compile:
/// ```
/// use field_offset::FieldOffset;
/// struct Foo<'a>(&'a str, &'static str);
/// fn test<'a>(foo: &'a Foo<'static>, of: FieldOffset<Foo, &'static str>) -> &'a str {
/// let of2 : FieldOffset<Foo<'static>, &'static str> = of;
/// of.apply(foo)
/// }
/// fn test2(foo: &Foo<'static>, of: FieldOffset<Foo, &'static str>) -> &'static str {
/// let of2 : FieldOffset<Foo<'static>, &'static str> = of;
/// of.apply(foo)
/// }
/// fn test3<'a>(foo: &'a Foo, of: FieldOffset<Foo<'a>, &'a str>) -> &'a str {
/// of.apply(foo)
/// }
/// ```
PhantomData<(PhantomContra<T>, U, PinFlag)>,
);
/// `fn` cannot appear directly in a type that need to be const.
/// Workaround that with an indirection
struct PhantomContra<T>(fn(T));
/// Type that can be used in the `PinFlag` parameter of `FieldOffset` to specify that
/// this projection is valid on Pin types.
/// See documentation of `FieldOffset::new_from_offset_pinned`
pub enum AllowPin {}
/// Type that can be used in the `PinFlag` parameter of `FieldOffset` to specify that
/// this projection is not valid on Pin types.
pub enum NotPinned {}
impl<T, U> FieldOffset<T, U, NotPinned> {
// Use MaybeUninit to get a fake T
#[cfg(fieldoffset_maybe_uninit)]
#[inline]
fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R {
let uninit = mem::MaybeUninit::<T>::uninit();
f(uninit.as_ptr())
}
// Use a dangling pointer to get a fake T
#[cfg(not(fieldoffset_maybe_uninit))]
#[inline]
fn with_uninit_ptr<R, F: FnOnce(*const T) -> R>(f: F) -> R {
f(mem::align_of::<T>() as *const T)
}
/// Construct a field offset via a lambda which returns a reference
/// to the field in question.
///
/// # Safety
///
/// The lambda *must not* dereference the provided pointer or access the
/// inner value in any way as it may point to uninitialized memory.
///
/// For the returned `FieldOffset` to be safe to use, the returned pointer
/// must be valid for *any* instance of `T`. For example, returning a pointer
/// to a field from an enum with multiple variants will produce a `FieldOffset`
/// which is unsafe to use.
pub unsafe fn new<F: for<'a> FnOnce(*const T) -> *const U>(f: F) -> Self {
let offset = Self::with_uninit_ptr(|base_ptr| {
let field_ptr = f(base_ptr);
(field_ptr as usize).wrapping_sub(base_ptr as usize)
});
// Construct an instance using the offset
Self::new_from_offset(offset)
}
/// Construct a field offset directly from a byte offset.
///
/// # Safety
///
/// For the returned `FieldOffset` to be safe to use, the field offset
/// must be valid for *any* instance of `T`. For example, returning the offset
/// to a field from an enum with multiple variants will produce a `FieldOffset`
/// which is unsafe to use.
#[inline]
pub const unsafe fn new_from_offset(offset: usize) -> Self {
// Sanity check: ensure that the field offset plus the field size
// is no greater than the size of the containing struct. This is
// not sufficient to make the function *safe*, but it does catch
// obvious errors like returning a reference to a boxed value,
// which is owned by `T` and so has the correct lifetime, but is not
// actually a field.
#[cfg(fieldoffset_assert_in_const_fn)]
assert!(offset + mem::size_of::<U>() <= mem::size_of::<T>());
// On stable rust, we can still get an assert in debug mode,
// relying on the checked overflow behaviour
let _ = mem::size_of::<T>() - (offset + mem::size_of::<U>());
FieldOffset(offset, PhantomData)
}
}
// Methods for applying the pointer to member
impl<T, U, PinFlag> FieldOffset<T, U, PinFlag> {
/// Apply the field offset to a native pointer.
#[inline]
pub fn apply_ptr(self, x: *const T) -> *const U {
((x as usize) + self.0) as *const U
}
/// Apply the field offset to a native mutable pointer.
#[inline]
pub fn apply_ptr_mut(self, x: *mut T) -> *mut U {
((x as usize) + self.0) as *mut U
}
/// Apply the field offset to a reference.
#[inline]
pub fn apply<'a>(self, x: &'a T) -> &'a U {
unsafe { &*self.apply_ptr(x) }
}
/// Apply the field offset to a mutable reference.
#[inline]
pub fn apply_mut<'a>(self, x: &'a mut T) -> &'a mut U {
unsafe { &mut *self.apply_ptr_mut(x) }
}
/// Get the raw byte offset for this field offset.
#[inline]
pub const fn get_byte_offset(self) -> usize {
self.0
}
// Methods for unapplying the pointer to member
/// Unapply the field offset to a native pointer.
///
/// # Safety
///
/// *Warning: very unsafe!*
///
/// This applies a negative offset to a pointer. If the safety
/// implications of this are not already clear to you, then *do
/// not* use this method. Also be aware that Rust has stronger
/// aliasing rules than other languages, so it may be UB to
/// dereference the resulting pointer even if it points to a valid
/// location, due to the presence of other live references.
#[inline]
pub unsafe fn unapply_ptr(self, x: *const U) -> *const T {
((x as usize) - self.0) as *const T
}
/// Unapply the field offset to a native mutable pointer.
///
/// # Safety
///
/// *Warning: very unsafe!*
///
/// This applies a negative offset to a pointer. If the safety
/// implications of this are not already clear to you, then *do
/// not* use this method. Also be aware that Rust has stronger
/// aliasing rules than other languages, so it may be UB to
/// dereference the resulting pointer even if it points to a valid
/// location, due to the presence of other live references.
#[inline]
pub unsafe fn unapply_ptr_mut(self, x: *mut U) -> *mut T {
((x as usize) - self.0) as *mut T
}
/// Unapply the field offset to a reference.
///
/// # Safety
///
/// *Warning: very unsafe!*
///
/// This applies a negative offset to a reference. If the safety
/// implications of this are not already clear to you, then *do
/// not* use this method. Also be aware that Rust has stronger
/// aliasing rules than other languages, so this method may cause UB
/// even if the resulting reference points to a valid location, due
/// to the presence of other live references.
#[inline]
pub unsafe fn unapply<'a>(self, x: &'a U) -> &'a T {
&*self.unapply_ptr(x)
}
/// Unapply the field offset to a mutable reference.
///
/// # Safety
///
/// *Warning: very unsafe!*
///
/// This applies a negative offset to a reference. If the safety
/// implications of this are not already clear to you, then *do
/// not* use this method. Also be aware that Rust has stronger
/// aliasing rules than other languages, so this method may cause UB
/// even if the resulting reference points to a valid location, due
/// to the presence of other live references.
#[inline]
pub unsafe fn unapply_mut<'a>(self, x: &'a mut U) -> &'a mut T {
&mut *self.unapply_ptr_mut(x)
}
/// Convert this offset to an offset that is allowed to go from `Pin<&T>`
/// to `Pin<&U>`
///
/// # Safety
///
/// The Pin safety rules for projection must be respected. These rules are
/// explained in the
/// [Pin documentation](https://doc.rust-lang.org/stable/std/pin/index.html#pinning-is-structural-for-field)
pub const unsafe fn as_pinned_projection(self) -> FieldOffset<T, U, AllowPin> {
FieldOffset::new_from_offset_pinned(self.get_byte_offset())
}
/// Remove the AllowPin flag
pub const fn as_unpinned_projection(self) -> FieldOffset<T, U, NotPinned> {
unsafe { FieldOffset::new_from_offset(self.get_byte_offset()) }
}
}
impl<T, U> FieldOffset<T, U, AllowPin> {
/// Construct a field offset directly from a byte offset, which can be projected from
/// a pinned.
///
/// # Safety
///
/// In addition to the safety rules of FieldOffset::new_from_offset, the projection
/// from `Pin<&T>` to `Pin<&U>` must also be allowed. The rules are explained in the
/// [Pin documentation](https://doc.rust-lang.org/stable/std/pin/index.html#pinning-is-structural-for-field)
#[inline]
pub const unsafe fn new_from_offset_pinned(offset: usize) -> Self {
FieldOffset(offset, PhantomData)
}
/// Apply the field offset to a pinned reference and return a pinned
/// reference to the field
#[inline]
pub fn apply_pin<'a>(self, x: Pin<&'a T>) -> Pin<&'a U> {
unsafe { x.map_unchecked(|x| self.apply(x)) }
}
/// Apply the field offset to a pinned mutable reference and return a
/// pinned mutable reference to the field
#[inline]
pub fn apply_pin_mut<'a>(self, x: Pin<&'a mut T>) -> Pin<&'a mut U> {
unsafe { x.map_unchecked_mut(|x| self.apply_mut(x)) }
}
}
impl<T, U> From<FieldOffset<T, U, AllowPin>> for FieldOffset<T, U, NotPinned> {
fn from(other: FieldOffset<T, U, AllowPin>) -> Self {
other.as_unpinned_projection()
}
}
/// Allow chaining pointer-to-members.
///
/// Applying the resulting field offset is equivalent to applying the first
/// field offset, then applying the second field offset.
///
/// The requirements on the generic type parameters ensure this is a safe operation.
impl<T, U, V> Add<FieldOffset<U, V>> for FieldOffset<T, U> {
type Output = FieldOffset<T, V>;
#[inline]
fn add(self, other: FieldOffset<U, V>) -> FieldOffset<T, V> {
FieldOffset(self.0 + other.0, PhantomData)
}
}
impl<T, U, V> Add<FieldOffset<U, V, AllowPin>> for FieldOffset<T, U, AllowPin> {
type Output = FieldOffset<T, V, AllowPin>;
#[inline]
fn add(self, other: FieldOffset<U, V, AllowPin>) -> FieldOffset<T, V, AllowPin> {
FieldOffset(self.0 + other.0, PhantomData)
}
}
impl<T, U, V> Add<FieldOffset<U, V>> for FieldOffset<T, U, AllowPin> {
type Output = FieldOffset<T, V>;
#[inline]
fn add(self, other: FieldOffset<U, V>) -> FieldOffset<T, V> {
FieldOffset(self.0 + other.0, PhantomData)
}
}
impl<T, U, V> Add<FieldOffset<U, V, AllowPin>> for FieldOffset<T, U> {
type Output = FieldOffset<T, V>;
#[inline]
fn add(self, other: FieldOffset<U, V, AllowPin>) -> FieldOffset<T, V> {
FieldOffset(self.0 + other.0, PhantomData)
}
}
/// The debug implementation prints the byte offset of the field in hexadecimal.
impl<T, U, Flag> fmt::Debug for FieldOffset<T, U, Flag> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "FieldOffset({:#x})", self.0)
}
}
impl<T, U, Flag> Copy for FieldOffset<T, U, Flag> {}
impl<T, U, Flag> Clone for FieldOffset<T, U, Flag> {
fn clone(&self) -> Self {
*self
}
}
/// This macro allows safe construction of a FieldOffset,
/// by generating a known to be valid lambda to pass to the
/// constructor. It takes a type, and the identifier of a field
/// within that type as input.
///
/// Examples:
///
/// Offset of field `Foo.bar`
///
/// ```rust
/// # #[macro_use]
/// # extern crate field_offset;
/// # fn main() {
/// #[repr(C)]
/// struct Foo { foo: i32, bar: i32 }
/// assert_eq!(offset_of!(Foo => bar).get_byte_offset(), 4);
/// # }
/// ```
///
/// Offset of nested field `Foo.bar.x`
///
/// ```rust
/// # #[macro_use]
/// # extern crate field_offset;
/// # fn main() {
/// struct Bar { a: u8, x: u8 }
/// struct Foo { foo: i32, bar: Bar }
/// assert_eq!(offset_of!(Foo => bar: Bar => x).get_byte_offset(), 5);
/// # }
/// ```
#[macro_export]
macro_rules! offset_of {
($t: path => $f: tt) => {{
// Construct the offset
#[allow(unused_unsafe)]
unsafe {
$crate::FieldOffset::<$t, _>::new(|x| {
$crate::__memoffset::raw_field!(x, $t, $f)
})
}
}};
($t: path => $f: ident: $($rest: tt)*) => {
offset_of!($t => $f) + offset_of!($($rest)*)
};
}
#[cfg(test)]
mod tests {
// Example structs
#[derive(Debug)]
struct Foo {
a: u32,
b: f64,
c: bool,
}
#[derive(Debug)]
struct Bar {
x: u32,
y: Foo,
}
#[derive(Debug)]
struct Tuple(i32, f64);
#[test]
fn test_simple() {
// Get a pointer to `b` within `Foo`
let foo_b = offset_of!(Foo => b);
// Construct an example `Foo`
let mut x = Foo {
a: 1,
b: 2.0,
c: false,
};
// Apply the pointer to get at `b` and read it
{
let y = foo_b.apply(&x);
assert_eq!(*y, 2.0);
}
// Apply the pointer to get at `b` and mutate it
{
let y = foo_b.apply_mut(&mut x);
*y = 42.0;
}
assert_eq!(x.b, 42.0);
}
#[test]
fn test_tuple() {
// Get a pointer to `b` within `Foo`
let tuple_1 = offset_of!(Tuple => 1);
// Construct an example `Foo`
let mut x = Tuple(1, 42.0);
// Apply the pointer to get at `b` and read it
{
let y = tuple_1.apply(&x);
assert_eq!(*y, 42.0);
}
// Apply the pointer to get at `b` and mutate it
{
let y = tuple_1.apply_mut(&mut x);
*y = 5.0;
}
assert_eq!(x.1, 5.0);
}
#[test]
fn test_nested() {
// Construct an example `Foo`
let mut x = Bar {
x: 0,
y: Foo {
a: 1,
b: 2.0,
c: false,
},
};
// Combine the pointer-to-members
let bar_y_b = offset_of!(Bar => y: Foo => b);
// Apply the pointer to get at `b` and mutate it
{
let y = bar_y_b.apply_mut(&mut x);
*y = 42.0;
}
assert_eq!(x.y.b, 42.0);
}
struct Parameterized<T, U> {
x: T,
_y: U,
}
#[test]
fn test_type_parameter() {
let _ = offset_of!(Parameterized<Parameterized<bool, bool>, bool> => x: Parameterized<bool, bool> => x);
}
#[test]
fn test_const() {
use crate::FieldOffset;
#[repr(C)]
struct SomeStruct {
a: u8,
b: u32,
}
const CONST_FIELD_OFFSET: FieldOffset<SomeStruct, u32> =
unsafe { FieldOffset::new_from_offset(4) };
const CONST_VALUE: usize = CONST_FIELD_OFFSET.get_byte_offset();
assert_eq!(offset_of!(SomeStruct => b).get_byte_offset(), CONST_VALUE);
static STATIC_FIELD_OFFSET: FieldOffset<SomeStruct, u32> =
unsafe { FieldOffset::new_from_offset(4) };
assert_eq!(
offset_of!(SomeStruct => b).get_byte_offset(),
STATIC_FIELD_OFFSET.get_byte_offset()
);
}
#[cfg(fieldoffset_has_alloc)]
#[test]
fn test_pin() {
use alloc::boxed::Box;
use core::pin::Pin;
// Get a pointer to `b` within `Foo`
let foo_b = offset_of!(Foo => b);
let foo_b_pin = unsafe { foo_b.as_pinned_projection() };
let foo = Box::pin(Foo {
a: 21,
b: 22.0,
c: true,
});
let pb: Pin<&f64> = foo_b_pin.apply_pin(foo.as_ref());
assert_eq!(*pb, 22.0);
let mut x = Box::pin(Bar {
x: 0,
y: Foo {
a: 1,
b: 52.0,
c: false,
},
});
let bar_y_b = offset_of!(Bar => y: Foo => b);
assert!(*bar_y_b.apply(&*x) == 52.0);
let bar_y_pin = unsafe { offset_of!(Bar => y).as_pinned_projection() };
*(bar_y_pin + foo_b_pin).apply_pin_mut(x.as_mut()) = 12.;
assert_eq!(x.y.b, 12.0);
}
}